Belowground mechanism reveals climate change impacts on invasive clonal plant establishment
Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710. https://doi.org/10.1890/1051-0761 (2000).ArticleÂ
Google ScholarÂ
Dukes, J. S. & Mooney, H. A. Disruption of ecosystem processes in western North America by invasive species. Rev. Chil. Hist. Nat. 77, 411–437 (2004).ArticleÂ
Google ScholarÂ
Vitousek, P. M. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57, 7–13. https://doi.org/10.2307/3565731 (1990).ArticleÂ
Google ScholarÂ
Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Diver. Distrib. 6, 93–107 (2000).ArticleÂ
Google ScholarÂ
Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).ArticleÂ
Google ScholarÂ
PyÅ¡ek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774. https://doi.org/10.1890/14-1005.1 (2015).ArticleÂ
PubMedÂ
Google ScholarÂ
Estrada, J. A., Wilson, C. H. & Flory, S. L. Clonal integration enhances performance of an invasive grass. Oikos https://doi.org/10.1111/oik.07016 (2020).ArticleÂ
Google ScholarÂ
Otfinowski, R. & Kenkel, N. C. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecol. 199, 235–242. https://doi.org/10.1007/s11258-008-9428-8 (2008).ArticleÂ
Google ScholarÂ
Pyšek, P. & Richardson, D. M. in Biological Invasions (ed N. Nentwig) pp. 97–125 (Springer, New York, 2007).Klimešová, J. & Klimeš, L. Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80, 255–275 (2008).
Google ScholarÂ
KlimeÅ¡ová, J. et al. Handbook of standardized protocols for collecting plant modularity traits. Persp. Plant Ecol. https://doi.org/10.1016/j.ppees.2019.125485 (2019).ArticleÂ
Google ScholarÂ
Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 216, 1072–1078 (2017).ArticleÂ
Google ScholarÂ
KlimeÅ¡ová, J. in Encyclopedia of Invasive Introduced Species (eds D. Simberloff & M. Reimanek) pp. 678–679 (University of California Press, California, 2011).Ott, J. P., KlimeÅ¡ová, J. & Hartnett, D. C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. Lond. 123, 1099–1118. https://doi.org/10.1093/aob/mcz051 (2019).ArticleÂ
Google ScholarÂ
Sanchez, J. M., Sanchez, C. & Navarro, L. Can asexual reproduction by plant fragments help to understand the invasion of the NW Iberian coast by Spartina patens? Flora 257, 151410. https://doi.org/10.1016/j.flora.2019.05.009 (2019).Speek, T. A. A. et al. Factors relating to regional and local success of exotic plant species in their new range. Diver. Distrib. 17, 542–551 (2011).ArticleÂ
Google ScholarÂ
Wang, J. Y. et al. A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs heterogeneous environments. Funct. Ecol. https://doi.org/10.1111/1365-2435.13732 (2020).ArticleÂ
Google ScholarÂ
Maurer, D. A. & Zedler, J. B. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131, 279–288. https://doi.org/10.1007/s00442-002-0886-8 (2002).ADSÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Mueller, I. M. & Weaver, J. E. Relative drought resistance of seedlings of dominant prairie grasses. Ecology 23, 387–398 (1942).ArticleÂ
Google ScholarÂ
Vetter, V. M. S. et al. Invasion windows for a global legume invader are revealed after joint examination of abiotic and biotic filters. Plant Biol. 21, 832–843. https://doi.org/10.1111/plb.12987 (2019).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Ibanez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37. https://doi.org/10.1890/13-0776.1 (2014).ArticleÂ
PubMedÂ
Google ScholarÂ
Diez, J. M. et al. Will extreme climatic events facilitate biological invasions?. Front. Ecol. Environ. 10, 249–257. https://doi.org/10.1890/110137 (2012).ArticleÂ
Google ScholarÂ
Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x (2000).ArticleÂ
Google ScholarÂ
Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441. https://doi.org/10.1111/j.1600-0706.2011.19762.x (2012).ArticleÂ
Google ScholarÂ
Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103, 1538–1546. https://doi.org/10.1111/1365-2745.12479 (2015).ArticleÂ
Google ScholarÂ
Hendrickson, J. R. & Lund, C. Plant community and target species affect responses to restoration strategies. Rangel. Ecol. Manag. 63, 435–442 (2010).ArticleÂ
Google ScholarÂ
Bennett, J., Smart, A. & Perkins, L. Using phenological niche separation to improve management in a Northern Glaciated Plains grassland. Restor. Ecol. 27, 745–749. https://doi.org/10.1111/rec.12932 (2019).ArticleÂ
Google ScholarÂ
Jordan, N. R., Larson, D. L. & Huerd, S. C. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol. Invas. 10, 177–190. https://doi.org/10.1007/s10530-007-9121-1 (2008).ArticleÂ
Google ScholarÂ
Piper, C. L., Lamb, E. G. & Siciliano, S. D. Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecol. 216, 235–246. https://doi.org/10.1007/s11258-014-0431-y (2015).ArticleÂ
Google ScholarÂ
Stotz, G. C., Gianoli, E. & Cahill, J. F. Biotic homogenization within and across eight widely distributed grasslands following invasion by Bromus inermis. Ecology https://doi.org/10.1002/ecy.2717 (2019).ArticleÂ
PubMedÂ
Google ScholarÂ
Dillemuth, F. P., Rietschier, E. A. & Cronin, J. T. Patch dynamics of a native grass in relation to the spread of invasive smooth brome (Bromus inermis). Biol. Invas. 11, 1381–1391. https://doi.org/10.1007/s10530-008-9346-7 (2009).ArticleÂ
Google ScholarÂ
Trammell, M. A. & Butler, J. L. Effects of exotic plants on native ungulate use of habitat. J. Wildlife Manag. 59, 808–816. https://doi.org/10.2307/3801961 (1995).ArticleÂ
Google ScholarÂ
Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).
