More stories

  • in

    Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

    Hutchinson GE. Concluding remarks. Cold Spring Harb Symp Quant Biol. 1957;22:415–27.
    Google Scholar 
    Hutchinson GE. An introduction to population biology. New Haven, CT: Yale University Press; 1978.Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ Microbiol Rep. 2017;9:55–70.CAS 
    PubMed 

    Google Scholar 
    Mena C, Reglero P, Balbín R, Martín M, Santiago R, Sintes E. Seasonal niche partitioning of surface temperate open ocean prokaryotic communities. Front Microbiol. 2020;11:1749.PubMed 
    PubMed Central 

    Google Scholar 
    Sarmento H, Morana C, Gasol JM. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J. 2016;10:2582–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2022;16:178–89.CAS 
    PubMed 

    Google Scholar 
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.PubMed 
    PubMed Central 

    Google Scholar 
    Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.CAS 
    PubMed 

    Google Scholar 
    Wang Z, Juarez DL, Pan J-F, Blinebry SK, Gronniger J, Clark JS, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ Microbiol. 2019;21:3862–72.CAS 
    PubMed 

    Google Scholar 
    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife. 2019;8:e46497.PubMed 
    PubMed Central 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.PubMed 
    PubMed Central 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 

    Google Scholar 
    Alonso C, Warnecke F, Amann R, Pernthaler J. High local and global diversity of flavobacteria in marine plankton. Environ Microbiol. 2007;9:1253–66.CAS 
    PubMed 

    Google Scholar 
    Ngugi DK, Stingl U. High-quality draft single-cell genome sequence of the NS5 Marine Group from the Coastal Red Sea. Genome Announc. 2018;26:e00565-18.
    Google Scholar 
    Meziti A, Kormas KA, Moustaka-Gouni M, Karayanni H. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area. Syst Appl Microbiol. 2015;38:358–67.
    Google Scholar 
    Milici M, Vital M, Tomasch J, Badewien TH, Giebel H-A, Plumeier I, et al. Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr. 2017;62:1080–95.
    Google Scholar 
    Beman JM, Vargas SM, Vazquez S, Wilson JM, Yu A, Cairo A, et al. Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern tropical North Pacific Ocean oxygen minimum zone. Environ Microbiol. 2020;23:2765–81.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean. Front Microbiol. 2018;9:01035.
    Google Scholar 
    Gómez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JEE, Amann R. Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J. 2010;4:472–87.PubMed 

    Google Scholar 
    Choi DH, An SM, Yang EC, Lee H, Shim J, Jeong J, et al. Daily variation in the prokaryotic community during a spring bloom in shelf waters of the East China Sea. FEMS Microbiol Ecol. 2018;94:fiy134.CAS 
    PubMed Central 

    Google Scholar 
    Yang C, Li Y, Zhou B, Zhou Y, Zheng W, Tian Y, et al. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Sci Rep. 2015;5:8476.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Díez‐Vives C, Nielsen S, Sánchez P, Palenzuela O, Ferrera I, Sebastián M, et al. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol Ecol. 2019;28:2846–59.PubMed 

    Google Scholar 
    Seo J-H, Kang I, Yang S-J, Cho J-C. Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS ONE. 2017;12:e0174159.PubMed 
    PubMed Central 

    Google Scholar 
    Alonso‐Sáez L, Díaz‐Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.PubMed 

    Google Scholar 
    Priest T, Orellana LH, Huettel B, Fuchs BM, Amann R. Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms. PeerJ. 2021;9:e11721.PubMed 
    PubMed Central 

    Google Scholar 
    Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.CAS 
    PubMed 

    Google Scholar 
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann J-H, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    Winkelmann N, Harder J. An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods. 2009;77:276–84.CAS 
    PubMed 

    Google Scholar 
    Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E, Teeling H, et al. Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. Environ Microbiol. 2015;17:3515–26.PubMed 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:1–6.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Seeman T. Barrnap 0.9 (version 3): rapid ribosomal RNA prediction. 2017. https://github.com/tseemann/barrnap.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990;172:762–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell B. BBTools software package. 2017. https://sourceforge.net/projects/bbmap/.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: integrated development of R. Boston, MA: RStudio Inc.; 2015.South A. rnaturalearth: World map data from Natural Earth. R packag version 0.1.0; 2017.Pebesma E. Simple features for R: standardized support for spatial vector data. R J. 2018;10:439–46.
    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.Orellana LH, Francis TB, Ferraro M, Hehemann J-H, Fuchs BM, Amann RI. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 2021.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan community ecology package version 2.5, 7 November. 2020.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    PubMed 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:95–101.
    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
    Google Scholar 
    Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:e0164846.PubMed 
    PubMed Central 

    Google Scholar 
    Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:624–32.
    Google Scholar 
    Wilkins D. gggenes: Draw Gene Arrow Maps in ‘ggplot2’. R package version 0.4.1; 2020.de Vries A, Ripley BD. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. 2020.Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.CAS 
    PubMed 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
    Google Scholar 
    Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.CAS 
    PubMed 

    Google Scholar 
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.CAS 
    PubMed 

    Google Scholar 
    Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1685.PubMed 
    PubMed Central 

    Google Scholar 
    Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol. 2010;76:4123–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubinsky V, Haber M, Burgsdorf I, Saurav K, Lehahn Y, Malik A, et al. Metagenomic analysis reveals unusually high incidence of proteorhodopsin genes in the ultraoligotrophic Eastern Mediterranean Sea. Environ Microbiol. 2017;19:1077–90.CAS 
    PubMed 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 

    Google Scholar 
    Heins A, Reintjes G, Amann RI, Harder J. Particle collection in Imhoff sedimentation cones enriches both motile chemotactic and particle-attached bacteria. Front Microbiol. 2021;12:643730.PubMed 
    PubMed Central 

    Google Scholar 
    Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine Bacteroidetes during microalgal blooms. ISME J. 2018;12:2894–906.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, et al. Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol. 2006;8:2201–13.CAS 
    PubMed 

    Google Scholar 
    Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492–502.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 

    Google Scholar 
    Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol. 2012;14:2379–94.CAS 
    PubMed 

    Google Scholar 
    Hehemann J-H, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat Commun. 2016;7:12860.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym. 2017;175:395–408.PubMed 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 

    Google Scholar 
    Duerschlag J, Mohr W, Ferdelman TG, LaRoche J, Desai D, Croot PL, et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J. 2022;15:465–76.
    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol. 2011;7:473.PubMed 
    PubMed Central 

    Google Scholar 
    Baas Becking L. G. M.. Geobiologie of inleiding tot de milieukunde. WP Van Stock Zoon, Den Haag; 1934.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 

    Google Scholar  More

  • in

    Reconciling human health with the environment while struggling against the COVID-19 pandemic through improved face mask eco-design

