More stories

  • in

    Beyond Demonstrators—tackling fundamental problems in amplifying nature-based solutions for the post-COVID-19 world

    1.Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447 (2020).CAS 

    Google Scholar 
    2.European Commission. Towards an EU Research and Innovation policy agenda for nature-based solutions and renaturing cities. Final Report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities, (European Commission, Brussels, 2015).3.Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 98, 20–29 (2019).
    Google Scholar 
    4.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).
    Google Scholar 
    5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain 2, 29–38 (2019).
    Google Scholar 
    6.Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G. & Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Greening 37, 3–12 (2019).
    Google Scholar 
    7.Pan, H., Page, J., Cong, C., Barthel, S. & Kalantari, Z. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 35, 100297 (2021).
    Google Scholar 
    8.Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).CAS 

    Google Scholar 
    9.Hack, J. & Schröter, B. Nature-based solutions for river restoration in metropolitan areas. Brears, R. The Palgrave Encyclopedia of Urban and Regional Futures. 1–10 (Springer International Publishing, Cham, 2021).10.Lam, D. P. M. et al. Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transform 2, 3 (2020).
    Google Scholar 
    11.Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain 3, e15 (2020).
    Google Scholar 
    12.Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).CAS 

    Google Scholar 
    13.Sabel, C. F. & Zeitlin, J. Experimentalist Governance. Levi-Faur, D. The Oxford Handbook of Governance. 169–183 (Oxford Univ. Press, Oxford, 2012).14.Kern, K. Cities as leaders in EU multilevel climate governance: embedded upscaling of local experiments in Europe. Environ. Polit. 28, 125–145 (2019).
    Google Scholar 
    15.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
    Google Scholar 
    16.Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M. & Stillwell, A. S. The green experiment: cities, green stormwater infrastructure, and sustainability. Sustainability 9 (2017).17.McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 1, 5 (2021).
    Google Scholar 
    18.Scoones, I. et al. Transformations to sustainability: combining structural, systemic and enabling approaches. Curr. Opin. Environ. Sustain. 42, 65–75 (2020).
    Google Scholar 
    19.Han, S. & Kuhlicke, C. Reducing hydro-meteorological risk by nature-based solutions: what do we know about people’s perceptions? Water 11, 2599 (2019).
    Google Scholar 
    20.Albert, C. et al. Planning nature-based solutions: principles, steps, and insights. Ambio, 1446–1461 (2020).21.Matthews, T., Lo, A. Y. & Byrne, J. A. Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Planning 138, 155–163 (2015).
    Google Scholar 
    22.Myllyvirta, L. China’s CO2 emissions have surged back from the coronavirus lockdown, rising by 4-5% year-on-year in May, analysis of new government data shows. https://www.carbonbrief.org/analysis-chinas-co2-emissions-surged-past-pre-coronavirus-levels-in-may (2020).23.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Preprint at https://doi.org/10.31219/osf.io/3wx5a (2020).24.Mahoney, J. Path dependence in historical sociology. Theory Soc. 29, 507–548 (2000).
    Google Scholar 
    25.Davies, C. & Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 80, 406–409 (2019).
    Google Scholar 
    26.Kuzemko, C. et al. Covid-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 68, 101685 (2020).
    Google Scholar 
    27.Kanda, W. & Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 68, 101666 (2020).
    Google Scholar 
    28.Cohen, M. J. Does the COVID-19 outbreak mark the onset of a sustainable consumption transition? Sustain.: Sci. Pract. Policy 16, 1–3 (2020).
    Google Scholar 
    29.Pearson, R. M., Sievers, M., McClure, E. C., Turschwell, M. P. & Connolly, R. M. COVID-19 recovery can benefit biodiversity. Science 368, 838 (2020).
    Google Scholar 
    30.Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).CAS 

    Google Scholar 
    31.Kavousi, J., Goudarzi, F., Izadi, M. & Gardner, C. J. Conservation needs to evolve to survive in the post-pandemic world. Glob. Change Biol. 26, 4651–4653 (2020).
    Google Scholar 
    32.Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec., 1–6 (2020).33.Khetan, A. K. COVID-19: why declining biodiversity puts us at greater risk for emerging infectious diseases, and what we can do. J. Gen. Intern. Med. 35, 2746–2747 (2020).
    Google Scholar 
    34.Sugiyama, T. et al. Four Recommendations for Greener, Healthier Cities in the Post-Pandemic. https://www.thenatureofcities.com/2020/06/30/four-recommendations-for-greener-healthier-cities-in-the-post-pandemic/ (2020).35.Thorslund, J. et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
    Google Scholar 
    36.Albert, C. et al. Addressing societal challenges through nature-based solutions: how can landscape planning and governance research contribute? Landsc.Urban Plan. 182, 12–21 (2019).
    Google Scholar 
    37.Albert, C., Von Haaren, C., Othengrafen, F., Krätzig, S. & Saathoff, W. Scaling policy conflicts in ecosystem services governance: a framework for spatial. Analysis. J. Environ. Policy Plan. 19, 574–592 (2017).
    Google Scholar 
    38.Hutchins, M. G. et al. Why scale is vital to plan optimal nature-based solutions for resilient cities. Environ. Res. Lett. 16, 044008 (2021).
    Google Scholar 
    39.Raška, P., Slavíková, L. & Sheehan, J. in Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge 9–20 (Springer International Publishing, 2019).40.Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466 (2019).
    Google Scholar 
    41.Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S. & Torres, A. S. A framework for assessing benefits of implemented nature-based solutions. Sustainability 11, 6788 (2019).
    Google Scholar 
    42.Wurzel, R. K. W., Liefferink, D. & Torney, D. Pioneers, leaders and followers in multilevel and polycentric climate governance. Environ. Polit. 28, 1–21 (2019).
    Google Scholar 
    43.Frantzeskaki, N. et al. Examining the policy needs for implementing nature-based solutions in cities: findings from city-wide transdisciplinary experiences in Glasgow (UK), Genk (Belgium) and Poznań (Poland). Land Use Policy 96, 104688 (2020).
    Google Scholar 
    44.Zingraff-Hamed, A. et al. Governance models for nature-based solutions: cases from Germany. Ambio 50, 1610–1627 (2020).
    Google Scholar 
    45.Toxopeus, H. et al. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 105, 102839 (2020).
    Google Scholar 
    46.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
    Google Scholar 
    47.Pérez Rubi, M. & Hack, J. Co-design of experimental nature-based solutions for decentralized dry-weather runoff treatment retrofitted in a densely urbanized area in Central America. Ambio 50, 1498–1513 (2021).
    Google Scholar 
    48.Chapa, F., Pérez, M. & Hack, J. Experimenting transition to sustainable urban drainage systems—identifying constraints and unintended processes in a tropical highly urbanized. Watershed. Water 12, 3554 (2020).
    Google Scholar 
    49.Chen, V., Bonilla Brenes, J. R., Chapa, F. & Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. Ambio 50, 1462–1476 (2021).
    Google Scholar 
    50.Hüesker, F. & Moss, T. The politics of multi-scalar action in river basin management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 42, 38–47 (2015).
    Google Scholar 
    51.WBCSD. Incentives for Natural Infrastructure: review of existing policies, incentives and barriers related to permitting, finance and insurance of natural infrastructure. (World Business Council for Sustainable Development, Geneva, 2017).52.Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).
    Google Scholar 
    53.Toxopeus, H. S. Taking Action for Urban Nature: Business Model Catalogue, NATURVATION Guide (2019).54.Duraiappah, A. K. et al. Managing the mismatches to provide ecosystem services for human well-being: a conceptual framework for understanding the New Commons. Curr. Opin.Environ. Sustain 7, 94–100 (2014).
    Google Scholar 
    55.Young, O. R. Vertical interplay among scale-dependent environmental and resource regimes. Ecol. Soc. 11, 27 (2006).
    Google Scholar 
    56.Cumming, G. S., Cumming, D. H. M. & Redman, C. L. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol. Soc. 11, 14 (2006).
    Google Scholar 
    57.Naidoo, R. & Fisher, B. Sustainable development goals: pandemic reset. Nature 583, 198–201 (2020).CAS 

