More stories

  • in

    The fabrication and assessment of mosquito repellent cream for outdoor protection

    Chemicals and reagentsEOs of basil (Ocimum basilicum L.), bergamot (Citrus bergamia Risso & Poit), camphor [Cinnamomum camphora (L.) J. Presl.], cinnamon (Cinnamomum zeylanicum Blume), citronella [Cymbopogon nardus (L.) Rendle], clove (Eugenia caryophyllus Wight), eucalyptus (Eucalyptus globulus Labill.), jasmine (Jasminum officinale L.), lavender (Lavandula angustifolia Mill.), lemon grass [Cymbopogan citratus (DC.) Stapf], mentha (Mentha piperita L.), rosemary (Rosmarinus officinalis L.), patchouli (Pogostemon patchouli Benth), and wild turmeric (Curcuma aromatica Salisb.) were procured from Talent Technologies (Talent Technologies, Kanpur, India). Acetylcholinesterase (AChE) activity assay kit, Anti-OBP2A antibody, ELISA kits, 1,1-diphenyl-2-picrylhydrazyl (DPPH), radioimmunoprecipitation (RIPA) buffer and phosphate buffer saline (PBS) were purchased from Sigma Aldrich (Sigma Aldrich Chemical Co., St. Luis, USA). TRPV1 antibody was purchased from Santa Cruz (Santa Cruz, California, USA). 1-chloro-2,4-dinitrobenzene (CDNB) was purchased from Cayman (Cayman Chemical Company, Michigan, USA). Human normal lung cell line (L-132) was obtained from the National Centre for Cell Sciences (NCCS), Pune, India. High performance liquid chromatography (HPLC) grade acetone was purchased from Merck (Merck Pvt. Ltd., Mumbai, India). All other chemicals used were of the highest analytical grade available.Test insects5–7 days old adult female Ae. albopictus mosquitoes were housed at the laboratory insectary, Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India. Mosquitoes were reared by maintaining temperature at 27 ± 2 °C, relative humidity: 75 ± 5% RH and 14L:10D h of light–dark alternative cycles in standard-sized wooden cages (75 cm × 60 cm × 60 cm) with a sleeve opening on one side as described previously63. 10% sucrose solution ad libitum were provided for nourishment. Before testing, the mosquitoes were starved for 24 h.Screening of EOsDose response study was performed to evaluate the best oils among the fourteen EOs. This study was approved (approval number: 032/2021TMCH, 28/08/2018) by the Institutional Human Ethical Committee (IHEC), of the Tezpur Medical College & Hospital (TMCH), Tezpur, Assam, India, and all experiments were performed in accordance with relevant guidelines and regulations. Five volunteers are chosen, not allergic to mosquito bite and all volunteers provided written informed consent. A volunteer’s thigh was marked according to the door opening hole of the K&D module as described by Klun and Debboun64. It is made of Plexiglas and the base of the rectangular cage (26 cm × 5 cm × 5 cm) has six holes, each with rectangular 3 × 4 cm holes that are opened and closed by a sliding door (Supplementary Fig. S8: Provide the photograph of K&D module). The flexor region of the forearms of a human volunteer was outlined with four rectangular (3 cm × 4 cm) test areas. A volume of 25 µL of each concentration of the EOs in soybean oil (40, 4 and 0.4 µg/cm2) and 25 µL of the soybean oil (diluent) as control was applied to the marked areas. After air drying for 5 min, a K&D module with matching cut outs in its floor was placed over the treated areas, containing five nulliparous 5–7 days old female mosquitoes in each hole. The doors of the cells were opened and the number of mosquitoes biting in each cell was recorded within a 2 min exposure, after which the doors were closed. After completion of each observation, mosquitoes were freed by opening cells of the K&D module in a sleeved screened cage. For each test, fresh sets of mosquitoes are used. Five replications for each test were carried out. The efficacy of EOs were determined by the percentage repellency against mosquitoes, using the formula or Eq. (2) described by WHO46.$$% ;{text{repellency}} = frac{C – T}{C} times 100$$
    (2)
    where, C is the number of mosquitoes landing, or biting at the control area; T is the number of mosquitoes landing or biting at the treated area.Fourier transform-infra red spectroscopy (FT-IR)Study of chemical compatibility for each formulation ingredients are necessary. All formulation ingredients possess specific value of vibrational frequency and have varied functional groups in their chemical structures. For compatibility study, each EOs, excipients to be used in cream formulation, and their physical mixture was placed one by one over the sample plate of the FT-IR instrument (Bruker, ALPHA, Billerica, MA, USA). The covering probe was placed over the sample and IR spectra was obtained over a wavelength of 2.5–25 μm at room temperature. Functional groups possessed by each individual ingredient should be identical in their physical mixture which confirms their compatibility37.Thermogravimetric analysis (TGA)The thermal behaviour of citronella oil, clove oil, lemon grass oil, their mixture and EO-MRC were evaluated using a thermal analyser (TG 209 F1 Libra®, NETZSCH-Gerätebau GmbH, 95100 Selb, Germany). Approximately about 10 mg sample weight was placed in the crucible each time. Nitrogen was used as a shielding gas. Heating program was fixed as 30–600 °C at a rate of 10 °C/min.Formulation development and optimizationFor optimization, a 17-run, 3-factor, 3-level Box-Behnken design (BBD) was utilized. A second order polynomial model was constructed by quadratic response surface methodology (RSM) using Design-Expert software (Version 6.0.8, Stat-Ease Inc., USA). Total seventeen formulations were obtained using EO concentrations as dependent variables against complete protection time (CPT) as independent variable or response variable. Analysis of variance (ANOVA) was performed using the same software to obtain the most effective formulation.Preparation of creamPhase inversion temperature method was applied for the preparation of EO-based mosquito repellent cream (EO-MRC). About 50 g cream sample was prepared in order to get enough for performing the various qualitative and quantitative assay. The oil phase (phase B) was prepared by dissolving the oil soluble excipients, except phase A (mosquito repellent active ingredients) under mild heating at 200 rpm in a hot magnetic plate stirrer (Magnetic Stirrer IKA RCT basic) and heated to 65 °C. The aqueous phase was prepared by mixing various aqueous soluble ingredients (phase C) under gentle heating and stirring. Temperature of the aqueous phase was raised to 65 °C. Phase A was gently added to the oil phase at a stirring speed of 200 rpm and 55 ± 2 °C. The mixture was then emulsified by adding phase C slowly and kept for 1 h at a stirring rate of 800 rpm and 60 ± 2 °C. The formulated EO-MRC was then kept for natural cooling.Efficacy assessmentCPT of the developed cream (EO-MRC) formulation was carried out by arm in cage bioassay. 1 mL EO-MRC was applied to ≈ 600 cm2 area of the forearm skin between the wrist and elbow and 1 mL of the 12% N, N-di ethyl benzamide (DEBA) based marketed cream (DBMC) was compared on the other arm. Two mosquito cages (size: 40 × 40 × 40 cm) each containing 200–250 non-blood-fed female Ae. Albopictus were used. One cage is designated for testing the EO-MRC and the other for the positive control (DBMC). During testing, hands were protected by surgical gloves for which the mosquitoes cannot bite while the volunteer avoids movement of the arm. EO-MRC and DBMC treated arms were exposed for 3 min at 30 min intervals to determine landing and/or probing activity. A single landing or probing of mosquito within a 3 min test interval concludes the test. CPT was calculated as the time (min) required for the first mosquito landing or probing after repellent application to the treated area. The median CPT and confidence intervals were estimated from the Kaplan–Meier Survival Function46.Efficacy was correlated with DEBA based marketed cream (DBMC). The inclusion of the specific commercial product DBMC is for comparison and does not constitute any recommendations.CharacterizationGas chromatography-mass spectroscopy (GC–MS)Qualitative studyDifferent chemical components in fourteen EOs and the selected blend were identified by a GC–MS system of Agilent Technologies (5301 Stevens Creek Blvd. Santa Clara, CA 95051, United States). Test sample concentration of 500 μg/mL was prepared in GC grade acetone. A sample volume of 1 μL was introduced into the injector held at 250 °C. Oven temperature of 40–300 °C was programmed at 20 °C/min. Helium was used as carrier gas at flow rate 1 mL/min. The injector and detector temperature were set at 250 °C and 230 °C (quad) and 150 °C (core) respectively37. Standard C7–C30 saturated alkanes were purchased from Sigma Aldrich Chemicals Co., St. Louis, USA. Retention indices (RI) of the identified components were determined for identification of the detected components.% Assay by GC–MS studyCalibration samples of eugenol and citronellol were prepared by dissolving an appropriate amount in GC grade acetone to get concentrations of 62.5 μg/mL, 125 μg/mL, 250 μg/mL and 500 μg/mL. Test samples of EO-MRC, clove oil and citronella oil were prepared by dissolving a required amount in acetone to quantify the EO components in the final formulation. A sample volume of 1 μL was introduced into the injector as described in ‘Qualitative study’ section.Physicochemical parametersPhysical parameters of the EO-MRC and placebo formulations were determined in order to establish aesthetic compliance and consumer acceptability. To determine the viscosity, a programmable viscometer was used (Model: DV2T, Ametek Brookfield, Middleboro, MA, USA); combined with software Rheo3000, version 1.2.2019.1 [R]. Sample volume was fixed at 30 g and viscosities were determined at 10 rpm for 40 s at room temperature using a T-Bar spindle (B-92) (Helipath spindle set, Brookfield Engineering Labs. Inc). Density was determined by using a pycnometer. pH of EO-MRC was checked by using digital pH meter (Labman Scientific instruments, Tamil Nadu, India).Spread ability of EO-MRC was determined as per the method reported earlier by Sabale65. In brief, 1 g of EO-MRC was placed on 1 cm2 pre-marked circular area on the glass slide (7.5 cm × 2.5 cm). EO-MRC was compressed using another glass slide placed from edge to centre of primary slide. 200 g of commercial weight was placed on the set up and allowed the gel to spread for the period of 1 min. The spread diameter was calculated with the aid of graph paper and spread ability was evaluated using formula expressed as Eq. (3):$$mathrm{Spread, ability}=mathrm{m}times frac{mathrm{l}}{mathrm{t}}$$
    (3)
    where, m is the commercial weight placed on the setup; l is the length of cream spread; and t is the time.Safety assessmentCytotoxicity by MTT assayThe reduction of tetrazolium salts is now widely accepted as a reliable way to examine cell proliferation. The yellow tetrazolium MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) is reduced by metabolically active cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. With the help of spectrophotometric means, the resulting intracellular purple formazan can be quantified. The assay measures the cell proliferation rate and conversely, when metabolic events cause apoptosis or necrosis, the reduction in cell viability66.Cells cultured in T-25 flasks were trypsinized and aspirated into a 5 mL centrifuge tube. Cell pellet was obtained by centrifugation at 3000 rpm. The cell count was adjusted, using DMEM HG medium, such that 200 μL of suspension contained approximately 10,000 cells. To each well of the 96 well microtiter plate, 200 μL of the cell suspension was added and the plate was incubated at 37 ℃ and 5% CO2 atmosphere for 24 h. After 24 h, the spent medium was aspirated. 200 μL of different test concentrations viz. 62 µg/mL, 125 µg/mL, 250 µg/mL, 500 µg/mL, and 1000 µg/mL, of EO-MRC were added to the respective wells. The plate was then incubated at 37 °C and 5% CO2 atmosphere for 24 h. The plate was removed from the incubator and the drug containing media was aspirated. 200 μL of medium containing10% MTT reagent was then added to each well to get a final concentration of 0.5 mg/mL and the plate was incubated at 37 ℃ and 5% CO2 atmosphere for 3 h. Without disturbing the crystals formed in the wells, culture medium was completely removed. 100 μL of solubilisation solution (DMSO) was added to each well and the plate was then gently shake in a rocking shaker (ROCKYMAX™, Tarsons, Kolkata, India) to solubilize the formed formazan. The absorbance was measured at a wavelength of 570 nm and also at 630 nm using a microplate reader. The percentage growth inhibition was calculated and concentration of EO-MRC needed to inhibit cell growth by 50% (IC50) was generated from the dose–response curve for the cell line.Animals and ethics statementAll experimenting protocols using animal were performed according to the “Principles of Laboratory Animal care” (NIH publication 85–23, revised 1985) and approved by the Institutional Animal Ethical Committee (IAEC) of Defence Research Laboratory (DRL), Tezpur, Assam, India (approval no. CPCSEA/DRL/Protocol no. 3, 20/06/2018). All studies involving animals are reported in accordance with the ARRIVE guidelines for reporting experiments involving animals67. All efforts were made during the study period to minimize the suffering of animals and to reduce the number of animals used.5–8 weeks old, about 210–250 g of male healthy adult Wistar rats (Rattus norvegicus) and young and healthy New Zealand albino rabbits (Oryctolagus cuniculus) were obtained from the institutional animal housing facility and allowed to acclimatize for 7 days prior to the study. Standard food and purified water ad libitum were provided in clean and hygienic condition at 22–25 ℃, 40–70% RH with 12 h light–dark cycles.Acute dermal irritation studyAcute dermal irritation study was conducted on healthy New Zealand albino rabbits following the OECD test guidelines 40468. Approximately 24 h before the test, fur was removed from the dorsal area of the trunk. 0.5 g EO-MRC, was directly applied to the skin and after 4 h exposure period, residual EO-MRC was removed by using water without disturbing the integrity of the epidermis and examined for signs of erythema and oedema, at 60 min, and then at 24 h, 48 h and 72 h after EO-MRC removal. Dermal reactions are graded and recorded according to the grades in the Table 8. As per the method described by Banerjee et al.69; primary irritation index (PII) was calculated. Further, we have followed the Draize method of classification for PII scoring as non-irritant (if PII  More

