More stories

  • in

    Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China

    Wu, X. et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30, 351–369 (2020).
    Google Scholar 
    Hu, W. et al. Flue-cured tobacco (Nicotiana tabacum L.) leaf quality can be improved by grafting with potassium-efficient rootstock. Field Crop. Res. 274, 108305 (2021).
    Google Scholar 
    Wu, X. et al. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch. Microbiol. 203, 5723–5733 (2021).CAS 
    PubMed 

    Google Scholar 
    Jiang, C. et al. Optimal lime application rates for ameliorating acidic soils and improving the yield and quality of tobacco leaves. Appl. Ecol. Environ. Res. 18, 5411–5423 (2020).
    Google Scholar 
    Yin, Q. et al. Investigation of associations between rhizosphere microorganisms and the chemical composition of flue-cured tobacco leaves using canonical correlation analysis. Commun. Soil Sci. Plant 44, 1524–1539 (2013).CAS 

    Google Scholar 
    Shen, H. et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers. Exp. Agric. 53, 59–70 (2017).CAS 

    Google Scholar 
    Hu, W. Q. et al. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biol. 19, 130 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, J. Study of K+ uptake kinetics of flue-cured tobacco in K+-enriched and conventional tobacco genotypes. J. Plant Nutr. 42(7), 1–7 (2019).
    Google Scholar 
    Tang, Z. et al. Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep. 10, 19868 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, S. et al. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Ind. Crop. Prod. 151, 112454 (2020).CAS 

    Google Scholar 
    Tabaxi, I. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. https://doi.org/10.35495/ajab.2020.05.274 (2021).Article 

    Google Scholar 
    Chen, Y. L. et al. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26, 6608–6620 (2017).CAS 
    PubMed 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E. et al. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 

    Google Scholar 
    Cui, Y. et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma 338, 118–127 (2019).ADS 
    CAS 

    Google Scholar 
    Zheng, J. et al. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot experiment. Sci. Rep. 10, 8804 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. Effects of tobacco planting systems on rates of soil N transformation and soil microbial community. Int. J. Agric. Biol. 19, 992–998 (2017).CAS 

    Google Scholar 
    Yang, Y. et al. Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Sci. Rep. 9, 6168 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Sci. Rep. 10, 19911 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ehrmann, J. & Ritz, K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376, 1–29 (2013).
    Google Scholar 
    Liu, H. et al. Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 9, 3316 (2018).PubMed 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 10, 2269 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Analysis on the method selection of tobacco disease control. South China Agric. 15, 49–50 (2021).
    Google Scholar 
    Dai, C. et al. Comprehensive evaluation of soil fertility status of tobacco-planting district in Bijie area. Acta Agric. Jiangxi 23, 9–11 (2011).
    Google Scholar 
    Wang, Z. et al. Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci. Rep. 9, 19969 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Study on the primary chemical components, sensory quality of flue-cured tobacco and their correlativity in Bijie. J. Henan Agric. Sci. 41, 58–61 (2012).
    Google Scholar 
    Zhang, S. et al. Analysis of variation characteristics and coordination of conventional chemical components of flue-cured tobacco in Youyang County, Chongqing City. Acta Agric. Jiangxi 32, 75–86 (2020).
    Google Scholar 
    Lakatos, L. et al. The influence of meteorological variables on sour cherry quality parameters. In Vi International Cherry Symposium (Int Soc Horticultural Science, Leuven 1), Vol. 1020, 287–292 (2014).Zhao, Z. et al. Why does potassium concentration in flue-cured tobacco leaves decrease after apex excision? Field Crop. Res. 116, 86–91 (2010).
    Google Scholar 
    Travlos, I. S. et al. Green manure and pendimethalin impact on oriental sun-cured tobacco. Agron. J. 106, 1225–1230 (2014).
    Google Scholar 
    Bilalis, D. et al. Effect of organic fertilization on soil characteristics, yield and quality of Virginia Tobacco in Mediterranean area. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2020.v32.i8.2138 (2020).Article 

    Google Scholar 
    Henry, J. B., Vann, M. C. & Lewis, R. S. Agronomic practices affecting nicotine concentration in flue-cured tobacco: A review. Agron. J. 111, 3067–3075 (2019).CAS 

    Google Scholar 
    Lamarre, M. & Payette, S. Influence of nitrogen-fertilization on Quebec flue-cured tobacco production. Can. J. Plant Sci. 72, 411–419 (1992).CAS 

    Google Scholar 
    Zhang, L. et al. Dynamic changes of nutrients in tobacco-planting soils in Bijie City during 2014–2016. Guizhou Agric. Sci. 45, 51–55 (2017).CAS 

    Google Scholar 
    Lisuma, J. B., Mbega, E. R. & Ndakidemi, P. A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth. Rhizosphere 12, 100175 (2019).
    Google Scholar 
    Cosme, M. & Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57, 436–443 (2013).CAS 

    Google Scholar 
    Chandanie, W. A., Kubota, M. & Hyakumachi, M. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl. Soil Ecol. 41, 336–341 (2009).
    Google Scholar 
    Liu, D. et al. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci. Total Environ. 660, 1058–1069 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, S. & Wu, F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01521 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. Chaetosemins A-E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Adv. 5, 29185–29192 (2015).ADS 
    CAS 

    Google Scholar 
    Gorte, O., Kugel, M. & Ochsenreither, K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels 13, 181 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. J. Soil. Sediment. 20, 3091–3102 (2019).
    Google Scholar 
    Zong, J. et al. Effect of two drying methods on chemical transformations in flue-cured tobacco. Dry Technol. https://doi.org/10.1080/07373937.2020.1779287 (2020).Article 

    Google Scholar 
    Ismail, E. et al. Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp.. Afr. J. Biotechnol. 10, 8605–8612 (2011).
    Google Scholar 
    d’Aquino, L. et al. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol. Biochem. 41, 2406–2413 (2009).CAS 

    Google Scholar 
    Bijie Municipal Government. Statistical Yearbooks of Bijie City (2016)He, R., Liu, S. & Liu, Y. Application of SD model in analyzing the cultivated land carrying capacity: A case study in Bijie Prefecture, Guizhou Province, China. Procedia Environ. Sci. 10, 1985–1991 (2011).
    Google Scholar 
    Wang, M. et al. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environ. Sci. Pollut. Res. 28, 26112–26123 (2021).CAS 

    Google Scholar 
    Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145 (2015).PubMed 

    Google Scholar 
    Zhang, Q. et al. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Sci. Total Environ. 658, 723–731 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cui, Q. et al. Sulfur application improved leaf yield and quality of flue-cured tobacco by maintaining soil sulfur balance. Int. J. Agric. Biol. 23, 357–363 (2020).CAS 

    Google Scholar 
    Cao, X. et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, C. et al. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard. Mater. 408, 124985 (2021).CAS 
    PubMed 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindstrom, E. S. et al. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71, 8201–8206 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Two new Russula species (fungi) from dry dipterocarp forest in Thailand suggest niche specialization to this habitat type