    Google Scholar 
    58.Fyfe, J. C. et al. Quantifying the influence of short-term emission reductions on climate. Sci. Adv. 7, eabf7133 (2021).CAS 

    Google Scholar 
    59.Linnér, B.-O. & Wibeck, V. Conceptualising variations in societal transformations towards sustainability. Environ. Sci.Pol. 106, 221–227 (2020).
    Google Scholar 
    60.Harrabin, R. Coronavirus: Lockdown ‘could boost wild flowers’. https://www.bbc.com/news/science-environment-52215273 (2020).61.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).
    Google Scholar 
    62.Honey-Rosés, J. et al. The impact of COVID-19 on public space: an early review of the emerging questions—design, perceptions and inequities. Cities & Health, 1-17(2020).63.Sanyé-Mengual, E., Anguelovski, I., Oliver-Solà, J., Montero, J. I. & Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food production as a driver for innovative forms of urban agriculture. Agric. Human Values 33, 101–120 (2016).
    Google Scholar 
    64.PIANC. Guide for applying Working with Nature to navigation infrastructure projects. (Brussels, Belgium, 2018).65.Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 10, 369–382 (2012). https://doi.org/10.1080/15715124.2012.739173.66.Li, H., Ding, L., Ren, M., Li, C. & Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water (Australia) 9, 594 (2017).67.Kurth, A.-M. & Schirmer, M. Thirty years of river restoration in Switzerland: implemented measures and lessons learned. Environ. Earth Sci. 72, 2065–2079 (2014). https://doi.org/10.1007/s12665-014-3115-y.68.Petty, K. Wildflowers on road verges: an uplifting sight during the coronavirus lockdown. (2020). https://www.plantlife.org.uk/uk/blog/wildflowers-on-road-verges-an-uplifting-sight-during-the-coronavirus-lockdown. More

  • in

    Climate-related drivers of nutrient inputs and food web structure in shallow Arctic lake ecosystems

    1.Lefébure, R. et al. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Glob. Change Biol. 19, 1358–1372 (2013).ADS 

    Google Scholar 
    2.Roussel, J.-M. et al. Stable isotope analyses on archived fish scales reveal the long-term effect of nitrogen loads on carbon cycling in rivers. Glob. Change Biol. 20, 523–530 (2014).ADS 

    Google Scholar 
    3.Creed, I. F. et al. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Glob. Change Biol. 24, 3692–3714 (2018).ADS 

    Google Scholar 
    4.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Kumar, A., Yadav, J. & Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 753, 142046 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Vincent, W. F., Laurion, I., Pienitz, R. & Walter Anthony, K. M. Climate Impacts on Arctic Lake Ecosystems. In Climatic Change and Global Warming of Inland Waters (eds Goldman, C. R. et al.) 27–42 (Wiley, 2012). https://doi.org/10.1002/9781118470596.ch2.Chapter 

    Google Scholar 
    7.Kim, K.-Y. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Shaver, G. R. & Chapin, F. S. Response to fertilization by various plant growth forms in an Alaskan tundra: Nutrient accumulation and growth. Ecology 61, 662–675 (1980).CAS 

    Google Scholar 
    9.Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).ADS 

    Google Scholar 
    10.Arctic Climate Impact Assessment. Arctic climate impact assessment (Cambridge University Press, Cambridge, 2005).
    Google Scholar 
    11.Hay, W. W. The accelerating rate of global change. Rendiconti Lincei 25, 29–48 (2014).
    Google Scholar 
    12.Prowse, T. D. et al. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO J. Hum. Environ. 35, 347–358 (2006).CAS 

    Google Scholar 
    13.Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Ward, R. D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Sci. Total Environ. 748, 141343 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Lin, J., Huang, J., Prell, C. & Bryan, B. A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 763, 143012 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).ADS 

    Google Scholar 
    17.Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 045010 (2019).ADS 
    CAS 

    Google Scholar 
    18.St. Pierre, K. A. et al. Contemporary limnology of the rapidly changing glacierized watershed of the world’s largest High Arctic lake. Sci. Rep. 9, 4447 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Woelders, L. et al. Recent climate warming drives ecological change in a remote high-Arctic lake. Sci. Rep. 8, 6858 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Blaen, P. J., Milner, A. M., Hannah, D. M., Brittain, J. E. & Brown, L. E. Impact of changing hydrology on nutrient uptake in high Arctic rivers: Nutrient uptake in Arctic rivers. River Res. Appl. 30, 1073–1083 (2014).
    Google Scholar 
    21.Szkokan-Emilson, E. J. et al. Dry conditions disrupt terrestrial-aquatic linkages in northern catchments. Glob. Change Biol. 23, 117–126 (2017).ADS 

    Google Scholar 
    22.Thackeray, S. J. et al. Food web de-synchronization in England’s largest lake: An assessment based on multiple phenological metrics. Glob. Change Biol. 19, 3568–3580 (2013).ADS 

    Google Scholar 
    23.Pacheco, J. P. et al. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes. Sci. Total Environ. 797, 148998 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Kuijper, D. P. J., Ubels, R. & Loonen, M. J. J. E. Density-dependent switches in diet: A likely mechanism for negative feedbacks on goose population increase?. Polar Biol. 32, 1789–1803 (2009).
    Google Scholar 
    25.Sjögersten, S., van der Wal, R., Loonen, M. J. J. E. & Woodin, S. J. Recovery of ecosystem carbon fluxes and storage from herbivory. Biogeochemistry 106, 357–370 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    26.Buij, R., Melman, T. C. P., Loonen, M. J. J. E. & Fox, A. D. Balancing ecosystem function, services and disservices resulting from expanding goose populations. Ambio 46, 301–318 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    27.Nishizawa, K. et al. Long-term consequences of goose exclusion on nutrient cycles and plant communities in the high-Arctic. Polar Sci. 27, 100631 (2021).
    Google Scholar 
    28.Bjerke, J. W., Tombre, I. M., Hanssen, M. & Olsen, A. K. B. Springtime grazing by Arctic-breeding geese reduces first- and second-harvest yields on sub-Arctic agricultural grasslands. Sci. Total Environ. 793, 148619 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Van Geest, G. J. et al. Goose-mediated nutrient enrichment and planktonic grazer control in Arctic freshwater ponds. Oecologia 153, 653–662 (2007).ADS 
    PubMed 

    Google Scholar 
    30.Calizza, E., Rossi, L. & Costantini, M. L. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour. PLoS ONE 8, e65186 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).
    Google Scholar 
    32.Caputi, S. S. et al. Seasonal food web dynamics in the Antarctic benthos of Tethys Bay (Ross Sea): Implications for biodiversity persistence under different seasonal sea-ice coverage. Front. Mar. Sci. 7, 594454 (2020).
    Google Scholar 
    33.Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).ADS 
    CAS 

