1.Lefébure, R. et al. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Glob. Change Biol. 19, 1358–1372 (2013).ADS
Google Scholar
2.Roussel, J.-M. et al. Stable isotope analyses on archived fish scales reveal the long-term effect of nitrogen loads on carbon cycling in rivers. Glob. Change Biol. 20, 523–530 (2014).ADS
Google Scholar
3.Creed, I. F. et al. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob. Change Biol. 24, 3692–3714 (2018).ADS
Google Scholar
4.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
5.Kumar, A., Yadav, J. & Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 753, 142046 (2021).ADS
CAS
PubMed
Google Scholar
6.Vincent, W. F., Laurion, I., Pienitz, R. & Walter Anthony, K. M. Climate Impacts on Arctic Lake Ecosystems. In Climatic Change and Global Warming of Inland Waters (eds Goldman, C. R. et al.) 27–42 (Wiley, 2012). https://doi.org/10.1002/9781118470596.ch2.Chapter
Google Scholar
7.Kim, K.-Y. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).ADS
PubMed
PubMed Central
Google Scholar
8.Shaver, G. R. & Chapin, F. S. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology 61, 662–675 (1980).CAS
Google Scholar
9.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS
Google Scholar
10.Arctic Climate Impact Assessment. Arctic climate impact assessment (Cambridge University Press, Cambridge, 2005).
Google Scholar
11.Hay, W. W. The accelerating rate of global change. Rendiconti Lincei 25, 29–48 (2014).
Google Scholar
12.Prowse, T. D. et al. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO J. Hum. Environ. 35, 347–358 (2006).CAS
Google Scholar
13.Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS
CAS
PubMed
Google Scholar
14.Ward, R. D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 748, 141343 (2020).ADS
CAS
PubMed
Google Scholar
15.Lin, J., Huang, J., Prell, C. & Bryan, B. A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 763, 143012 (2021).ADS
CAS
PubMed
Google Scholar
16.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).ADS
Google Scholar
17.Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS
CAS
Google Scholar
18.St. Pierre, K. A. et al. Contemporary limnology of the rapidly changing glacierized watershed of the world’s largest High Arctic lake. Sci. Rep. 9, 4447 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
19.Woelders, L. et al. Recent climate warming drives ecological change in a remote high-Arctic lake. Sci. Rep. 8, 6858 (2018).ADS
PubMed
PubMed Central
Google Scholar
20.Blaen, P. J., Milner, A. M., Hannah, D. M., Brittain, J. E. & Brown, L. E. Impact of changing hydrology on nutrient uptake in high Arctic rivers: Nutrient uptake in Arctic rivers. River Res. Appl. 30, 1073–1083 (2014).
Google Scholar
21.Szkokan-Emilson, E. J. et al. Dry conditions disrupt terrestrial-aquatic linkages in northern catchments. Glob. Change Biol. 23, 117–126 (2017).ADS
Google Scholar
22.Thackeray, S. J. et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).ADS
Google Scholar
23.Pacheco, J. P. et al. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes. Sci. Total Environ. 797, 148998 (2021).ADS
CAS
PubMed
Google Scholar
24.Kuijper, D. P. J., Ubels, R. & Loonen, M. J. J. E. Density-dependent switches in diet: A likely mechanism for negative feedbacks on goose population increase?. Polar Biol. 32, 1789–1803 (2009).
Google Scholar
25.Sjögersten, S., van der Wal, R., Loonen, M. J. J. E. & Woodin, S. J. Recovery of ecosystem carbon fluxes and storage from herbivory. Biogeochemistry 106, 357–370 (2011).PubMed
PubMed Central
Google Scholar
26.Buij, R., Melman, T. C. P., Loonen, M. J. J. E. & Fox, A. D. Balancing ecosystem function, services and disservices resulting from expanding goose populations. Ambio 46, 301–318 (2017).PubMed
PubMed Central
Google Scholar
27.Nishizawa, K. et al. Long-term consequences of goose exclusion on nutrient cycles and plant communities in the high-Arctic. Polar Sci. 27, 100631 (2021).