    Phylogenetic analysesA total of 21 sequences were newly generated and deposited in GenBank (Supplementary Table 1). The concatenated sequence alignment of the three loci comprised 100 sequences (38 for ITS, 30 for rpb2 and 32 for mtSSU) from 43 collections (Supplementary Table 1). The alignment was 2,004 characters long, including gaps. Multi-locus trees generated from ML and BI analyses showed similar topologies without any supported topological conflict. The multi-locus phylogeny (Fig. 1) confirmed placement of all Thai collections within the well-supported R. subsect. Amoeninae (ML = 99, BI = 1.0). Five collections from northeastern Thailand and two collections from northern Thailand form two strongly supported clades and are described below as the new species R. bellissima sp. nov. and R. luteonana sp. nov. The new species are not resolved as sister. The first species, R. bellissima, is strongly supported as sister to a clade of Australian sequestrate species that includes R. variispora T. Lebel and an undescribed Russula sp. labeled as Macowanites sp. The Indian species R. intervenosa S. Paloi, A.K. Dutta & K. Acharya is placed as sister to them with bootstrap support of 77. The second species, R. luteonana, is placed with moderate support as sister to the sequestrate European species R. andaluciana T.F. Elliott & Trappe.Figure 1ML phylogenetic tree inferred from the three-gene dataset (ITS, rpb2, mtSSU) of Russula subsection Amoeninae species, using ML and BI analyses. Three members of R. subg. Heterophyllidiae are used as outgroup. Species in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageThe ITS tree (Fig. 2) shows a similar topology and relationships for the studied specimens. In addition, R. intervenosa received good support (ML = 84, BI = 0.99) as sister to the clade of R. bellissima and R. variispora. Five additional ITS sequences that are grouped with strong support within R. bellissima species clade were recovered, three from Thailand, one from Laos, and one from Singapore. We did not recover any other Amoeninae ITS sequences from Thailand.Figure 2ML phylogenetic tree inferred from the ITS region of Russula subsection Amoeninae species and allied groups, using ML and BI methods. Samples in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageTaxonomy
    Russula bellissima Manz & F. Hampe sp. nov.
    Mycobank: MB 840549Holotype THAILAND, Theong district, Chiang Rai, 19°36′45”N 100°4′00”E, alt. 500 m, dry dipterocarpus forest in small groups on loamy soil, 12 July 2012, F. Hampe (Holotype: GENT FH 12-127; Isotype: MFLU12-0619).Etymology ’bellus’ = latin for beautiful, pretty, lovely; ’bellissima’ = the most beautiful. Resembling the species Russula bella which is also belonging to Russula subsection Amoeninae.Diagnosis Pileus small to medium-sized; cuticle dry, smooth, matt and pruinose, red; stipe white or with a red flush; spore ornamentation of moderately distant to dense amyloid spines or warts, frequently fused into short crests or even long wings; suprahilar spot inamyloid; hymenial cystidia and pileocystidia absent.Pileus (Fig. 3) small to medium sized, 10–50 mm diam., young hemispherical or convex, becoming plane and depressed at the centre; margin first even, when old distinctly tuberculate-striate up to 10 mm from the margin, often radially cracking; cuticle hardly peeling, radially disrupted into small patches, pruinose when young, later dry, smooth, matt and pruinose in the centre, colour near the margin when young varnish red (9C8), later red to coral red (9B6-7); near the centre deep red, blood red, dark red (10C7-8), raspberry red (10D7), strawberry red (10D8) or purple brown (10E-F8). Lamellae: 3–5 mm deep, thin, moderately dense, 6–8 at 1 cm near the pileus margin, adnexed, white, slightly anastomosing at the base; lamellulae absent, occasionally forked near the stipe; edges concolorous, entire but pruinose under lens. Stipe: 10–30 × 3–7 mm, usually narrowed towards the base, sometimes cylindrical, surface smooth, white and mainly with a distinct pastel red to red flush, occasionally completely white or sometimes also almost completely red, interior stuffed. Context: white, fragile, unchanging when damaged, reaction with guaiac after 5 s negative on both stipe and lamellae surfaces, reaction to FeSO4 and sulfovanillin negative; taste mild; odour inconspicuous. Spore print: not observed.Figure 3Basidiomata of Russula bellissima. (A) FH12-127 (Holotype). (B) FH12-158. Scale bar = 1 cm. Photos by Felix Hampe.Full size imageSpores (Figs. 4, 5) (6.9–)7.3–7.8–8.3(–8.9) × (6.1–)6.8–7.2–7.6(–8.4) µm, subglobose to broadly ellipsoid, Q = 1.01–1.1–1.2(–1.29); ornamentation of moderately distant [(4–)5–6(–7) in a 3 µm diam. circle] amyloid spines or warts, (1.1–)1.2–1.4–1.6(–1.7) µm high, fused or connected by fine line connections into often long crests or wings, [(0–)1–3(–4) fusions and the same number of line connections in a 3 µm diam. circle], crests and wings frequently branched and occasionally form closed loops, isolated elements dispersed, edge of crests and wings irregularly wavy; suprahilar spot moderately large, inamyloid. Basidia: (30.5–)34.5–44.1–53.5(–65.0) × (10.5–)11.5–12.6–14.0(–16.0) µm, broadly clavate or obpyriform, 4-spored; basidiola cylindrical, ellipsoid or broadly clavate, ca. 5–10 µm wide. Hymenial cystidia on lamellae sides: absent. Lamellae edges: covered by densely arranged or fasciculate marginal cells. Marginal cells: (27.0–)38.5–46.4–54.5(–61.0) × (5.0–)5.5–6.7–7.5(–9.0) µm; subulate or narrowly lageniform, apically attenuated and constricted to ca. 1–2 µm, sometimes slightly moniliform or flexuous. Pileipellis: (Fig. 6) orthochromatic in Cresyl Blue, gradually passing to the underlying context, 200–300 µm deep; suprapellis 60–130 µm deep, composed of erect or ascending hyphal terminations forming a dry trichoderm, well delimited from 140 to 210 µm deep subpellis composed of horizontally oriented, strongly gelatinized narrow hyphae. Subpellis not well delimited from the underlying context, elongate hyphae gradually changing to sphaerocytes. Acid- resistant incrustations: absent. Hyphal terminations near the pileus margin: composed of long apically attenuated terminal cell and a chain of 1–4 ovoid to barrel shaped, short unbranched cells with one distinctly longer apical cell; constricted on septa, usually not flexuous, oriented towards the pileus surface, usually thin-walled, sometimes slightly thick-walled (up to 1 µm thick); terminal cells mainly subulate or lageniform, apically attenuated and acute, measuring (19–)27.5–38.3–49.0(–66.5) × (3.3–)4.5–5.8–7.0(–9.0) µm, rarely with a forked apex, mixed with dispersed, cylindrical or ellipsoid, distinctly shorter, obtuse terminal cells measuring (7.5–)11.5–17.8–29.5(–42.5) × (3.0–)4.0–4.5–5.0 µm; subterminal cells measuring (4.5–)5.5–8.3–11.5(–16.0) × 4.5–5.3–6.0(–7.0) µm. Hyphal terminations near the pileus centre: similar in shape and also with a mixture of long acute and short obtuse terminal cells, acute ones measuring (12.0–)22.0–35.2–48.5(–79.0) × (2.5–)3.5–4.9–6.5(–8.0) µm, obtuse ones more frequent, measuring (6.5–)8.5–12.0–15.5(–22.0) × (3.5–)4.0–4.9–6.0(–7.5) µm. Primordial hyphae or pileocystidia: absent. Cystidioid hyphae and oleipherous hyphae not observed.Figure 4Hymenial elements of Russula bellissima (holotype, FH 12-127). (A) Basidia and basidiolae. (B) Marginal cells. (C) Spores as seen in Melzer’s reagent. Scale bar = 10 µm, but only 5 µm for spores.Full size imageFigure 5Scanning electron microscope photo of spore ornamentation. Russula bellissima (holotype, FH 12-127). Scale bar = 2 μm.Full size imageFigure 6Elements of the pileipellis of Russula bellissima (holotype, FH 12-127). (A) Hyphal terminations near the pileus margin. (B) Hyphal terminations near the pileus centre. Scale bar = 10 μm.Full size imageAdditional material studied THAILAND, Chiang Mai Province, Mae On District, about 3 km from Tharnthong lodges, 18° 51′ 55″ N 99° 17′ 23″ E, alt. 725 m, Dipterocarpaceae dominated forest with the presence of some Castanopsis trees, in small groups on loamy soil, 17 July 2012, F. Hampe (GENT FH 12-158, duplicate: MFLU12-0648).Note Russula bellissima is a small species with a bright red pileus and pink colour on the stipe. This colour is distinctive and resembles North American R. mariae, Indian R. intervenosa and Asian R. bella. It is very unlikely that the distribution of any European or North American species is overlapping with the Thai species. However, little is known about the distributional ranges and the ecological niches of other Asian Russula species. Therefore discussing the morphological distinguishing characters between Asian species and R. bellissima is more relevant. Russula bellissima is not closely related to R. bella and it differs from this species by larger spores with a more prominent spore ornamentation, absence of hymenial cystidia on lamellae sides, and subterminally short, ellipsoid cells in the suprapellis arranged in unbranched chains of up to four7. The Thai species resembles and is closely related to the Indian R. intervenosa, but it has a more prominent spore ornamentation, hymenial cystidia (on lamellae sides) are absent, and hyphal terminations in the pileipellis are wider22.
    Russula luteonana M. Pobkwamsuk & K. Wisitrassameewong sp. nov.
    Mycobank: MB 840550Holotype: THAILAND, Amnat Charoen province, Hua Taphan district, Junction near Watbochaneng , dry dipterocarp forest, alt. 145 m, 15° 41′ 28″ N 104° 31′ 41″ E, 13 July 2016, Thitiya Boonpratuang, Rattaket Choeyklin, Prapapan Sawhasan, Maneerat Pobkwamsuk, Pattrachai Juthamas, Nattawut Wiriyathanawudhiwong, Patcharee Patangwesa (BBH41120).Etymology ‘Luteolus’ = yellow colour, ‘Nanus’ = small. Refer to pileus color and size of the species.Diagnosis Pileus medium-sized, dry, usually yellow, spores with subreticulate amyloid ornamentation and inamyloid suprahilar spot, hymenial cystidia on lamellae sides large, lamellae edges with combination of subulate, clavate and pyriform marginal cells.Pileus (Fig. 7) medium-sized, 28‒53 mm diam., plano-convex with depressed centre, infundibuliform when mature; margin striated and radially cracking in dry condition; cuticle dry, peeling to almost ½ of radius, smooth to minutely wrinkled, dull in dry condition, color very variable, some collections pale cream and with darker pale brownish-yellow centre, other yellow brownish and with darker orange-brown centre, sometimes also bright red-brown and with discolored centre, always with rusty-brown spots especially when near the centre. Lamellae: 3‒5 mm deep, moderately distant, intervenose, forking near the stipe, white to cream, edges even, concolorous. Stipe: 26‒40 × 6‒9 mm, cylindrical or narrowed at the base, surface dry, longitudinally wrinkled, white, turning brown when bruised. Context: 2‒4 mm in at the half pileus radius, soft, solid, becoming partially hollow when mature, white, unchanging when cut. Taste mild; odour rather strong, fishy. Spore print: not observed.Figure 7Basidiomata of Russula luteonana. (A) BBH41120 (Holotype). (B) BBH41121. (C) BBH41122. (D) BBH42510. Scale bar = 1 cm. Photos by Thitiya Boonpratuang.Full size imageSpores (Figs. 8, 9) (7.4‒)8.1‒8.6‒9(‒10.1) × (6.1‒)7.4‒7.5‒7.9(‒9.1) μm, subglobose to broadly ellipsoid, Q = (1.03‒)1.09‒1.15‒1.20(‒1.30), ornamentation of moderately distant, obtuse, (0.7‒)1.1‒1.3‒1.5(‒1.9) μm high spines, connected by abundant line connections [(0‒)3‒6(‒8) in in a 3 µm diam. circle], branched, forming an incomplete reticulum, crest irregularly wavy and occasionally fused [(0‒)1‒2(‒5) fusions in the circle], isolated elements rare; suprahilar spot inamyloid. Basidia: (29‒)34.5‒39.1‒44(‒51.5) × (10‒)12‒13.2‒14.5(‒16.5) μm, clavate, 4-spored, rarely 2-spored, basidiola subcylindrical to subclavate, (25.5‒)30‒35.4‒41(‒47) × (9‒)11‒12.2‒14 (‒16) μm. Hymenial cystidia on lamellae sides: usually protruding over other elements of hymenium, widely dispersed ( More