    Inventory analysisBefore computing the environmental impacts, we analyzed inventory data and input them into the software program for simulations. With respect to reusable masks, on-site measurements of raw materials, energy requirements for processing (e.g., laying, cutting, sewing, etc.), packaging material configurations, reuse options, cleaning activities and transport distances were provided by the Italian Social District. In particular, requirements for washing the reusable face mask were adapted from Schmutz et al.9 in compliance with the information provided by the producer. Moreover, waste disposal scenario data for both types was collected from the preprint by Allison et al.23 Finally, inventory data for single-use masks were collected from independent producers via certified laboratories. The final set of background and foreground data are provided in “Supplementary Table S1”.Single-use face masks consist of three layers of polypropylene non-wovens. The inner and outer fabric layers are Spunbond and the middle layer is 99% filtering Meltblown24. Reusable face masks (Type IIR) are also composed of three layers: an internal layer of antibacterial quality cotton, a middle layer of Meltblown, and an external layer of Spunbond. Mask quality is determined by the quality of the component parts and is therefore traceable to the component suppliers. Information on the suppliers and product component types (including certifications and features) is provided in “Supplementary Table S2”. Meltblown (supplied by Ramina) makes up the central part of reusable masks. This component guarantees a filtering performance of more than 99%, which—combined with the high-quality water-repellent anti-drop C6 antibacterial cotton (supplied by Olmetex) of the inner layer—resists up to 10 washes per immersion. These materials, forged together using specialized machinery, enhance Type IIR surgical masks above all others, with respect to their superior performance in the overall trade-off between filtering quality, reusability, and environmental sustainability. Furthermore, the cotton inner fabric of these masks has the same effectiveness as single-use masks in reducing the transmission of respiratory viruses25.Regarding elastic bands, nose clip material (for single-use masks), and fabric layers, no direct datasets are available in the ecoinvent database. Thus, for the present study, non-allergenic latex-free elastic bands, produced using a “polyurethane, flexible foam” process, were assumed. Nose clip material, which is only used for single-use masks, was assumed to be modelled using a “polyvinyl chloride resin (B-PVC)” process. Finally, we assumed that a “polypropylene, granulate” process was used for the TnT Spunbond and Meltblown layers. Regarding packaging materials, reusable face masks are wrapped in biodegradable plastic bags, while single-use masks are packaged in plastic bags. Both types of masks are packaged in sets of 10 and delivered in recycled cardboard boxes. In the present study, packaging materials were introduced to the software as “polyester-complexed starch biopolymer”, “packaging film, low-density polyethylene”, and “corrugated board boxes: 16.6% primary fiber, 83.4% recycled fiber”. For transportation, a “transport, freight, lorry 16–32 metric ton, EURO6” process was assumed from the manufacturing facility and nationwide distribution by road, using Euro 6D vans.To calculate the number of face masks used in Italy in 2020, we estimated the Italian population at 60.6 million, based on Organisation for Economic Co-operation and Development (OECD) statistics26. We assumed one mask per person, per day, for both mask types, according to WHO recommendations27. As reusable face masks can be washed up to 10 times without losing their virus filtration performance (according to the manufacturer’s own specification), we assumed the maximum number of washes for the use phase. Accordingly, the total number of face masks used in Italy was calculated at 2.18 and 22.1 billion for reusable and single-use face masks, respectively. The total amount of waste was calculated in terms of the number of used masks, alongside their packaging materials (i.e., plastic wrap and cardboard boxes) (Table 2). Single-use face masks were found to generate almost 10 times more waste for each waste category, relative to reusable face masks.Table 2 Total waste generated from used face masks in Italy, 2020 (kton/year).Full size tableWith respect to mask use, our basic case scenario was based on WHO recommendations27, which stipulate that reusable face masks should be washed daily with soap/detergent and hot (60 °C) water. We assumed that the entire household (2.3 people for Italian case) masks are washed together with other clothes in a standard 7 kg washing machine, following both the literature9 and producer instructions. Schmutz et al.9 reported that the requirements for a half-full washing machine (a typical situation in Europe) are 84 g detergent, 52.3 L tap water and 1.1 kWh electricity per load. Accordingly, the average washing consumables required for each mask is calculated by normalizing the specified requirements with respect to one mask (i.e., via multiplying a half-full load requirement by 0.2%).It should be noted, however, that user behavior is not easy to predict and the washing machine might not be always considered as the preferred option. Hence, as a further step, we investigated different user behaviors as sensitivity cases. First of all, hand washing was introduced as the main sensitivity scenario9,23,28. In this case, we assumed that the entire household masks will be washed together every day after use, in a bowl of 5 L filled up to 3 L level with water at 60 °C and then rinsed with water without soap/detergent. Approximately 6.24 g of liquid detergent and 6 L of water is required in each manual washing session23. Similar to the machine wash case, the average washing consumables required for each mask is calculated by normalizing the specified requirements with respect to one mask (i.e., the requirements per mask per wash are 2.609 L tap water, 2.713 g detergent, 447.7 kJ energy provided by the gas boiler).Moreover, we also considered other possible user behavior scenarios, assuming that reusable face masks might be washed for more than the recommended lifespan (i.e., 10 washes). Accordingly, a second sensitivity case was modelled for reusable masks washed 15 times prior to disposal. Finally, with reference to single-use masks, we took into consideration a longer period of wearing. Although the recommended face mask use is one mask per day (or 4–8 h), many users wear single-use surgical masks for longer than this recommended period. Thus, in this sensitivity case, we assumed that users would wear the same mask for 2 subsequent days. It should be noted, however, that the latter two sensitivity cases, i.e., concerning longer wearing period of both types, might compromise the protection level of masks and thereby human health.Regarding the packaging and waste disposal activities, the Italian Social District provided some data from their ongoing studies regarding the biodegradability of packaging materials for reusable (Type IIR) face masks. However, the present study could not consider actual waste disposal activities (i.e., recycling, reuse) due to the lack of approved assessments. Thus, waste disposal was based mainly on previous studies indicating incineration and landfilling as viable options23,29. We assumed that contaminated masks and discarded packaging materials would go directly to waste disposal sites, and 43% of mixed waste would be landfilled while 57% of mixed waste would be incinerated23. Regarding alternative disposal activities, we considered two sensitivity cases: one that assumed that all masks from each type would be fully incinerated9,30 and another that assumed that all masks from each type would be fully landfilled31. More

  • in

    Range expansion decreases the reproductive fitness of Gentiana officinalis (Gentianaceae)