  • in

    Perspectives in machine learning for wildlife conservation

    1.Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Committee, T. I. R. L. The IUCN Red List of Threatened Species – Strategic Plan 2017-2020. Tech. Rep., IUCN (2017).3.Witmer, G. W. Wildlife population monitoring: some practical considerations. Wild. Res. 32, 259–263 (2005).
    Google Scholar 
    4.McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. PeerJ 4, e1831 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Burghardt, G. M. et al. Perspectives–minimizing observer bias in behavioral studies: a review and recommendations. Ethology 118, 511–517 (2012).
    Google Scholar 
    6.Giese, M. Effects of human activity on Adelie penguin Pygoscelis adeliae breeding success. Biol. Conserv. 75, 157–164 (1996).
    Google Scholar 
    7.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).PubMed 

    Google Scholar 
    8.Weissensteiner, M. H., Poelstra, J. W. & Wolf, J. B. W. Low-budget ready-to-fly unmanned aerial vehicles: an effective tool for evaluating the nesting status of canopy-breeding bird species. J. Avian Biol. 46, 425–430 (2015).
    Google Scholar 
    9.Sasse, D. B. Job-related mortality of wildlife workers in the united states, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).10.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).11.Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–266 (1974).CAS 
    PubMed 

    Google Scholar 
    12.Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evolution 9, 1160–1167 (2018).
    Google Scholar 
    13.Betke, M. et al. Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J. Mammal. 89, 18–24 (2008).
    Google Scholar 
    14.Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).
    Google Scholar 
    15.Junker, J. et al. A severe lack of evidence limits effective conservation of the world’s primates. BioScience 70, 794–803 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    16.Sherman, J., Ancrenaz, M. & Meijaard, E. Shifting apes: Conservation and welfare outcomes of Bornean orangutan rescue and release in Kalimantan, Indonesia. J. Nat. Conserv. 55, 125807 (2020).
    Google Scholar 
    17.O’Donoghue, P. & Rutz, C. Real-time anti-poaching tags could help prevent imminent species extinctions. J. Appl. Ecol. 53, 5–10 (2016).PubMed 

    Google Scholar 
    18.Lahoz-Monfort, J. J. & Magrath, M. J. L. A comprehensive overview of technologies for species and habitat monitoring and conservation. BioScience biab073. https://academic.oup.com/bioscience/advance-article/doi/10.1093/biosci/biab073/6322306 (2021).19.Gottschalk, T., Huettmann, F. & Ehlers, M. Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. Int. J. Remote Sens. 26, 2631–2656 (2005).
    Google Scholar 
    20.Steenweg, R. et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2017).
    Google Scholar 
    21.Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).
    Google Scholar 
    22.Sugai, L. S. M., Silva, T. S. F., Ribeiro, J. W. & Llusia, D. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69, 15–25 (2018).
    Google Scholar 
    23.Wikelski, M. et al. Going wild: what a global small-animal tracking system could do for experimental biologists. J. Exp. Biol. 210, 181–186 (2007).PubMed 

    Google Scholar 
    24.Belyaev, M. Y. et al. Development of technology for monitoring animal migration on Earth using scientific equipment on the ISS RS. in 2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 1–7 (IEEE, 2020).25.Harel, R., Loftus, J. C. & Crofoot, M. C. Locomotor compromises maintain group cohesion in baboon troops on the move. Proc. R. Soc. B 288, 20210839 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    26.Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience 68, 563–576 (2018).
    Google Scholar 
    27.Lasky, M. et al. Candid critters: Challenges and solutions in a large-scale citizen science camera trap project. Citizen Science: Theory and Practice 6, https://doi.org/10.5334/cstp.343 (2021).28.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2001).29.Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evolution 10, 1632–1644 (2019).
    Google Scholar 
    30.Kwok, R. Ai empowers conservation biology. Nature 567, 133–135 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Kwok, R. Deep learning powers a motion-tracking revolution. Nature 574, 137–139 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    33.Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evolution 11, 281–293 (2020).
    Google Scholar 
    34.Knudby, A., LeDrew, E. & Brenning, A. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens. Environ. 114, 1230–1241 (2010).ADS 

    Google Scholar 
    35.Rey, N., Volpi, M., Joost, S. & Tuia, D. Detecting animals in African savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341–351 (2017).ADS 

    Google Scholar 
    36.Beery, S., Morris, D. & Yang, S. Efficient pipeline for camera trap image review. in Proceedings of the Workshop Data Mining and AI for Conservation, Conference for Knowledge Discovery and Data Mining (2019).37.Kellenberger, B., Marcos, D. & Tuia, D. When a few clicks make all the difference: improving weakly-supervised wildlife detection in UAV images. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019).38.Schofield, D. et al. Chimpanzee face recognition from videos in the wild using deep learning. Sci. Adv. 5, eaaw0736 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Ditria, E. M. et al. Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning. Front. Mar. Sci. 7, 429 (2020).
    Google Scholar 
    40.Kellenberger, B., Veen, T., Folmer, E. & Tuia, D. 21 000 birds in 4.5 h: efficient large-scale seabird detection with machine learning. Remote Sens. Ecol. Conserv. 7, 445–460 (2021).
    Google Scholar 
    41.Ahumada, J. A. et al. Wildlife insights: a platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).MathSciNet 

    Google Scholar 
    42.Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evolution 10, 1875–1887 (2019).
    Google Scholar 
    43.Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).PubMed 

    Google Scholar 
    44.Valletta, J. J., Torney, C., Kings, M., Thornton, A. & Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220 (2017).
    Google Scholar 
    45.Peters, D. P. C. et al. Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology. Ecosphere 5, art67 (2014).
    Google Scholar 
    46.Yu, Q. et al. Study becomes insight: ecological learning from machine learning. Methods Ecol. Evol. 12, 2117–2128 (2021).47.Lucas, T. C. D. A translucent box: interpretable machine learning in ecology. Ecol. Monogr. 90, https://doi.org/10.1002/ecm.1422 (2020).48.Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    49.Camps-Valls, G., Tuia, D., Zhu, X. X. & Reichstein, M. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences (Wiley & Sons, 2021).50.Karpatne, A. et al. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).
    Google Scholar 
    51.Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K. & Jetz, W. Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biol 19, e3001336 https://doi.org/10.1371/journal.pbio.3001336 (2021).52.Beery, S., Wu, G., Rathod, V., Votel, R. & Huang, J. Context R-CNN: long term temporal context for per-camera object detection. in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 13075–13085 (2020).53.Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl Acad. Sci. USA 115, E5716–E5725 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Schneider, S., Taylor, G. W., Linquist, S. & Kremer, S. C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Methods Ecol. Evolution 10, 461–470 (2019).
    Google Scholar 
    55.Beery, S., Van Horn, G. & Perona, P. Recognition in terra incognita. in 2018 European Conference on Computer Vision (ECCV), 456–473 (2018).56.Sugai, L. S. M., Silva, T. S. F., Ribeiro Jr, J. W. & Llusia, D. Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69, 15–25 (2019).
    Google Scholar 
    57.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evolution 8, 1292–1301 (2017).
    Google Scholar 
    58.Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65, 7–19 (2020).
    Google Scholar 
    59.Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    60.Wood, C. M. et al. Detecting small changes in populations at landscape scales: a bioacoustic site-occupancy framework. Ecol. Indic. 98, 492–507 (2019).
    Google Scholar 
    61.Kahl, S., Wood, C. M., Eibl, M. & Klinck, H. Birdnet: a deep learning solution for avian diversity monitoring. Ecol. Inform. 61, 101236 (2021).
    Google Scholar 
    62.Stowell, D., Wood, M. D., Pamuła, H., Stylianou, Y. & Glotin, H. Automatic acoustic detection of birds through deep learning: the first bird audio detection challenge. Methods Ecol. Evolution 10, 368–380 (2019).
    Google Scholar 
    63.Ford, J. K. B. in Encyclopedia of Marine Mammals 253–254 (Elsevier, 2018).64.Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A. & Jensen, F. H. Challenges and solutions for studying collective animal behaviour in the wild. Philos. Trans. R. Soc. B: Biol. Sci. 373, 20170005 (2018).
    Google Scholar 
    65.Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. 89, 186–206 (2020).PubMed 

    Google Scholar 
    66.Korpela, J. et al. Machine learning enables improved runtime and precision for bio-loggers on seabirds. Commun. Biol. 3, 1–9 (2020).
    Google Scholar 
    67.Yu, H. An evaluation of machine learning classifiers for next-generation, continuous-ethogram smart trackers. Mov. Ecol. 9, 14 (2021).
    Google Scholar 
    68.Browning, E. et al. Predicting animal behaviour using deep learning: GPS data alone accurately predict diving in seabirds. Methods Ecol. Evolution 9, 681–692 (2018).
    Google Scholar 
    69.Liu, Z. Y.-C. et al. Deep learning accurately predicts white shark locomotor activity from depth data. Anim. Biotelemetry 7, 1–13 (2019).
    Google Scholar 
    70.Wang, G. Machine learning for inferring animal behavior from location and movement data. Ecol. Inform. 49, 69–76 (2019).
    Google Scholar 
    71.Wijeyakulasuriya, D. A., Eisenhauer, E. W., Shaby, B. A. & Hanks, E. M. Machine learning for modeling animal movement. PLoS ONE 30, e0235750 (2020).72.Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal. Rev. 45, 239–252 (2015).
    Google Scholar 
    73.Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    74.Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).CAS 
    PubMed 

    Google Scholar 
    75.Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife 8, e47994 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Mathis, A., Schneider, S., Lauer, J. & Mathis, M. W. A primer on motion capture with deep learning: principles, pitfalls, and perspectives. Neuron 108, 44–65 (2020).CAS 
    PubMed 

    Google Scholar 
    77.Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).ADS 

    Google Scholar 
    78.Kellenberger, B., Veen., T., Folmer, E. & Tuia, D. 21,000 birds in 4.5 hours: efficient large-scale seabird detection with machine learning. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.200 (2021).79.Andrew, W., Greatwood, C. & Burghardt, T. Aerial animal biometrics: individual Friesian cattle recovery and visual identification via an autonomous UAV with onboard deep inference. in International Conference on Intelligent Robots and Systems (IROS) (2019).80.Schroeder, N. M., Panebianco, A., Gonzalez Musso, R. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: a gregarious ungulate as a study model. R. Soc. open Sci. 7, 191482 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to Unmanned Aerial Systems approaches. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    82.Deneu, B., Servajean, M., Botella, C. & Joly, A. Evaluation of deep species distribution models using environment and co-occurrences. in International Conference of the Cross-Language Evaluation Forum for European Languages, 213–225 (Springer, 2019).83.Zhu, X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5, 8–36 (2017).
    Google Scholar 
    84.Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D. & Herrera, F. Whale counting in satellite and aerial images with deep learning. Sci. Rep. 9, 1–12 (2019).CAS 

    Google Scholar 
    85.Duporge, I., Isupova, O., Reece, S., Macdonald, D. W. & Wang, T. Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.195 (2020).86.Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.176 (2020).87.Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evolution 34, 734–745 (2019).
    Google Scholar 
    88.Audebert, N., Le Saux, B. & Lefèvre, S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7, 159–173 (2019).
    Google Scholar 
    89.McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).
    Google Scholar 
    90.Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evolution 9, 2216–2225 (2018).MATH 

    Google Scholar 
    91.Torney, C. J. et al. A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods Ecol. Evolution 10, 779–787 (2019).
    Google Scholar 
    92.Parham, J., Crall, J., Stewart, C., Berger-Wolf, T. & Rubenstein, D. I. Animal population censusing at scale with citizen science and photographic identification. in AAAI Spring Symposium-Technical Report (2017).93.Kühl, H. S. & Burghardt, T. Animal biometrics: quantifying and detecting phenotypic appearance. Trends Ecol. Evolution 28, 432–441 (2013).
    Google Scholar 
    94.Yu, X. et al. Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013, 1–10 (2013).ADS 

    Google Scholar 
    95.Mac Aodha, O. et al. Bat detective–deep learning tools for bat acoustic signal detection. PLoS Computat. Biol. 14, e1005995 (2018).
    Google Scholar 
    96.Schindler, F. & Steinhage, V. Identification of animals and recognition of their actions in wildlife videos using deep learning techniques. Ecol. Inform. 61, 101215 (2021).97.Avise, J. C. Molecular Markers, Natural History and Evolution (Springer Science & Business Media, 2012).98.Vidal, M., Wolf, N., Rosenberg, B., Harris, B. P. & Mathis, A. Perspectives on Individual Animal Identification from Biology and Computer Vision. Integr. Comp. Biol. 61, 900–916 https://doi.org/10.1093/icb/icab107 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Berger-Wolf, T. Y. et al. Wildbook: crowdsourcing, computer vision, and data science for conservation. Preprint at https://arxiv.org/abs/1710.08880 (2017).100.Parham, J. et al. An animal detection pipeline for identification. in IEEE Winter Conference on Applications of Computer Vision (WACV), 1075–1083 (IEEE, 2018).101.Weideman, H. et al. Extracting identifying contours for African elephants and humpback whales using a learned appearance model. in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020).102.Brust, C.-A. et al. Towards automated visual monitoring of individual gorillas in the wild. in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2820–2830 (2017).103.Li, S., Li, J., Tang, H., Qian, R. & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild. in 2020 ACM International Conference on Multimedia, 2590–2598 (2020).104.Bendale, A. & Boult, T. E. Towards open set deep networks. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1563–1572 (2016).105.Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).CAS 
    PubMed 

