Plant-water sensitivity regulates wildfire vulnerability
1.Westerling, A. L. R. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B 371, 20150178 (2016).PubMed
PubMed Central
Google Scholar
2.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS
PubMed
PubMed Central
Google Scholar
3.Gonzalez, P. et al. Southwest: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment (U.S. Global Change Research Program, 2018).4.McLauchlan, K. K. et al. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069 (2020).
Google Scholar
5.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).6.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS
PubMed
PubMed Central
Google Scholar
7.Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88 (2018).
Google Scholar
8.Radeloff, V. C. et al. Rapid growth of the US wildland–urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018).CAS
PubMed
PubMed Central
Google Scholar
9.Syphard, A. D., Keeley, J. E., Pfaff, A. H. & Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl Acad. Sci. USA 114, 13750–13755 (2017).CAS
PubMed
PubMed Central
Google Scholar
10.Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the U.S. (1992–2015). Fire 3, 50 (2020).11.Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).CAS
PubMed
PubMed Central
Google Scholar
12.McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA. Ecol. Appl. 27, 26–36 (2017).PubMed
Google Scholar
13.Littell, J. S., Mckenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).PubMed
Google Scholar
14.Jensen, D. et al. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 13, 014021 (2018).PubMed
PubMed Central
Google Scholar
15.Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S. & Domínguez-Castro, F. A review of environmental droughts: increased risk under global warming? Earth Sci. Rev. 201, 102953 (2020).
Google Scholar
16.Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. 122, 2061–2079 (2017).
Google Scholar
17.Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).PubMed
PubMed Central
Google Scholar
18.Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Google Scholar
19.Williams, A. P. & Abatzoglou, J. T. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
Google Scholar
20.Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).
Google Scholar
21.Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary across a resource gradient. Ecology 92, 121–132 (2011).PubMed
Google Scholar
22.Scarff, F. R. et al. Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Funct. Ecol. 35, 835–846 (2021).23.Ruffault, J., Martin-StPaul, N., Pimont, F. & Dupuy, J. L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 262, 391–401 (2018).
Google Scholar
24.Pivovaro, A. L. et al. The effect of ecophysiological traits on live fuel moisture content. Fire 2, 28 (2019).25.Nolan, R. H., Hedo, J., Arteaga, C., Sugai, T. & Resco de Dios, V. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric. For. Meteorol. 263, 417–427 (2018).26.Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl Acad. Sci. USA 112, 5744–5749 (2015).CAS
PubMed
PubMed Central
Google Scholar
27.Ma, W. et al. Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences 18, 4005–4020 (2021).CAS
Google Scholar
28.McColl, K. A. et al. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 10, 100–104 (2017).CAS
Google Scholar
29.Chuvieco, E., González, I., Verdú, F., Aguado, I. & Yebra, M. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 18, 430–441 (2009).30.Rao, K., Williams, A. P., Flefil, J. F. & Konings, A. G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 245, 111797 (2020).
Google Scholar
31.Nolan, R. H., Boer, M. M., Resco De Dios, V., Caccamo, G. & Bradstock, R. A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 43, 4229–4238 (2016).
Google Scholar
32.Dennison, P. E. & Moritz, M. A. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 18, 1021–1027 (2009).
Google Scholar
33.Tumino, B. J., Duff, T. J., Goodger, J. Q. D. & Cawson, J. G. Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest. PLoS ONE 14, e0221403 (2019).34.Rodman, K. C. et al. A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. 109, 313–326 (2021).