    Seed collectionMature seeds of G. officinalis were collected from the natural-growing plant community at the Hezuo alpine meadow and wetland ecosystem research station of Lanzhou University on the southeast Qinghai-Tibet Plateau (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m) in 2014 and grown in a nursery. Robust seedlings were selected and transplanted to the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences on the northeast Qinghai-Tibet Plateau (lat. 37°37′N, long. 101°19′ E, alt. 3200 m) and Datong ecological agriculture experimental station of the Northwest Institute of Plateau Biology (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). Transplantation was also performed in a natural environment (the Hezuo alpine meadow and a wetland ecosystem research station of Lanzhou University).Study plots and transplantingThe naturally studied population is located at the Hezuo alpine meadow and wetland ecosystem research station of Lanzhou University on the southeast Qinghai-Tibet Plateau (henceforth referred to as the natural environment (NE)), China (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). The third transplantation site was created in a natural environment and was termed “natural transplant” (NT). The average annual air temperature is 2 °C, with extremes of 11.5 °C (maximum) and –8.9 °C (minimum). The annual precipitation is approximately 550 mm, 80% of which falls in the short summer growing season between May and September. Hezuo station is dominated by Kobresia humilis, Pedicularis kansuensis, Heteropappus altaicus, Stellera chamaejasme, Aconitum gymnandrum and Nepeta pratti, which bloom at the same time as G. officinalis.The higher-elevation transplanted plot was located at the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences on the northeast Qinghai-Tibet Plateau (henceforth referred to as the high-elevation environment (HE) (lat. 37°37′N, long. 101°19′ E, alt. 3200 m). The average annual air temperature was –1.7 °C, with extremes of 27.6 °C (maximum) and –37.1 °C (minimum). The annual precipitation ranged between 426 and 860 mm, mainly in July and August.The lower-elevation transplanted plot was located at the Datong ecological agriculture experimental station of the Northwest Institute of Plateau Biology on the transition zone between Qinghai-Tibet Plateau and loess plateau (henceforth referred to as the low-elevation environment (LE)) (lat. 34°53′ N, long. 101°53′ E, alt. 2900 m). The average annual air temperature was 7.6 °C, with extremes of 34.6 °C (maximum) and –18.9 °C (minimum). The annual precipitation was approximately 380 mm, mainly in July and August. The study area was dominated by cultivated crops.Robust seedlings with floral buds were selected for transplantation. The density of G. officinalis under the NE was approximately 1.5 plants/m2; therefore, we planted individuals at the same plant density in all transplanted plots. Moreover, more than 300 robust seedlings of G. officinalis were transplanted to each transplanted plot. The total planting area was greater than 200 m2 at each plot. The transplanted seedlings flowered in the summer, and we conducted our experiments during the following 2 years (2016–2017).Flowing phenology and flower durationTo observe flowering phenology, three 1 × 10-m areas were created within each experimental plot in 2016. In each plot, flower opening and duration were monitored and recorded every morning until all flowers withered.At the full anthesis phase of G. officinalis in 2016, 10 plants from each plot were randomly selected. On each plant, two buds at the middle position of the inflorescence were selected, and the floral duration of all the selected buds was monitored and recorded. The pollen (male phase) and stigma (female phase) presentations were monitored and recorded.Floral display and reproductive allocationAt the full-bloom stage, 50 single plants were selected from each plot to test the inflorescence traits. Stem length (the distance from the stem base to apex) was measured by a straightedge. The number of sprays on each plant and the average flower numbers (including buds and fruits) on each spray were counted.We selected 100–150 fully open flowers on different plants in each population to test the flower sizes at each plot. To avoid the position effect as much as possible, we did not choose terminal flowers. The length and width (diameter) of the flowers in each plot were measured by Vernier calipers. To test the sexual allocation changes in G. officinalis among the three plots, 30 buds on different plants in each plot were selected randomly. Then, the pollen numbers (PNs) and ovule numbers (ONs) were counted. The pollen/ovule ratios (P/O) were calculated as P/O = pollen numbers in all five anthers/ovule numbers21.Sampling dates corresponded to the height of the flowering season at each site (mid-August in the LE and early September in the NE and HE) before fruiting had occurred. While fresh, the aboveground parts of 30 fully flowering plants per site were dissected into inflorescences, peduncles, leaves, and stems. Plant material was oven-dried at 70 °C for 3 days, and the dry weights were obtained to the nearest 0.1 mg on an analytical balance (Ohaus). The inflorescence and peduncle fractions of each plant were summed to provide a measure of reproductive biomass (R), and the leaf and stem fractions of each plant were summed to provide a measure of vegetative biomass (V). The reproductive allocation (RA) was calculated as RA = R/(R + V).Observation of pollinatorsThe floral visitors to G. officinalis were recorded in the three plots. Ten neighbouring inflorescences on different individual plants were selected at random and labelled. Before observation, we counted all the open flowers on one inflorescence and then recorded the number of flowers visited by pollinators. We observed these flowers between 9:00 a.m. and 6:00 p.m. in each plot during 2016 and 2017. In total, observations were carried out for 65 h in each plot over the 2 years. While carrying out these observations, we stayed 2 m away from the focal flowers to observe all of the floral visitors without disturbing their foraging behaviours. The visitor species, behaviour in the flower, and visiting times of each species were recorded, and the visit frequencies of each visitor species were calculated. The visit frequency was calculated as visit frequency = visit times/visit flower numbers/hour.To identify whether flower visitors were legitimate pollinators of G. officinalis, collected visitors were observed and photographed with a stereomicroscope to identify whether G. officinalis pollen was attached to their bodies. Additionally, each visitor was observed to determine whether the reproductive structures of flowers had been touched. Visitors that were positive for all these factors were considered legitimate pollinators.Seed productionTo test the self-compatibility of G. officinalis, flowers subjected to self-pollination treatment (unopened flowers were isolated with paper bags) in 2017 on the three plots were subjected. To further analyse self-compatibility, we conducted outcrossing pollination. In addition, 30 individual inflorescences on different plants were bagged, and two buds at the same position on each inflorescence were selected. Both buds on each inflorescence were emasculated before the flowers opened. When the stigma opened, one flower was pollinated with fresh pollen from the same inflorescence or different inflorescences on the same plant (selfing), and the other was pollinated with fresh pollen from a plant 5 m away (outcrossing). To test whether facilitated selfing occurred, 30 individual plants in each plot were tagged. On each tagged plant, two individual buds were selected: one was assigned to natural pollination, and the other was assigned to emasculation (removal of all anthers before stigma lobe opening). To test whether agamospermy occurred, the flowers were subjected to emasculation treatment and isolated in three plots. Thirty buds on different plants were randomly selected, and all the anthers were removed before the flowers opened, and then all the buds were isolated with paper bags. At maturity, all fruits were collected, and all of the seeds (including mature and abortive seeds) were counted. Seed-set ratios were used to assess the reproductive success of each treatment, which were calculated by the number of mature seeds divided by the total ovules in each ovary. The facilitated selfing data were calculated as the natural seed-set ratio minus the emasculated seed-set ratio.Similarly, 30 inflorescences were tagged on different plants in each plot, and two buds were then tagged at the same position on each inflorescence; one bud was assigned to natural pollination, and the other was assigned to supplemental hand pollination when stigmas opened. For supplemental hand pollination, pollen was collected randomly from unmarked individuals at a minimum distance of 5 m from the recipient individual. Supplemental hand pollination events were conducted every day until the flower was permanently closed. When mature, all seeds were counted, and seed-set ratios were calculated. For each plot, we calculated an index of pollen limitation (IPL): IPL = 1 − (Po/Ps), where Po is the natural seed-set ratio and Ps is the supplemental hand-pollination seed-set ratio. As the seed-set ratios showed no significant difference between natural and supplemental hand pollination in the natural environment, we considered the IPL at this plot to be 0. The IPL data at the other two plots were compared using an independent-samples t test.Statistical analysisThe normality of the data was tested using one-sample Kolmogorov–Smirnov (1-K-S) tests, and then one-way ANOVAs (with Tukey’s multiple contrasts) were used to test differences in all traits among the three environments. More

  • in

    Predator interference and complexity–stability in food webs

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
    Google Scholar 
    McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).CAS 
    ADS 

    Google Scholar 
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    ADS 

    Google Scholar 
    van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: the complexity–stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
    Google Scholar 
    May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Namba, T. Multi-faceted approaches toward unravelling complex ecological networks. Popul. Ecol. 57, 3–19 (2015).
    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. & Pimm, S. L. The balance of nature?: Ecological issues in the conservation of species and communities (University of Chicago Press, 1991).MATH 