Google Scholar
28.Bjerke, J. W., Tombre, I. M., Hanssen, M. & Olsen, A. K. B. Springtime grazing by Arctic-breeding geese reduces first- and second-harvest yields on sub-Arctic agricultural grasslands. Sci. Total Environ. 793, 148619 (2021).ADS
CAS
PubMed
Google Scholar
29.Van Geest, G. J. et al. Goose-mediated nutrient enrichment and planktonic grazer control in Arctic freshwater ponds. Oecologia 153, 653–662 (2007).ADS
PubMed
Google Scholar
30.Calizza, E., Rossi, L. & Costantini, M. L. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour. PLoS ONE 8, e65186 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
31.Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).
Google Scholar
32.Caputi, S. S. et al. Seasonal food web dynamics in the Antarctic benthos of Tethys Bay (Ross Sea): Implications for biodiversity persistence under different seasonal sea-ice coverage. Front. Mar. Sci. 7, 594454 (2020).
Google Scholar
33.Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).ADS
CAS
Google Scholar
34.Careddu, G. et al. Diet composition of the Italian crested newt (Triturus carnifex) in structurally different artificial ponds based on stomach contents and stable isotope analyses. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1505–1520 (2020).
Google Scholar
35.Zhao, Q., De Laender, F. & Van den Brink, P. J. Community composition modifies direct and indirect effects of pesticides in freshwater food webs. Sci. Total Environ. 739, 139531 (2020).ADS
CAS
PubMed
Google Scholar
36.Rossi, L., Costantini, M. L., Carlino, P., di Lascio, A. & Rossi, D. Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: A dual-stable isotope study in a volcanic lake. Aquat. Sci. 72, 227–236 (2010).CAS
Google Scholar
37.Rossi, L. et al. Antarctic food web architecture under varying dynamics of sea ice cover. Sci. Rep. 9, 12454 (2019).ADS
PubMed
PubMed Central
Google Scholar
38.Careddu, G. et al. Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuar. Coast. Shelf Sci. 154, 158–168 (2015).ADS
CAS
Google Scholar
39.Careddu, G. et al. Gaining insight into the assimilated diet of small bear populations by stable isotope analysis. Sci. Rep. 11, 14118 (2021).ADS
CAS
PubMed
PubMed Central
Google Scholar
40.Blais, J. M. Arctic seabirds transport marine-derived contaminants. Science 309, 445–445 (2005).CAS
PubMed
Google Scholar
41.Bentivoglio, F. et al. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770, 257–272 (2016).CAS
Google Scholar
42.Rossi, L. et al. Space-time monitoring of coastal pollution in the Gulf of Gaeta, Italy, using δ15N values of Ulva lactuca, landscape hydromorphology, and Bayesian Kriging modelling. Mar. Pollut. Bull. 126, 479–487 (2018).CAS
PubMed
Google Scholar
43.Calizza, E. et al. Isotopic biomonitoring of N pollution in rivers embedded in complex human landscapes. Sci. Total Environ. 706, 136081 (2020).ADS
CAS
PubMed
Google Scholar
44.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
Google Scholar
45.Mansouri, F. et al. Evidence of multi-decadal behavior and ecosystem-level changes revealed by reconstructed lifetime stable isotope profiles of baleen whale earplugs. Sci. Total Environ. 757, 143985 (2021).ADS
CAS
PubMed
Google Scholar
46.Hawley, K. L., Rosten, C. M., Christensen, G. & Lucas, M. C. Fine-scale behavioural differences distinguish resource use by ecomorphs in a closed ecosystem. Sci. Rep. 6, 24369 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
47.Michener, R. H. & Lajtha, K. Stable Isotopes in Ecology and Environmental Science (Blackwell Publication, 2007).
Google Scholar
48.Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).CAS
Google Scholar
49.Calizza, E. et al. Stable isotopes and digital elevation models to study nutrient inputs in high-Arctic lakes. Rendiconti Lincei 27, 191–199 (2016).
Google Scholar
50.Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L. & Costantini, M. L. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS ONE 13, e0194796 (2018).PubMed
PubMed Central
Google Scholar
51.Mehlum, F. Svalbards fugler og pattedyr (Norsk polarinstitutt, 1989).
Google Scholar
52.Christoffersen, K. Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia 442, 223–229 (2001).
Google Scholar
53.Lakka, H.-K. The ecology of a freshwater crustacean: Lepidurus arcticus (Brachiopoda; Notostraca) in a High Arctic region. Dissertation, University of Helsinky (2013).54.Westergaard-Nielsen, A. et al. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46, 39–52 (2017).PubMed
PubMed Central
Google Scholar
55.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
Google Scholar
56.Kondoh, M. & Ninomiya, K. Food-chain length and adaptive foraging. Proc. R. Soc. B Biol. Sci. 276, 3113–3121 (2009).