    Google Scholar 
    106.Sanakoyeu, A., Khalidov, V., McCarthy, M. S., Vedaldi, A. & Neverova, N. Transferring dense pose to proximal animal classes. in 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5233–5242 (2020).107.Zuffi, S., Kanazawa, A., Jacobs, D. W. & Black, M. J. 3D menagerie: modeling the 3D shape and pose of animals. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6365–6373 (2017).108.Biggs, B., Roddick, T., Fitzgibbon, A. & Cipolla, R. Creatures great and smal: recovering the shape and motion of animals from video. in 2018 Asian Conference on Computer Vision (ACCV), 3–19 (Springer, 2018).109.Biggs, B., Boyne, O., Charles, J., Fitzgibbon, A. & Cipolla, R. Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop. in 2020 European Conference on Computer Vision (ECCV), 195–211 (Springer, 2020).110.Zuffi, S., Kanazawa, A., Berger-Wolf, T. & Black, M. J. Three-D safari: learning to estimate zebra pose, shape, and texture from images” in the wild”. in 2019 IEEE International Conference on Computer Vision (ICCV), 5359–5368 (2019).111.Wang, Y., Kolotouros, N., Daniilidis, K. & Badger, M. Birds of a feather: capturing avian shape models from images. in 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 14739–14749 (2021).112.Haalck, L., Mangan, M., Webb, B. & Risse, B. Towards image-based animal tracking in natural environments using a freely moving camera. J. Neurosci. methods 330, 108455 (2020).PubMed 

    Google Scholar 
    113.Pettorelli, N. et al. Satellite remote sensing for applied ecologists: opportunities and challenges. J. Appl. Ecol. 51, 839–848 (2014).
    Google Scholar 
    114.Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE 11, e0149098 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    115.Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS 

    Google Scholar 
    116.Risse, B., Mangan, M., Stürzl, W. & Webb, B. Software to convert terrestrial LiDAR scans of natural environments into photorealistic meshes. Environ. Model. Softw. 99, 88–100 (2018).
    Google Scholar 
    117.Haalck, L. & Risse, B. Embedded dense camera trajectories in multi-video image mosaics by geodesic interpolation-based reintegration. in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 1849–1858 (2021).118.Schonberger, J. L. & Frahm, J.-M. Structure-from-motion revisited. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113 (2016).119.Mur-Artal, R. & Tardós, J. D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262 (2017).
    Google Scholar 
    120.Kuppala, K., Banda, S. & Barige, T. R. An overview of deep learning methods for image registration with focus on feature-based approaches. Int. J. Image Data Fusion 11, 113–135 (2020).ADS 

    Google Scholar 
    121.Lisein, J., Linchant, J., Lejeune, P., Bouché, P. & Vermeulen, C. Aerial surveys using an unmanned aerial system (UAS): comparison of different methods for estimating the surface area of sampling strips. Tropical Conserv. Sci. 6, 506–520 (2013).
    Google Scholar 
    122.Wu, C. Critical configurations for radial distortion self-calibration. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 25–32 (2014).123.Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N. & Garcia, R. Large-area photo-mosaics using global alignment and navigation data. in Mts/IEEE Oceans Conference, 1–9 (2007).124.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
    Google Scholar 
    125.Lehmann, A., Overton, J. M. & Austin, M. P. Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers. Conserv. 11, 2085–2092 (2002).126.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    127.Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).
    Google Scholar 
    128.Smoliński, S. & Radtke, K. Spatial prediction of demersal fish diversity in the baltic sea: comparison of machine learning and regression-based techniques. ICES J. Mar. Sci. 74, 102–111 (2017).
    Google Scholar 
    129.Čandek, K., Čandek, U. P. & Kuntner, M. Machine learning approaches identify male body size as the most accurate predictor of species richness. BMC Biol. 18, 1–16 (2020).
    Google Scholar 
    130.Baltensperger, A. P. & Huettmann, F. Predictive spatial niche and biodiversity hotspot models for small mammal communities in Alaska: applying machine-learning to conservation planning. Landscape Ecol. 30, 681–697 (2015).131.Faisal, A., Dondelinger, F., Husmeier, D. & Beale, C. M. Inferring species interaction networks from species abundance data: a comparative evaluation of various statistical and machine learning methods. Ecol. Inform. 5, 451–464 (2010).
    Google Scholar 
    132.Van Horn, G. et al. The inaturalist species classification and detection dataset. in 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8769–8778 (2018).133.Copas, K. et al. Training machines to improve species identification using GBIF-mediated datasets. in AGU Fall Meeting Abstracts, Vol. 2019, IN53C–0758 (2019).134.Lennox, R. J. et al. A novel framework to protect animal data in a world of ecosurveillance. BioScience 70, 468–476 (2020).
    Google Scholar 
    135.Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650 (2019).136.Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. & Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Vol. 11700 (Springer Nature, 2019).137.Swanson, A. et al. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. data 2, 1–14 (2015).
    Google Scholar 
    138.de Lutio, R. et al. Digital taxonomist: identifying plant species in community scientists’ photographs. ISPRS J. Photogramm. Remote Sens. 182, 112–121 (2021).139.Mac Aodha, O., Cole, E. & Perona, P. Presence-only geographical priors for fine-grained image classification. in Proceedings of the IEEE/CVF International Conference on Computer Vision, 9596–9606 (2019).140.Gurumurthy, S. et al. Exploiting Data and Human Knowledge for Predicting Wildlife Poaching. in Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, 1–8, https://doi.org/10.1145/3209811.3209879 (ACM, 2018).141.Datta, S., Anderson, D., Branson, K., Perona, P. & Leifer, A. Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    142.Joska, D. et al. AcinoSet: a 3D pose estimation dataset and baseline models for Cheetahs in the wild. 2021 IEEE International Conference on Robotics and Automation (ICRA) Preprint at https://arxiv.org/abs/2103.13282 (IEEE, Xi’an, China, 2021).143.Chen, Q. & Koltun, V. Photographic image synthesis with cascaded refinement networks. in 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1511–1520 (2017).144.Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. & Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020).145.Botella, C., Joly, A., Bonnet, P., Munoz, F. & Monestiez, P. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evolution 12, 933–945 (2021).
    Google Scholar 
    146.Beery, S., Cole, E., Parker, J., Perona, P. & Winner, K. Species distribution modeling for machine learning practitioners: a review. in Proceedings of the 4th ACM SIGCAS Conference on Computing and Sustainable Societies (2021).147.Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).
    Google Scholar 
    148.de Knegt, H. J., Eikelboom, J. A. J., van Langevelde, F., Spruyt, W. F. & Prins, H. H. T. Timely poacher detection and localization using sentinel animal movement. Sci. Rep. 11, 1–11 (2021).
    Google Scholar 
    149.Walter, T. & Couzin, I. D. TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual fields. eLife 10, e64000 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    150.Kellenberger, B., Tuia, D. & Morris, D. AIDE: accelerating image-based ecological surveys with interactive machine learning. Methods Ecol. Evolution 11, 1716–1727 (2020).
    Google Scholar 
    151.Settles, B. Active learning. Synth. lectures Artif. Intell. Mach. Learn. 6, 1–114 (2012).MathSciNet 
    MATH 

    Google Scholar 
    152.Ofli, F. et al. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 4, 47–59 (2016).PubMed 

    Google Scholar 
    153.Simpson, R., Page, K. R. & De Roure, D. Zooniverse: observing the world’s largest citizen science platform. in Proceedings of the 23rd International Conference on World Wide Web 1049–1054 (2014).154.Pocock, M. J. O., Roy, H. E., Preston, C. D. & Roy, D. B. The biological records centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115, 475–493 (2015).
    Google Scholar  More

  • in

    Estimating mangrove forest gross primary production by quantifying environmental stressors in the coastal area