  • in

    Long horns protect Hestina japonica butterfly larvae from their natural enemies

    Lincoln, G. A. Teeth, horns and antlers: the weapons of sex. In The Differences between the Sexes (eds R. V. Short & E. Balaban) 131–158 (Cambridge Univ. Press, 1994).Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 77, 462–475 (1996).Article 

    Google Scholar 
    Bro-Jorgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).Article 

    Google Scholar 
    Plard, F., Bonenfant, C. & Gaillard, J. M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011).Article 

    Google Scholar 
    Okada, K. & Miyatake, T. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Ann. Entomol. Soc. Am. 97, 1342–1346 (2004).Article 

    Google Scholar 
    Emlen, D. J., Marangelo, J., Ball, B. & Cunningham, C. W. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59, 1060–1084 (2005).CAS 
    Article 

    Google Scholar 
    Pomfret, J. C. & Knell, R. J. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. 71, 567–576 (2006).Article 

    Google Scholar 
    McCullough, E. L., Weingarden, P. R. & Emlen, D. J. Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behav. Ecol. 23, 1042–1048 (2012).Article 

    Google Scholar 
    David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001).CAS 
    Article 

    Google Scholar 
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2012).Article 

    Google Scholar 
    Hashimoto, K. & Hayashi, F. Structure and function of the large pronotal horn of the sand-living anthicid beetle Mecynotarsus tenuipes. Entomol. Sci. 15, 274–279 (2012).Article 

    Google Scholar 
    Hayashi, M. & Ohba, S. Y. Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol. J. Linn. Soc. 125, 315–320 (2018).Article 

    Google Scholar 
    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).CAS 
    Article 

    Google Scholar 
    Dweck, H. K. M. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron 40, 769–774 (2009).Article 

    Google Scholar 
    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    Stoffolano, J. G. Jr., Rice, M. & Murphy, W. L. The importance of antennal mechanosensilla of Sepedon fuscipennis (Diptera: Sciomyzidae). Can. Entomol. 145, 265–272 (2013).Article 

    Google Scholar 
    Gabel, B. et al. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 18, 693–701 (1992).CAS 
    Article 

    Google Scholar 
    Fox, H. Barbels and barbel-like tentacular structures in sub-mammalian vertebrates: a review. Hydrobiologia 403, 153–193 (1999).Article 

    Google Scholar 
    Plepys, D., Ibarra, F., Francke, W. & Lofstedt, C. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99, 75–82 (2002).CAS 
    Article 

    Google Scholar 
    Stankowich, T. & Caro, T. Evolution of weaponry in female bovids. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4329–4334 (2009).Bergmann, P. J. & Berk, C. P. The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012).Article 

    Google Scholar 
    Damman, H. The osmaterial glands of the swallowtail butterfly Eurytide marcellus as a defense against natural enemies. Ecol. Entomol. 11, 261–265 (1986).Article 

    Google Scholar 
    Berenbaum, M. R., Moreno, B. & Green, E. Soldier bug predation on swallowtail caterpillars (Lepidoptera, Papilionidae): circumvention of defensive chemistry. J. Insect Behav. 5, 547–553 (1992).Article 

    Google Scholar 
    Juma, G. et al. Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol. Exp. Appl. 128, 93–98 (2008).Article 

    Google Scholar 
    Liu, Z., Hua, B.-Z. & Liu, L. Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42, 478–483 (2011).Article 

    Google Scholar 
    Kandori, I., Tsuchihara, K., Suzuki, T. A., Yokoi, T. & Papaj, D. R. Long frontal projections help Battus philenor (Lepidoptera: Papilionidae) larvae find host plants. PLoS ONE 10, e0131596 (2015).Article 

    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. ISJ Invert. Surviv. J. 9, 7–34 (2012).
    Google Scholar 
    Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337 (2020).Article 

    Google Scholar 
    Martin, W. R. & Nordlund, D. A. Ovipositional behavior of the parasitoid Palexorista laxa (Diptera, Tachinidae) on Heliothis zea (Lepidoptera, Noctuidae) larvae. J. Entomol. Sci. 24, 460–464 (1989).Article 

    Google Scholar 
    Constantino, L. M. Notes on Haetera from Colombia, with description of the immature stages of Haetera piera (Lepidoptera:Nymphalidae: Satyrinae). Trop. Lepid. 4(1), 13–15 (1993).
    Google Scholar 
    Devries, P. J., Kitching, I. J. & Vanewright, R. I. The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera). Syst. Entomol. 10, 11–32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x (1985).Article 