Google Scholar
57.Calizza, E., Costantini, M. L., Rossi, D., Carlino, P. & Rossi, L. Effects of disturbance on an urban river food web: Disturbance of a river food web. Freshw. Biol. 57, 2613–2628 (2012).
Google Scholar
58.McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).PubMed
Google Scholar
59.Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities. Nature 268, 329–331 (1977).ADS
Google Scholar
60.Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580 (2000).ADS
CAS
PubMed
Google Scholar
61.Hall, S. R. Stoichiometrically explicit food webs: Feedbacks between resource supply, elemental constraints, and species diversity. Annu. Rev. Ecol. Evol. Syst. 40, 503–528 (2009).
Google Scholar
62.Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J. & de Ruiter, P. C. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology 85, 1179–1192 (2004).
Google Scholar
63.Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 89, 281–308 (2004).ADS
Google Scholar
64.Maher, A. I., Treitz, P. M. & Ferguson, M. A. D. Can Landsat data detect variations in snow cover within habitats of Arctic ungulates?. Wildl. Biol. 18, 75–87 (2012).
Google Scholar
65.Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the Northern Foothills of the Brooks Range, Alaska. Arct. Antarct. Alp. Res. 45, 249–260 (2013).
Google Scholar
66.Bokhorst, S. et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516–537 (2016).PubMed
PubMed Central
Google Scholar
67.Härer, S., Bernhardt, M., Siebers, M. & Schulz, K. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. Cryosphere 12, 1629–1642 (2018).ADS
Google Scholar
68.Karlsen, S. R., Anderson, H. B., van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high Arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).ADS
Google Scholar
69.Karlsen, S. R., et al. Sentinel satellite-based mapping of plant productivity in relation to snow duration and time of green-up. https://zenodo.org/record/4704361. https://doi.org/10.5281/ZENODO.4704361 (2020).70.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 246, 111872 (2020).ADS
Google Scholar
71.Layton-Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. & Loonen, M. J. J. E. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-Arctic warming. Glob. Change Biol. 26, 642–657 (2020).ADS
Google Scholar
72.Owen, M. The selection of feeding site by White-fronted geese in winter. J. Appl. Ecol. 8, 905 (1971).
Google Scholar
73.Ydenberg, R. C. & Prins, H. HTh. Spring grazing and the manipulation of food quality by Barnacle geese. J. Appl. Ecol. 18, 443 (1981).
Google Scholar
74.Bos, D. et al. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. J. Nat. Conserv. 13, 1–15 (2005).
Google Scholar
75.Barrio, I. C. et al. Developing common protocols to measure tundra herbivory across spatial scales. Arct. Sci. https://doi.org/10.1139/as-2020-0020 (2021).Article
Google Scholar
76.Jensen, T. C. et al. Changes in trophic state and aquatic communities in high Arctic ponds in response to increasing goose populations. Freshw. Biol. 64, 1241–1254 (2019).CAS
Google Scholar
77.Bartoli, M. et al. Denitrification, nitrogen uptake, and organic matter quality undergo different seasonality in sandy and muddy sediments of a turbid estuary. Front. Microbiol. 11, 612700 (2021).PubMed
PubMed Central
Google Scholar
78.van der Wal, R., van Lieshout, S. M. J. & Loonen, M. J. J. E. Herbivore impact on moss depth, soil temperature and Arctic plant growth. Polar Biol. 24, 29–32 (2001).
Google Scholar
79.Wookey, P. A. et al. Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high Arctic polar semi-desert. Oikos 70, 131 (1994).
Google Scholar
80.Wookey, P. A. et al. Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard. Oecologia 102, 478–489 (1995).ADS
CAS
PubMed
Google Scholar
81.Jefferies, R. L. Agricultural food subsidies, migratory connectivity and large-scale disturbance in arctic coastal systems: A case study. Integr. Comp. Biol. 44, 130–139 (2004).CAS
PubMed
Google Scholar
82.Hik, D. S. & Jefferies, R. L. Increases in the net above-ground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. J. Ecol. 78, 180 (1990).