    Google Scholar 
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Google Scholar 
    Baiser, B., Gotelli, N. J., Buckley, H. L., Miller, T. E. & Ellison, A. M. Geographic variation in network structure of a nearctic aquatic food web. Glob. Ecol. Biogeogr. 21, 579–591 (2012).
    Google Scholar 
    Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).CAS 
    PubMed 

    Google Scholar 
    Takemoto, K., Kanamaru, S. & Feng, W. Climatic seasonality may affect ecological network structure: food webs and mutualistic networks. Biosystems 121, 29–37 (2014).PubMed 

    Google Scholar 
    De Angelis, D. L. Stability and connectance in food web models. Ecology 56, 238–243 (1975).
    Google Scholar 
    Borrvall, C., Ebenman, B. & Tomas Jonsson, T. J. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Google Scholar 
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B. Biol. Sci. 364, 1711–1723 (2009).
    Google Scholar 
    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).CAS 
    ADS 

    Google Scholar 
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).PubMed 

    Google Scholar 
    Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).
    Google Scholar 
    Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992).ADS 

    Google Scholar 
    Wootton, J. T. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).
    Google Scholar 
    Gellner, G. & McCann, K. S. Consistent role of weak and strong interactions in high-and low-diversity trophic food webs. Nat. Commun. 7, 1–7 (2016).
    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science (80-.) 337, 349–351 (2012).MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar 
    Kondoh, M. & Mougi, A. Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity–stability effect to arise. Popul. Ecol. 57, 21–27 (2015).
    Google Scholar 
    Mougi, A. & Kondoh, M. Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54–58 (2014).PubMed 
    MATH 
    ADS 

    Google Scholar 
    Mougi, A. & Kondoh, M. Food-web complexity, meta-community complexity and community stability. Sci. Rep. 6, 1–5 (2016).
    Google Scholar 
    Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).PubMed 

    Google Scholar 
    Kondoh, M. Foraging adaptation and the relationship between food-web complexity and stability. Science (80-.) 299, 1388–1391 (2003).CAS 

    Google Scholar 
    Kawatsu, K. & Kondoh, M. Density-dependent interspecific interactions and the complexity-stability relationship. Proc. R. Soc. B Biol. Sci. 285, 20180698 (2018).
    Google Scholar 
    Oaten, A. & Murdoch, W. W. Functional response and stability in predator-prey systems. Am. Nat. 109, 289–298 (1975).
    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    Nunney, L. The stability of complex model ecosystems. Am. Nat. 115, 639–649 (1980).MathSciNet 

    Google Scholar 
    Kartascheff, B., Guill, C. & Drossel, B. Positive complexity–stability relations in food web models without foraging adaptation. J. Theor. Biol. 259, 12–23 (2009).MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar 
    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS 
    PubMed 

    Google Scholar 
    Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 

    Google Scholar 
    Terry, J. C. D., Morris, R. J. & Bonsall, M. B. Trophic interaction modifications: an empirical and theoretical framework. Ecol. Lett. 20, 1219–1230 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).
    Google Scholar 
    Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).
    Google Scholar 
    Bolker, B., Holyoak, M., Křivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).
    Google Scholar 
    Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).PubMed 

    Google Scholar 
    Feng, J., Dakos, V. & van Nes, E. H. Does predator interference cause alternative stable states in multispecies communities?. Theor. Popul. Biol. 82, 170–176 (2012).PubMed 
    MATH 

    Google Scholar 
    Arditi, R., Callois, J.-M., Tyutyunov, Y. & Jost, C. Does mutual interference always stabilize predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).PubMed 

    Google Scholar 
    DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).
    Google Scholar 
    Rall, B. C., Guill, C. & Brose, U. Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117, 202–213 (2008).
    Google Scholar 
    Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science (80-.) 296, 1120–1123 (2002).CAS 
    ADS 

    Google Scholar 
    Havens, K. Scale and structure in natural food webs. Science (80-.) 257, 1107–1109 (1992).CAS 
    ADS 

    Google Scholar 
    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).
    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 

    Google Scholar 
    Langkilde, T. & Shine, R. Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140, 684–691 (2004).PubMed 
    ADS 

    Google Scholar 
    Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2003).
    Google Scholar 
    Franke, H. D. & Janke, M. Mechanisms and consequences of intra- and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
    Google Scholar 
    Peckarsky, B. L. Mechanisms of intra-and interspecific interference between larval stoneflies. Oecologia 85, 521–529 (1991).PubMed 
    ADS 

    Google Scholar 
    Kimura, K. & Chiba, S. Interspecific interference competition alters habitat use patterns in two species of land snails. Evol. Ecol. 24, 815–825 (2010).
    Google Scholar 
    Franke, H.-D. & Janke, M. Mechanisms and consequences of intra-and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius)(Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J. Exp. Mar. Bio. Ecol. 227, 1–21 (1998).
    Google Scholar 
    Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, E161–E173 (2013).PubMed 

    Google Scholar 
    Bolger, D. T. & Case, T. J. Intra-and interspecific interference behaviour among sexual and asexual geckos. Anim. Behav. 44, 21–30 (1992).
    Google Scholar 
    Wolff, J. O. The effects of density, food, and interspecific interference on home range size in Peromyscus leucopus and Peromyscus maniculatus. Can. J. Zool. 63, 2657–2662 (1985).
    Google Scholar 
    Hasegawa, K. & Maekawa, K. Role of visual barriers on mitigation of interspecific interference competition between native and non-native salmonid species. Can. J. Zool. 87, 781–786 (2009).
    Google Scholar 
    Denno, R. F., McClure, M. S. & Ott, J. R. Interactions in resurrected. Annu. Rev. Entomol. 40, 297–331 (1995).CAS 

    Google Scholar 
    Grether, G. F., Losin, N., Anderson, C. N. & Okamoto, K. The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biol. Rev. 84, 617–635 (2009).PubMed 

    Google Scholar 
    Carothers, J. H., Jaksić, F. M. & Jaksic, F. M. Time as a Niche difference: the role of interference competition. Oikos 42, 403 (1984).
    Google Scholar 
    Grether, G. F., Peiman, K. S., Tobias, J. A. & Robinson, B. W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 32, 760–772 (2017).PubMed 

    Google Scholar 
    Stouffer, D. B. & Novak, M. Hidden layers of density dependence in consumer feeding rates. Ecol. Lett. 24, 520–532 (2021).PubMed 

    Google Scholar 
    Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
    Google Scholar 
    Cervantes-Loreto, A., Ayers, C. A., Dobbs, E. K., Brosi, B. J. & Stouffer, D. B. The context dependency of pollinator interference: how environmental conditions and co-foraging species impact floral visitation. Ecol. Lett. 24, 1443–1454 (2021).PubMed 

    Google Scholar 
    Chen, X. & Cohen, J. E. Transient dynamics and food–web complexity in the Lotka-Volterra cascade model. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 869–877 (2001).CAS 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-.) 329, 853–856 (2010).ADS 

    Google Scholar 
    Guill, C. & Drossel, B. Emergence of complexity in evolving niche-model food webs. J. Theor. Biol. 251, 108–120 (2008).MathSciNet 
    PubMed 
    MATH 
    ADS 

    Google Scholar  More

  • in

    A 14-year time series of marine megafauna bycatch in the Italian midwater pair trawl fishery

    Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19.11, 598–604 (2004).Article 

    Google Scholar 
    Lewison, R. L. et al. Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. Proc. Natl. Acad. Sci. USA 111.14, 5271–5276 (2014).Article 

    Google Scholar 
    Davies, R. W. D., Cripps, S. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33.4, 661–672 (2009).Article 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).Article 

    Google Scholar 
    Ortuño Crespo, G. & Dunn, D. C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 74.9, 2283–2297 (2017).Article 

    Google Scholar 
    Wallace, B. P., Heppell, S. S., Lewison, R. L., Kelez, S. & Crowder, L. B. Impacts of fisheries bycatch on loggerhead turtles worldwide inferred from reproductive value analyses. J. Appl. Ecol. 45.4, 1076–1085 (2008).
    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, 2–34 (2014).Article 

    Google Scholar 
    Lotze, H. K., Mills Flemming, J. & Magera, A. M. Critical factors for the recovery of marine mammals. Conserv. Biol. 31.6, 1301–1311 (2017).Article 

    Google Scholar 
    Carpentieri, P., Nastasi, A., Sessa, M. & Srour, A. Incidental catch of vulnerable species in Mediterranean and Black Sea fisheries – A review. Studies and Reviews No. 101 (General Fisheries Commission for the Mediterranean). Rome, FAO, 2021.European Parliament, Council of the European Union. Council Regulation No. 199/2008 of 25 February 2008 concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy, OJ L 60/1, 5.3.2008, 1–12 (European Council, 2008).Savoca, M. S. et al. Comprehensive bycatch assessment in US fisheries for prioritizing management. Nat. Sustain. 3.6, 1–9 (2020).
    Google Scholar 
    Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. (ACCOBAMS Secretariat, Monaco, 2002).Casale, P. Sea turtle by-catch in the Mediterranean. Fish Fish. 12.3, 299–316 (2011).Article 

    Google Scholar 
    Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22.4, 952–964 (2008).Article 

    Google Scholar 
    Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The conservation status of sharks, rays and chimaeras in the Mediterranean Sea (IUCN, Malaga, Spain, 2016).FAO. Monitoring the incidental catch of vulnerable species in Mediterranean and Black Sea fisheries: Methodology for data collection. FAO Fisheries and Aquaculture Technical Paper No. 640. (Rome, FAO, 2019).Mazzoldi, C., Sambo, A. & Riginella, E. The Clodia database: a long time series of fishery data from the Adriatic Sea. Sci. Data 1.1, 1–8 (2014).
    Google Scholar 
    Fortibuoni, T. et al. Fish and fishery historical data since the 19th century in the Adriatic Sea, Mediterranean. Sci. Data 4.1, 1–13 (2017).
    Google Scholar 
    Mancusi, C. et al. MEDLEM database, a data collection on large Elasmobranchs in the Mediterranean and Black seas. Mediterr. Mar. Sci. 21.2, 276–288 (2020).
    Google Scholar 
    Pulcinella, J. et al. Institute for Biological Resources and Marine Biotechnologies (IRBIM), Italian National Institute for Environmental Protection and Research (ISPRA). Monitored bycatch of Mustelus mustelus, Squalus acanthias, Myliobatis aquila, Pteroplatytrygon violacea and Caretta caretta in mid-water pair trawl fishery in the northern Adriatic Sea, from 2006-2017 (2020).Cardinale, M., Osio, G. C. & Scarcella, G. Mediterranean Sea: a failure of the European fisheries management system. Front. Mar. Sci 4, 72 (2017).Article 

    Google Scholar 
    Lotze, H. K., Coll, M. & Dunne, J. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea. Ecosystems 14.2, 198–222 (2011).Article 

    Google Scholar 
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13 (2012).ADS 
    Article 

    Google Scholar 
    Romano, B. & Zullo, F. The urban transformation of Italy’s Adriatic coastal strip: Fifty years of unsustainability. Land Use Policy 38, 26–36 (2014).Article 

    Google Scholar 
    Holcer, D. & Fortuna, C.M. Status and conservation of cetaceans the Adriatic Sea. (UNEP-MAP-RAC-SPA. Malaga, 2014).Ferretti, M. Technological evolution of pelagic trawl fishery in the Adriatic, Italy. (FAO Fisheries Reports FAO, 1981).Fortuna, C. M. et al. Bycatch of cetaceans and other species of conservation concern during pair trawl fishing operations in the Adriatic Sea (Italy). Chem. Ecol. 26.S1, 65–76 (2010).Article 

    Google Scholar 
    La Mesa, G., Annunziatellis, A., Filidei, E. Jr & Fortuna, C. M. Bycatch of myliobatid rays in the central Mediterranean Sea: the influence of spatiotemporal, environmental, and operational factors as determined by generalized additive modelling. Mar. Coast. Fish 8.1, 382–394 (2016).Article 

    Google Scholar 
    Bonanomi, S., Pulcinella, J., Fortuna, C. M., Moro, F. & Sala, A. Elasmobranch bycatch in the Italian Adriatic pelagic trawl fishery. PLoS One 13.1, e0191647 (2018).Article 

    Google Scholar 
    Pulcinella, J. et al. Bycatch of loggerhead turtle (Caretta caretta) in the Italian Adriatic midwater pair trawl fishery. Front. Mar. Sci. 6, 365 (2019).Article 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016).James, D. A., DebRoy, S. & Horner, M. J. Package ‘RMySQL’. R documentation. http://cran.rproject.org/web/packages/RMySQL/RMySQL.Pdf (2012).Bonanomi, S. et al. Bycatch of marine megafauna collected on board midwater pair trawlers in the Adriatic Sea between 2006 and 2019. Marine Data Archive https://doi.org/10.14284/483 (2021).Open Geospatial Consortium OGC, 2017. GeoPackage Implementations [WWW Document]. OGC implementations. URL https://www.GeoPackage.org/implementations.html.Ferretti, F., Crowder, L. B. & Micheli, F. Marine Historical Ecology in Conservation: Applying the Past to Manage for the Future Vol. (ed. Kittinger, J. N., McClenachan, L., Gedan, K. B. & Blight L. K.) Ch. 4 (California Univ. Press, 2014).Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat. Sci. 70.12, 1723–1740 (2013).Article 

    Google Scholar 
    Orio, A. et al. Modelling indices of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly standardized trawl survey data. ICES J. Mar. Sci. 74.5, 1322–1333 (2017).Article 

    Google Scholar 
    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5.5, 349–359 (2012).Article 

    Google Scholar 
    Wickham, H. The tidyverse. R package ver, 1(1), 1 (2017).Bivand, R. et al. rgdal: bindings for the geospatial data abstraction library 2017. R package version 0.8-13 (2018).Pebesma, E. J. Simple features for R: Standardized support for spatial vector data. R J. 10(1), 439 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (2nd ed.). New York, NY: Springer (2016).Hijmans, R. J., Williams, E. & Vennes, C. The” geosphere” package (Version 1.2. 1) 2010. More