    The improved performance of the mangrove LUE model considering coastal environments in this study was mainly attributed to the determination of environmental scalars. Parameters determining environmental stressors (e.g., Topt, Tmin, Tmax, VPDmin, and VPDmax) were set based on the general characteristics of mangroves worldwide. It may not be as accurate for the mangroves in our study sites, but it generally reflects the response of mangroves to environmental changes. Furthermore, as can be seen in Fig. S1, it is applicable to our study sites. Despite the specific characteristics of each mangrove ecosystem at different sites being preferred, this study first offers the possibility to estimate mangrove productivity at a larger scale to track GPP, thus emphasizing the role of mangrove ecosystems nationally or worldwide.The validation results showed that the LUE values of the mangrove model agreed well with those estimated by EC method (Fig. 3) and indicated improved performance (slope = 0.8218–1.0108, intercept = -0.0006–0.0052, R2 = 0.54–0.64, RMSE = 0.0051–0.0068, Pearson’s r = 0.73–1), compared to the MOD17 model (slope = 0.4993–0.5566, intercept = 0.0311–0.0313, R2 = 0.24–0.45, RMSE = 0.0217–0.0220, Pearson’s r = 0.45–0.49). Firstly, the RS-based LUE model for terrestrial ecosystems (MOD17) considers only the environmental stressors of Tair and VPD. The photosynthesis in mangrove forests is influenced by other unique environmental factors caused by tidal inundation. According to Fig. S3, PAR caused the most significant effect on LUE, which is consistent with previous studies14,30,32. The impact of SST has not been quantitatively assessed, however, SST is a critical control that determines the upper latitudinal range of mangrove ecosystems12,33. In our study, the effects of SST and salinity on the mangrove LUE were quantified and helped improve LUE modeling.Secondly, LUEmax was typically defined for different land covers, however, there were no specific values for mangrove forests. In this study, the LUEmax of mangroves was first determined. It is worth noting that daytime NEE responses to PAR vary depending on the Tair23,30,34 so that LUEmax was determined separately at high, optimal, and low temperatures. The results showed that LUEmax reached a maximum when Tair was within the optimal range for mangroves, which represents the high productivity of mangrove ecosystems. Furthermore, the estimated LUEmax of mangrove forests (0.057) was larger than most terrestrial forests35,36,37, which could contribute to the high production and carbon sequestration in mangrove forests.Lastly, the relatively low stomatal conductance of mangroves leads to low LSP compared with terrestrial forests, which could result in the high-irradiance stress for photosynthesis38,39. Mangrove LSP ranges from about 0.2–1.2 mmol/m2/s, depending on the species and environments40,41,42. LUE was relatively low in April and May when seasonal PAR was high, as photosynthesis is more likely to reach saturation. Therefore, we assumed the LUE of mangroves decreased with increasing PAR. In addition, we found that the downscaling effect of PAR on LUE was not constant, but varied with increasing PAR. As follows, different PAR scalars were set for mangroves according to different PAR values. This is a first attempt at refining PARscalar considering different solar radiation, which represents a significant departure from the assumption of a constant downscaling effect of PAR in RS-driven models14,43. The accuracy of the LUE model was improved by refining the PARscalar with different downscaling slopes, especially in periods of high PAR values.Compared with the results obtained from flux-tower measurements, the modeled GPP was basically within the confidence interval of the measured results. The annual averages of GPP in Zhangjiang were 1729 g C/m2/year and 1924 g C/m2/year, in 2012 and 2016, and the annual mean value of GPP in Zhanjiang was 1434 g C/m2/year in 2015. The previous study showed that the GPP in Zhangjiang ranged from 1763 to 1919 g C/m2/year with a mean value of 1871 g C/m2/year32,44,45, which is in good agreement with the estimated values obtained in this study. Liu and Lai46 reported that the GPP of the Mai Po mangrove reserve was 2827 g C/m2/year. Rodda, et al.20 found a GPP value of 1271 g C/m2/year for Sunderbans mangroves in India. Gnanamoorthy, et al.47 estimated a GPP of 2305 g C/m2/year for Pichavaram mangroves. Variations in these estimates across sites were possibly caused by different climate-hydrological conditions, mangrove species, and ages. Differences in the same location may be due to different time scales and different methods of data gap filling and flux partitioning.In a similar way to the GPP model for terrestrial ecosystems48, the effect of the mangrove GPP model on the accuracy of GPP estimates can vary considerably under different environmental conditions. However, in comparison with the accuracy of models built for other vegetation types, the GPP model in this study performed substantially in two sites with RMSE of 2.54–3.41 g C/m2/day. Wang et al.49 adopted different models to estimate GPP for global vegetation and validation results showed the RMSE ranged from 1.79 to 2.33 g C/m2/day. Xiao, et al.50 demonstrated that the deviation between observed and predicted GPP was about 35–282 g C/m2 in an evergreen needleleaf forest. Also, the absolute GPP errors were 7.94–20.92% and 9.97–13.70% for maize cropland and degraded grassland36. Despite the discrepancy, our results were generally consistent with previous studies and were verified by field observations near the flux towers.The comparison of MODIS GPP and EC-estimated GPP showed that the MODIS GPP had a large fluctuation and weakly reflected productivity, being overestimated in 2012 and underestimated in 2015. Different meteorological inputs, different environmental scalars and fraction of absorbed photosynthetic active radiation (fAPAR) products in MODIS GPP and our mangrove GPP model can explain their different results. However, the improvements in our GPP model may help to obtain more accurate GPP estimates. The response of mangrove productivity to Tair has not been well-calibrated in the MODIS GPP product, which may partly account for the poor correlation between the MODIS GPP and EC estimates. Besides, MODIS GPP product was developed based on the International Geosphere-Biosphere Programme (IGBP) land cover map, which doesn’t include mangroves as a specific land cover37. Therefore, LUEmax and environmental parameters were not defined for mangroves, which varied with different environments. This may lead to uncertainty in MODIS GPP product for mangrove forests14. However, the GPP model generated in our study showed similar trends to the field measurements, capturing seasonal variations. The increase in the difference between MODIS GPP and EC estimates may be due to the assumption that the increase in GPP is linear with respect to PAR. In our model, the response of GPP to PAR was suppressed, resulting in seasonal changes in GPP that better match the observations. In addition, the GPP derived from this study was in higher agreement with measured values compared with GPP estimated from the vegetation photosynthesis model (VPM), as shown in Fig. S4. The improvement of this model was more obvious in winter (December to February), which may be due to the environmental stress of SST and PAR. The VPM without considering SSTscalar and PARscalar overestimated GPP in winter. It is indicated that the performance of the mangrove GPP model in this study varied with season. It is recommended to improve the estimation of GPP in the future by considering the seasonal variation of mangrove forests when determining environmental variables.Most studies provide EC-based estimates of GPP that are measurements from a limited footprint. It is possible to extrapolate results across similar vegetation types and geographic settings, but not to areas of heterogeneous vegetation. The RS-based GPP model offers spatial-scale estimates that can be directly incorporated into ecosystem-type models. PAR, SST, and salinity are the key environmental parameters of this RS-based mangrove GPP model. SST and salinity data were derived from the satellite images, while PAR was generated from the reconstructed PAR data, since it is more accurate than the existing RS data and has historical year data. However, PAR products from Hamawari-8, MERIS, and SeaWiFS are available now, which provide an opportunity to obtain large-scale PAR data using RS in the future. In addition to this, GPP of two mangrove forests was assessed and validated with three-year measurements. Validation at different sites and years showed similar results, which indicated the model has similar performance across mangrove forests. Nonetheless, these estimates need to be corroborated with EC databases, which are relatively accurate and provide many additional variables that are currently beyond the scope of higher spatial-resolution RS estimates. The proposed GPP model considering coastal environments was well suited to extend the study area by incorporating RS information and meteorological data. Currently, there are still few mangrove carbon flux towers worldwide. The LUE and GPP models proposed in this study are difficult to validate with measurements from flux towers in other countries. However, local measurements are available in many countries with large mangrove forests, such as Thailand, Vietnam, India, and Bangladesh. Therefore, it is expected that comparisons with measurements from previous studies can be conducted to show the consistency and applicability.The LUE model considering the effects of SST, salinity, and PAR performed well, however, the GPP estimated from the LUE, fAPAR, and PAR showed discrepancies and were generally lower than the measured values. Although the results are better than MODIS GPP products, limitations exist still.Firstly, the effects of salinity and SST on mangrove productivity were directly related to tidal activities. The soil pore water and surface water salinity could affect the osmotic pressure of mangroves especially for the submerged parts which would control the stomatal conductance. In the same way, SST could influence the temperature of mangrove root systems and soil sediments which has impacts on mangrove roots’ respiration and transpiration. Although, theoretically, salinity and SST should be considered as environmental variables affecting mangrove LUE, our results (Fig. S3) indicated that salinity and SST have little influence on mangrove productivity51. To date, the quantitative impact of SST has not been comprehensively unfolded, but it is a global control that determines the upper limit of the latitudinal range of mangroves12,33. The weak relationships between salinity, SST, and mangrove GPP could be due to the uncertainty caused by tidal inundation. Tide duration, tide height, and tide cycle would determine the effect of salinity and SST on the mangrove LUE and GPP. However, quantifying the influence from the tidal cycle remains a challenging task, which could result in the relatively poor performance of Salinityscalar and SSTscalar as shown in Fig. S3. Quantifying the soil temperature and surface water salinity considering the tidal cycle will contribute to model the LUE and GPP of mangrove forests.Secondly, mangroves of different species and ages exhibit diverse structural and physical conditions, resulting in different LUEmax, and optimal growing conditions such as Topt and VPDmin. The environmental settings would also vary from region to region. Liu and Lai46 found that LUE increased slightly with the increasing salinity below 15 ppt (R2 = 0.16). However, it was noted that photosynthetic activity of mangroves would be inhibited when the surface water salinity was high30,51,52,53. Probably, the mutual relationship between LUE and salinity depends on the salinity level and mangrove species. However, we have not specified the variables for different mangrove species, ages and locations which could be improved in the future. Besides, there are multicollinearities between different environmental variables. For example, Tair may have effects on SST and VPD, but as shown in Fig. S5, they are all important for mangrove photosynthesis. However, the correlations between them are not clear and need to be quantified in the future.Thirdly, the relatively low spatial and temporal resolution of the environmental data from RS would influence the accuracy of the model. The datasets have a relatively coarse resolution (usually 500 m–1 km and daily) and are thereby less suitable for smaller nature reserves, especially in the narrow patches of mangrove areas that are rapidly being exploited in coastal China. Moreover, the variability in LUE decreases with increasing temporal scale54. In our study, we determined the PARscalar based on the response of LUE to hourly-scale PAR and found the different down-regulation effects with increasing PAR. However, this phenomenon is not obvious in previous studies. Most RS-based LUE models were developed at a daily or 8-day temporal scale6,50,55,56,57. In terrestrial forests, the light saturated effect caused by increasing PAR was neglectable with coarse temporal scale because the average PAR was usually lower than the LSP. However, as the time scale increases, the effect of light saturation on LUE becomes more pronounced32,58,59. More importantly, this effect is more obvious in mangroves due to their lower LSP18,38, which makes it important in mangrove LUE modeling. The results in Fig. 3 show similar performances of LUE model on hourly and daily scale. Thus, we suggested that our model can be adopted in hourly and daily temporal resolution. However, the PARscalar developed in this study was based on the mangrove forests in one study site which may be influenced by the mangrove species with different LSP and light conditions. What’s more, VPD was on a monthly scale, which cannot reflect environmental dynamics. However, the hourly and daily VPD data are currently not available for coastal areas in China. Therefore, we used monthly averages to represent daily VPD, which may lead to uncertainty in the derived GPP estimates (Figs. 6 and 7). Besides, porewater salinity is controlled by sea surface salinity, precipitation, and river discharge. However, currently, pore water salinity was expressed in terms of sea surface salinity, which may lead to an underestimation of Salinityscalar. More systematic study is necessary to make it more applicable and accurate on a large scale, of which modeling the LUE for different mangrove species and locations is inevitable. However, serving as a fundamental and preliminary step, our study aims to provide a framework for RS-based mangrove GPP modeling. Recently, with the advancement of satellite imagery, hourly-scale RS data for PAR, temperature and SST are available. It can be expected that our current work could be further improved by investigating the light saturation effects in different mangrove forests and adopt higher temporal resolution RS products such as Himawari-8 and GCOM-C in the future.Lastly, the overall underestimation of GPP was mainly caused by the underestimation of fAPAR. Even though the fAPAR computed from Sentinel-2 had higher resolution and accuracy than MODIS fAPAR products, future improvements are still needed. Sentinel-2 fAPAR products (fAPAR-S2) was calculated as the instantaneous fAPAR obtained at 10:00 local solar time which only roughly represented the daily average but was not accurate. Besides, RS-derived fAPAR only considers the absorptions by living green vegetation elements, whereas the ground measured fAPAR refers to the contributions from all absorbing components60. The lower fAPAR-S2 values in mangrove forests may be due to the exposed-to-air root systems which absorb the radiation. Moreover, the spatial distribution of PAR was determined by Co-Kriging interpolation. The elevation was taken as the covariate to estimate spatial PAR. There are many other variables affecting the incoming PAR (e.g., slope and clearness)61. A more comprehensive set of variables needs to be included in the Co-kriging interpolation to improve the PAR estimation.The spatial and seasonal variations of the mangrove GPP were related to environmental changes along the shoreline. The low summer GPP was explained by the lower fAPAR in summer compared with other seasons, which was principally due to the underestimation of fAPAR in summer. Furthermore, PARscalar took a mean value of LSP as 1 mmol/m2/s, however, LSP varied with different species and environmental conditions. In summer, mangroves are more likely to obtain light saturation, and thus PARscalar may lead to an underestimation of LUE and thus GPP. On the contrary, PAR values in winter were relatively low but increased slightly with decreasing latitude. Thus, the inhibitory effect of PAR on LUE was not significant, and GPP increased with decreasing latitude. Salinity and VPD were more stable across years and locations and had no noticeable effect on the mangrove LUE and GPP. The seasonal latitudinal patterns and effects on mangrove productivity were similar for Tair and SST. Tair and SST were lower in winter, especially at high latitudes where mangroves were more sensitive to cold weather. Therefore, the GPP of mangroves at high latitudes in winter was the lowest throughout the year. However, hot weather in summer also limited the photosynthesis in mangroves, especially at low latitudes, where Tair and SST were higher. Nevertheless, there were some correlations among these environmental constants. For example, the Tair affects the vapor pressure and SST. There was a positive correlation between PAR and Tair. The multicollinearity among these variables and the various conditions of mangroves may affect the performance of the model and show variations along the coastline, which would be improved in future studies.Additionally, the GPP of mangroves increased from 2007 to 2018, which was mainly due to the expansion of mangrove forests in the coastal areas. As mangroves grow, canopy size and tree density increase, which may lead to higher LUE and less underestimation of fAPAR, thus contributing to high productivity. However, Zhejiang province (27° 02′ N–31° 11′ N) experienced extremely cold weather in January 2016 caused by the East Asia cold wave62,63, and large areas of mangrove forests died or became sick, leading to a decline in the mangrove GPP at high latitudes in 2018. More

  • in

    Narrowly distributed taxa are disproportionately informative for conservation planning

    1.Balmford, A. & Gaston, K. J. Why biodiversity surveys are good value How the ‘terror crocodile’ grew so big. Nature 398, 204–205 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Rondinini, C., Marco, M. D., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: Long-term viability of the IUCN Red List Making the Red List financially. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    3.Braithwaite, M. E. & Walker, K. J. 50 Years of Mapping the British and Irish Flora 1962–2012 (Botanical Society of the British Isles, 2012).
    Google Scholar 
    4.Barrett, G., Silcocks, A., Barry, S., Cunningham, R. & Poulter, R. The New Atlas of Australian Birds (Royal Australasian Ornithologists Union, 2003).
    Google Scholar 
    5.Biodiversity Center of Japan. Animal Distribution Atlas of Japan (Ministry of Environment Japan, 2010).
    Google Scholar 
    6.McGowan, K. & Corwin, K. The Second Atlas of Breeding Birds in New York State (Comstock Publishing Associates, 2008).
    Google Scholar 
    7.Rhoads, A. F. & Klein, W. M. J. The vascular Flora of Pennsylvenia: Annoted Checklist and Atlas (American Philosophical Society, 1993).
    Google Scholar 
    8.Baker, H. et al. Population estimates of birds in Great Britain and the United Kingdom British Birds. Br. Birds 99, 25–44 (2006).
    Google Scholar 
    9.Bonn, A., Rodrigues, A. S. L. & Gaston, K. J. Threatened and endemic species: Are they good indicators of patterns of biodiversity on a national scale?. Ecol. Lett. 5, 733–741 (2002).Article 

    Google Scholar 
    10.Albuquerque, F. & Beier, P. Rarity-weighted richness: A simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).Article 

    Google Scholar 
    11.Williams, P. et al. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conserv. Biol. 10, 155–174 (1996).Article 

    Google Scholar 
    12.Platts, P. J. et al. Conservation implications of omitting narrow-ranging taxa from species distribution models, now and in the future. Divers. Distrib. 20, 1307-1320. (2014).Article 

    Google Scholar 
    13.Kujala, H., Moilanen, A. & Gordon, A. Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol. Evol. 9, 1121–1132 (2018).Article 

    Google Scholar 
    14.Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. Camb. Philos. Soc. 88, 443–464 (2013).Article 

    Google Scholar 
    15.Lawler, J. J., White, D., Sifneos, J. C. & Master, L. L. Rare species and the use of indicator groups for conservation planning. Conserv. Biol. 17, 875–882 (2003).Article 

    Google Scholar 
    16.Kujala, H., Lahoz-Monfort, J. J., Elith, J. & Moilanen, A. Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods Ecol. Evol. 9, 2249–2261 (2018).Article 

    Google Scholar 
    17.Grantham, H. S. et al. Diminishing return on investment for biodiversity data in conservation planning. Conserv. Lett. 1, 190–198 (2008).Article 

    Google Scholar 
    18.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    19.Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford University Press, 2009).
    Google Scholar 
    20.Akasaka, M., Kadoya, T., Ishihama, F., Fujita, T. & Fuller, R. A. Smart protected area placement decelerates biodiversity loss: A representation-extinction feedback leads rare species to extinction. Conserv. Lett. 10, 539–546 (2017).Article 