    Google Scholar 
    34.Careddu, G. et al. Diet composition of the Italian crested newt (Triturus carnifex) in structurally different artificial ponds based on stomach contents and stable isotope analyses. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1505–1520 (2020).
    Google Scholar 
    35.Zhao, Q., De Laender, F. & Van den Brink, P. J. Community composition modifies direct and indirect effects of pesticides in freshwater food webs. Sci. Total Environ. 739, 139531 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Rossi, L., Costantini, M. L., Carlino, P., di Lascio, A. & Rossi, D. Autochthonous and allochthonous plant contributions to coastal benthic detritus deposits: A dual-stable isotope study in a volcanic lake. Aquat. Sci. 72, 227–236 (2010).CAS 

    Google Scholar 
    37.Rossi, L. et al. Antarctic food web architecture under varying dynamics of sea ice cover. Sci. Rep. 9, 12454 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Careddu, G. et al. Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuar. Coast. Shelf Sci. 154, 158–168 (2015).ADS 
    CAS 

    Google Scholar 
    39.Careddu, G. et al. Gaining insight into the assimilated diet of small bear populations by stable isotope analysis. Sci. Rep. 11, 14118 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Blais, J. M. Arctic seabirds transport marine-derived contaminants. Science 309, 445–445 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bentivoglio, F. et al. Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770, 257–272 (2016).CAS 

    Google Scholar 
    42.Rossi, L. et al. Space-time monitoring of coastal pollution in the Gulf of Gaeta, Italy, using δ15N values of Ulva lactuca, landscape hydromorphology, and Bayesian Kriging modelling. Mar. Pollut. Bull. 126, 479–487 (2018).CAS 
    PubMed 

    Google Scholar 
    43.Calizza, E. et al. Isotopic biomonitoring of N pollution in rivers embedded in complex human landscapes. Sci. Total Environ. 706, 136081 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    44.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 
    45.Mansouri, F. et al. Evidence of multi-decadal behavior and ecosystem-level changes revealed by reconstructed lifetime stable isotope profiles of baleen whale earplugs. Sci. Total Environ. 757, 143985 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    46.Hawley, K. L., Rosten, C. M., Christensen, G. & Lucas, M. C. Fine-scale behavioural differences distinguish resource use by ecomorphs in a closed ecosystem. Sci. Rep. 6, 24369 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Michener, R. H. & Lajtha, K. Stable Isotopes in Ecology and Environmental Science (Blackwell Publication, 2007).
    Google Scholar 
    48.Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).CAS 

    Google Scholar 
    49.Calizza, E. et al. Stable isotopes and digital elevation models to study nutrient inputs in high-Arctic lakes. Rendiconti Lincei 27, 191–199 (2016).
    Google Scholar 
    50.Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L. & Costantini, M. L. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS ONE 13, e0194796 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Mehlum, F. Svalbards fugler og pattedyr (Norsk polarinstitutt, 1989).
    Google Scholar 
    52.Christoffersen, K. Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia 442, 223–229 (2001).
    Google Scholar 
    53.Lakka, H.-K. The ecology of a freshwater crustacean: Lepidurus arcticus (Brachiopoda; Notostraca) in a High Arctic region. Dissertation, University of Helsinky (2013).54.Westergaard-Nielsen, A. et al. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46, 39–52 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Google Scholar 
    56.Kondoh, M. & Ninomiya, K. Food-chain length and adaptive foraging. Proc. R. Soc. B Biol. Sci. 276, 3113–3121 (2009).
    Google Scholar 
    57.Calizza, E., Costantini, M. L., Rossi, D., Carlino, P. & Rossi, L. Effects of disturbance on an urban river food web: Disturbance of a river food web. Freshw. Biol. 57, 2613–2628 (2012).
    Google Scholar 
    58.McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).PubMed 

    Google Scholar 
    59.Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities. Nature 268, 329–331 (1977).ADS 

    Google Scholar 
    60.Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 408, 578–580 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hall, S. R. Stoichiometrically explicit food webs: Feedbacks between resource supply, elemental constraints, and species diversity. Annu. Rev. Ecol. Evol. Syst. 40, 503–528 (2009).
    Google Scholar 
    62.Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J. & de Ruiter, P. C. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology 85, 1179–1192 (2004).
    Google Scholar 
    63.Stow, D. A. et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 89, 281–308 (2004).ADS 

    Google Scholar 
    64.Maher, A. I., Treitz, P. M. & Ferguson, M. A. D. Can Landsat data detect variations in snow cover within habitats of Arctic ungulates?. Wildl. Biol. 18, 75–87 (2012).
    Google Scholar 
    65.Raynolds, M. K., Walker, D. A., Verbyla, D. & Munger, C. A. Patterns of change within a tundra landscape: 22-year Landsat NDVI trends in an area of the Northern Foothills of the Brooks Range, Alaska. Arct. Antarct. Alp. Res. 45, 249–260 (2013).
    Google Scholar 
    66.Bokhorst, S. et al. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516–537 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    67.Härer, S., Bernhardt, M., Siebers, M. & Schulz, K. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. Cryosphere 12, 1629–1642 (2018).ADS 

    Google Scholar 
    68.Karlsen, S. R., Anderson, H. B., van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high Arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).ADS 

    Google Scholar 
    69.Karlsen, S. R., et al. Sentinel satellite-based mapping of plant productivity in relation to snow duration and time of green-up. https://zenodo.org/record/4704361. https://doi.org/10.5281/ZENODO.4704361 (2020).70.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sens. Environ. 246, 111872 (2020).ADS 

    Google Scholar 
    71.Layton-Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. & Loonen, M. J. J. E. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-Arctic warming. Glob. Change Biol. 26, 642–657 (2020).ADS 

    Google Scholar 
    72.Owen, M. The selection of feeding site by White-fronted geese in winter. J. Appl. Ecol. 8, 905 (1971).
    Google Scholar 
    73.Ydenberg, R. C. & Prins, H. HTh. Spring grazing and the manipulation of food quality by Barnacle geese. J. Appl. Ecol. 18, 443 (1981).
    Google Scholar 
    74.Bos, D. et al. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. J. Nat. Conserv. 13, 1–15 (2005).
    Google Scholar 
    75.Barrio, I. C. et al. Developing common protocols to measure tundra herbivory across spatial scales. Arct. Sci. https://doi.org/10.1139/as-2020-0020 (2021).Article 

    Google Scholar 
    76.Jensen, T. C. et al. Changes in trophic state and aquatic communities in high Arctic ponds in response to increasing goose populations. Freshw. Biol. 64, 1241–1254 (2019).CAS 

    Google Scholar 
    77.Bartoli, M. et al. Denitrification, nitrogen uptake, and organic matter quality undergo different seasonality in sandy and muddy sediments of a turbid estuary. Front. Microbiol. 11, 612700 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    78.van der Wal, R., van Lieshout, S. M. J. & Loonen, M. J. J. E. Herbivore impact on moss depth, soil temperature and Arctic plant growth. Polar Biol. 24, 29–32 (2001).
    Google Scholar 
    79.Wookey, P. A. et al. Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high Arctic polar semi-desert. Oikos 70, 131 (1994).
    Google Scholar 
    80.Wookey, P. A. et al. Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard. Oecologia 102, 478–489 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    81.Jefferies, R. L. Agricultural food subsidies, migratory connectivity and large-scale disturbance in arctic coastal systems: A case study. Integr. Comp. Biol. 44, 130–139 (2004).CAS 
    PubMed 

    Google Scholar 
    82.Hik, D. S. & Jefferies, R. L. Increases in the net above-ground primary production of a salt-marsh forage grass: A test of the predictions of the herbivore-optimization model. J. Ecol. 78, 180 (1990).
    Google Scholar 
    83.Rautio, M., Mariash, H. & Forsström, L. Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol. Oceanogr. 56, 1513–1524 (2011).ADS 
    CAS 