  • in

    Using citizen science to test for acoustic niche partitioning in frogs

    Schwartz, J. J. & Bee, M. A. in Animal communication and noise (ed Henrik Brumm) 91–132 (Springer, 2013).Wollerman, L. Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim. Behav. 57, 529–536. https://doi.org/10.1006/anbe.1998.1013 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerhardt, H. C. & Schwartz, J. J. Interspecific interactions in anuran courtship. Amphib. Biol. 2, 603–632 (1995).
    Google Scholar 
    Gröning, J. & Hochkirch, A. Reproductive interference between animal species. Q. Rev. Biol. 83, 257–282 (2008).Article 

    Google Scholar 
    Popp, J. W., Ficken, R. W. & Reinartz, J. A. Short-term temporal avoidance of interspecific acoustic interference among forest birds. Auk 102, 744–748. https://doi.org/10.1093/auk/102.4.744 (1985).Article 

    Google Scholar 
    Luther, D. A. Signaller: Receiver coordination and the timing of communication in Amazonian birds. Biol. Let. 4, 651–654 (2008).Article 

    Google Scholar 
    Brumm, H. Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J. Comp. Physiol. A. 192, 1279–1285 (2006).Article 

    Google Scholar 
    Farina, A. Soundscape ecology: principles, patterns, methods and applications. (Springer, 2013).Krause, B. L. The niche hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newsl. 6, 6–10 (1993).
    Google Scholar 
    Littlejohn, M. & Martin, A. Acoustic interaction between two species of leptodactylid frogs. Anim. Behav. 17, 785–791. https://doi.org/10.1016/S0003-3472(69)80027-8 (1969).Article 

    Google Scholar 
    Ficken, R. W., Ficken, M. S. & Hailman, J. P. Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183, 762–763. https://doi.org/10.1126/science.183.4126.762 (1974).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). Afr. Zool. 47, 60–73 (2012).Article 

    Google Scholar 
    Lima, M., Pederassi, J., Pineschi, R. & Barbosa, D. Acoustic niche partitioning in an anuran community from the municipality of Floriano, Piauí Brazil. Brazil. J. Biol. 79, 566–576 (2019).CAS 
    Article 

    Google Scholar 
    Gottsberger, B. & Gruber, E. Temporal partitioning of reproductive activity in a neotropical anuran community. J. Trop. Ecol. 1, 271–280 (2004).Article 

    Google Scholar 
    Villanueva-Rivera, L. J. Eleutherodactylus frogs show frequency but no temporal partitioning: Implications for the acoustic niche hypothesis. PeerJ 2, e496 (2014).Article 

    Google Scholar 
    Bignotte-Giró, I. & López-Iborra, G. M. Acoustic niche partitioning in five Cuban frogs of the genus Eleutherodactylus. Amphibia-Reptilia 40, 1–11 (2019).Article 

    Google Scholar 
    Hödl, W. Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia 28, 351–363 (1977).ADS 
    Article 

    Google Scholar 
    Schmidt, A. K., Römer, H. & Riede, K. Spectral niche segregation and community organization in a tropical cricket assemblage. Behav. Ecol. 24, 470–480. https://doi.org/10.1093/beheco/ars187 (2013).Article 

    Google Scholar 
    Gotelli, N. J. & Graves, G. R. Null models in ecology. (1996).Chek, A. A., Bogart, J. P. & Lougheed, S. C. Mating signal partitioning in multi-species assemblages: A null model test using frogs. Ecol. Lett. 6, 235–247 (2003).Article 

    Google Scholar 
    Tobias, J. A., Planqué, R., Cram, D. L. & Seddon, N. Species interactions and the structure of complex communication networks. Proc. Natl. Acad. Sci. 111, 1020–1025. https://doi.org/10.1073/pnas.1314337111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sugai, L. S., Llusia, D., Siqueira, T. & Silva, T. S. Revisiting the drivers of acoustic similarities in tropical anuran assemblages. Ecology, e03380 (2021).Hart, P. J. et al. Acoustic niche partitioning in two tropical wet forest bird communities. bioRxiv (2020).Duellman, W. E. & Trueb, L. Biology of amphibians. (McGraw-Hill Book Company, 1986).Wells, K. D. The social behaviour of anuran amphibians. Anim. Behav. 25, 666–693. https://doi.org/10.1016/0003-3472(77)90118-X (1977).Article 

    Google Scholar 
    Woinarski, J., Fisher, A. & Milne, D. Distribution patterns of vertebrates in relation to an extensive rainfall gradient and variation in soil texture in the tropical savannas of the Northern Territory, Australia. J. Trop. Ecol. 1, 381–398 (1999).Article 

    Google Scholar 
    Allen-Ankins, S. & Schwarzkopf, L. Spectral overlap and temporal avoidance in a tropical savannah frog community. Anim. Behav. 180, 1–11. https://doi.org/10.1016/j.anbehav.2021.07.024 (2021).Article 

    Google Scholar 
    Gerhardt, H. C. The evolution of vocalization in frogs and toads. Ann. Rev. Ecol. Syst. 1, 293–324 (1994).Article 

    Google Scholar 
    Rowley, J. J. & Callaghan, C. T. The FrogID dataset: expert-validated occurrence records of Australia’s frogs collected by citizen scientists. ZooKeys 912, 139 (2020).Article 

    Google Scholar 
    Zelick, R. & Narins, P. M. Characterization of the advertisement call oscillator in the frogEleutherodactylus coqui. J. Comp. Physiol. A. 156, 223–229 (1985).Article 

    Google Scholar 
    Schwartz, J. J. & Wells, K. D. An experimental study of acoustic interference between two species of neotropical treefrogs. Anim. Behav. 31, 181–190. https://doi.org/10.1016/S0003-3472(83)80187-0 (1983).Article 

    Google Scholar 
    Smith, M. J. & Hunter, D. Temporal and geographic variation in the advertisement call of the booroolong frog (Litoria booroolongensis: Anura: Hylidae). Ethology 111, 1103–1115 (2005).Article 

    Google Scholar 
    Baraquet, M., Grenat, P. R., Salas, N. E. & Martino, A. L. Geographic variation in the advertisement call of Hypsiboas cordobae (Anura, Hylidae). Acta ethologica 18, 79–86 (2015).Ziegler, L., Arim, M. & Bozinovic, F. Intraspecific scaling in frog calls: The interplay of temperature, body size and metabolic condition. Oecologia 181, 673–681 (2016).ADS 
    Article 

    Google Scholar 
    Navas, C. A. & Bevier, C. R. Thermal dependency of calling performance in the eurythermic frog Colostethus subpunctatus. Herpetologica, 384–395 (2001).Lougheed, S. C., Austin, J. D., Bogart, J. P., Boag, P. T. & Chek, A. A. Multi-character perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. BMC Evol. Biol. 6, 1–16 (2006).Article 

    Google Scholar 
    Littlejohn, M. Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution, 234–243 (1965).Lemmon, E. M. Diversification of conspecific signals in sympatry: geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution: International Journal of Organic Evolution 63, 1155–1170 (2009).Jansen, M., Plath, M., Brusquetti, F. & Ryan, M. J. Asymmetric frequency shift in advertisement calls of sympatric frogs. Amphibia-Reptilia 37, 137–152 (2016).Article 

    Google Scholar 
    Jang, Y. & Gerhardt, H. Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae). J. Evol. Biol. 19, 459–472 (2006).CAS 
    Article 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8, 714–716 (2012).Article 