    Google Scholar 
    21.Boakes, E., McGowan, P. & Fuller, R. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).Article 

    Google Scholar 
    22.Williams, P. H., Margules, C. R. & Hilbert, D. W. Data requirements and data sources for biodiversity priority area selection. J. Biosci. 27, 327–338 (2002).CAS 
    Article 

    Google Scholar 
    23.Da Fonseca, G. A. B. et al. … following Africa’s lead Community groups could. Nature 405, 393–394 (2000).Article 

    Google Scholar 
    24.Possingham, H. P., Grantham, H. & Rondinini, C. How can you conserve species that haven’t been found? Commentary. J. Biogeogr. 34, 758–759 (2007).Article 

    Google Scholar 
    25.Ohlemuller, R. et al. The coincidence of climatic and species rarity: High risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).Article 

    Google Scholar 
    26.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA. 106, 9322–9327 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Raes, N., Roos, M. C., Slik, J. W. F., Van Loon, E. E. & Steege, H. T. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography (Cop.) 32, 180–192 (2009).Article 

    Google Scholar 
    28.Tulloch, A. I. T., Mustin, K., Possingham, H. P., Szabo, J. K. & Wilson, K. A. To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Divers. Distrib. 19, 465–480 (2013).Article 

    Google Scholar 
    29.Rodewald, A. D., Strimas-Mackey, M., Schuster, R. & Arcese, P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci. Rep. 9, 5921 (2019).Article 

    Google Scholar 
    30.Rabinowitz, D. Seven forms of rarity. In The biological aspects of rare plant conservation. (ed. Synge, H.) 205–217 (Wiley, Chichester, 1981).
    Google Scholar 
    31.Ministry of Environment. Red Data Book 2014: Plants I (Gyousei, 2015).
    Google Scholar 
    32.Ministry of Environment. Red Data Book 2014: Plants II (Gyousei, 2015).
    Google Scholar 
    33.Yahara, T. et al. Red list of Japanese vascular plants: Summary of methods and results. Proc. Japan. Soc. Plant Taxon. 13, 89–96 (1998).
    Google Scholar 
    34.Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: Software for spatial conservation prioritisation. In Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford University Press, 2009).
    Google Scholar 
    35.Yoshioka, A., Akasaka, M. & Kadoya, T. Spatial prioritization for biodiversity restoration: A simple framework referencing past species distributions. Restor. Ecol. 22, 185–195 (2014).Article 

    Google Scholar 
    36.Naidoo, R. et al. Integrating economic costs into conservation planning. Trends Ecol. Evol. 21, 681–687 (2006).Article 

    Google Scholar 
    37.Japan Statistics. Population of Japan: Final Report of the 2005 Population Census. (Statistics Japan, 2010).38.R Core Team. R 4.0.0. (R Foundation for Statistical Computing, 2020).39.Zweig, M. H. & Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993).CAS 
    Article 

    Google Scholar 
    40.Hermoso, V., Ward, D. P. & Kennard, M. J. Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems. J. Appl. Ecol. 49, 1028–1035 (2012).Article 

    Google Scholar 
    41.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).Article 

    Google Scholar 
    42.Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Integer linear programming outperforms simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).Article 

    Google Scholar  More

  • in

    Beyond Demonstrators—tackling fundamental problems in amplifying nature-based solutions for the post-COVID-19 world

    1.Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447 (2020).CAS 

    Google Scholar 
    2.European Commission. Towards an EU Research and Innovation policy agenda for nature-based solutions and renaturing cities. Final Report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities, (European Commission, Brussels, 2015).3.Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 98, 20–29 (2019).
    Google Scholar 
    4.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).
    Google Scholar 
    5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain 2, 29–38 (2019).
    Google Scholar 
    6.Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G. & Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Greening 37, 3–12 (2019).
    Google Scholar 
    7.Pan, H., Page, J., Cong, C., Barthel, S. & Kalantari, Z. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 35, 100297 (2021).
    Google Scholar 
    8.Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).CAS 

    Google Scholar 
    9.Hack, J. & Schröter, B. Nature-based solutions for river restoration in metropolitan areas. Brears, R. The Palgrave Encyclopedia of Urban and Regional Futures. 1–10 (Springer International Publishing, Cham, 2021).10.Lam, D. P. M. et al. Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transform 2, 3 (2020).
    Google Scholar 
    11.Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain 3, e15 (2020).
    Google Scholar 
    12.Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).CAS 

    Google Scholar 
    13.Sabel, C. F. & Zeitlin, J. Experimentalist Governance. Levi-Faur, D. The Oxford Handbook of Governance. 169–183 (Oxford Univ. Press, Oxford, 2012).14.Kern, K. Cities as leaders in EU multilevel climate governance: embedded upscaling of local experiments in Europe. Environ. Polit. 28, 125–145 (2019).
    Google Scholar 
    15.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar 
    16.Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M. & Stillwell, A. S. The green experiment: cities, green stormwater infrastructure, and sustainability. Sustainability 9 (2017).17.McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 1, 5 (2021).
    Google Scholar 
    18.Scoones, I. et al. Transformations to sustainability: combining structural, systemic and enabling approaches. Curr. Opin. Environ. Sustain. 42, 65–75 (2020).
    Google Scholar 
    19.Han, S. & Kuhlicke, C. Reducing hydro-meteorological risk by nature-based solutions: what do we know about people’s perceptions? Water 11, 2599 (2019).
    Google Scholar 
    20.Albert, C. et al. Planning nature-based solutions: principles, steps, and insights. Ambio, 1446–1461 (2020).21.Matthews, T., Lo, A. Y. & Byrne, J. A. Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Planning 138, 155–163 (2015).
    Google Scholar 
    22.Myllyvirta, L. China’s CO2 emissions have surged back from the coronavirus lockdown, rising by 4-5% year-on-year in May, analysis of new government data shows. https://www.carbonbrief.org/analysis-chinas-co2-emissions-surged-past-pre-coronavirus-levels-in-may (2020).23.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Preprint at https://doi.org/10.31219/osf.io/3wx5a (2020).24.Mahoney, J. Path dependence in historical sociology. Theory Soc. 29, 507–548 (2000).
    Google Scholar 
    25.Davies, C. & Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 80, 406–409 (2019).
    Google Scholar 
    26.Kuzemko, C. et al. Covid-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 68, 101685 (2020).
    Google Scholar 
    27.Kanda, W. & Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 68, 101666 (2020).
    Google Scholar 
    28.Cohen, M. J. Does the COVID-19 outbreak mark the onset of a sustainable consumption transition? Sustain.: Sci. Pract. Policy 16, 1–3 (2020).
    Google Scholar 
    29.Pearson, R. M., Sievers, M., McClure, E. C., Turschwell, M. P. & Connolly, R. M. COVID-19 recovery can benefit biodiversity. Science 368, 838 (2020).
    Google Scholar 
    30.Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).CAS 

    Google Scholar 
    31.Kavousi, J., Goudarzi, F., Izadi, M. & Gardner, C. J. Conservation needs to evolve to survive in the post-pandemic world. Glob. Change Biol. 26, 4651–4653 (2020).
    Google Scholar 
    32.Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec., 1–6 (2020).33.Khetan, A. K. COVID-19: why declining biodiversity puts us at greater risk for emerging infectious diseases, and what we can do. J. Gen. Intern. Med. 35, 2746–2747 (2020).
    Google Scholar 
    34.Sugiyama, T. et al. Four Recommendations for Greener, Healthier Cities in the Post-Pandemic. https://www.thenatureofcities.com/2020/06/30/four-recommendations-for-greener-healthier-cities-in-the-post-pandemic/ (2020).35.Thorslund, J. et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
    Google Scholar 
    36.Albert, C. et al. Addressing societal challenges through nature-based solutions: how can landscape planning and governance research contribute? Landsc.Urban Plan. 182, 12–21 (2019).
    Google Scholar 
    37.Albert, C., Von Haaren, C., Othengrafen, F., Krätzig, S. & Saathoff, W. Scaling policy conflicts in ecosystem services governance: a framework for spatial. Analysis. J. Environ. Policy Plan. 19, 574–592 (2017).
    Google Scholar 
    38.Hutchins, M. G. et al. Why scale is vital to plan optimal nature-based solutions for resilient cities. Environ. Res. Lett. 16, 044008 (2021).
    Google Scholar 
    39.Raška, P., Slavíková, L. & Sheehan, J. in Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge 9–20 (Springer International Publishing, 2019).40.Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466 (2019).
    Google Scholar 
    41.Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S. & Torres, A. S. A framework for assessing benefits of implemented nature-based solutions. Sustainability 11, 6788 (2019).
    Google Scholar 
    42.Wurzel, R. K. W., Liefferink, D. & Torney, D. Pioneers, leaders and followers in multilevel and polycentric climate governance. Environ. Polit. 28, 1–21 (2019).
    Google Scholar 
    43.Frantzeskaki, N. et al. Examining the policy needs for implementing nature-based solutions in cities: findings from city-wide transdisciplinary experiences in Glasgow (UK), Genk (Belgium) and Poznań (Poland). Land Use Policy 96, 104688 (2020).
    Google Scholar 
    44.Zingraff-Hamed, A. et al. Governance models for nature-based solutions: cases from Germany. Ambio 50, 1610–1627 (2020).
    Google Scholar 
    45.Toxopeus, H. et al. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 105, 102839 (2020).
    Google Scholar 
    46.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
    Google Scholar 
    47.Pérez Rubi, M. & Hack, J. Co-design of experimental nature-based solutions for decentralized dry-weather runoff treatment retrofitted in a densely urbanized area in Central America. Ambio 50, 1498–1513 (2021).
    Google Scholar 
    48.Chapa, F., Pérez, M. & Hack, J. Experimenting transition to sustainable urban drainage systems—identifying constraints and unintended processes in a tropical highly urbanized. Watershed. Water 12, 3554 (2020).
    Google Scholar 
    49.Chen, V., Bonilla Brenes, J. R., Chapa, F. & Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. Ambio 50, 1462–1476 (2021).
    Google Scholar 
    50.Hüesker, F. & Moss, T. The politics of multi-scalar action in river basin management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 42, 38–47 (2015).
    Google Scholar 
    51.WBCSD. Incentives for Natural Infrastructure: review of existing policies, incentives and barriers related to permitting, finance and insurance of natural infrastructure. (World Business Council for Sustainable Development, Geneva, 2017).52.Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).
    Google Scholar 
    53.Toxopeus, H. S. Taking Action for Urban Nature: Business Model Catalogue, NATURVATION Guide (2019).54.Duraiappah, A. K. et al. Managing the mismatches to provide ecosystem services for human well-being: a conceptual framework for understanding the New Commons. Curr. Opin.Environ. Sustain 7, 94–100 (2014).
    Google Scholar 
    55.Young, O. R. Vertical interplay among scale-dependent environmental and resource regimes. Ecol. Soc. 11, 27 (2006).
    Google Scholar 
    56.Cumming, G. S., Cumming, D. H. M. & Redman, C. L. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol. Soc. 11, 14 (2006).
    Google Scholar 
    57.Naidoo, R. & Fisher, B. Sustainable development goals: pandemic reset. Nature 583, 198–201 (2020).CAS 

    Google Scholar 
    58.Fyfe, J. C. et al. Quantifying the influence of short-term emission reductions on climate. Sci. Adv. 7, eabf7133 (2021).CAS 

    Google Scholar 
    59.Linnér, B.-O. & Wibeck, V. Conceptualising variations in societal transformations towards sustainability. Environ. Sci.Pol. 106, 221–227 (2020).
    Google Scholar 
    60.Harrabin, R. Coronavirus: Lockdown ‘could boost wild flowers’. https://www.bbc.com/news/science-environment-52215273 (2020).61.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).
    Google Scholar 
    62.Honey-Rosés, J. et al. The impact of COVID-19 on public space: an early review of the emerging questions—design, perceptions and inequities. Cities & Health, 1-17(2020).63.Sanyé-Mengual, E., Anguelovski, I., Oliver-Solà, J., Montero, J. I. & Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food production as a driver for innovative forms of urban agriculture. Agric. Human Values 33, 101–120 (2016).
    Google Scholar 
    64.PIANC. Guide for applying Working with Nature to navigation infrastructure projects. (Brussels, Belgium, 2018).65.Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 10, 369–382 (2012). https://doi.org/10.1080/15715124.2012.739173.66.Li, H., Ding, L., Ren, M., Li, C. & Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water (Australia) 9, 594 (2017).67.Kurth, A.-M. & Schirmer, M. Thirty years of river restoration in Switzerland: implemented measures and lessons learned. Environ. Earth Sci. 72, 2065–2079 (2014). https://doi.org/10.1007/s12665-014-3115-y.68.Petty, K. Wildflowers on road verges: an uplifting sight during the coronavirus lockdown. (2020). https://www.plantlife.org.uk/uk/blog/wildflowers-on-road-verges-an-uplifting-sight-during-the-coronavirus-lockdown. More

  • in

    Climate-related drivers of nutrient inputs and food web structure in shallow Arctic lake ecosystems

    1.Lefébure, R. et al. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Glob. Change Biol. 19, 1358–1372 (2013).ADS 

    Google Scholar 
    2.Roussel, J.-M. et al. Stable isotope analyses on archived fish scales reveal the long-term effect of nitrogen loads on carbon cycling in rivers. Glob. Change Biol. 20, 523–530 (2014).ADS 