    Google Scholar 
    84.Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69, 2253–2268 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Berggren, M., Ziegler, S. E., St-Gelais, N. F., Beisner, B. E. & del Giorgio, P. A. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959 (2014).PubMed 

    Google Scholar 
    86.Stasko, A. D., Gunn, J. M. & Johnston, T. A. Role of ambient light in structuring north-temperate fish communities: Potential effects of increasing dissolved organic carbon concentration with a changing climate. Environ. Rev. 20, 173–190 (2012).CAS 

    Google Scholar 
    87.Milardi, M., Käkelä, R., Weckström, J. & Kahilainen, K. K. Terrestrial prey fuels the fish population of a small, high-latitude lake. Aquat. Sci. 78, 695–706 (2016).CAS 

    Google Scholar 
    88.Vincent, W. F. & Laybourn-Parry, J. Polar Lakes and Rivers (Oxford University Press, 2008). https://doi.org/10.1093/acprof:oso/9780199213887.001.0001.Book 

    Google Scholar 
    89.Calizza, E., Costantini, M. L., Careddu, G. & Rossi, L. Effect of habitat degradation on competition, carrying capacity, and species assemblage stability. Ecol. Evol. 7, 5784–5796 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    90.Van der Velden, S., Dempson, J. B., Evans, M. S., Muir, D. C. G. & Power, M. Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Sci. Total Environ. 444, 531–542 (2013).ADS 
    PubMed 

    Google Scholar 
    91.Kozak, N. et al. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. Sci. Total Environ. 779, 146261 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    92.Longhurst, A. R. A review of the Notostraca. Bull. Br. Mus. Nat. Hist. 3, 1–57 (1955).
    Google Scholar 
    93.King, J. L. & Hanner, R. Cryptic species in a “living fossil” lineage: Taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Mol. Phylogenet. Evol. 10, 23–36 (1998).CAS 
    PubMed 

    Google Scholar 
    94.Hessen, D. O., Rueness, E. K. & Stabell, M. Circumpolar analysis of morphological and genetic diversity in the Notostracan Lepidurus arcticus. Hydrobiologia 519, 73–84 (2004).
    Google Scholar 
    95.Pasquali, V., Calizza, E., Setini, A., Hazlerigg, D. & Christoffersen, K. S. Preliminary observations on the effect of light and temperature on the hatching success and rate of Lepidurus arcticus eggs. Ethol. Ecol. Evol. 31, 348–357 (2019).
    Google Scholar 
    96.Tanentzap, A. J. et al. Climate warming restructures an aquatic food web over 28 years. Glob. Change Biol. 26, 6852–6866 (2020).ADS 

    Google Scholar 
    97.Polvani, L. M., Previdi, M., England, M. R., Chiodo, G. & Smith, K. L. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Change 10, 130–133 (2020).ADS 
    CAS 

    Google Scholar 
    98.di Lascio, A. et al. Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecol. Indic. 28, 107–114 (2013).
    Google Scholar 
    99.Moore, I. D., Grayson, R. B. & Ladson, A. R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5, 3–30 (1991).ADS 

    Google Scholar 
    100.Vaze, J., Teng, J. & Spencer, G. Impact of DEM accuracy and resolution on topographic indices. Environ. Model. Softw. 25, 1086–1098 (2010).
    Google Scholar 
    101.Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48, 47–63 (2012).
    Google Scholar 
    102.Hall, D. K., Riggs, G. A. & Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 54, 127–140 (1995).ADS 

    Google Scholar 
    103.Vogel, S. W. Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Ann. Glaciol. 34, 53–57 (2002).ADS 

    Google Scholar 
    104.Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).ADS 

    Google Scholar 
    105.Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    106.Jensen, J. R. Remote Sensing of the Environment: An Earth Resource Perspective (Pearson Prentice Hall, 2007).
    Google Scholar 
    107.Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 11, 493–514 (2019).ADS 

    Google Scholar 
    108.Simon, G., Manuel, G., Tristan, K. & Germain, S. Algorithm Theoretical basis documentation for an operational snow cover product from Sentinel-2 and Landsat-8 data (let-it-snow) (2018). https://doi.org/10.5281/ZENODO.1414452.109.Stahl, J. & Loonen, M. J. Effects of predation risk on site selection of barnacle geese during brood-rearing. In Research on Arctic Geese, 91 (1998).110.McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 

    Google Scholar 
    111.Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. Species richness and vulnerability to disturbance propagation in real food webs. Sci. Rep. 9, 19331 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Mantel, N. & Valand, R. S. A technique of nonparametric multivariate analysis. Biometrics 26, 547 (1970).CAS 
    PubMed 

    Google Scholar 
    113.Signa, G. et al. Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Environ. Pollut. 246, 772–781 (2019).CAS 
    PubMed 

    Google Scholar  More

  • in

    Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change

    1.West-Eberhard, M. J. Developmental plasticity and evolution. (Oxford University Press, 2003).2.de Jong, G. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. N. Phytologist 166, 101–118 (2005).
    Google Scholar 
    3.Ezard, T. H. G., Prizak, R. & Hoyle, R. B. The fitness costs of adaptation via phenotypic plasticity and maternal effects. Funct. Ecol. 28, 693–701 (2014).
    Google Scholar 
    4.Williams, C. M. et al. Understanding evolutionary impacts of seasonality: an introduction to the symposium. Integr. Comp. Biol. 57, 921–933 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    7.Beldade, P., Mateus, A. R. A. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).PubMed 

    Google Scholar 
    8.Lafuente, E. & Beldade, P. Genomics of developmental plasticity in animals. Front. Genet. 10, (2019).9.Marden, J. H. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100, 111–120 (2008).CAS 
    PubMed 

    Google Scholar 
    10.Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bush, S. J., Chen, L., Tovar-Corona, J. M. & Urrutia, A. O. Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20150474 (2017).
    Google Scholar 
    12.Marden, J. H. & Cobb, J. R. Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim. Behav. 68, 857–865 (2004).
    Google Scholar 
    13.Kijimoto, T., Moczek, A. P. & Andrews, J. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc. Natl Acad. Sci. USA 109, 20526–20531 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bear, A., Prudic, K. L. & Monteiro, A. Steroid hormone signaling during development has a latent effect on adult male sexual behavior in the butterfly Bicyclus anynana. PLoS ONE 12, e0174403 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    15.Martin Anduaga, A. et al. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 8, e44642 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    16.Deshmukh, R., Lakhe, D. & Kunte, K. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. R. Soc. Open Sci. 7, 200792 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Grantham, M. E. & Brisson, J. A. Extensive differential splicing underlies phenotypically plastic aphid morphs. Mol. Biol. Evol. 35, 1934–1946 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Price, J. et al. Alternative splicing associated with phenotypic plasticity in the bumble bee Bombus terrestris. Mol. Ecol. 27, 1036–1043 (2018).CAS 
    PubMed 

    Google Scholar 
    19.Lees, J. G., Ranea, J. A. & Orengo, C. A. Identifying and characterising key alternative splicing events in Drosophila development. BMC Genomics 16, 608 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    20.Jakšić, A. M. & Schlötterer, C. The interplay of temperature and genotype on patterns of alternative splicing in Drosophila melanogaster. Genetics 204, 315–325 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    21.Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol. 222, jeb193516 (2019).22.Signor, S. & Nuzhdin, S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity 121, 342–360 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lang, A. S., Austin, S. H., Harris, R. M., Calisi, R. M. & MacManes, M. D. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 21, 251 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    24.Suresh, S., Crease, T. J., Cristescu, M. E. & Chain, F. J. J. Alternative splicing is highly variable among Daphnia pulex lineages in response to acute copper exposure. BMC Genomics 21, 433 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thorstensen, M. J., Baerwald, M. R. & Jeffries, K. M. RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 22, 273 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Singh, A. & Agrawal, A. F. Sexual dimorphism in gene expression: coincidence and population genomics of two forms of differential expression in Drosophila melanogaster. bioRxiv (2021) https://doi.org/10.1101/2021.02.08.429268.27.Rogers, T. F., Palmer, D. H. & Wright, A. E. Sex-specific selection drives the evolution of alternative splicing in birds. Mol. Biol. Evolution 38, 519–530 (2021).CAS 