    Google Scholar 
    Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of immature stages of Memphis appias (Hubner) (Lepidoptera: Nymphalidae: Charaxinae). Zootaxa, 21–32 (2010).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of the immature stages of the butterfly Callicore pygas eucale, with comments on the taxonomy of the genus Callicore (Nymphalidae: Biblidinae). J. Insect Sci. 14, doi:https://doi.org/10.1093/jis/14.1.91 (2014).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the turquoise-banded shoemaker Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906) and a comparative review of the Preponini (Lepidoptera: Nymphalidae). Aust. Entomol. 58, 451–462. https://doi.org/10.1111/aen.12339 (2019).Article 

    Google Scholar 
    Dias, F. M. S., de Oliveira-Neto, J. F., Casagrande, M. M. & Mielke, O. H. H. External morphology of immature stages of Zaretis strigosus (Gmelin) and Siderone galanthis catarina Dottax and Pierre comb. nov., with taxonomic notes on Siderone (Lepidoptera: Nymphalidae: Charaxinae). Rev. Bras. Entomol. 59, 307–319, doi:https://doi.org/10.1016/j.rbe.2015.07.007 (2015).Dias, F. M. S. et al. An integrative approach elucidates the systematics of Sea Hayward and Cybdelis Boisduval (Lepidoptera: Nymphalidae: Biblidinae). Syst. Entomol. 44, 226–250. https://doi.org/10.1111/syen.12327 (2019).Article 

    Google Scholar 
    Freitas, A. V. L., Barbosa, E. P. & Marin, M. A. Immature Stages and Natural History of the Neotropical Satyrine Pareuptychia ocirrhoe Interjecta (Nymphalidae: Euptychiina). J. Lepid. Soc. 70, 271–276. https://doi.org/10.18473/lepi.70i4.a4 (2016).Article 

    Google Scholar 
    Freitas, A. V. L., Kaminski, L. A., Mielke, O. H. H., Barbosa, E. P. & Silva-Brandao, K. L. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 31–44 (2012).Furtado, E. & Campos-Neto, F. C. Caligopsis seleucida (Hewitson) and its immature stages (Lepidoptera, Nymphalidae, Brassolinae). Rev. Bras. Zool. 21(3), 593–597 (2004).Article 

    Google Scholar 
    Greeney, H. F. et al. The early stages and natural history of Antirrhea adoptiva porphyrosticta (Watkins, 1928) in eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae). J. Insect Sci. 9 (2009).Greeney, H. F. et al. Early stages and natural history of Perisama oppelii (Nymphalidae, Lepidoptera) in eastern Ecuador. Kempffiana 6(1), 16–30 (2010).
    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Pyrcz, T. W. First description of the early stage biology of the genus Mygona: The natural history of the satyrine butterfly, Mygona irmina in eastern Ecuador. J. Insect Sci. 11, doi:https://doi.org/10.1673/031.011.0105 (2011).Greeney, H. F., Pyrcz, T. W., DeVries, P. J. & Dyer, L. A. The early stages of Pedaliodes poesia (Hewitson, 1862) in eastern Ecuador (Lepidoptera: Satyrinae: Pronophilina). J. Insect Sci. 9 (2009).Greeney, H. F., Whitfield, J. B., Stireman, J. O., Penz, C. M. & Dyer, L. A. Natural history of Eryphanis greeneyi (Lepidoptera: Nymphalidae) and its enemies, with a description of a new species of Braconid parasitoid and notes on its Tachinid parasitoid. Ann. Entomol. Soc. Am. 104, 1078–1090. https://doi.org/10.1603/an10064 (2011).Article 

    Google Scholar 
    Kaminski, L. A. & Freitas, A. V. L. Immature stages of the butterfly Magneuptychia libye (L.) (Lepidoptera : Nymphalidae, Satyrinae). Neotrop. Entomol. 37, 169–172, doi:https://doi.org/10.1590/s1519-566×2008000200010 (2008).Lambkin, T. & Kendall, R. The status of Yoma algina (boisduval, 1832) & Y. sabina (cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Aust. Entomol. 43 (4), 211–234 (2016).Leite, L. A. R., Casagrande, M. M., Mielke, O. H. H. & Freitas, A. V. L. Immature stages of the Neotropical butterfly, Dynamine agacles agacles. J. Insect Sci. 12 (2012).Leite, L. A. R., Dias, F. M. S., Carneiro, E., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the Neotropical cracker butterfly, Hamadryas epinome. J. Insect Sci. 12 (2012).Murillo, L. R. & Nishida, K. Life history of Manataria maculata (Lepidoptera : Satyrinae) from Costa Rica. Rev. Biol. Trop. 51, 463–469 (2003).PubMed 

    Google Scholar 
    Nakahara, S., Janzen, D. H., Hallwachs, W. & Espeland, M. Description of a new genus for Euptychia hilara (C. Felder & R. Felder, 1867) (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 4012, 525-541, doi:https://doi.org/10.11646/zootaxa.4012.3.7 (2015).Penz, C. M., Freitas, A. V. L., Kaminski, L. A., Casagrande, M. M. & Devries, P. J. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38, 316–333. https://doi.org/10.1111/syen.12000 (2013).Article 

    Google Scholar 
    Pyrcz, T. W. et al. Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotrop. Entomol. 47, 211–255. https://doi.org/10.1007/s13744-017-0543-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shirai, L. T. et al. Natural history of Selenophanes cassiope guarany (Lepidoptera: Nymphalidae: Brassolini): an integrative approach, from molecules to ecology. Ann. Entomol. Soc. Am. 110, 145–159. https://doi.org/10.1093/aesa/saw068 (2017).Article 

    Google Scholar 
    Silva, P. L. et al. Immature Stages of the Brazilian Crescent Butterfly Ortilia liriope (Cramer) (Lepidoptera: Nymphalidae). Neotrop. Entomol. 40, 322–327. https://doi.org/10.1590/s1519-566×2011000300006 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song-yun, L. Immature stages of Faunis aerope (Leech, 1890) (Lepidoptera, Nymphalidae). Atalanta 42, 221–222 (2011).
    Google Scholar 
    Steiner, H. Life history of Melanocyma faunula in Malaysia (Lepidoptera: Nymphalidae: Morphinae). Trop. Lepid. Res. 16, 23–26 (2005).
    Google Scholar 
    Velez, P. D., Montoya, H. H. V. & Wolff, M. Immature stages and natural history of the Andean butterfly Altinote ozomene (Nymphalidae: Heliconiinae: Acraeini). Zoologia 28, 593–602. https://doi.org/10.1590/s1984-46702011000500007 (2011).Article 

    Google Scholar 
    Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4295–4302, doi:https://doi.org/10.1098/rspb.2009.1303 (2009).Willmott, K. R., Elias, M. & Sourakov, A. Two possible caterpillar mimicry complexes in neotropical Danaine butterflies (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 104, 1108–1118. https://doi.org/10.1603/an10086 (2011).Article 

    Google Scholar 
    Willmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera : Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics 22, 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x (2006).Article 
    PubMed 

    Google Scholar 
    Zacca, T. et al. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Aust. Entomol. 56, 169–190. https://doi.org/10.1111/aen.12223 (2017).Article 

