Surveillance and genetic data support the introduction and establishment of Aedes albopictus in Iowa, USA
1.Reiter, P. & Sprenger, D. The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).CAS
PubMed
Google Scholar
2.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).PubMed
PubMed Central
Google Scholar
3.Kraemer, M. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).CAS
PubMed
PubMed Central
Google Scholar
4.Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).PubMed
PubMed Central
Google Scholar
5.Sprenger, D. & Wuithiranyagool, T. The discovery and distribution of Aedes albopictus in Harris County, Texas. J. Am. Mosq. Control Assoc. 2, 217–219 (1986).CAS
PubMed
Google Scholar
6.Yee, D. A. Thirty years of Aedes albopictus (Diptera: Culicidae) in America: An introduction to current perspectives and future challenges. J. Med. Entomol. 53, 989–991 (2016).PubMed
Google Scholar
7.Hahn, M. B. et al. Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J. Med. Entomol. 53, 1169–1175 (2016).PubMed
Google Scholar
8.Hahn, M. B. et al. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016. J. Med. Entomol. 54, 1420–1424 (2017).PubMed
PubMed Central
Google Scholar
9.Egizi, A., Healy, S. P. & Fonseca, D. M. Rapid blood meal scoring in anthropophilic Aedes albopictus and application of PCR blocking to avoid pseudogenes. Infect. Genet. Evol. 16, 122–128 (2013).CAS
PubMed
Google Scholar
10.Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).CAS
PubMed
Google Scholar
11.Grard, G. et al. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus?. PLoS Negl. Trop. Dis. 8, e2681 (2014).PubMed
PubMed Central
Google Scholar
12.McKenzie, B. A., Wilson, A. E. & Zohdy, S. Aedes albopictus is a competent vector of Zika virus: A meta-analysis. PLoS ONE 14, e0216794 (2019).CAS
PubMed
PubMed Central
Google Scholar
13.Claborn, D. M., Poiry, M., Famutimi, O. D., Duitsman, D. & Thompson, K. R. A survey of mosquitoes in southern and western missouri. J. Am. Mosq. Control Assoc. 34, 131–133 (2018).CAS
PubMed
Google Scholar
14.Janousek, T. E., Plagge, J. & Kramer, W. L. Record of Aedes albopictus in Nebraska with notes on its biology. J. Am. Mosq. Cont. Control Assoc. 17, 265–267 (2001).CAS
Google Scholar
15.Richards, T. et al. First detection of Aedes albopictus (Diptera: Culicidae) and expansion of Aedes japonicus japonicus in Wisconsin, United States. J. Med. Entomol. 56, 291–296 (2019).PubMed
Google Scholar
16.Stone, C. M. et al. Spatial, temporal, and genetic invasion dynamics of Aedes albopictus (Diptera: Culicidae) in Illinois. J. Med. Entomol. 57, 1488–1500 (2020).CAS
PubMed
Google Scholar
17.Dunphy, B. M., Rowley, W. A. & Bartholomay, L. C. A taxonomic checklist of the mosquitoes of Iowa. J. Am. Mosq. Control Assoc. 30, 119–121 (2014).PubMed
Google Scholar
18.Johnson, T. L. et al. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J. Med. Entomol. 54, 1605–1614 (2017).PubMed
Google Scholar
19.Kovach, K. B. & Smith, R. C. Surveillance of mosquitoes (Diptera: Culicidae) in southern Iowa, 2016. J. Med. Entomol. 55, 1341–1345 (2018).PubMed
Google Scholar
20.Braks, M. A. H., Honório, N. A., Lourenço-De-Oliveira, R., Juliano, S. A. & Lounibos, L. P. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J. Med. Entomol. 40, 785–794 (2003).PubMed
Google Scholar
21.Delatte, H. et al. Evidence of habitat structuring Aedes albopictus populations in Réunion Island. PLoS Negl. Trop. Dis. 7, e2111 (2013).PubMed
PubMed Central
Google Scholar
22.Zhong, D. et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE 8, e68586 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
23.Lee, E. J. et al. Geographical genetic variation and sources of Korean Aedes albopictus (Diptera: Culicidae) populations. J. Med. Entomol. 57, 1057–1068 (2020).CAS
PubMed
Google Scholar
24.Nawrocki, S. J. & Hawley, W. A. Estimation of the northern limits of distribution of Aedes albopictus in North America. J. Am. Mosq. Control Assoc. 3, 314–317 (1987).CAS
PubMed
Google Scholar
25.Moore, C. G. Aedes albopictus in the United States: Current status and prospects for further spread. J. Am. Mosq. Control Assoc. 15, 221–227 (1999).CAS
PubMed
Google Scholar
26.Armstrong, P. M., Andreadis, T. G., Shepard, J. J. & Thomas, M. C. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): Analysis of mosquito data from Connecticut, USA. PLoS Negl. Trop. Dis. 11, e0005623 (2017).PubMed
PubMed Central
Google Scholar
27.Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. & Farajollahi, A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practitioners. PLoS ONE 8, e60874 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
28.Hanson, S. M. & Craig, G. B. Aedes albopictus (Diptera: Culicidae) eggs: Field survivorship during northern Indiana winters. J. Med. Entomol. 32, 599–604 (1995).CAS
PubMed
Google Scholar
29.Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).ADS
CAS
PubMed
Google Scholar
30.Yang, J. & Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold?. J. Appl. Meteorol. Climatol. 57, 1309–1320 (2018).ADS
Google Scholar
31.Macintyre, H. L., Heaviside, C., Cai, X. & Phalkey, R. Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate. Environ. Int. 154, 106606 (2021).PubMed
PubMed Central
Google Scholar
32.Ward, T. B. Influence of an Urban Heat Island on Mosquito Development and Survey of Biting Midge Species Associated with White-Tailed Deer Farms (Oklahoma State University, 2011).