    Google Scholar 
    28.Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180174 (2019).
    Google Scholar 
    29.Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180176 (2019).
    Google Scholar 
    30.Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1–11 (2018).CAS 

    Google Scholar 
    31.Wang, Y. et al. Mechanism of alternative splicing and its regulation (Review). Biomed. Rep. 3, 152–158 (2015).CAS 
    PubMed 

    Google Scholar 
    32.Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell 76, 329–345 (2019).CAS 
    PubMed 

    Google Scholar 
    33.McManus, C. J., Coolon, J. D., Eipper-Mains, J., Wittkopp, P. J. & Graveley, B. R. Evolution of splicing regulatory networks in Drosophila. Genome Res. 24, 786–796 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Gao, Q., Sun, W., Ballegeer, M., Libert, C. & Chen, W. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol. 11, 816 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    35.Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Wang, X. et al. Cis-regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant J. 97, 555–570 (2019).CAS 
    PubMed 

    Google Scholar 
    37.Huang, Y., Lack, J. B., Hoppel, G. T. & Pool, J. E. Parallel and population-specific gene regulatory evolution in cold-adapted fly populations. bioRxiv (2021) https://doi.org/10.1101/795716.38.Lewis, J. J., Van Belleghem, S. M., Papa, R., Danko, C. G. & Reed, R. D. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci. Adv. 6, eabb8617 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Lewis, J. J. & Reed, R. D. Genome-wide regulatory adaptation shapes population-level genomic landscapes in Heliconius. Mol. Biol. Evol. 36, 159–173 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Martin, S. H. et al. Natural selection and genetic diversity in the butterfly Heliconius melpomene. Genetics 203, 525–541 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Brakefield, P. M., Beldade, P. & Zwaan, B. J. The African Butterfly Bicyclus anynana: a model for evolutionary genetics and evolutionary developmental biology. Cold Spring Harb. Protoc. 2009, pdb.emo122 (2009).PubMed 

    Google Scholar 
    42.Mateus, A. R. A. et al. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol. 12, 97 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    43.Oostra, V. et al. Ecdysteroid hormones link the juvenile environment to alternative adult life histories in a seasonal insect. Am. Naturalist 184, E79–E92 (2014).
    Google Scholar 
    44.van Bergen, E. et al. Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies. BMC Evolut. Biol. 17, 59 (2017).
    Google Scholar 
    45.Singh, P. et al. Complex multi-trait responses to multivariate environmental cues in a seasonal butterfly. Evol. Ecol. (2020) https://doi.org/10.1007/s10682-020-10062-0.46.Prudic, K. L., Jeon, C., Cao, H. & Monteiro, A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 331, 73–75 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    47.Chen, L., Bush, S. J., Tovar-Corona, J. M., Castillo-Morales, A. & Urrutia, A. O. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Mol. Biol. Evol. 31, 1402–1413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    48.Hamid, F. M. & Makeyev, E. V. Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem. Soc. Trans. 42, 1168–1173 (2014).CAS 
    PubMed 

    Google Scholar 
    49.Tabrez, S. S., Sharma, R. D., Jain, V., Siddiqui, A. A. & Mukhopadhyay, A. Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat. Commun. 8, 306 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M. & Laland, K. N. Developmental bias and evolution: a regulatory network perspective. Genetics 209, 949–966 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Nijhout, H. F. To plasticity and back again. eLife 4, e06995 (2015).PubMed Central 

    Google Scholar 
    52.Helanterä, H. & Uller, T. Neutral and adaptive explanations for an association between caste-biased gene expression and rate of sequence evolution. Front. Genet. 5, 297 (2014).53.Pespeni, M. H., Ladner, J. T. & Moczek, A. P. Signals of selection in conditionally expressed genes in the diversification of three horned beetle species. J. Evolut. Biol. 30, 1644–1657 (2017).CAS 

    Google Scholar 
    54.Plass, M. & Eyras, E. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation. BMC Evol. Biol. 6, 50 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    55.Chen, F.-C., Pan, C.-L. & Lin, H.-Y. Independent effects of alternative splicing and structural constraint on the evolution of mammalian coding exons. Mol. Biol. Evolution 29, 187–193 (2012).CAS 

    Google Scholar 
    56.Peña, C., Nylin, S. & Wahlberg, N. The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zool. J. Linn. Soc. 161, 64–87 (2011).
    Google Scholar 
    57.Bhardwaj, S. et al. Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots. eLife 9, e49544 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. PNAS 100, 189–192 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    59.Akerman, M. & Mandel-Gutfreund, Y. Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res. 34, 23–31 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Moran, N. A. The evolutionary maintenance of alternative phenotypes. Am. Naturalist 139, 971–989 (1992).
    Google Scholar 
    61.Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evolution Dev. 5, 9–18 (2003).
    Google Scholar 
    62.Mank, J. E. The transcriptional architecture of phenotypic dimorphism. Nat. Ecol. Evolution 1, 1–7 (2017).
    Google Scholar 
    63.Scheiner, S. M., Barfield, M. & Holt, R. D. The genetics of phenotypic plasticity. XVII. Response to climate change. Evolut. Appl. 13, 388–399 (2020).
    Google Scholar 
    64.Osada, N., Miyagi, R. & Takahashi, A. Cis- and trans-regulatory effects on gene expression in a natural population of Drosophila melanogaster. Genetics 206, 2139–2148 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Cooper, R. D. & Shaffer, H. B. Allele-specific expression and gene regulation help explain transgressive thermal tolerance in non-native hybrids of the endangered California tiger salamander (Ambystoma californiense). Mol. Ecol. 30, 987–1004 (2021).CAS 
    PubMed 

    Google Scholar 
    66.Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Baruzzo, G. et al. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat. Methods 14, 135–139 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Schuierer, S. et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics 18, 442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    69.Broad Institute. Picard toolkit. (2019).70.Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47, e47–e47 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Chen, Y., Lun, A. T. L. & Smyth, G. K. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5, 1438 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).74.Shen, L. GeneOverlap: Test and visualize gene overlaps. (2020).75.Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 

    Google Scholar 
    76.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    77.Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for Gene Ontology. (2016).78.Larsson, J. et al. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. (2021).79.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Gu, Z. & Hübschmann, D. simplifyEnrichment: an R/Bioconductor package for Clustering and Visualizing Functional Enrichment Results. 2020.10.27.312116 (2020) https://doi.org/10.1101/2020.10.27.312116.81.Gu, Z. simplifyEnrichment: Simplify Functional Enrichment Results. (Bioconductor version: Release (3.13), 2021). https://doi.org/10.18129/B9.bioc.simplifyEnrichment.82.de Jong, M. A., Wahlberg, N., Eijk, M., van, Brakefield, P. M. & Zwaan, B. J. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent Refugia. PLoS ONE 6, e21385 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.de Jong, M. A., Collins, S., Beldade, P., Brakefield, P. M. & Zwaan, B. J. Footprints of selection in wild populations of Bicyclus anynana along a latitudinal cline. Mol. Ecol. 22, 341–353 (2013).PubMed 