    Google Scholar 
    Hopkins, J. M., Edwards, W., Laguna, J. M. & Schwarzkopf, L. An endangered bird calls less when invasive birds are calling. J. Avian Biol. 52, 1 (2021).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19, 675–690 (2017).Article 

    Google Scholar 
    Wilczynski, W. & Ryan, M. J. in Geographic Variation in Behavior (eds S. A. Foster & J. A. Endler) 234–261 (Oxford University Press, 1999).Schwartz, J. J. & Gerhardt, H. C. Spatially mediated release from auditory masking in an anuran amphibian. J. Comp. Physiol. A. 166, 37–41 (1989).Article 

    Google Scholar 
    da Silveira Vasconcelos, T. & de Cerqueira Rossa-Feres, D. Habitat heterogeneity and use of physical and acoustic space in anuran communities in Southeastern Brazil. Phyllomedusa J. Herpetol. 7, 127–142 (2008).Herrick, S. Z., Wells, K. D., Farkas, T. E. & Schultz, E. T. Noisy neighbors: Acoustic interference and vocal interactions between two syntopic species of Ranid frogs, Rana clamitans and Rana catesbeiana. J. Herpetol. 52, 176–184. https://doi.org/10.1670/17-049 (2018).Article 

    Google Scholar 
    Rowley, J. J. et al. FrogID: citizen scientists provide validated biodiversity data on frogs of Australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
    Google Scholar 
    Koehler, J. et al. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251, 1–124 (2017).Article 

    Google Scholar 
    Tonini, J. F. R. et al. Allometric escape from acoustic constraints is rare for frog calls. Ecol. Evol. 10, 3686–3695. https://doi.org/10.1002/ece3.6155 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anstis, M. et al. Revision of the water-holding frogs, Cyclorana platycephala (Anura: Hylidae), from arid Australia, including a description of a new species. Zootaxa 4126, 451–479 (2016).Article 

    Google Scholar 
    Cardoso, G. C. Using frequency ratios to study vocal communication. Anim. Behav. 85, 1529–1532 (2013).Article 

    Google Scholar 
    Narins, P. & Zelick, R. in The evolution of the amphibian auditory system (eds B Fritzsch et al.) 511–536 (John Wiley and Sons, 1988).Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H. & Hödl, W. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proc. Natl. Acad. Sci. 108, 17058–17063 (2011).ADS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Kassambara, A. & Mundt, F. factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020). More

  • in

    Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton

    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 

    Google Scholar 
    Wietz M, Gram L, Jørgensen B, Schramm A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat Microbial Ecol. 2010;61:179–89.
    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C, et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appli Environ Microbiol. 2000;66:4237–46.
    Google Scholar 
    González JM, Moran MA. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol. 1997;63:4237–42.PubMed 
    PubMed Central 

    Google Scholar 
    Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alavi M, Miller T, Erlandson K, Schneider R, Belas R. Bacterial community associated with Pfiesteria‐like dinoflagellate cultures. Environ Microbiol. 2001;3:380–96.CAS 
    PubMed 

    Google Scholar 
    Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol. 2005;71:3483–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep Sea Res Top Stud Oceanogr. 2002;49:3017–38.CAS 

    Google Scholar 
    Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R, Burkill PH. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol. 2001;3:304–11.CAS 
    PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 

    Google Scholar 
    Voget S, Wemheuer B, Brinkhoff T, Vollmers J, Dietrich S, Giebel H-A, et al. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J. 2015;9:371–84.CAS 
    PubMed 

    Google Scholar 
    Billerbeck S, Wemheuer B, Voget S, Poehlein A, Giebel H-A, Brinkhoff T, et al. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage. Nat Microbiol. 2016;1:16063.CAS 
    PubMed 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 

    Google Scholar 
    Amin S, Hmelo L, van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 2019;13:2536–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.CAS 
    PubMed 

    Google Scholar 
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.CAS 
    PubMed 

    Google Scholar 
    Levine NM, Toole DA, Neeley A, Bates NR, Doney SC, Dacey JW. Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurements. Environ Chem. 2016;13:302–13.CAS 

    Google Scholar 
    Kiene RP. Turnover of dissolved DMSP in estuarine and shelf waters of the northern Gulf of Mexico. In Biological and environmental chemistry of DMSP and related sulfonium compounds. Boston, MA: Springer; 1996. pp. 337–49.Kiene RP, Linn LJ. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol Oceanogr. 2000;45:849–61.CAS 

    Google Scholar 
    Curson AR, Todd JD, Sullivan MJ, Johnston AW. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol. 2011;9:849–59.CAS 
    PubMed 

    Google Scholar 
    Simó R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol. 2001;16:287–94.PubMed 

    Google Scholar 
    Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 1987;326:655–61.CAS 

    Google Scholar 
    Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varaljay VA, Howard EC, Sun S, Moran MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Appl Environ Microbiol. 2010;76:609–17.CAS 
    PubMed 

    Google Scholar 
    Varaljay VA, Robidart J, Preston CM, Gifford SM, Durham BP, Burns AS, et al. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate. ISME J. 2015;9:1677.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ledyard KM, DeLong EF, Dacey JW. Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch Microbiol. 1993;160:312–8.CAS 

    Google Scholar 
    Todd JD, Kirkwood M, Newton-Payne S, Johnston AW. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 2012;6:223–6.CAS 
    PubMed 

    Google Scholar 
    Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Green RT, Johnston AW. DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol. 2011;13:427–38.CAS 
    PubMed 

    Google Scholar 
    Todd J, Curson A, Dupont C, Nicholson P, Johnston A. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol. 2009;11:1376–85.CAS 
    PubMed 

    Google Scholar 
    Todd JD, Curson AR, Nikolaidou‐Katsaraidou N, Brearley CA, Watmough NJ, Chan Y, et al. Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol. 2010;12:327–43.CAS 
    PubMed 

    Google Scholar 
    Curson A, Rogers R, Todd J, Brearley C, Johnston A. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate‐changing gas dimethylsulfide in several marine α‐proteobacteria and Rhodobacter sphaeroides. Environ Microbiol. 2008;10:757–67.CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:646.PubMed 
    PubMed Central 

    Google Scholar 
    Stoica E, Herndl GJ. Bacterioplankton community composition in nearshore waters of the NW Black Sea during consecutive diatom and coccolithophorid blooms. Aquat Sci. 2007;69:413–8.CAS 

    Google Scholar 
    Giebel HA, Brinkhoff T, Zwisler W, Selje N, Simon M. Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean. Environ Microbiol. 2009;11:2164–78.CAS 
    PubMed 

    Google Scholar 
    Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016;10:39–50.CAS 
    PubMed 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel H-A, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.CAS 
    PubMed 

    Google Scholar 
    Alonso-Gutiérrez J, Lekunberri I, Teira E, Gasol JM, Figueras A, Novoa B. Bacterioplankton composition of the coastal upwelling system of ‘Ría de Vigo’, NW Spain. FEMS Microbiol Ecol. 2009;70:493–505.PubMed 

    Google Scholar 
    Brown MV, Van De Kamp J, Ostrowski M, Seymour JR, Ingleton T, Messer LF, et al. Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci Data. 2018;5:180130.PubMed 
    PubMed Central 