Google Scholar
35.Resco de Dios, V. Plant–Fire Interactions (Springer, 2020).36.Hurteau, M. D., Liang, S., Westerling, A. L. R. & Wiedinmyer, C. Vegetation–fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).37.Littell, J. S., McKenzie, D., Wan, H. Y. & Cushman, S. A. Climate change and future wildfire in the western United States: an ecological approach to nonstationarity. Earths Future 6, 1097–1111 (2018).38.Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
Google Scholar
39.Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).40.Bradshaw, L. S., Deeming, J. E., Burgan, R. E. & Cohen, J. D. The 1978 National Fire-Danger Rating System: Technical Documentation General Technical Report INT-169 (US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station,1984); https://doi.org/10.2737/INT-GTR-16941.Hardy, C. C. & Hardy, C. E. Fire danger rating in the United States of America: an evolution since 1916. Int. J. Wildland Fire 16, 217–231 (2007).42.Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).CAS
Google Scholar
43.Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Google Scholar
44.Anderegg, W. R. L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 205, 1008–1014 (2015).PubMed
Google Scholar
45.Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).
Google Scholar
46.Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
Google Scholar
47.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS
PubMed
Google Scholar
48.Trugman, A. T., Anderegg, L. D. L., Shaw, J. D. & Anderegg, W. R. L. Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc. Natl Acad. Sci. USA 117, 8532–8538 (2020).CAS
PubMed
PubMed Central
Google Scholar
49.Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2015).
Google Scholar
50.Knapp, P. A. Spatio-temporal patterns of large grassland fires in the Intermountain West U.S.A. Glob. Ecol. Biogeogr. Lett. 7, 259–272 (1998).
Google Scholar
51.Keeley, J. & Syphard, A. Climate change and future fire regimes: examples from California. Geosciences 6, 37 (2016).
Google Scholar
52.Badia, A., Serra, P. & Modugno, S. Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland–urban interface areas. Appl. Geogr. 31, 930–940 (2011).
Google Scholar
53.Fusco, E. J., Abatzoglou, J. T., Balch, J. K., Finn, J. T. & Bradley, B. A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 26, 2390–2401 (2016).
Google Scholar
54.Syphard, A. D. et al. Human influence on California fire regimes. Ecol. Appl. 17, 1388–1402 (2007).PubMed
Google Scholar
55.Ager, A. A., Finney, M. A., Kerns, B. K. & Maffei, H. Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in central Oregon, USA. For. Ecol. Manage. 246, 45–56 (2007).56.Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires: A Literature Survey NIST Special Publication 1215 (NIST, 2017); https://doi.org/10.6028/NIST.SP.121557.Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).
Google Scholar
58.Burke, M. et al. The changing risk and burden of wildfire in the United States. Proc. Natl Acad. Sci. USA 118, e2011048118 (2021).59.García, M., Chuvieco, E., Nieto, H. & Aguado, I. Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens. Environ. 112, 3618–3627 (2008).
Google Scholar
60.Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 23, 78–92 (2014).
Google Scholar
61.Cohen, J. D. et al. The National Fire-Danger Rating System: Basic Equations Vol. 82 (US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1985).62.Pellizzaro, G., Cesaraccio, C., Duce, P., Ventura, A. & Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 16, 232–241 (2007).63.Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).PubMed
PubMed Central
Google Scholar
64.Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).PubMed
Google Scholar
65.Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
Google Scholar
66.National Fuel Moisture Database (United States Forest Service, 2018); https://www.wfas.net/nfmd/public/index.php67.Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2011).
Google Scholar
68.Homer, C. et al. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 77, 858–864 (2011).69.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Google Scholar
70.Boschetti, L., Roy, D., Hoffman, A. A. & Humber, M. Collection 5 MODIS Burned Area Product User Guide Version 3.0.1 (NASA EOSDIS Land Processes DAAC, 2013).71.PRISM Climate Data (Prism Climate Group, Oregon State University, accessed 16 December 2020); https://prism.oregonstate.edu72.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).73.Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS
PubMed
PubMed Central
Google Scholar
74.Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A. & Vereecken, H. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data 9, 529–543 (2017).
Google Scholar
75.Liu, S. et al. NACP MsTMIP: Unified North American Soil Map (ORNL DAAC, 2014); https://doi.org/10.3334/ornldaac/124276.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
77.Martinuzzi, S. et al. The 2010 Wildland–Urban Interface of the Conterminous United States (USDA, 2015).78.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).
Google Scholar More