Google ScholarÂ
Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Easterling, D. R. et al. Precipitation change in the United States. pp. 207–230 (Washington, D.C. USA, 2017).Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42. https://doi.org/10.1046/j.1469-8137.2003.00866.x (2003).ArticleÂ
PubMedÂ
Google ScholarÂ
Briske, D. D. in Grazing management: An ecological perspective (eds R.K. Heitschmidt & J.W. Stuth) pp. 85–108 (Timber Press, Inc., 1991).Liu, F., Liu, J. & Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 217, 277–287 (2016).
Google ScholarÂ
Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656. https://doi.org/10.1890/13-2186.1 (2014).ArticleÂ
Google ScholarÂ
VanderWeide, B. L., Hartnett, D. C. & Carter, D. L. Belowground bud banks of tallgrass prairie are insensitive to multi-year, growing-season drought. Ecosphere. https://doi.org/10.1890/Es14-00058.1 (2014).ArticleÂ
Google ScholarÂ
VanderWeide, B. L. & Hartnett, D. C. Belowground bud bank response to grazing under severe, short-term drought. Oecologia 178, 795–806. https://doi.org/10.1007/s00442-015-3249-y (2015).ADSÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Ott, J. P., Butler, J. L., Rong, Y. P. & Xu, L. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions. J. Plant Ecol. 10, 518–527. https://doi.org/10.1093/jpe/rtw045 (2017).ArticleÂ
Google ScholarÂ
Oesterheld, M., Loreti, J., Semmartin, M. & Sala, O. E. Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J. Veg. Sci. 12, 137–142. https://doi.org/10.1111/j.1654-1103.2001.tb02624.x (2001).ArticleÂ
Google ScholarÂ
Ott, J. P. & Hartnett, D. C. Bud bank dynamics and clonal growth strategy in the rhizomatous grass, Pascopyrum smithii. Plant Ecol. 216, 395–405. https://doi.org/10.1007/s11258-014-0444-6 (2015).ArticleÂ
Google ScholarÂ
Carlsson, B. A. & Callaghan, T. V. Programmed tiller differentiation, intraclonal density regulation and nutrient dynamics in Carex bigelowii. Oikos 58, 219–230. https://doi.org/10.2307/3545429 (1990).ArticleÂ
Google ScholarÂ
Ye, X. H., Yu, F. H. & Dong, M. A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. Lond. 98, 187–191. https://doi.org/10.1093/aob/mcl086 (2006).ArticleÂ
Google ScholarÂ
Dibbern, J. C. Vegetative responses of Bromus inermis to certain variations in environment. Bot. Gazette 109, 44–58 (1947).ArticleÂ
Google ScholarÂ
Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166. https://doi.org/10.1111/gfs.12020 (2014).ArticleÂ
Google ScholarÂ
Saeidnia, F., Majidi, M. M., Mirlohi, A. & Soltan, S. Physiological and tolerance indices useful for drought tolerance selection in smooth bromegrass. Crop Sci. 57, 282–289. https://doi.org/10.2135/cropsci2016.07.0636 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Vinton, M. A. & Hartnett, D. C. Effects of bison grazing on Andropogon gerardii and Panicum virgatum in burned and unbruned tallgrass prairie. Oecologia 90, 374–382. https://doi.org/10.1007/bf00317694 (1992).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
Eneboe, E. J., Sowell, B. F., Heitschmidt, R. K., Karl, M. G. & Haferkamp, M. R. Drought and grazing: IV. Blue grama and western wheatgrass. J. Range Manag. 55, 197–203. https://doi.org/10.2307/4003357 (2002).ArticleÂ
Google ScholarÂ
Broadbent, T. S., Bork, E. W. & Willms, W. D. Divergent effects of defoliation intensity and frequency on tiller growth and production dynamics of Pascopyrum smithii and Hesperostipa comata. Grass Forage Sci. 73, 532–543. https://doi.org/10.1111/gfs.12318 (2018).ArticleÂ
Google ScholarÂ
Donkor, N. T., Bork, E. W. & Hudson, R. J. Bromus-Poa response to defoliation intensity and frequency under three soil moisture levels. Can. J. Plant Sci. 82, 365–370. https://doi.org/10.4141/p01-040 (2002).ArticleÂ