Google Scholar
83.Rautio, M., Mariash, H. & Forsström, L. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol. Oceanogr. 56, 1513–1524 (2011).ADS
CAS
Google Scholar
84.Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69, 2253–2268 (2003).ADS
PubMed
PubMed Central
Google Scholar
85.Berggren, M., Ziegler, S. E., St-Gelais, N. F., Beisner, B. E. & del Giorgio, P. A. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959 (2014).PubMed
Google Scholar
86.Stasko, A. D., Gunn, J. M. & Johnston, T. A. Role of ambient light in structuring north-temperate fish communities: Potential effects of increasing dissolved organic carbon concentration with a changing climate. Environ. Rev. 20, 173–190 (2012).CAS
Google Scholar
87.Milardi, M., Käkelä, R., Weckström, J. & Kahilainen, K. K. Terrestrial prey fuels the fish population of a small, high-latitude lake. Aquat. Sci. 78, 695–706 (2016).CAS
Google Scholar
88.Vincent, W. F. & Laybourn-Parry, J. Polar Lakes and Rivers (Oxford University Press, 2008). https://doi.org/10.1093/acprof:oso/9780199213887.001.0001.Book
Google Scholar
89.Calizza, E., Costantini, M. L., Careddu, G. & Rossi, L. Effect of habitat degradation on competition, carrying capacity, and species assemblage stability. Ecol. Evol. 7, 5784–5796 (2017).PubMed
PubMed Central
Google Scholar
90.Van der Velden, S., Dempson, J. B., Evans, M. S., Muir, D. C. G. & Power, M. Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Sci. Total Environ. 444, 531–542 (2013).ADS
PubMed
Google Scholar
91.Kozak, N. et al. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. Sci. Total Environ. 779, 146261 (2021).ADS
CAS
PubMed
Google Scholar
92.Longhurst, A. R. A review of the Notostraca. Bull. Br. Mus. Nat. Hist. 3, 1–57 (1955).
Google Scholar
93.King, J. L. & Hanner, R. Cryptic species in a “living fossil” lineage: Taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Mol. Phylogenet. Evol. 10, 23–36 (1998).CAS
PubMed
Google Scholar
94.Hessen, D. O., Rueness, E. K. & Stabell, M. Circumpolar analysis of morphological and genetic diversity in the Notostracan Lepidurus arcticus. Hydrobiologia 519, 73–84 (2004).
Google Scholar
95.Pasquali, V., Calizza, E., Setini, A., Hazlerigg, D. & Christoffersen, K. S. Preliminary observations on the effect of light and temperature on the hatching success and rate of Lepidurus arcticus eggs. Ethol. Ecol. Evol. 31, 348–357 (2019).
Google Scholar
96.Tanentzap, A. J. et al. Climate warming restructures an aquatic food web over 28 years. Glob. Change Biol. 26, 6852–6866 (2020).ADS
Google Scholar
97.Polvani, L. M., Previdi, M., England, M. R., Chiodo, G. & Smith, K. L. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Change 10, 130–133 (2020).ADS
CAS
Google Scholar
98.di Lascio, A. et al. Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecol. Indic. 28, 107–114 (2013).
Google Scholar
99.Moore, I. D., Grayson, R. B. & Ladson, A. R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5, 3–30 (1991).ADS
Google Scholar
100.Vaze, J., Teng, J. & Spencer, G. Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw. 25, 1086–1098 (2010).
Google Scholar
101.Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48, 47–63 (2012).
Google Scholar
102.Hall, D. K., Riggs, G. A. & Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 54, 127–140 (1995).ADS
Google Scholar
103.Vogel, S. W. Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Ann. Glaciol. 34, 53–57 (2002).ADS
Google Scholar
104.Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).ADS
Google Scholar
105.Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS
Google Scholar
106.Jensen, J. R. Remote Sensing of the Environment: An Earth Resource Perspective (Pearson Prentice Hall, 2007).
Google Scholar
107.Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514 (2019).ADS
Google Scholar
108.Simon, G., Manuel, G., Tristan, K. & Germain, S. Algorithm Theoretical basis documentation for an operational snow cover product from Sentinel-2 and Landsat-8 data (let-it-snow) (2018). https://doi.org/10.5281/ZENODO.1414452.109.Stahl, J. & Loonen, M. J. Effects of predation risk on site selection of barnacle geese during brood-rearing. In Research on Arctic Geese, 91 (1998).110.McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS
Google Scholar
111.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
112.Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 26, 547 (1970).CAS
PubMed
Google Scholar
113.Signa, G. et al. Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Environ. Pollut. 246, 772–781 (2019).CAS
PubMed
Google Scholar More