    Google Scholar 
    3.Creed, I. F. et al. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob. Change Biol. 24, 3692–3714 (2018).ADS 

    Google Scholar 
    4.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Kumar, A., Yadav, J. & Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 753, 142046 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Vincent, W. F., Laurion, I., Pienitz, R. & Walter Anthony, K. M. Climate Impacts on Arctic Lake Ecosystems. In Climatic Change and Global Warming of Inland Waters (eds Goldman, C. R. et al.) 27–42 (Wiley, 2012). https://doi.org/10.1002/9781118470596.ch2.Chapter 

    Google Scholar 
    7.Kim, K.-Y. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Shaver, G. R. & Chapin, F. S. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology 61, 662–675 (1980).CAS 

    Google Scholar 
    9.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS 

    Google Scholar 
    10.Arctic Climate Impact Assessment. Arctic climate impact assessment (Cambridge University Press, Cambridge, 2005).
    Google Scholar 
    11.Hay, W. W. The accelerating rate of global change. Rendiconti Lincei 25, 29–48 (2014).
    Google Scholar 
    12.Prowse, T. D. et al. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO J. Hum. Environ. 35, 347–358 (2006).CAS 

    Google Scholar 
    13.Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Ward, R. D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 748, 141343 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Lin, J., Huang, J., Prell, C. & Bryan, B. A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 763, 143012 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).ADS 

    Google Scholar 
    17.Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS 
    CAS 

    Google Scholar 
    18.St. Pierre, K. A. et al. Contemporary limnology of the rapidly changing glacierized watershed of the world’s largest High Arctic lake. Sci. Rep. 9, 4447 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Woelders, L. et al. Recent climate warming drives ecological change in a remote high-Arctic lake. Sci. Rep. 8, 6858 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Blaen, P. J., Milner, A. M., Hannah, D. M., Brittain, J. E. & Brown, L. E. Impact of changing hydrology on nutrient uptake in high Arctic rivers: Nutrient uptake in Arctic rivers. River Res. Appl. 30, 1073–1083 (2014).
    Google Scholar 
    21.Szkokan-Emilson, E. J. et al. Dry conditions disrupt terrestrial-aquatic linkages in northern catchments. Glob. Change Biol. 23, 117–126 (2017).ADS 

    Google Scholar 
    22.Thackeray, S. J. et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).ADS 

    Google Scholar 
    23.Pacheco, J. P. et al. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes. Sci. Total Environ. 797, 148998 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Kuijper, D. P. J., Ubels, R. & Loonen, M. J. J. E. Density-dependent switches in diet: A likely mechanism for negative feedbacks on goose population increase?. Polar Biol. 32, 1789–1803 (2009).
    Google Scholar 
    25.Sjögersten, S., van der Wal, R., Loonen, M. J. J. E. & Woodin, S. J. Recovery of ecosystem carbon fluxes and storage from herbivory. Biogeochemistry 106, 357–370 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    26.Buij, R., Melman, T. C. P., Loonen, M. J. J. E. & Fox, A. D. Balancing ecosystem function, services and disservices resulting from expanding goose populations. Ambio 46, 301–318 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    27.Nishizawa, K. et al. Long-term consequences of goose exclusion on nutrient cycles and plant communities in the high-Arctic. Polar Sci. 27, 100631 (2021).
    Google Scholar 
    28.Bjerke, J. W., Tombre, I. M., Hanssen, M. & Olsen, A. K. B. Springtime grazing by Arctic-breeding geese reduces first- and second-harvest yields on sub-Arctic agricultural grasslands. Sci. Total Environ. 793, 148619 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Van Geest, G. J. et al. Goose-mediated nutrient enrichment and planktonic grazer control in Arctic freshwater ponds. Oecologia 153, 653–662 (2007).ADS 
    PubMed 

    Google Scholar 
    30.Calizza, E., Rossi, L. & Costantini, M. L. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour. PLoS ONE 8, e65186 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).
    Google Scholar 
    32.Caputi, S. S. et al. Seasonal food web dynamics in the Antarctic benthos of Tethys Bay (Ross Sea): Implications for biodiversity persistence under different seasonal sea-ice coverage. Front. Mar. Sci. 7, 594454 (2020).
    Google Scholar 
    33.Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).ADS 
    CAS 

    Google Scholar 
    34.Careddu, G. et al. Diet composition of the Italian crested newt (Triturus carnifex) in structurally different artificial ponds based on stomach contents and stable isotope analyses. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1505–1520 (2020).
    Google Scholar 
    35.Zhao, Q., De Laender, F. & Van den Brink, P. J. Community composition modifies direct and indirect effects of pesticides in freshwater food webs. Sci. Total Environ. 739, 139531 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Rossi, L., Costantini, M. L., Carlino, P., di Lascio, A. & Rossi, D. Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: A dual-stable isotope study in a volcanic lake. Aquat. Sci. 72, 227–236 (2010).CAS 

    Google Scholar 
    37.Rossi, L. et al. Antarctic food web architecture under varying dynamics of sea ice cover. Sci. Rep. 9, 12454 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Careddu, G. et al. Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuar. Coast. Shelf Sci. 154, 158–168 (2015).ADS 
    CAS 

    Google Scholar 
    39.Careddu, G. et al. Gaining insight into the assimilated diet of small bear populations by stable isotope analysis. Sci. Rep. 11, 14118 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Blais, J. M. Arctic seabirds transport marine-derived contaminants. Science 309, 445–445 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bentivoglio, F. et al. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770, 257–272 (2016).CAS 

    Google Scholar 
    42.Rossi, L. et al. Space-time monitoring of coastal pollution in the Gulf of Gaeta, Italy, using δ15N values of Ulva lactuca, landscape hydromorphology, and Bayesian Kriging modelling. Mar. Pollut. Bull. 126, 479–487 (2018).CAS 
    PubMed 

    Google Scholar 
    43.Calizza, E. et al. Isotopic biomonitoring of N pollution in rivers embedded in complex human landscapes. Sci. Total Environ. 706, 136081 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    44.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 
    45.Mansouri, F. et al. Evidence of multi-decadal behavior and ecosystem-level changes revealed by reconstructed lifetime stable isotope profiles of baleen whale earplugs. Sci. Total Environ. 757, 143985 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    46.Hawley, K. L., Rosten, C. M., Christensen, G. & Lucas, M. C. Fine-scale behavioural differences distinguish resource use by ecomorphs in a closed ecosystem. Sci. Rep. 6, 24369 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Michener, R. H. & Lajtha, K. Stable Isotopes in Ecology and Environmental Science (Blackwell Publication, 2007).
    Google Scholar 
    48.Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).CAS 

    Google Scholar 
    49.Calizza, E. et al. Stable isotopes and digital elevation models to study nutrient inputs in high-Arctic lakes. Rendiconti Lincei 27, 191–199 (2016).
    Google Scholar 
    50.Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L. & Costantini, M. L. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS ONE 13, e0194796 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Mehlum, F. Svalbards fugler og pattedyr (Norsk polarinstitutt, 1989).
    Google Scholar 
    52.Christoffersen, K. Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia 442, 223–229 (2001).
    Google Scholar 
    53.Lakka, H.-K. The ecology of a freshwater crustacean: Lepidurus arcticus (Brachiopoda; Notostraca) in a High Arctic region. Dissertation, University of Helsinky (2013).54.Westergaard-Nielsen, A. et al. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46, 39–52 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Google Scholar 
    56.Kondoh, M. & Ninomiya, K. Food-chain length and adaptive foraging. Proc. R. Soc. B Biol. Sci. 276, 3113–3121 (2009).
    Google Scholar 
    57.Calizza, E., Costantini, M. L., Rossi, D., Carlino, P. & Rossi, L. Effects of disturbance on an urban river food web: Disturbance of a river food web. Freshw. Biol. 57, 2613–2628 (2012).
    Google Scholar 
    58.McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).PubMed 

    Google Scholar 
    59.Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities. Nature 268, 329–331 (1977).ADS 

    Google Scholar 
    60.Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hall, S. R. Stoichiometrically explicit food webs: Feedbacks between resource supply, elemental constraints, and species diversity. Annu. Rev. Ecol. Evol. Syst. 40, 503–528 (2009).
    Google Scholar 
    62.Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J. & de Ruiter, P. C. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology 85, 1179–1192 (2004).
    Google Scholar 
    63.Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 89, 281–308 (2004).ADS 

    Google Scholar 
    64.Maher, A. I., Treitz, P. M. & Ferguson, M. A. D. Can Landsat data detect variations in snow cover within habitats of Arctic ungulates?. Wildl. Biol. 18, 75–87 (2012).
    Google Scholar 
    65.Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the Northern Foothills of the Brooks Range, Alaska. Arct. Antarct. Alp. Res. 45, 249–260 (2013).
    Google Scholar 
    66.Bokhorst, S. et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516–537 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    67.Härer, S., Bernhardt, M., Siebers, M. & Schulz, K. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. Cryosphere 12, 1629–1642 (2018).ADS 

    Google Scholar 
    68.Karlsen, S. R., Anderson, H. B., van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high Arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).ADS 

    Google Scholar 
    69.Karlsen, S. R., et al. Sentinel satellite-based mapping of plant productivity in relation to snow duration and time of green-up. https://zenodo.org/record/4704361. https://doi.org/10.5281/ZENODO.4704361 (2020).70.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 246, 111872 (2020).ADS 

    Google Scholar 
    71.Layton-Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. & Loonen, M. J. J. E. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-Arctic warming. Glob. Change Biol. 26, 642–657 (2020).ADS 

    Google Scholar 
    72.Owen, M. The selection of feeding site by White-fronted geese in winter. J. Appl. Ecol. 8, 905 (1971).
    Google Scholar 
    73.Ydenberg, R. C. & Prins, H. HTh. Spring grazing and the manipulation of food quality by Barnacle geese. J. Appl. Ecol. 18, 443 (1981).
    Google Scholar 
    74.Bos, D. et al. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. J. Nat. Conserv. 13, 1–15 (2005).
    Google Scholar 
    75.Barrio, I. C. et al. Developing common protocols to measure tundra herbivory across spatial scales. Arct. Sci. https://doi.org/10.1139/as-2020-0020 (2021).Article 

    Google Scholar 
    76.Jensen, T. C. et al. Changes in trophic state and aquatic communities in high Arctic ponds in response to increasing goose populations. Freshw. Biol. 64, 1241–1254 (2019).CAS 

    Google Scholar 
    77.Bartoli, M. et al. Denitrification, nitrogen uptake, and organic matter quality undergo different seasonality in sandy and muddy sediments of a turbid estuary. Front. Microbiol. 11, 612700 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    78.van der Wal, R., van Lieshout, S. M. J. & Loonen, M. J. J. E. Herbivore impact on moss depth, soil temperature and Arctic plant growth. Polar Biol. 24, 29–32 (2001).
    Google Scholar 
    79.Wookey, P. A. et al. Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high Arctic polar semi-desert. Oikos 70, 131 (1994).
    Google Scholar 
    80.Wookey, P. A. et al. Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard. Oecologia 102, 478–489 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    81.Jefferies, R. L. Agricultural food subsidies, migratory connectivity and large-scale disturbance in arctic coastal systems: A case study. Integr. Comp. Biol. 44, 130–139 (2004).CAS 
    PubMed 

    Google Scholar 
    82.Hik, D. S. & Jefferies, R. L. Increases in the net above-ground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. J. Ecol. 78, 180 (1990).
    Google Scholar 
    83.Rautio, M., Mariash, H. & Forsström, L. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol. Oceanogr. 56, 1513–1524 (2011).ADS 
    CAS 

    Google Scholar 
    84.Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69, 2253–2268 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Berggren, M., Ziegler, S. E., St-Gelais, N. F., Beisner, B. E. & del Giorgio, P. A. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959 (2014).PubMed 

    Google Scholar 
    86.Stasko, A. D., Gunn, J. M. & Johnston, T. A. Role of ambient light in structuring north-temperate fish communities: Potential effects of increasing dissolved organic carbon concentration with a changing climate. Environ. Rev. 20, 173–190 (2012).CAS 

    Google Scholar 
    87.Milardi, M., Käkelä, R., Weckström, J. & Kahilainen, K. K. Terrestrial prey fuels the fish population of a small, high-latitude lake. Aquat. Sci. 78, 695–706 (2016).CAS 

    Google Scholar 
    88.Vincent, W. F. & Laybourn-Parry, J. Polar Lakes and Rivers (Oxford University Press, 2008). https://doi.org/10.1093/acprof:oso/9780199213887.001.0001.Book 

    Google Scholar 
    89.Calizza, E., Costantini, M. L., Careddu, G. & Rossi, L. Effect of habitat degradation on competition, carrying capacity, and species assemblage stability. Ecol. Evol. 7, 5784–5796 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    90.Van der Velden, S., Dempson, J. B., Evans, M. S., Muir, D. C. G. & Power, M. Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Sci. Total Environ. 444, 531–542 (2013).ADS 
    PubMed 

    Google Scholar 
    91.Kozak, N. et al. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. Sci. Total Environ. 779, 146261 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    92.Longhurst, A. R. A review of the Notostraca. Bull. Br. Mus. Nat. Hist. 3, 1–57 (1955).
    Google Scholar 
    93.King, J. L. & Hanner, R. Cryptic species in a “living fossil” lineage: Taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Mol. Phylogenet. Evol. 10, 23–36 (1998).CAS 
    PubMed 