    Google Scholar 
    Bossart, J.L., Fetzner Jr., J.F. & Rawlins, J.E. Ghana Butterfly Biodiversity Project website. https://www.invertebratezoology.org/GhanaBfly/default.asp (2007).Butterflies and Moths of North America project. Butterflies and Moths of North America website. https://www.butterfliesandmoths.org/ (2021).Dauphin, D. & Dauphin, J. The Rio Grande Valley’s Nature Site website. http://www.thedauphins.net (2021).Eeles, P. UK Butterflies website. https://www.ukbutterflies.co.uk/index.php. (2021).Florida Museum of Natural History. Florida Museum website. https://www.floridamuseum.ufl.edu/ (2021).Khew, S. K. et al. Butterflies of Singapore website. https://butterflycircle.blogspot.com/ (2021).Kunte, K., Sondhi, S. & Roy, P. Butterflies of India, v. 3.24. Indian Foundation for Butterflies website. https://www.ifoundbutterflies.org (2021).Miller, S. & Morrison, C. Parasitoid-Caterpillar-Plant Interactions in the Americas website. https://caterpillars.myspecies.info/ (2021).National Biodiversity Network Trust. iNaturalistUK website. https://uk.inaturalist.org/ (2021).Nature Picture Library Limited. Nature Picture Library website. https://www.naturepl.com/blog/ (2021).Project Noah Team. Project Noah website. https://www.projectnoah.org/ (2021).Shiraiwa, K. Pteron World. The encyclopedia website of the butterflies. https://www.pteron-world.com/index.html (2021).Wagner, W. Lepidoptera and Their Ecology website. http://www.pyrgus.de/ (2021).Wahlberg, N. & Peña, C. Nymphalidae.net. website. http://www.nymphalidae.net/ (2021).Wikimedia Foundation, Inc. Wikimedia Commons website. https://commons.wikimedia.org/ (2021).Matsuura, M. Social Wasps of Japan in Color. (in Japanese) (Hokkaido university press 2015).IBM SPSS. SPSS Base 25.0 User’s Guide. (SPSS Inc., 2017). More

  • in

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Phyla Bdellovibrionota, Fusobacteriota, and Myxococcota were present in the green microbial mat but in negligible quantities in the brown mat. The unique phyla detected in the brown mat, but not in the green microbial mat, included Caldatribacteriota, Thermodesulfobacteriota, Dictyoglomota, Elusimicrobiota, Thermotogota, Candidatus Calescamantes, Fervidibacteria, Hydrothermae, GAL15 and TA06. The Candidatus Caldatribacterium (phyla Caldatribacteriota), earlier named OP9 was also detected in this work. Using single-cell and metagenome sequencing, data elucidated that Ca. Caldatribacterium conducts anaerobic sugar fermentation and exhibited diverse glycosyl hydrolases, including endoglucanase37.Cyanobacteria and Chloroflexota were the main identified phyla in the green microbial mat. Because the hot spring is almost stagnant, undisturbed, and the water surface temperature ( More

  • in

    Tropical forest restoration under future climate change

    Tropical forest restoration areaTo determine the geographic distribution of land available for tropical forest restoration, we used a widely applied global forest restoration map2. This dataset limits potential restoration area to regions that are biogeophysically suitable for forest, and excludes croplands. To define the tropics, we masked the potential restoration map with the following three ecoregions from the Ecoregions2017 vegetation map34: ‘Tropical and Subtropical Moist Broadleaf Forests’, ‘Tropical and Subtropical Dry Broadleaf Forests’, and ‘Tropical and Subtropical Coniferous Forests’. The resulting restoration mask includes all tropical and subtropical forest ecoregions with some that are outside the tropical latitudes, but excludes wetlands and high mountain areas (Extended Data Fig. 4). The restoration mask was converted from a presence–absence raster at its native ~350 m resolution to a 0.5° geographical grid by aggregating to the fraction of each 0.5° grid cell available for restoration. Any uncertainties in the allocation of restorable area, distinguishing crop and pasture, and forest to non-forest classification from the original forest restoration map were also implicitly included in our restoration extent. While the resulting restoration area is relatively small, its spatial distribution is representative for most of the humid tropics.To prioritize for carbon uptake capacity, we selected all grid cells with restoration area greater than 1 ha and ranked these by carbon storage density (above ground and below ground; g m−2) at 2100 under the default scenario. We then selected the top n grid cells with greatest carbon density until cumulatively 64 Mha of restored area was reached. Similarly, for cost we calculated the restoration cost for each grid cell following ref. 27 and sorted the grid cells by their cost, beginning with the lowest value, until 64 Mha were reached. To consider the combined impact of carbon uptake and restoration costs, we divided our restoration cost layer by the total carbon uptake per grid cell from restoration and ranked the cost per carbon uptake from cheapest to most expensive, selecting the n grid cells with the lowest values until 64 Mha were reached. We then used the selected grid cells to mask carbon uptake under the various climate change and CO2 fertilization scenarios. To factor in climate change in the prioritization process, we used the same restoration cost layer but used the carbon density and total carbon uptake layers with climate change impacts in CO22014 for the year 2100.Vegetation modelWe used the LPJ-LMfire DGVM19, a version of the Lund-Potsdam-Jena DGVM (LPJ)35. LPJ-LMfire is driven by gridded fields of climate, soil texture and topography at 0.5° resolution, and with a time series of atmospheric CO2 concentrations (see Supplementary Information). To simulate land use, LPJ-LMfire separates grid cells into fractional tiles of ‘unmanaged’ land that has never been under land use, ‘managed’ land, and areas ‘recovering’ from land use36. Restoration removes land from the ‘managed’ tile and transfers it to the ‘recovering’ tile; land is never reallocated to the ‘unmanaged’ tile. The tiles are treated differently with respect to wildfire: on the ‘unmanaged’ and ‘recovering’ tiles, lightning-ignited wildfires are not suppressed, while fire is excluded from ‘managed’ tiles. For our analysis of total carbon (above and below ground), we only used the ‘recovering’ tile.Climate dataClimate forcing used to drive LPJ-LMfire comes from the output of 13 GCMs in simulations produced for the CMIP6 Supplementary Table 2 (refs. 37,38). For each GCM, we obtained simulations for the historical period (1850–2014) and four future SSPs (SSP1-26, SSP2-45, SSP3-70 and SSP5-85 covering 2015–2100). We used only GCMs that archived all seven climate variables needed to run LPJ-LMfire: 2 m temperature (tas, K), precipitation (pr, kg m−2 s−1), convective precipitation (prc, kg m−2 s−1), cloud cover (clt, %), minimum and maximum daily temperature (tmin, tmax, K), and 10 m surface wind speed (sfcWind, m s−1) (Supplementary Fig. 2). For each model, we concatenated the historical simulation with a future scenario, calculated anomalies with respect to 1971–1990 and added those to observed 30 year climatologies to create bias-corrected monthly climate time series covering 1850–2100 (see Supplementary Information). Where multiple ensemble members were available from a GCM, we chose the first simulation.Simulation protocolWe drove LPJ-LMfire with the GCM simulations described in the previous section, and the same atmospheric CO2 concentrations and land use boundary conditions as those used in the CMIP6 simulations. All forcings cover the historical period (1850–2014) and the individual future SSPs (2015–2100). Each LPJ-LMfire simulation was initialized for 1,020 years with 1850 atmospheric CO2 and land use, and the 1850s climatology of each CMIP6 GCM. This was followed by simulations with transient climate from 1850 to 2100 for each CMIP6 GCM under each of the four SSPs. For each the 13 CMIP6 GCMs running each of the SSP scenarios, we conducted two CO2 experiments (CO22014 and CO2free) and two fire experiments. In total, we ran 221 vegetation model simulations covering the range of future climate, CO2 and fire scenarios.Atmospheric CO2 in these simulations either followed the CMIP6 historical and SSP trajectory for the entire 1850–2100 run (CO2free), or followed the historical CMIP6 trajectory until 2014, and was then fixed at 2014 concentrations for the remainder of the simulation (CO22014). This allowed us to test the vegetation response to future climate change in the absence of additional CO2 fertilization of photosynthesis. Our simulations ended with the standard SSP projections in 2100, 80 years after restoration begins. We therefore could not assess the fate of restored carbon beyond that point. On the basis of the trends in the multi-model mean carbon uptake rates, we estimated that only under severe climate change will carbon storage be reduced shortly after 2100 in CO22014.In control simulations, land use followed the historical CMIP6 trajectory until 2014, after which it was fixed under 2014 conditions until 2100. Land use after 2014 was fixed at 2014 levels because it is the last year with common land use between all scenarios, which allowed us to identify future climate change impacts on restoration permanence and avoid influences from land abandonment and expansion prescribed in the different SSP scenarios.In the restoration experiments, land use also followed the historical CMIP6 trajectory until 2014, but then diverged: cropland extent remained at 2014 levels until 2100, while pasture (or non-cropland land use) remained constant from 2014 to 2020 and was then linearly reduced by the restoration area from 2020 to 2030. From 2030, land use remained constant at that lower level until 2100. The amount of restoration in a grid cell was limited by the pasture area, that is, once all of the available pasture area had been restored, no additional restoration took place. Because it is highly unlikely to be practical to restore the entire target area of tropical forest at once, we linearly increased the restoration area from 2020 to 2030, which caused an expansion-driven increase in carbon uptake over the 11 year period (Extended Data Fig. 1). This means that two factors controlled carbon uptake over time in our experimental design: first the expansion of the restoration area, accounting for approximately 19.7 Pg C, and second the long-term effect of carbon accumulation (Extended Data Fig. 5).Primary climate change impacts, such as drought and heat stress that reduce carbon uptake, were implicitly included in the climate forcing data, while secondary climate change impacts from wildfire were simulated by LPJ-LMfire on the basis of climate. To quantify the contribution of wildfire on the carbon storage from restoration, we repeated the simulations described above with fires turned off in LPJ-LMfire.Restoration opportunity indexWe created a restoration opportunity index to evaluate the suitability of locations for restoration on the basis of the ability for restoration to result in net carbon uptake over 2020–2100 and to store this carbon without episodes of major loss. For each of the 13 realizations of the four SSPs in the CO22014 experiment, we identified all restoration grid cells (1) that had a net carbon uptake by 2100 relative to 2030, and (2) where temporal reductions in total carbon storage over 2030–2100 were More