Google Scholar
33.Dunphy, B. M. et al. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci. Rep. 9, 6637 (2019).ADS
PubMed
PubMed Central
Google Scholar
34.Paupy, C., Girod, R., Salvan, M., Rodhain, F. & Failloux, A. B. Population structure of Aedes albopictus from La Réunion Island (Indian Ocean) with respect to susceptibility to a dengue virus. Heredity 87, 273–283 (2001).CAS
PubMed
Google Scholar
35.Vazeille, M. et al. Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar. Am. J. Trop. Med. Hyg. 65, 491–497 (2001).CAS
PubMed
Google Scholar
36.Chouin-Carneiro, T. et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl. Trop. Dis. 10, e0004543 (2016).PubMed
PubMed Central
Google Scholar
37.Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: Effective larval and adult control measures against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae), North America. J. Med. Entomol. 53, 1029–1047 (2016).PubMed
Google Scholar
38.Lambrechts, L., Scott, T. W. & Gubler, D. J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 4, e646 (2010).PubMed
PubMed Central
Google Scholar
39.Vega-Rua, A., Zouache, K., Girod, R., Failloux, A.-B. & Lourenco-de-Oliveira, R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J. Virol. 88, 6294–6306 (2014).CAS
PubMed
PubMed Central
Google Scholar
40.Vega-Rúa, A. et al. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl. Trop. Dis. 9, e0003780 (2015).PubMed
PubMed Central
Google Scholar
41.Fikrig, K. & Harrington, L. C. Understanding and interpreting mosquito blood feeding studies: The case of Aedes albopictus. Trends Parasitol. 37, 959–975 (2021).CAS
PubMed
Google Scholar
42.Gerhardt, R. R. et al. First isolation of La Crosse virus from naturally infected Aedes albopictus. Emerg. Infect. Dis. 7, 807–811 (2001).CAS
PubMed
PubMed Central
Google Scholar
43.Sardelis, M. R., Turell, M. J., O’Guinn, M. L., Andre, R. G. & Roberts, D. R. Vector competence of three North American strains of Aedes albopictus for West Nile virus. J. Am. Mosq. Control Assoc. 18, 284–289 (2002).PubMed
Google Scholar
44.Eiras, A. E., Buhagiar, T. S. & Ritchie, S. A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 51, 200–209 (2014).PubMed
Google Scholar
45.Maciel-de-Freitas, R., Eiras, Á. E. & Lourenço-de-Oliveira, R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 101, 321–325 (2006).PubMed
Google Scholar
46.Farajollahi, A. et al. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 46, 919–925 (2009).PubMed
Google Scholar
47.Meeraus, W. H., Armistead, J. S. & Arias, J. R. Field comparison of novel and gold standard traps for collecting Aedes albopictus in Northern Virginia. J. Am. Mosq. Control Assoc. 24, 244–248 (2008).PubMed
Google Scholar
48.Johnson, B. J. et al. Field comparisons of the Gravid Aedes Trap (GAT) and BG-Sentinel Trap for Monitoring Aedes albopictus (Diptera: Culicidae) populations and notes on indoor GAT collections in Vietnam. J. Med. Entomol. 54, 340–348 (2018).
Google Scholar
49.Darsie, R. & Ward, R. Identification and Geographical Distribution of the Mosquitoes of North America (North of Mexico. University Press of Florida, 2005).
Google Scholar
50.Multi-Resolution Land Characteristics Consortium. NLCD 2016 Land Cover (CONUS).51.Bonnet, D. D. & Worcester, D. J. The dispersal of Aedes albopictus in the territory of Hawaii. Am. J. Trop. Med. Hyg. 26, 465–476 (1946).CAS
PubMed
Google Scholar
52.Niebylski, M. L. & Craig, G. B. Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J. Am. Mosq. Control Assoc. 10, 339–343 (1994).CAS
PubMed
Google Scholar
53.Verdonschot, P. F. M. & Besse-Lototskaya, A. A. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45, 69–79 (2014).
Google Scholar
54.Post, R. J., Flook, P. K. & Millest, A. L. Methods for the preservation of insects for DNA studies. Biochem. Syst. Ecol. 21, 85–92 (1993).CAS
Google Scholar
55.Field, E. N., Gehrke, E. J., Ruden, R. M., Adelman, J. S. & Smith, R. C. An improved multiplex Polymerase Chain Reaction (PCR) assay for the identification of mosquito (Diptera: Culicidae) blood meals. J. Med. Entomol. 57, 557–562 (2020).CAS
PubMed
Google Scholar
56.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS
PubMed
Google Scholar
57.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Google Scholar
58.Ogden, R., Shuttleworth, C., McEwing, R. & Cesarini, S. Median-joining networks for inferring intraspecific phylogenies. Conserv. Genet. 6, 37–48 (2005).
Google Scholar More