    Google Scholar 
    84.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    85.Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files.86.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio] (2013).87.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).
    Google Scholar 
    88.Nowell, R. W. et al. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana. GigaScience 6, (2017).89.Xu, L. et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Lucaci, A. G., Wisotsky, S. R., Shank, S. D., Weaver, S. & Kosakovsky Pond, S. L. Extra base hits: widespread empirical support for instantaneous multiple-nucleotide changes. PLoS One 16, e0248337 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Buerkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    93.Buerkner, P.-C. Advanced Bayesian multilevel modeling with the R Package brms. R. J. 10, 395–411 (2018).
    Google Scholar 
    94.Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).95.Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Alamancos, G. P., Pagès, A., Trincado, J. L., Bellora, N. & Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21, 1521–1531 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Wang, Q. & Rio, D. C. JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns. Proc. Natl Acad. Sci. USA115, E8181–E8190 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    99.Kassambara, A. ggpubr” ‘ggplot2’ based publication-ready plots. (2020).100.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2021).101.South, A. afrilearndata: Small Africa Map Datasets for Learning. (2021).102.Inkscape Project. Inkscape. (2021).103.Steward, R. A., Oostra, V. & Wheat, C. W. B_anynana_differentialSplicing Github. zenodo.org https://zenodo.org/badge/latestdoi/255903232 (2021). More

  • in

    Parent–offspring conflict and its outcome under uni-and biparental care

    1.Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249–264 (1974).
    Google Scholar 
    2.Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Routledge, 1972).
    Google Scholar 
    3.Godfray, H. C. J. Evolutionary theory of parent–offspring conflict. Nature 376, 133–138 (1995).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Parker, G. A. & Macnair, M. R. Models of parent-offspring conflict. IV. Suppression: Evolutionary retaliation by the parent. Anim. Behav. 27, 1210–1235 (1979).
    Google Scholar 
    5.Wells, J. C. K. Parent-offspring conflict theory, signaling of need, and weight gain in early life. Q. Rev. Biol. 78, 169–202 (2003).PubMed 

    Google Scholar 
    6.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: The evolution of parent-offspring signalling. Philos. Trans. R. Soc. B 355, 1581–1591 (2000).CAS 

    Google Scholar 
    7.Mock, D. W. & Parker, G. A. Siblicide, family confilct and the evolutionary limits of selfishness. Anim. Behav. 56, 1–10 (1997).
    Google Scholar 
    8.Wilson, A. J. et al. Selection on mothers and offspring: Whose phenotype is it and does it matter?. Evolution 59, 451–463 (2005).PubMed 

    Google Scholar 
    9.Janzen, F. J. & Warner, D. A. Parent-offspring conflict and selection on egg size in turtles. J. Evol. Biol. 22, 2222–2230 (2009).CAS 
    PubMed 

    Google Scholar 
    10.Hinde, C. A., Johnstone, R. A. & Kilner, R. M. Parent-offspring conflict and coadaptation. Science 327, 1373–1376 (2010).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Kölliker, M. et al. Parent-offspring conflict and the genetic trade-offs shaping parental investment. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    12.Kilner, R. M. & Hinde, C. A. Parent–offspring conflict. In The Evolution of Parental Care (eds Royle, N. J. et al.) 119–132 (Oxford University Press, 2012).
    Google Scholar 
    13.Mas, F. & Kölliker, M. Maternal care and offspring begging in social insects: Chemical signalling, hormonal regulation and evolution. Anim. Behav. 76, 1121–1131 (2008).
    Google Scholar 
    14.Hale, R. E. & Travis, J. The evolution of developmental dependence, or ‘Why do my kids need me so much?’. Evol. Ecol. Res. 14, 207–221 (2012).
    Google Scholar 
    15.Gomendio, M. Suckling behaviour and fertility in rhesus macaques (Macaca multatta). J. Zool. 217, 449–467 (1989).
    Google Scholar 
    16.Hamada, Y., Murata, T., Watanabe, S. & Kanda, I. Inhibitory effect of prolactin on ovulation in the in vitro perfused rabbit ovary. Nature 285, 161–163 (1980).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Short, R. V. Breast feeding. Sci. Am. 250, 35–41 (1984).CAS 
    PubMed 

    Google Scholar 
    18.Traynor, K. S., Le Conte, Y. & Page, R. E. Age matters: Pheromone profiles of larvae differentially influence foraging behaviour in the honeybee, Apis mellifera. Anim. Behav. 99, 1–8 (2015).
    Google Scholar 
    19.Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, 1–7 (2010).
    Google Scholar 
    20.Capodeanu-Nägler, A., De La Torre, E. R., Eggert, A. K., Sakaluk, S. K. & Steiger, S. Divergent coevolutionary trajectories in parent–ofspring interactions and discrimination against brood parasites revealed by interspecifc cross-fostering. R. Soc. Open Sci. 5, 180819 (2018).
    Google Scholar 
    21.Smiseth, P. T. & Moore, A. J. Behavioral dynamics between caring males and females in a beetle with facultative biparental care. Behav. Ecol. 15, 621–628 (2004).
    Google Scholar 
    22.Eggert, A. K. Alternative male mate-finding tactics in burying beetles. Behav. Ecol. 3, 243–254 (1992).
    Google Scholar 
    23.Pukowski, E. Ökologische untersuchungen an Necrophorus F. Z. Morphol. Ökol. Tiere 27, 518–586 (1933).
    Google Scholar 
    24.Eggert, A.-K. & Müller, J. K. Biparental care and social evolution in burying beetles: Lessons from the larder. Soc. Behav. Insects Arachn. (1997).25.Royle, N. J., Hopwood, P. E. & Head, M. L. Burying beetles. Curr. Biol. 23, R907 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).CAS 
    PubMed 

    Google Scholar 
    27.Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).CAS 
    PubMed 

    Google Scholar 
    28.Cotter, S. C. & Kilner, R. M. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J. Anim. Ecol. 79, 35–43 (2010).PubMed 

    Google Scholar 
    29.Vogel, H. et al. The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nat. Commun. 6, 1–10 (2017).
    Google Scholar 
    30.Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl. Acad. Sci. USA. 115, 11274–11279 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: Lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).PubMed 

    Google Scholar 
    32.Miller, C. J., Bates, S. T., Gielda, L. M. & CurtisCreighton, J. Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens. PLoS ONE 14, 1–13 (2019).
    Google Scholar 
    33.Suzuki, S. Suppression of fungal development on carcasses the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4, 403–405 (2001).
    Google Scholar 
    34.Eggert, A. K., Reinking, M. & Müller, J. K. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55, 97–107 (1998).CAS 
    PubMed 