  • in

    Photosynthetic performance of symbiont-bearing foraminifera Heterostegina depressa affected by sunscreens

    Pawlowski, J. et al. The evolution of early Foraminifera. Proc. Natl. Acad. Sci. 100(20), 11494–11498 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Gupta, S. Modern Foraminifera (Springer-Verlag, 1999).
    Google Scholar 
    Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology 2, 2 (2021).
    Google Scholar 
    Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic foraminifera: Living sands in a changing ocean. Biol. Bull. 226(3), 169–186 (2014).CAS 
    Article 

    Google Scholar 
    Fujita, K. et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8(8), 2089–2098 (2011).ADS 
    Article 

    Google Scholar 
    Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58(1), 31–44 (2005).ADS 
    Article 

    Google Scholar 
    Murray, J. Ecological experiments on Foraminiferida. J. Mar. Biol. Assoc. U.K. 43(3), 621–642 (1963).Article 

    Google Scholar 
    Wukovits, J., Enge, A. J., Wanek, W., Watzka, M. & Heinz, P. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera. Biogeosciences 14, 2815–2829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lintner, M., Biedrawa, B., Wukovits, J., Wanek, W., and Heinz, P. Salinity-depending algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica). BG, 17, 3723–3732 (2020).Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: Alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    Article 

    Google Scholar 
    Hallock, P. Symbiont-bearing foraminifera. In Modern Foraminifera 123–139 (Springer, 1999).Chapter 

    Google Scholar 
    Renema, W. Large benthic foraminifera in low-light environments. In Mesophotic coral ecosystems 553–561 (Springer, 2019).Chapter 

    Google Scholar 
    Hallock, P. & Peebles, M. W. Foraminifera with chlorophyte endosymbionts—habitats of 6 species in the Florida Keys. Mar. Micropaleontol. 20, 277–292 (1993).ADS 
    Article 

    Google Scholar 
    Stulpinaite, R., Hyams-Kaphzan, O. & Langer, M. R. Alien and cryptogenic Foraminifera in the Mediterranean Sea: A revision of taxa as part of the EU 2020 marine strategy framework directive. Mediterr. Mar. Sci. 21(3), 719–758 (2020).
    Google Scholar 
    McCoshum, S., Schlarb, M. A. & Baum, A. K. Direct and indirect effects of sunscreen exposure for reef biota. Rev. Hydrobiology 776, 139–146 (2016).CAS 
    Article 

    Google Scholar 
    Singh, S., Jha, B., Tiwary, N. K. & Agrawal, N. K. Does using a high sun protection factor sunscreen on face, along with physical photoprotection advice, in patients with melasma, change serum vitamin D concentration in Indian conditions? A pragmatic pretest-posttest study. Indian J. Dermatol. Venereol. Leprol. 85, 282–286 (2019).Article 

    Google Scholar 
    Harjung, A. et al. High anthropogenic organic matter inputs during a festival increase river heterotrophy and refractory carbon load. Environ. Sci. Technol. 54(16), 10039–10048. https://doi.org/10.1021/acs.est.0c02259 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rai, R., Shanmuga, S. C. & Srinivas, C. Update on photoprotection. Indian J. Dermatol. 57, 335–342 (2012).Article 

    Google Scholar 
    Schiavo, S., Oliviero, M., Phillipe, A. & Manzo, S. Nanoparticles based sunscreens provoke adverse effects on marine microalgae Dunaliella tertiolecta. Environ. Sci. Nano. 12, 2 (2018).
    Google Scholar 
    Parkhill, J., Mailett, G. & Cullen, J. Fluorescence-based maximal quantim yield fpr PSII as a diagnostic of nutrient stress. J. Phycol. 37, 517–529 (2001).Article 

    Google Scholar 
    Butler, W. L. Energy distribution in the photochemical apparatus of photosynthesis. Ann. Rev. Plant. Physiol. 29, 345–378 (1978).CAS 
    Article 

    Google Scholar 
    Kroon, B., Prezelin, B. B. & Schonfield, O. Chromatic regulation of quantum yields for photosystem II charge separation, oxygen evolution and carbon fixation in Heterocapsa pygmaea. J. Phycol 29, 453–462 (1993).CAS 
    Article 

    Google Scholar 
    Casas-Beltran, D. A., Hernandez-Pedraza, M. & Alvarado-Flores, J. Estimation of the discharge of sunscreens in aquatic environments of the Mexican caribbean. Environments 7, 15 (2020).Article 

    Google Scholar 
    Danovaro, R. et al. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 116, 441–447 (2008).CAS 
    Article 

    Google Scholar 
    Brausch, J. M. & Rand, G. M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82, 1518–1532 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Balmer, M. E., Buser, H. R., Muller, M. D. & Poiger, T. Occurrence of the organic UV-filter compounds BP-3, 4-MBC, EHMC, and OC in wastewater, surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 39, 953–962 (2004).ADS 
    Article 

    Google Scholar 
    Godejohann, M., Berset, J. & Muff, D. Non-targeted analysis of wastewater treatment plant effluents by high-performance liquid chromatography–time slice-solid phase extraction-nuclear magnetic resonance/time-of-flight-mass spectrometry. J. Chromatogr. A 1218, 9202–9209 (2011).CAS 
    Article 

    Google Scholar 
    Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M. & Donnelly, K. B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM index. Environ. Monit. Assess. 81(1), 221–238 (2003).Article 

    Google Scholar 
    Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review. J. Environ. Sci. Health Part A. 44(14), 1485–2495 (2009).CAS 
    Article 

    Google Scholar 
    Hutchison, J. E. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACSNano. 2(3), 395–402 (2008).CAS 

    Google Scholar 
    Soto, K., Garza, K. M. & Murr, L. E. Cytosis effects of aggregated nanomaterials. Acta Biomater. 3, 351–358 (2007).CAS 
    Article 

    Google Scholar 
    Deer, W. A., Howie, R. A. & Zussmann, J. An Introduction to the Rock Forming Minerals (Longman Group Limited, 1992).
    Google Scholar 
    Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156, 233–239 (2008).CAS 
    Article 

    Google Scholar 
    Mio, A. J. et al. Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29(12), 2814–2822 (2010).Article 

    Google Scholar 
    Herzog, B. et al. In vivo and in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxy dibenzoyl methane, methylene bis-benzotriazolyl tetramethylbutylphenol, or microfine ZnO. Int. J. Cosmet. Sci. 24, 170–185 (2002).CAS 
    Article 

    Google Scholar 
    Dhas, S. P., Shiny, P. J., Mukherjee, A. & Chandrasekran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol. 53, 1–12 (2013).Article 