Google ScholarÂ
Reynolds, J. H. & Smith, D. Trend of carbohydrate reserves in alfalfa, smooth bromegrass, and timothy grown under various cutting schedules. Crop Sci. 2, 333–336 (1962).CASÂ
ArticleÂ
Google ScholarÂ
Lamp, H. F. Reproductive activity in Bromus inermis in relation to phases of tiller development. Bot. Gazette 113, 413–438 (1952).ArticleÂ
Google ScholarÂ
Paulsen, G. M. & Smith, D. Organic reserves, axillary bud activity, and herbage yields of smooth bromegrass as influenced by time of cutting, nitrogen fertilization, and shading. Crop Sci. 9, 529–534 (1969).ArticleÂ
Google ScholarÂ
Ott, J. P. & Hartnett, D. C. Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: implications for grassland dynamics. Plant Ecol. 213, 1437–1448. https://doi.org/10.1007/s11258-012-0102-9 (2012).ArticleÂ
Google ScholarÂ
Busso, C. A., Mueller, R. J. & Richards, J. H. Effects of drought and defoliation on bud viability in 2 caespitose grasses. Ann. Bot. Lond. 63, 477–485. https://doi.org/10.1093/oxfordjournals.aob.a087768 (1989).ArticleÂ
Google ScholarÂ
Tuomi, J., Nilsson, P. & Astrom, M. Plant compensatory responses-bud dormancy as an adaptation to herbivory. Ecology 75, 1429–1436. https://doi.org/10.2307/1937466 (1994).ArticleÂ
Google ScholarÂ
US Department of Agriculture. The PLANTS Database, (2006).Gong, K. et al. Analysis on the distribution, breeding and utilization of Bromus inermis germplasm resource in China. Heilongjiang Anim. Sci. Vet. Med. 21, 33–36 (2019).
Google ScholarÂ
Coupland, R. T. & Johnson, R. E. Rooting characteristics of native grassland species in Saskatchewan. J. Ecol. 53, 475–507 (1965).ArticleÂ
Google ScholarÂ
Gist, G. R. & Smith, R. M. Root development of several common forage grasses to a depth of eighteen inches. Agron. J. 1036–1042 (1948).Okamoto, H., Ishii, K. & An, P. Effects of soil moisture deficit and subsequent watering on the growth of four temperate grasses. Grassl. Sci. 57, 192–197. https://doi.org/10.1111/j.1744-697X.2011.00232.x (2011).ArticleÂ
Google ScholarÂ
Morrow, L. A. & Power, J. F. Effect of soil temperature on development of perennial forage grasses. Agron. J. 71, 7–10 (1979).ArticleÂ
Google ScholarÂ
Duell, E. B., Wilson, G. W. T. & Hickman, K. R. Above- and below-ground responses of native and invasive prairie grasses to future climate scenarios. Botany 94, 471–479. https://doi.org/10.1139/cjb-2015-0238 (2016).ArticleÂ
Google ScholarÂ
Duell, E. B., Londe, D. W., Hickman, K. R., Greer, M. J. & Wilson, G. W. T. Superior performance of invasive grasses over native counterparts will remain problematic under warmer and drier conditions. Plant Ecol. 222, 993–1006 (2021).ArticleÂ
Google ScholarÂ
Cully, A. C., Cully, J. F. & Hiebert, R. D. Invasion of exotic plant species in tallgrass prairie fragments. Conser. Biol. 17, 990–998. https://doi.org/10.1046/j.1523-1739.2003.02107.x (2003).ArticleÂ
Google ScholarÂ
DeKeyser, E. S., Meehan, M., Clambey, G. & Krabbenhoft, K. Cool season invasive grasses in northern great plains natural areas. Nat. Areas J. 33, 81–90. https://doi.org/10.3375/043.033.0110 (2013).ArticleÂ
Google ScholarÂ
Grant, T. A., Shaffer, T. L. & Flanders, B. Resiliency of native prairies to invasion by kentucky bluegrass, smooth brome, and woody vegetation. Rangeland Ecol. Manag. 73, 321–328. https://doi.org/10.1016/j.rama.2019.10.013 (2020).ArticleÂ
Google ScholarÂ
Otfinowski, R., Kenkel, N. C. & Catling, P. M. The biology of Canadian weeds. 134. Bromus inermis Leyss. Can. J. Plant Sci. 87, 183–198. https://doi.org/10.4141/p06-071 (2007).ArticleÂ
Google ScholarÂ
Moore, K. J. et al. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 83, 1073–1077 (1991).ArticleÂ
Google ScholarÂ
SAS Institute. SAS 9.4. (SAS Institute Inc, 2017). More