    Google Scholar 
    35.Trumbo, S. T. Feeding upon and preserving a carcass: The function of prehatch parental care in a burying beetle. Anim. Behav. 130, 241–249 (2017).
    Google Scholar 
    36.Smiseth, P. T., Darwell, C. T. & Moore, A. J. Partial begging: An empirical model for the early evolution of offspring signalling. Proc. R. Soc. B Biol. Sci. 270, 1773–1777 (2003).
    Google Scholar 
    37.Rauter, C. M. & Moore, A. J. Do honest signalling models of offspring solicitation apply to insects?. Proc. R. Soc. B Biol. Sci. 266, 1691–1696 (1999).
    Google Scholar 
    38.Royle, N. J., Russell, A. F. & Wilson, A. J. The evolution of flexible parenting. Science 345, 776–781 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Capodeanu-Nägler, A., Eggert, A. K., Vogel, H., Sakaluk, S. K. & Steiger, S. Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behav. Ecol. 29, 42–50 (2018).
    Google Scholar 
    40.Müller, J. K. Replacement of a lost clutch: A strategy for optimal resource utilization in Necrophorus vespilloides (Coleoptera: Silphidae). Ethology 76, 74–80 (1987).
    Google Scholar 
    41.Müller, J. K., Braunisch, V., Hwang, W. & Eggert, A. K. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18, 196–203 (2007).
    Google Scholar 
    42.Müller, J. K. & Eggert, A. K. Time-dependent shifts between infanticidal and parental behavior in female burying beetles a mechanism of indirect mother-offspring recognition. Behav. Ecol. Sociobiol. 27, 11–16 (1990).
    Google Scholar 
    43.Smiseth, P. T. & Parker, H. J. Is there a cost to larval begging in the burying beetle Nicrophorus vespilloides?. Behav. Ecol. 19, 1111–1115 (2008).
    Google Scholar 
    44.Steiger, S. Bigger mothers are better mothers: Disentangling size-related prenatal and postnatal maternal effects. Proc. R. Soc. B. 280, 1225 (2013).
    Google Scholar 
    45.Keppner, E. M. et al. Beyond cuticular hydrocarbons: Chemically mediated mate recognition in the subsocial burying beetle Nicrophorus vespilloides. J. Chem. Ecol. 43, 84–93 (2017).CAS 
    PubMed 

    Google Scholar 
    46.Schrader, M. & Galanek, J. Stridulation is unimportant for effective parental care in two species of burying beetle. Ecol. Entomol. 47, 1–18 (2021).
    Google Scholar 
    47.Curtis Creighton, J., Heflin, N. D. & Belk, M. C. Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. 174, 673–684 (2009).PubMed 

    Google Scholar 
    48.Engel, K. C. et al. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nat. Commun. 7, 1–10 (2016).
    Google Scholar 
    49.Trumbo, S. T. Reproductive benefits of infanticide in a biparental burying beetle Nicrophorus orbicollis. Behav. Ecol. Sociobiol. 27, 269–273 (1990).
    Google Scholar 
    50.Skinner, S. W. Clutch size as an optimal foraging problem for insects. Behav. Ecol. Sociobiol. 17, 231–238 (1985).
    Google Scholar 
    51.Lack, D. The significance of clutch-size. Ibis 89, 302–352 (1946).
    Google Scholar 
    52.Lyon, B. E. Optimal clutch size and conspecific brood parasitism. Nature 392, 380–383 (1998).CAS 
    ADS 

    Google Scholar 
    53.Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theor. Popul. Biol. 26, 27–48 (1984).MATH 

    Google Scholar 
    54.Godfray, H. C. J., Partridge, L. & Harvey, P. H. Clutch size. Annu. Rev. Ecol. Syst. 22, 409–429 (1991).
    Google Scholar 
    55.Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: a manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).
    Google Scholar 
    56.Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).
    Google Scholar 
    57.Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119–1128 (2003).
    Google Scholar 
    58.Parker, G. A., Royle, N. J. & Hartley, I. R. Intrafamilial conflict and parental investment: a synthesis. Philos. Trans. R. Soc. B 357, 295–307 (2002).
    Google Scholar 
    59.Godfray, H. C. J. & Parker, G. A. Clutch size, fecundity and parent-offspring conflict. Philos. Trans. R. Soc. Lond. B 332, 67–79 (1991).ADS 

    Google Scholar 
    60.Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Google Scholar 
    61.Kilner, R. M. & Hinde, C. A. Information warfare and parent-offspring conflict. Adv. Stud. Behav. 38, 283–336 (2008).
    Google Scholar 
    62.Kilner, R. M. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Trends Ecol. Evol. 12, 11–15 (1997).CAS 
    PubMed 

    Google Scholar 
    63.Godfray, H. C. J. Signalling of need by offspring to their parents. Lett. Nat. 352, 328–330 (1991).
    Google Scholar 
    64.Johnstone, R. A. Begging signals and parent-offspring conflict: Do parents always win?. Proc. R. Soc. B. 263, 1677–1681 (1996).ADS 

    Google Scholar 
    65.Parker, G. A., Royle, N. J. & Hartley, I. R. Begging scrambles with unequal chicks: Interactions between need and competitive ability. Ecol. Lett. 5, 206–215 (2002).
    Google Scholar 
    66.Keller, L. & Nonacs, P. The role of queen pheromones in social insects: Queen control or queen signal?. Anim. Behav. 45, 787–794 (1993).
    Google Scholar 
    67.Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275 (2011).CAS 
    PubMed 

    Google Scholar 
    68.Oi, C. A. et al. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. BioEssays 37, 808–821 (2015).CAS 
    PubMed 

    Google Scholar 
    69.Smiseth, P. T. & Moore, A. J. Does resource availability affect offspring begging and parental provisioning in a partially begging species?. Anim. Behav. 63, 577–585 (2002).
    Google Scholar 
    70.Andrews, C. P. & Smiseth, P. T. Differentiating among alternative models for the resolution of parent-offspring conflict. Behav. Ecol. 24, 1185–1191 (2013).
    Google Scholar 
    71.Steiger, S., Peschke, K., Francke, W. & Müller, J. K. The smell of parents: Breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B Biol. Sci. 274, 2211–2220 (2007).CAS 

    Google Scholar 
    72.Steiger, S., Franz, R., Eggert, A. K. & Müller, J. K. The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proc. R. Soc. B Biol. Sci. 275, 1831–1838 (2008).
    Google Scholar 
    73.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 1–9 (2015).CAS 

    Google Scholar 
    74.Steiger, S. Recognition and family life: Recognition mechanisms in the biparental burying beetle. in Social Recognition in Invertebrates: The Knowns and the Unknowns (eds. Aquiloni, L. & Tricarico, E.) 249–266 (2015).75.Takata, M., Mitaka, Y., Steiger, S. & Mori, N. A parental volatile pheromone triggers offspring begging in a burying beetle. Science 19, 1260–1278 (2019).
    Google Scholar 
    76.Mäenpää, M. I. & Smiseth, P. T. Resource allocation is determined by both parents and offspring in a burying beetle. J. Evol. Biol. 33(11), 1567–1578 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    77.Mattey, S. N., Richardson, J., Ratz, T. & Smiseth, P. T. Effects of offspring and parental inbreeding on parent-offspring communication. Am. Nat. 191, 716–725 (2018).PubMed 

    Google Scholar 
    78.Steiger, S. & Stökl, J. Pheromones regulating reproduction in subsocial beetles: insights with references to eusocial insects. J. Chem. Ecol. 44, 785–795 (2018).CAS 
    PubMed 

    Google Scholar 
    79.Haig, D. Genetic conflict in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993).CAS 
    PubMed 

    Google Scholar 
    80.Paquet, M., Drummond, H. & Smiseth, P. T. Offspring are predisposed to beg more towards females in the burying beetle Nicrophorus vespilloides. Anim. Behav. 141, 195–201 (2018).
    Google Scholar 
    81.Sakaluk, S. K., Eggert, A.-K. & Müller, J. K. The ‘widow effect’ and its consequences for reproduction in burying beetles, Nicrophorus vespilloides (Coleoptera: Silphidae). Ethology 104, 553–564 (1998).
    Google Scholar 
    82.De Gasperin, O., Duarte, A., Troscianko, J. & Kilner, R. M. Fitness costs associated with building and maintaining the burying beetle’s carrion nest. Sci. Rep. 6, 1–6 (2016).
    Google Scholar 
    83.Bartlett, J. Male mating success and paternal care in Nicrophorus vespilloides (Coleoptera: Silphidae). Behav. Ecol. Sociobiol. 23, 297–303 (1988).
    Google Scholar 
    84.Müller, J. K., Eggert, A. K. & Sakaluk, S. K. Carcass maintenance and biparental brood care in burying beetles: are males redundant?. Ecol. Entomol. 23, 195–200 (1998).
    Google Scholar 
    85.Smiseth, P. T., Dawson, C., Varley, E. & Moore, A. J. How do caring parents respond to mate loss? Differential response by males and females. Anim. Behav. 69, 551–559 (2005).
    Google Scholar 
    86.Parker, D. J. et al. Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nat. Commun. 6, 1–10 (2015).CAS 