    Google Scholar 
    94.Hessen, D. O., Rueness, E. K. & Stabell, M. Circumpolar analysis of morphological and genetic diversity in the Notostracan Lepidurus arcticus. Hydrobiologia 519, 73–84 (2004).
    Google Scholar 
    95.Pasquali, V., Calizza, E., Setini, A., Hazlerigg, D. & Christoffersen, K. S. Preliminary observations on the effect of light and temperature on the hatching success and rate of Lepidurus arcticus eggs. Ethol. Ecol. Evol. 31, 348–357 (2019).
    Google Scholar 
    96.Tanentzap, A. J. et al. Climate warming restructures an aquatic food web over 28 years. Glob. Change Biol. 26, 6852–6866 (2020).ADS 

    Google Scholar 
    97.Polvani, L. M., Previdi, M., England, M. R., Chiodo, G. & Smith, K. L. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Change 10, 130–133 (2020).ADS 
    CAS 

    Google Scholar 
    98.di Lascio, A. et al. Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecol. Indic. 28, 107–114 (2013).
    Google Scholar 
    99.Moore, I. D., Grayson, R. B. & Ladson, A. R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5, 3–30 (1991).ADS 

    Google Scholar 
    100.Vaze, J., Teng, J. & Spencer, G. Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw. 25, 1086–1098 (2010).
    Google Scholar 
    101.Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48, 47–63 (2012).
    Google Scholar 
    102.Hall, D. K., Riggs, G. A. & Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 54, 127–140 (1995).ADS 

    Google Scholar 
    103.Vogel, S. W. Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Ann. Glaciol. 34, 53–57 (2002).ADS 

    Google Scholar 
    104.Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).ADS 

    Google Scholar 
    105.Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    106.Jensen, J. R. Remote Sensing of the Environment: An Earth Resource Perspective (Pearson Prentice Hall, 2007).
    Google Scholar 
    107.Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514 (2019).ADS 

    Google Scholar 
    108.Simon, G., Manuel, G., Tristan, K. & Germain, S. Algorithm Theoretical basis documentation for an operational snow cover product from Sentinel-2 and Landsat-8 data (let-it-snow) (2018). https://doi.org/10.5281/ZENODO.1414452.109.Stahl, J. & Loonen, M. J. Effects of predation risk on site selection of barnacle geese during brood-rearing. In Research on Arctic Geese, 91 (1998).110.McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 

    Google Scholar 
    111.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 26, 547 (1970).CAS 
    PubMed 

    Google Scholar 
    113.Signa, G. et al. Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Environ. Pollut. 246, 772–781 (2019).CAS 
    PubMed 

    Google Scholar  More

  • in

    Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change

    1.West-Eberhard, M. J. Developmental plasticity and evolution. (Oxford University Press, 2003).2.de Jong, G. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. N. Phytologist 166, 101–118 (2005).
    Google Scholar 
    3.Ezard, T. H. G., Prizak, R. & Hoyle, R. B. The fitness costs of adaptation via phenotypic plasticity and maternal effects. Funct. Ecol. 28, 693–701 (2014).
    Google Scholar 
    4.Williams, C. M. et al. Understanding evolutionary impacts of seasonality: an introduction to the symposium. Integr. Comp. Biol. 57, 921–933 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    7.Beldade, P., Mateus, A. R. A. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).PubMed 

    Google Scholar 
    8.Lafuente, E. & Beldade, P. Genomics of developmental plasticity in animals. Front. Genet. 10, (2019).9.Marden, J. H. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100, 111–120 (2008).CAS 
    PubMed 

    Google Scholar 
    10.Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bush, S. J., Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20150474 (2017).
    Google Scholar 
    12.Marden, J. H. & Cobb, J. R. Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim. Behav. 68, 857–865 (2004).
    Google Scholar 
    13.Kijimoto, T., Moczek, A. P. & Andrews, J. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc. Natl Acad. Sci. USA 109, 20526–20531 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bear, A., Prudic, K. L. & Monteiro, A. Steroid hormone signaling during development has a latent effect on adult male sexual behavior in the butterfly Bicyclus anynana. PLoS ONE 12, e0174403 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    15.Martin Anduaga, A. et al. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 8, e44642 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    16.Deshmukh, R., Lakhe, D. & Kunte, K. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. R. Soc. Open Sci. 7, 200792 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Grantham, M. E. & Brisson, J. A. Extensive differential splicing underlies phenotypically plastic aphid morphs. Mol. Biol. Evol. 35, 1934–1946 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Price, J. et al. Alternative splicing associated with phenotypic plasticity in the bumble bee Bombus terrestris. Mol. Ecol. 27, 1036–1043 (2018).CAS 
    PubMed 

    Google Scholar 
    19.Lees, J. G., Ranea, J. A. & Orengo, C. A. Identifying and characterising key alternative splicing events in Drosophila development. BMC Genomics 16, 608 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    20.Jakšić, A. M. & Schlötterer, C. The interplay of temperature and genotype on patterns of alternative splicing in Drosophila melanogaster. Genetics 204, 315–325 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    21.Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol. 222, jeb193516 (2019).22.Signor, S. & Nuzhdin, S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity 121, 342–360 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lang, A. S., Austin, S. H., Harris, R. M., Calisi, R. M. & MacManes, M. D. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 21, 251 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    24.Suresh, S., Crease, T. J., Cristescu, M. E. & Chain, F. J. J. Alternative splicing is highly variable among Daphnia pulex lineages in response to acute copper exposure. BMC Genomics 21, 433 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thorstensen, M. J., Baerwald, M. R. & Jeffries, K. M. RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 22, 273 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Singh, A. & Agrawal, A. F. Sexual dimorphism in gene expression: coincidence and population genomics of two forms of differential expression in Drosophila melanogaster. bioRxiv (2021) https://doi.org/10.1101/2021.02.08.429268.27.Rogers, T. F., Palmer, D. H. & Wright, A. E. Sex-specific selection drives the evolution of alternative splicing in birds. Mol. Biol. Evolution 38, 519–530 (2021).CAS 

    Google Scholar 
    28.Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180174 (2019).
    Google Scholar 
    29.Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180176 (2019).
    Google Scholar 
    30.Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1–11 (2018).CAS 

    Google Scholar 
    31.Wang, Y. et al. Mechanism of alternative splicing and its regulation (Review). Biomed. Rep. 3, 152–158 (2015).CAS 
    PubMed 

    Google Scholar 
    32.Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).CAS 
    PubMed 

    Google Scholar 
    33.McManus, C. J., Coolon, J. D., Eipper-Mains, J., Wittkopp, P. J. & Graveley, B. R. Evolution of splicing regulatory networks in Drosophila. Genome Res. 24, 786–796 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Gao, Q., Sun, W., Ballegeer, M., Libert, C. & Chen, W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol. 11, 816 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    35.Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Wang, X. et al. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant J. 97, 555–570 (2019).CAS 
    PubMed 

    Google Scholar 
    37.Huang, Y., Lack, J. B., Hoppel, G. T. & Pool, J. E. Parallel and population-specific gene regulatory evolution in cold-adapted fly populations. bioRxiv (2021) https://doi.org/10.1101/795716.38.Lewis, J. J., Van Belleghem, S. M., Papa, R., Danko, C. G. & Reed, R. D. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci. Adv. 6, eabb8617 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Lewis, J. J. & Reed, R. D. Genome-wide regulatory adaptation shapes population-level genomic landscapes in Heliconius. Mol. Biol. Evol. 36, 159–173 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Martin, S. H. et al. Natural selection and genetic diversity in the butterfly Heliconius melpomene. Genetics 203, 525–541 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Brakefield, P. M., Beldade, P. & Zwaan, B. J. The African Butterfly Bicyclus anynana: a model for evolutionary genetics and evolutionary developmental biology. Cold Spring Harb. Protoc. 2009, pdb.emo122 (2009).PubMed 

    Google Scholar 
    42.Mateus, A. R. A. et al. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol. 12, 97 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    43.Oostra, V. et al. Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect. Am. Naturalist 184, E79–E92 (2014).
    Google Scholar 
    44.van Bergen, E. et al. Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies. BMC Evolut. Biol. 17, 59 (2017).
    Google Scholar 
    45.Singh, P. et al. Complex multi-trait responses to multivariate environmental cues in a seasonal butterfly. Evol. Ecol. (2020) https://doi.org/10.1007/s10682-020-10062-0.46.Prudic, K. L., Jeon, C., Cao, H. & Monteiro, A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331, 73–75 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    47.Chen, L., Bush, S. J., Tovar-Corona, J. M., Castillo-Morales, A. & Urrutia, A. O. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol. Biol. Evol. 31, 1402–1413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    48.Hamid, F. M. & Makeyev, E. V. Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem. Soc. Trans. 42, 1168–1173 (2014).CAS 
    PubMed 

    Google Scholar 
    49.Tabrez, S. S., Sharma, R. D., Jain, V., Siddiqui, A. A. & Mukhopadhyay, A. Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat. Commun. 8, 306 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M. & Laland, K. N. Developmental bias and evolution: a regulatory network perspective. Genetics 209, 949–966 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Nijhout, H. F. To plasticity and back again. eLife 4, e06995 (2015).PubMed Central 

    Google Scholar 
    52.Helanterä, H. & Uller, T. Neutral and adaptive explanations for an association between caste-biased gene expression and rate of sequence evolution. Front. Genet. 5, 297 (2014).53.Pespeni, M. H., Ladner, J. T. & Moczek, A. P. Signals of selection in conditionally expressed genes in the diversification of three horned beetle species. J. Evolut. Biol. 30, 1644–1657 (2017).CAS 

    Google Scholar 
    54.Plass, M. & Eyras, E. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation. BMC Evol. Biol. 6, 50 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    55.Chen, F.-C., Pan, C.-L. & Lin, H.-Y. Independent effects of alternative splicing and structural constraint on the evolution of mammalian coding exons. Mol. Biol. Evolution 29, 187–193 (2012).CAS 

    Google Scholar 
    56.Peña, C., Nylin, S. & Wahlberg, N. The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zool. J. Linn. Soc. 161, 64–87 (2011).
    Google Scholar 
    57.Bhardwaj, S. et al. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots. eLife 9, e49544 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. PNAS 100, 189–192 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    59.Akerman, M. & Mandel-Gutfreund, Y. Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res. 34, 23–31 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Moran, N. A. The evolutionary maintenance of alternative phenotypes. Am. Naturalist 139, 971–989 (1992).
    Google Scholar 
    61.Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evolution Dev. 5, 9–18 (2003).
    Google Scholar 
    62.Mank, J. E. The transcriptional architecture of phenotypic dimorphism. Nat. Ecol. Evolution 1, 1–7 (2017).
    Google Scholar 
    63.Scheiner, S. M., Barfield, M. & Holt, R. D. The genetics of phenotypic plasticity. XVII. Response to climate change. Evolut. Appl. 13, 388–399 (2020).
    Google Scholar 
    64.Osada, N., Miyagi, R. & Takahashi, A. Cis- and trans-regulatory effects on gene expression in a natural population of Drosophila melanogaster. Genetics 206, 2139–2148 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Cooper, R. D. & Shaffer, H. B. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol. Ecol. 30, 987–1004 (2021).CAS 
    PubMed 

    Google Scholar 
    66.Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Baruzzo, G. et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods 14, 135–139 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Schuierer, S. et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics 18, 442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    69.Broad Institute. Picard toolkit. (2019).70.Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47, e47–e47 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Chen, Y., Lun, A. T. L. & Smyth, G. K. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5, 1438 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).74.Shen, L. GeneOverlap: Test and visualize gene overlaps. (2020).75.Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 

    Google Scholar 
    76.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    77.Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for Gene Ontology. (2016).78.Larsson, J. et al. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. (2021).79.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Gu, Z. & Hübschmann, D. simplifyEnrichment: an R/Bioconductor package for Clustering and Visualizing Functional Enrichment Results. 2020.10.27.312116 (2020) https://doi.org/10.1101/2020.10.27.312116.81.Gu, Z. simplifyEnrichment: Simplify Functional Enrichment Results. (Bioconductor version: Release (3.13), 2021). https://doi.org/10.18129/B9.bioc.simplifyEnrichment.82.de Jong, M. A., Wahlberg, N., Eijk, M., van, Brakefield, P. M. & Zwaan, B. J. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent Refugia. PLoS ONE 6, e21385 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.de Jong, M. A., Collins, S., Beldade, P., Brakefield, P. M. & Zwaan, B. J. Footprints of selection in wild populations of Bicyclus anynana along a latitudinal cline. Mol. Ecol. 22, 341–353 (2013).PubMed 

    Google Scholar 
    84.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    85.Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files.86.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio] (2013).87.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).
    Google Scholar 
    88.Nowell, R. W. et al. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana. GigaScience 6, (2017).89.Xu, L. et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Lucaci, A. G., Wisotsky, S. R., Shank, S. D., Weaver, S. & Kosakovsky Pond, S. L. Extra base hits: widespread empirical support for instantaneous multiple-nucleotide changes. PLoS One 16, e0248337 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Buerkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    93.Buerkner, P.-C. Advanced Bayesian multilevel modeling with the R Package brms. R. J. 10, 395–411 (2018).
    Google Scholar 
    94.Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).95.Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Alamancos, G. P., Pagès, A., Trincado, J. L., Bellora, N. & Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21, 1521–1531 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Wang, Q. & Rio, D. C. JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns. Proc. Natl Acad. Sci. USA115, E8181–E8190 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    99.Kassambara, A. ggpubr” ‘ggplot2’ based publication-ready plots. (2020).100.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2021).101.South, A. afrilearndata: Small Africa Map Datasets for Learning. (2021).102.Inkscape Project. Inkscape. (2021).103.Steward, R. A., Oostra, V. & Wheat, C. W. B_anynana_differentialSplicing Github. zenodo.org https://zenodo.org/badge/latestdoi/255903232 (2021). More