    Google Scholar 
    Lee, J.J. Algal symbiosis in larger foraminifera. Symbiosis. (2006). More

  • in

    Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure

    Webb, B. Cognition in insects. Philos. Trans. R. Soc B 367, 2715–2722 (2012).
    Google Scholar 
    Lorenz, K. The Foundations of Ethology 347–352 (Springer, 1981).
    Google Scholar 
    Davis, R. L. Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005).CAS 
    PubMed 

    Google Scholar 
    Prokopy, R. J., Averill, A. L., Cooley, S. S. & Roitberg, C. A. Associative learning in egglaying site selection by apple maggot flies. Science 218, 76–77 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tempel, B. L., Bonini, N., Dawson, D. R. & Quinn, W. G. Reward learning in normal and mutant Drosophila. Proc. Natl Acad. Sci. 80, 1482–1486 (1983).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cook, D. F. Influence of previous mating experience on future mating success in maleLucilia cuprina (Diptera: Calliphoridae). J. Insect Behav. 8, 207–217 (1994).
    Google Scholar 
    Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).CAS 
    PubMed 

    Google Scholar 
    Harari, A. R. & Landolt, P. J. Feeding experience enhances attraction of female Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae) to food plant odors. 8. J. Insect Behav. 12, 415–422 (1999).
    Google Scholar 
    Menzel, R. Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340 (1999).ADS 

    Google Scholar 
    McCall, P. J. & Kelly, D. W. Learning and memory in disease vectors. Trends Parasitol. 18, 429–433 (2002).CAS 
    PubMed 

    Google Scholar 
    Alonso, W. J. & Schuck-Paim, C. The ‘ghosts’ that pester studies on learning in mosquitoes: Guidelines to chase them off. Med. Vet. Entomol. 20, 157–165 (2006).CAS 
    PubMed 

    Google Scholar 
    WHO. Global Vector Control Response 20217–22030 (World Health Organization, 2017).
    Google Scholar 
    Rocklöv, J. & Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hemingway, J. et al. Averting a malaria disaster: Will insecticide resistance derail malaria control?. The Lancet 387, 1785–1788 (2016).
    Google Scholar 
    Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7, 179–184 (1998).CAS 
    PubMed 

    Google Scholar 
    Chandre, F. et al. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41, 319–322 (1999).CAS 
    PubMed 

    Google Scholar 
    Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Du, W. et al. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol. Biol. 14, 179–183 (2005).CAS 
    PubMed 

    Google Scholar 
    Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).CAS 
    PubMed 

    Google Scholar 
    Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2011).CAS 
    PubMed 

    Google Scholar 
    Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).CAS 
    PubMed 

    Google Scholar 
    Wood, O., Hanrahan, S., Coetzee, M., Koekemoer, L. & Brooke, B. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3, 67 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. PNAS 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc Biol. Sci. 286, 20191091 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muirhead-Thomson, R. C. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. World Health Organ. 22, 721–734 (1960).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georghiou, G. P. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3, 133–168 (1972).CAS 

    Google Scholar 
    Grieco, J. P. et al. A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS ONE 2, e716 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6, 280 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Chilaka, N., Perkins, E. & Tripet, F. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto. Malar. J. 11, 27 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Vinauger, C., Lahondère, C., Cohuet, A., Lazzari, C. R. & Riffell, J. A. Learning and memory in disease vector insects. Trends Parasitol. 32, 761–771 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).PubMed 

    Google Scholar 
    Tomberlin, J. K., Rains, G. C., Allan, S. A., Sanford, M. R. & Lewis, W. J. Associative learning of odor with food- or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften 93, 551–556 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Menda, G. et al. Associative learning in the dengue vector mosquito, Aedes aegypti: Avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus. J. Exp. Biol. 216, 218–223 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Vinauger, C., Lutz, E. K. & Riffell, J. A. Olfactory learning and memory in the disease vector mosquito Aedes aegypti. J. Exp. Biol. 217, 2321–2330 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets (World Health Organization, 2013).
    Google Scholar 
    WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes 2nd edn. (World Health Organization, 2016).
    Google Scholar 
    Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Maciel-de-Freitas, R. et al. Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS ONE 9, e92424 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherrard-Smith, E. et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat. Commun. 9, 4982 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Perrin, A. et al. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus. Sci. Rep. 10, 18654 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wills, A. B. et al. Physical durability of PermaNet 2.0 long-lasting insecticidal nets over three to 32 months of use in Ethiopia. Malar. J. 12, 242 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Gnanguenon, V., Azondekon, R., Oke-Agbo, F., Beach, R. & Akogbeto, M. Durability assessment results suggest a serviceable life of two, rather than three, years for the current long-lasting insecticidal (mosquito) net (LLIN) intervention in Benin. BMC Infect. Dis. 14, 69 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Boussougou-Sambe, S. T. et al. Physical integrity and residual bio-efficacy of used LLINs in three cities of the South-West region of Cameroon 4 years after the first national mass-distribution campaign. Malar. J. 16, 31 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janko, M. M., Churcher, T. S., Emch, M. E. & Meshnick, S. R. Strengthening long-lasting insecticidal nets effectiveness monitoring using retrospective analysis of cross-sectional, population-based surveys across sub-Saharan Africa. Sci. Rep. 8, 17110 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djènontin, A. et al. The residual life of bendiocarb on different substrates under laboratory and field conditions in Benin, Western Africa. BMC Res Notes 6, 458 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Mugenyi, L. et al. Estimating the optimal interval between rounds of indoor residual spraying of insecticide using malaria incidence data from cohort studies. PLoS ONE 15, e0241033 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker, J. E. A. et al. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci. Rep. 5, 13392 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spitzen, J., Koelewijn, T., Mukabana, W. R. & Takken, W. Visualization of house-entry behaviour of malaria mosquitoes. Malar. J. 15, 233 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Spitzen, J. & Takken, W. Keeping track of mosquitoes: A review of tools to track, record and analyse mosquito flight. Parasit. Vectors https://doi.org/10.1186/s13071-018-2735-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, J., Murray, G. & McCall, P. J. A minimal 3D model of mosquito flight behavior around the human baited bed net. Malar. J. 20, (2021)Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit. Vectors 13, 295 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Okumu, F. O. & Moore, S. J. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: A review of possible outcomes and an outline of suggestions for the future. Malar. J. 10, 208 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Deletre, E. et al. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae Mosquito. PLoS One 8, e82103 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation

    Jaiswal, S. K., Msimbira, L. A. & Dakora, F. D. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst. Appl. Microbiol. 40, 215–226. https://doi.org/10.1016/j.syapm.2017.02.002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tahir, M., Lv, Y., Gao, L., Hallett, P. D. & Peng, X. Soil water dynamics and availability for citrus and peanut along a hillslope at the Sunjia Red Soil Critical Zone Observatory (CZO). Soil Tillage Res. 163, 110–118. https://doi.org/10.1016/j.still.2016.05.017 (2016).Article 

    Google Scholar 
    Xiaogang, L. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.5579 (2013).Article 

    Google Scholar 
    Chen, M. et al. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.). PLoS ONE https://doi.org/10.1371/journal.pone.0101355 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W. et al. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes https://doi.org/10.3390/genes11010013 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant. Prod. Sci. 23, 81–90. https://doi.org/10.1080/1343943X.2019.1685895 (2020).CAS 
    Article 

    Google Scholar 
    Meng, L. B. et al. Changes in soil microbial diversity and control of Fusarium oxysporum in continuous cropping cucumber greenhouses following biofumigation. Emir. J. Food Agric. 30, 644–653. https://doi.org/10.9755/ejfa.2018.v30.i8.1752 (2018).Article 

    Google Scholar 
    Li, X., Ding, C., Zhang, T. & Wang, X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 72, 11–18. https://doi.org/10.1016/j.soilbio.2014.01.019 (2014).CAS 
    Article 