    Google Scholar 
    Ajani P, Hallegraeff G, Allen D, Coughlan A, Richardson A, Armand L, et al. Establishing baselines: a review of eighty years of phytoplankton diversity and biomass in southeastern Australia. Oceanogr Mar Biol. 2016;54:387–412.
    Google Scholar 
    Matear R, Chamberlain M, Sun C, Feng M. Climate change projection of the Tasman Sea from an eddy‐resolving ocean model. J Geophys Res Oceans. 2013;118:2961–76.
    Google Scholar 
    Ostrowski M, Seymour J, Messer L, Varkey D, Goosen K, Smith M, et al. Status of Australian marine microbial assemblages. In State and Trends of Australia’s Ocean Report, Integrated Marine Observing System (IMOS). 2020. https://doi.org/10.26198/5e16aa3e49e7f.Lynch TP, Morello EB, Evans K, Richardson AJ, Rochester W, Steinberg CR, et al. IMOS National Reference Stations: a continental-wide physical, chemical and biological coastal observing system. PloS ONE. 2014;9:e113652.PubMed 
    PubMed Central 

    Google Scholar 
    Lynch T, Roughan M, Mclaughlan D, Hughes D, Cherry D, Critchley G, et al. A national reference station infrastructure for Australia – Using telemetry and central processing to report multi-disciplinary data streams for monitoring marine ecosystem response to climate change. In: OCEANS 2008. 2008. https://doi.org/10.1109/OCEANS.2008.5151856.Appleyard SA, Abell G, Watson R. Tackling microbial related issues in cultured shellfish via integrated molecular and water chemistry approaches. Clayton: CSIRO Marine and Atmospheric Research; 2013.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 

    Google Scholar 
    Duarte CM. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–4.
    Google Scholar 
    Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:1–7.
    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environm Microbiol. 2014;16:2659–71.CAS 

    Google Scholar 
    Dadon-Pilosof A, Conley KR, Jacobi Y, Haber M, Lombard F, Sutherland KR, et al. Surface properties of SAR11 bacteria facilitate grazing avoidance. Nat Microbiol. 2017;2:1608–15.PubMed 

    Google Scholar 
    Lane D. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991, pp. 115–75.Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 1985;82:6955–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piredda R, Tomasino M, D’erchia A, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol Ecol. 2017;93.Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gordon A, Hannon G. Fastx-toolkit. FASTQ/A short-reads preprocessing tools. 2010;5. http://hannonlab.cshl.edu/fastx_toolkit/.Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucl Acids Res. 2014;42:D643–8.CAS 
    PubMed 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl Acids Res. 2012;41:D597–604.PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11:1483–99.PubMed 
    PubMed Central 

    Google Scholar 
    Brinkhoff T, Giebel H-A, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008;189:531–9.CAS 
    PubMed 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981:1229–42.Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.CAS 
    PubMed 

    Google Scholar 
    emcparland. emcparland/dmspOTUs: first release. 2021. https://doi.org/10.5281/zenodo.5090864.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 

    Google Scholar 
    Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.
    Google Scholar 
    McParland EL, Levine NM. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnol Oceanogr. 2019;64:757–73.CAS 

    Google Scholar 
    Reshef DN, Reshef YA, Sabeti PC, Mitzenmacher M. An empirical study of the maximal and total information coefficients and leading measures of dependence. Ann Appl Stat. 2018;12:123–55.
    Google Scholar 
    Hammer Ø, Harper DA, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, González JM, Kiene RP. Linking a bacterial taxon to sulfur cycling in the sea: studies of the marine Roseobacter group. Geomicrobiol J. 2003;20:375–88.CAS 

    Google Scholar 
    Harris G, Nilsson C, Clementson L, Thomas D. The water masses of the east coast of Tasmania: seasonal and interannual variability and the influence on phytoplankton biomass and productivity. Mar Freshw Res. 1987;38:569–90.CAS 

    Google Scholar 
    Kiene RP, Linn LJ, González J, Moran MA, Bruton JA. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol. 1999;65:4549–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raina J-B, Tapiolas D, Willis BL, Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol. 2009;75:3492–501.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brinkmeyer R, Rappé M, Gallacher S, Medlin L. Development of clade-(Roseobacter and Alteromonas) and taxon-specific oligonucleotide probes to study interactions between toxic dinoflagellates and their associated bacteria. Eur J Phycol. 2000;35:315–29.
    Google Scholar 
    Töpel M, Pinder MI, Johansson ON, Kourtchenko O, Clarke AK, Godhe A. Complete genome sequence of novel Sulfitobacter pseudonitzschiae Strain SMR1, isolated from a culture of the marine diatom Skeletonema marinoi. J Genomics. 2019;7:7.PubMed 
    PubMed Central 

    Google Scholar 
    Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.CAS 
    PubMed 

    Google Scholar 
    Yang Q, Ge Y-M, Iqbal NM, Yang X, Zhang X-l. Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. Antonie Van Leeuwenhoek. 2021;114:1091–106.CAS 
    PubMed 

    Google Scholar 
    Ankrah NY, Lane T, Budinoff CR, Hadden MK, Buchan A. Draft genome sequence of Sulfitobacter sp. CB2047, a member of the Roseobacter clade of marine bacteria, isolated from an emiliania huxleyi bloom. Genome Announc. 2014;2:e01125–14.PubMed 
    PubMed Central 

    Google Scholar 
    Kwak M-J, Lee J-S, Lee KC, Kim KK, Eom MK, Kim BK, et al. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacternoctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol. 2014;64:3760–7.PubMed 

    Google Scholar 
    Zhang F, Fan Y, Zhang D, Chen S, Bai X, Ma X, et al. Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Environ Pollut. 2020;263:114475.CAS 
    PubMed 

    Google Scholar 
    Keller MD. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol Oceanogr. 1989;6:375–82.
    Google Scholar 
    McParland EL, Lee MD, Webb EA, Alexander H, Levine NM. DMSP synthesis genes distinguish two types of DMSP producer phenotypes. Environ Microbiol. 2021;23:1656–69.CAS 
    PubMed 

    Google Scholar 
    Galí M, Simó R. A meta‐analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox. Glob Biogeochem Cycles. 2015;29:496–515.
    Google Scholar 
    Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.PubMed 
    PubMed Central 

    Google Scholar 
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98.CAS 
    PubMed 

    Google Scholar 
    Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol. 2004;70:4692–701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seymour JR, Simó R, Ahmed T, Stocker R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science. 2010;329:342–5.CAS 
    PubMed 

    Google Scholar  More

  • in

    Reply to: Conclusions of low extinction risk for most species of reef-building corals are premature

    Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat. Ecol. Evol. 5, 663–669 (2021).Article 

    Google Scholar 
    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008).CAS 
    Article 

    Google Scholar 
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).CAS 
    Article 

    Google Scholar 
    Muir, P. R. et al. Conclusions of low extinction risk for most species of reef-building corals are premature. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01659-5 (2022).Richards, Z. T., Syms, C., Wallace, C. C., Muir, P. R. & Willis, B. L. Multiple occupancy–abundance patterns in staghorn coral communities. Divers. Distrib. 19, 884–895 (2013).Article 

    Google Scholar 
    Zvuloni, A., Artzy-Randrup, Y., Stone, L., van Woesik, R. & Loya, Y. Ecological size–frequency distributions: how to prevent and correct biases in spatial sampling. Limnol. Oceanogr. Methods 6, 144–153 (2008).Article 

    Google Scholar  More