  • in

    Dispersal of Aphanoascus keratinophilus by the rook Corvus frugilegus during breeding in East Poland

    1.Dynowska, M., Meissner, W. & Pacyńska, J. Mallard duck (Anas platyrhynchos) as a potential link in the epidemiological chain mycoses originating from water reservoirs. Bull. Vet. Inst. Pulawy 57, 323–328 (2013).
    Google Scholar 
    2.Georgopoulou, I. & Tsiouris, V. The potential role of migratory birds in the transmission of zoonoses. Vet. Ital. 44, 671–677 (2008).PubMed 

    Google Scholar 
    3.Hubálek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).PubMed 

    Google Scholar 
    4.Korniłłowicz, T. K. I. Diversity of fungi in nests and pellets of Montagu’s harrier (Circus pygargus) from eastern Poland—Importance of chemical and ecological factors. Ecol. Chem. Eng. 16, 453–471 (2009).
    Google Scholar 
    5.Korniłłowicz-Kowalska, T. & Kitowski, I. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175, 43–56 (2013).PubMed 

    Google Scholar 
    6.Kiziewicz B. The occurrence fungi and zoosporic fungi-like organisms on feathers of birds Corvidae. in Corvids of Poland (ed. Jerzak, L.). 147–154. (Bogucki Wydawnictwo Naukowe Poznan, 2005).7.Kasprzykowski, Z. Habitat preferences of foraging Rooks Corvus frugilegus during the breeding period in the agricultural landscape of eastern Poland. Acta Ornithol. 38, 27–31 (2003).
    Google Scholar 
    8.Czarnecka, J. & Kitowski, I. Seed dispersal by the rook Corvus frugilegus l. In agricultural landscape—Mechanisms and ecological importance. Polish J. Ecol. 58, 511–523 (2010).
    Google Scholar 
    9.Czarnecka, J. et al. Seed dispersal in urban green space—Does the rook Corvus frugilegus L. contribute to urban flora homogenization?. Urban For. Urban Green. 12, 359–366 (2013).
    Google Scholar 
    10.Gromadzka, J. Food composition and food consumption of the Rook Corvus frugilegus in agrocoenoses in Poland. Acta Ornithol. 17, 11 (1980).
    Google Scholar 
    11.Green, A. J., Elmberg, J. & Lovas-Kiss, Á. Beyond scatter-hoarding and frugivory: European corvids as overlooked vectors for a broad range of plants. Front. Ecol. Evolut. 7, 133 (2019).
    Google Scholar 
    12.Jędrzejewski, S., Majewska, A., Zduniak, P. & Graczyk, T. Parasites of Polish corvids—Knowledge and potential risk for human. in Corvids of Poland (eds. Jerzak, L., Kavanagh, B. P. & Trojanowski, P.). 137–145. (Bogucki Wydawnictwo Naukowe, 2005).13.Kiziewicz, B. The occurrenceof fungy and zoosporic fungus like organisms on feathers of birds Corvids. in Corvids in Poland. (eds. Jerzak, L., Kavanagh, B. P. & Trojanowski, P.). 147–154. (Bogucki Wydawnictwo Naukowe, 2005).14.Camin, A. M., Chabasse, D. & Guiguen, C. Keratinophilic fungi associated with starlings (Sturnus vulgaris) in Brittany, France. Mycopathologia 143, 9–12 (1998).
    Google Scholar 
    15.Hubálek, Z. Keratinophilic fungi associated with free-living mammals and birds. Biol. Dermatophytes Keratinophilic Fungi 93, 1036 (2000).
    Google Scholar 
    16.Mandeel, Q., Nardoni, S. & Mancianti, F. Keratinophilic fungi on feathers of common clinically healthy birds in Bahrain. Mycoses 54, 71–77 (2011).PubMed 

    Google Scholar 
    17.Ciesielska, A., Kawa, A., Kanarek, K., Soboń, A. & Szewczyk, R. Metabolomic analysis of Trichophyton rubrum and Microsporum canis during keratin degradation. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    18.Leibner-Ciszak, J., Dobrowolska, A., Krawczyk, B., Kaszuba, A. & Sta̧czek, P. Evaluation of a PCR melting profile method for intraspecies differentiation of Trichophyton rubrum and Trichophyton interdigitale. J. Med. Microbiol. 59, 185–192 (2010).19.Ciesielska, A., Oleksak, B. & Stączek, P. Reference genes for accurate evaluation of expression levels in Trichophyton interdigitale grown under different carbon sources, pH levels and phosphate levels. Sci. Rep. 9, 1–9 (2019).CAS 

    Google Scholar 
    20.Calvo, A., Vidal, M. & Guarro, J. Keratinophilic fungi from urban soils of Barcelona, Spain. Mycopathologia 85, 145–147 (1984).
    Google Scholar 
    21.R.S/, C. Taxonomy of the Onygenales: Arthrodermataceae, Gymnoasceae, Myxotrichaceae and Onygenaceae. Mycotaxon 24, 1–216 (1985).22.Korniłłowicz-Kowalska, T. Studies on the decomposition of keratin wastes by saprotrophic microfungi. P. I. Criteria for evaluating keratinolytic activity. Acta Mycol. 175, 43–56 (1997).
    Google Scholar 
    23.van Oorschot, C. A. N. A revision of Chrysosporium and allied genera. Stud. Mycol. 20, 1–89 (1980).
    Google Scholar 
    24.Domsch, K. H. & Gams, W. A. T. H. Compedium of Soil Fungi (Academic, 1980).
    Google Scholar 
    25.Gan, G. G. et al. Non-sporulating Chrysosporium: An opportunistic fungal infection in a neutropenic patient. Med. J. Malaysia 57, 118–122 (2002).CAS 
    PubMed 

    Google Scholar 
    26.de Hoog, G. S., Guarro, J. & Gene, J. Atlas of clinical fungi. Int. Microbiol 2, 51–52 (2001).
    Google Scholar 
    27.Manzano-Gayosso, P. et al. Onychomycosis incidence in type 2 diabetes mellitus patients. Mycopathologia 166, 41–45 (2008).PubMed 

    Google Scholar 
    28.Palma, M. A. G., Espín, L. A. & Pérez, A. F. Invasine sinusal mycosis due to Chrysosporium tropicum. Acta Otorrinolaringol. Esp. 58, 164–166 (2007).
    Google Scholar 
    29.Stillwell, W. T. & Rubin, B. O. Chrysosporium, a new causative agent in osteomycelitis. Clin. Orthopaed. Relat. Res. 184, 190–192 (1984).
    Google Scholar 
    30.Gueho, E. V. J. G. R. A new human case of Anixiopsis stercomia mycosis: Discussion of its taxonomy and pathogenicity. Mycoses 28, 430–436 (1985).CAS 

    Google Scholar 
    31.Nieuwenhuis, B. P. S. & James, T. Y. The frequency of sex in fungi. Philos. Trans. R. Soc. B Biol. Sci. 371, 0540 (2016).
    Google Scholar 
    32.Neubauer, G. & Sikora, A. C. T. Monitoring populacji ptaków Polski w latach 2008–2009. Biuletyn Monitoringu Przyrody 8, 1–40 (2011).
    Google Scholar 
    33.Jackson, C. J., Barton, R. C. & Evans, E. G. V. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J. Clin. Microbiol. 37, 931–936 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Mochizuki, T. et al. Restriction fragment length polymorphism analysis of ribosomal DNA intergenic regions is useful for differentiating strains of Trichophyton mentagrophytes. J. Clin. Microbiol. 41, 4583–4588 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Garg, A. P., Gandotra, S., Mukerji, K. G. & Pugh, G. J. F. Ecology of keratinophilic fungi. Proc. Plant Sci. 94, 149–163 (1985).
    Google Scholar 
    36.Abulreesh, H. H., Goulder, R. & Scott, G. W. Wild birds and human pathogens in the context of ringing and migration. Ringing Migr. 23, 193–200 (2007).
    Google Scholar 
    37.Prinzinger, R., Preßmar, A. & Schleucher, E. Body temperature in birds. Comp. Biochem. Physiol. Part A Physiol. 99, 499–506 (1991).
    Google Scholar 
    38.Summerbell, R. C. Form and function in the evolution of dermatophytes. Rev. Iberoam. Micol. 44, 30–43 (2000).
    Google Scholar 
    39.Warwick, A., Ferrieri, P., Burke, B. & Blazar, B. R. Presumptive invasive Chrysosporium infection in a bone marrow transplant recipient. Bone Marrow Transplant 8, 319–322 (1991).CAS 
    PubMed 

    Google Scholar 
    40.Kitowski, I., Ciesielska, A., Korniłłowicz-Kowalska, T., Bohacz, J., & Świetlicki, M. Estimation of Chrysosporium keratinophilum Dispersal by the Rook Corvus frugilegus in Chełm (East Poland) in Urban Fauna-Animal, Man, and the City—Interactions and Relationships. (Indykiewicz, P. & Böhner, J. eds). 263–269. (Art Studio, 2014)41.Gopal, K. A., Kalaivani, V. & Anandan, H. Pulmonary infection by Chrysosporium species in a preexisting tuberculous cavity. Int. J. Appl. Basic Med. Res. 10, 62 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    42.Krawczyk, B., Samet, A., Leibner, J., Śledzińska, A. & Kur, J. Evaluation of a PCR melting profile technique for bacterial strain differentiation. J. Clin. Microbiol. 44, 2327–2332 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Ciesielska, A. et al. Application of microsatellite-primed PCR (MSP-PCR) and PCR melting profile (PCR-MP) method for intraspecies differentiation of dermatophytes. Pol. J. Microbiol. 63, 283–290 (2014).PubMed 

    Google Scholar 
    44.Orłowski, G. & Czapulak, A. Different extinction risks of the breeding colonies of rooks Corvus frugilegus in rural and urban areas of SW Poland. Acta Ornithologica 42, 145–155 (2007).
    Google Scholar 
    45.Bohacz, J. & Korniłłowicz-Kowalska, T. Species diversity of keratinophilic fungi in various soil types. Cent. Eur. J. Biol. 7, 259–266 (2012).
    Google Scholar 
    46.Papini, R., Mancianti, F., Grassotti, G. & Cardini, G. Survey of keratinophilic fungi isolated from city park soils of Pisa, Italy. Mycopathologia 143, 17–23 (1998).CAS 
    PubMed 

    Google Scholar 
    47.Singh, I. K. R. Dermatophytes and related keratinophilic fungi in soil of parks and agricultural fields of Uttar Pradesh, India. Indian J. Dermatol. 55, 306–308 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    48.Gungnani, H. C., Sharma, S. & Gupta, B. Keratinophilic fungi recovered from feathers of different species of birds in St Kitts and Nevis. West Indian Med. J. 61, 912–915 (2012).CAS 
    PubMed 

    Google Scholar 
    49.Jadczyk P, J. Z. Wintering of rooks Corvus frugilegus in Poland. in Corvids of Poland (ed. Jerzak, L.). 541–556. (Bogucki Wydawnictwo Naukowe Poznan, 2005).50.Wilk, T., Chodkiewicz, T., Sikora, A., Chylarecki, P. & Kuczyński, L. Red List of Polish Birds. (OTOP, 2020).51.Oke, T.R. The heat island of the urban boundary layer: Characteristics, causes and effects. in eWind Climate in Cities. NATO ASI Series E (ed. JE, C.). 81–107. (Kluwer Academy, 1995).52.Vidal, P., de Vinuesa, M., Los, A., Sánchez-Puelles, J. M. & Guarro, J. Phylogeny of the anamorphic genus Chrysosporium and related taxa based on rDNA internal transcribed spacer sequences. Rev. Iberoam. Micol. 17, 22–29 (2000).
    Google Scholar 
    53.Korniłłowicz, T. Studies on mycoflora colonizing raw keratin wastes in arable soil. Mycologica 27, 231–245 (1991).
    Google Scholar 
    54.Orłowski, G., Kasprzykowski, Z., Zawada, Z. & Kopij, G. Stomach content and grit ingestion by rook Corvus frugilegus nestlings. Ornis Fennica 86, 117–122 (2009).
    Google Scholar 
    55.Luniak, M. Consumption and digestion of food in the rook, Corvus frugilegus, in the condition of an aviary. Acta Ornithol. 16, 213–234 (1977).
    Google Scholar 
    56.Liu, D., Coloe, S., Baird, R. & Pedersen, J. Rapid mini-preparation of fungal DNA for PCR [5]. J. Clin. Microbiol. 38, 471 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hunter, P. R. & Gaston, M. A. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J. Clin. Microbiol. 26, 2465–2466 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Greenwell, J. R. Introduction to biostatistics, 2nd edn. By R. R. Sokal and F. J. Rohlf. pp. 363. F. H. Freeman and Co., 1987. £44.99 hardback. ISBN 0 7167 18057. Exp. Physiol. 80, 681 (1995) More