    Google Scholar 
    Wang, H. W. et al. Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: A potential allelochemical in peanut monocropping systems. J. Sci. Food Agric. 99, 5899–5909. https://doi.org/10.1002/jsfa.9865 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, L. et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242. https://doi.org/10.1007/s10886-013-0244-9 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Deng, J. J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082. https://doi.org/10.1016/s1002-0160(17)60374-6 (2017).CAS 
    Article 

    Google Scholar 
    Chen, S. L., Zhou, B. L., Lin, S. S., Li, X. & Ye, X. L. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10, 2659–2665. https://doi.org/10.5897/AJB10.1338 (2011).CAS 
    Article 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, L. K. et al. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19082394 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galazka, A., Gawryjolek, K., Perzynski, A., Galazka, R. & Ksiezak, J. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 26, 39–46. https://doi.org/10.15244/pjoes/64745 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. K. et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease. Plant Dis. 104, 25–34. https://doi.org/10.1094/pdis-04-19-0833-re (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becker, J., Rodibaugh, K., Hahn, D. & Nowlin, W. Bacterial community composition and carbon metabolism in a subtropical riverscape. Hydrobiologia 792, 209–226. https://doi.org/10.1007/s10750-016-3058-2 (2017).CAS 
    Article 

    Google Scholar 
    Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, D., Liu, Y., Wang, Y., Gao, F. & Li, X. Effects of soil tillage, management practices, and mulching film application on soil health and peanut yield in a continuous cropping system. Front. Microbiol. 11, 570924. https://doi.org/10.3389/fmicb.2020.570924 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. et al. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. Bot. Stud. https://doi.org/10.1186/s40529-020-00295-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int. J. Mol. Sci. 19, 850. https://doi.org/10.3390/ijms19030850 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. https://doi.org/10.1038/s41598-018-24537-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L. et al. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. https://doi.org/10.1186/s13020-017-0139-8 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. https://doi.org/10.1038/srep31802 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02269 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, L. et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci. Rep. 6, 26601. https://doi.org/10.1038/srep26601 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Q. et al. Dynamics of soil properties and fungal community structure in continuous-cropped alfalfa fields in Northeast China. PeerJ 7, 7125. https://doi.org/10.7717/peerj.7127 (2019).Article 

    Google Scholar 
    Zhu, B., Wu, J., Ji, Q., Wu, W. & Qin, L. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ 8, e8905. https://doi.org/10.7717/peerj.8905 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microb. 72, 1719–1728 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-sppressive bacteria. Science https://doi.org/10.1126/science.1203980 (2011).Article 
    PubMed 

    Google Scholar 
    Zhou, H. et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 651, 2281–2291. https://doi.org/10.1016/j.scitotenv.2018.09.336 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, J., Gong, J. L. & Xu, M. G. Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation. Eur. J. Soil Biol. 97, 103172. https://doi.org/10.1016/j.ejsobi.2020.103172 (2020).CAS 
    Article 

    Google Scholar 
    Li, W., Liu, Q. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agr. 17, 206–218. https://doi.org/10.1016/S2095-3119(18)61944-6 (2018).Article 

    Google Scholar 
    Liu, X. et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 9, e86610–e86610. https://doi.org/10.1371/journal.pone.0086610 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946. https://doi.org/10.1371/journal.pone.0136946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microb. 57, 337. https://doi.org/10.1002/jobm.201600464 (2017).CAS 
    Article 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364. https://doi.org/10.1890/05-1839 (2007).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon. Chin. J. App. Environ. Biol. https://doi.org/10.19675/j.cnki.1006-687x.2017.03014 (2018).Article 

    Google Scholar 
    Schoch, C. L. et al. The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239. https://doi.org/10.1093/sysbio/syp020 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598. https://doi.org/10.1007/s13213-010-0117-1 (2010).Article 

    Google Scholar 
    Jann Lasse, G., Hurek, T., Wiebke, B. & Reinhold-Hurek, B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int. J. Syst. Evol. Microbiol. 66, 62. https://doi.org/10.1099/ijsem.0.000674 (2015).CAS 
    Article 

    Google Scholar 
    Ormeo-Orrillo, E. & Esperanza, M.-R. A genomotaxonomy view of the bradyrhizobium genus. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01334 (2019).Article 

    Google Scholar 
    Palaniappan, P., Chauhan, P. S., Saravanan, V. S., Anandham, R. & Sa, T. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils 46, 807–816. https://doi.org/10.1007/s00374-010-0485-5 (2010).Article 

    Google Scholar 
    Wang, H. et al. Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. X. et al. Streptomyces lydicusM01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternataon cucumbers. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00942 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. S. et al. Biological fertilizer containing Bacillus subtilis BY-2 for control of Sclerotinia sclerotiorum on oilseed rape. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105340 (2020).Article 

    Google Scholar 
    Kim, M. J. et al. Enhancement of seed dehiscence by seed treatment with talaromyces flavus GG01 and GG04 in ginseng (Panax ginseng). Plant Pathol. J. 33, 1–8. https://doi.org/10.5423/ppj.Oa.06.2016.0146 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, W. et al. Occurrence and characterization of fungi and mycotoxins in contaminated medicinal herbs. Toxins 12, 30. https://doi.org/10.3390/toxins12010030 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Naeem, M. et al. Characterization and pathogenicity of fusarium species associated with soybean pods in maize/soybean strip intercropping. Pathogens 8, 117. https://doi.org/10.3390/pathogens8040245 (2019).CAS 
    Article 

    Google Scholar 
    Desjardins, A. Gibberella from A (Venaceae) to Z (eae). Ann. Rev. Phytopathol. 41, 177–198. https://doi.org/10.1146/annurev.phyto.41.011703.115501 (2003).CAS 
    Article 

    Google Scholar 
    Mingna, C. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut: Pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659. https://doi.org/10.1371/journal.pone.0040659 (2012).CAS 
    Article 

    Google Scholar 
    Arafat, Y. et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy https://doi.org/10.3390/agronomy9080466 (2019).Article 

    Google Scholar 
    Zhou, X. G. & Wu, F. Z. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (Cucumis sativus). Pak. J. Bot. 47, 691–697 (2015).CAS 

    Google Scholar 
    Shao, S., Chen, M., Liu, W., Hu, X. & Li, Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst. Appl. Microbiol. 43, 126101. https://doi.org/10.1016/j.syapm.2020.126101 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y., Zheng, Y. J., Xia, P. G., Xun, L. L. & Liang, Z. S. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. https://doi.org/10.1038/s41598-019-49625-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L. C. et al. Comparison of soil enzyme activity and microbial community structure between rapeseed-rice and rice-rice plantings. Int. J. Agric. Biol. 20, 1801–1808. https://doi.org/10.17957/ijab/15.0692 (2018).CAS 
    Article 

    Google Scholar 
    Hansen, J. C., Schillinger, W. F., Sullivan, T. S. & Paulitz, T. C. Soil microbial biomass and fungi reduced with canola introduced into long-term monoculture wheat rotations. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01488 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Z. B. et al. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2020.103510 (2020).Article 

    Google Scholar 
    Zhao, H. L. et al. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci. Soc. Am. J. 83, 638–648. https://doi.org/10.2136/sssaj2018.03.0101 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Agomoh, I. V., Drury, C. F., Phillips, L. A., Reynolds, W. D. & Yang, X. Increasing crop diversity in wheat rotations increases yields but decreases soil health. Soil Sci. Soc. Am. J. https://doi.org/10.1002/saj2.20000 (2020).Article 

    Google Scholar 
    Liu, Z. X. et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104503 (2020).Article 

    Google Scholar 
    Powlson, D. S., Prookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164. https://doi.org/10.1016/0038-0717(87)90076-9 (1987).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bao, S. Soil and Agricultural Chemistry Analysis (Agriculture Press Publisher, 2013).
    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil Enzyme and its Research Methods (Springer, 1986).
    Google Scholar 
    Sinha, A. K. Colorimetric assay of catalase. Anal. Biochem. 47, 389–394. https://doi.org/10.1016/0003-2697(72)90132-7 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515. https://doi.org/10.1016/0038-0717(90)90187-5 (1990).CAS 
    Article 

    Google Scholar 
    Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1 (1969).CAS 
    Article 

    Google Scholar  More