    Google Scholar 
    87.Keppner, E. M., Ayasse, M. & Steiger, S. Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecol. Evol. 10, 3535–3543 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    88.Schedwill, P., Paschkewitz, S., Teubner, H. & Steinmetz, N. From the host’ s point of view: Effects of variation in burying beetle brood care and brood size on the interaction with parasitic mites. Plosone 15, 1–14 (2020).
    Google Scholar 
    89.Pilakouta, N., Hanlon, E. J. H. & Smiseth, P. T. Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness. Proc. R. Soc. B. 285, 875 (2018).
    Google Scholar 
    90.Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Staying with the young enhances the fathers’ attractiveness in burying beetles. Evolution 71, 985–994 (2017).PubMed 

    Google Scholar  More

  • in

    Integrating population genetics and species distribution modelling to guide conservation of the noble crayfish, Astacus astacus, in Croatia

    1.Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 05. https://doi.org/10.1051/kmae/2014007 (2014).Article 

    Google Scholar 
    3.Chucholl, C. The bad and the super-bad: Prioritising the threat of six invasive alien to three imperilled native crayfishes. Biol. Invasions 18, 1967–1988 (2016).
    Google Scholar 
    4.Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Phil. Trans. R. Soc. B. 370, 20140060. https://doi.org/10.1098/rstb.2014.0060 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jussila, J., Edsman, L., Maguire, I., Diéguez-Uribeondo, J. & Theissinger, K. Money kills native ecosystems: European crayfish as an example. Front. Ecol. Evol. (2021) (accepted).6.Maguire, I. et al. Recent changes in distribution pattern of freshwater crayfish in Croatia—Threats and perspectives. Knowl. Manag. Aquatic Ecosyst. 409, 2. https://doi.org/10.1051/kmae/2017053 (2018).Article 

    Google Scholar 
    7.Schrimpf, A. et al. Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshw. Biol. 59, 761–776 (2014).CAS 

    Google Scholar 
    8.Laggis, A. et al. Microevolution of the noble crayfish (Astacus astacus) in the Southern Balkan Peninsula. BMC Evol. Biol. 17, 122. https://doi.org/10.1186/s12862-017-0971-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Gross, R. et al. Genetic diversity and structure of the noble crayfish populations in the Balkan Peninsula revealed by mitochondrial and microsatellite DNA markers. PeerJ 9, 11838. https://doi.org/10.7717/peerj.11838 (2021).Article 

    Google Scholar 
    10.Gross, R. et al. Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. Conserv. Genet. 14, 809–821 (2013).CAS 

    Google Scholar 
    11.Schrimpf, A. et al. Genetic characterization of Western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies. Conserv. Genet. 18, 1299–1315 (2017).CAS 

    Google Scholar 
    12.Edsman, L., Füreder, L., Gherardi, F. & Souty-Grosset, C. Astacus astacus. in IUCN 2010, IUCN Red List of Threatened Species. http://www.iucnredlist.org (2010).13.Gottstein, S. et al. Red List of Freshwater and Brackish Water Crustaceans of Croatia. (State Institute for Nature Protection, 2011).14.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. (The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 2000).15.Dragičević, P., Faller, M., Kutleša, P. & Hudina, S. Update on the signal crayfish, Pacifastacus leniusculus (Dana, 1852) range expansion in Croatia: A 10-year report. BioInvasions Rec. 9, 793–807 (2020).
    Google Scholar 
    16.Dobrović, A., Maguire, I., Boban, M., Grbin, D. & Hudina, S. Reproduction dynamics of the marbled crayfish Procambarus virginalis Lyko, 2017 from an anthropogenic lake in northern Croatia. Aquat. Invasions 16, 482–498 (2021).
    Google Scholar 
    17.Lovrenčić, L. et al. New insights into the genetic diversity of the stone crayfish: Taxonomic and conservation implications. BMC Evol. Biol. 20, 146. https://doi.org/10.1186/s12862-020-01709-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation—Evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).PubMed Central 

    Google Scholar 
    19.Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).PubMed 

    Google Scholar 
    20.Hewitt, N. et al. Taking stock of the assisted migration debate. Biol. Conserv. 144, 2560–2572 (2011).
    Google Scholar 
    21.Butt, N. et al. Importance of species translocations under rapid climate change. Biol. Conserv. 35, 775–783 (2021).
    Google Scholar 
    22.Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. https://doi.org/10.1155/2014/691759 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bláha, M., Žurovcová, M., Kouba, A., Policar, T. & Kozák, P. Founder event and its effect on genetic variation in translocated populations of noble crayfish (Astacus astacus). J. Appl. Genet. 57, 99–106 (2016).PubMed 

    Google Scholar 
    24.Panicz, R. et al. Genetic diversity in natural populations of noble crayfish (Astacus astacus L.) in north-western Poland on the basis of combined SSR and AFLP data. PeerJ 7, 7301. https://doi.org/10.7717/peerj.7301 (2019).Article 

    Google Scholar 
    25.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    26.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: Distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).
    Google Scholar 
    27.Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).
    Google Scholar 
    28.Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).PubMed 

    Google Scholar 
    29.Chucholl, C. Niche-based species distribution models and conservation planning for endangered freshwater crayfish in south-western Germany. Aquat. Conserv. 27, 698–705 (2017).
    Google Scholar 
    30.Préau, C. et al. Niche modelling to guide conservation actions in France for the endangered crayfish Austropotamobius pallipes in relation to the invasive Pacifastacus leniusculus. Freshw. Biol. 65, 304–315 (2020).
    Google Scholar 
    31.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    32.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Kouba, A. et al. The significance of droughts for hyporheic dwellers: Evidence from freshwater crayfish. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    34.Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv. Biol. 27, 731–740 (2013).PubMed 

    Google Scholar 
    35.Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 

    Google Scholar 
    36.Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).CAS 

    Google Scholar 
    37.Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–Climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).ADS 

    Google Scholar 
    38.Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    39.Maguire, I. et al. Two distinct evolutionary lineages of the Astacus leptodactylus species-complex (Decapoda: Astacidae) inferred by phylogenetic analyses. Invertebr. Syst. 28, 117–123 (2014).
    Google Scholar 
    40.Akhan, S., Bektas, Y., Berber, S. & Kalayci, G. Population structure and genetic analysis of narrow-clawed crayfish (Astacus leptodactylus) populations in Turkey. Genetica 142, 381–395 (2014).PubMed 

    Google Scholar 
    41.Jelić, M. et al. Insights into the molecular phylogeny and historical biogeography of the white-clawed crayfish (Decapoda, Astacidae). Mol. Phylogenet. Evol. 103, 26–40 (2016).PubMed 

    Google Scholar 
    42.Bláha, M. et al. Genetic diversity, phylogenetic position and morphometric analysis of Astacus colchicus (Decapoda, Astacidae): A new insight into Eastern European crayfish fauna. Integr. Zool. 16, 368–378 (2021).PubMed 

    Google Scholar 
    43.Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 183–195 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Maguire, I., Špoljarić, I. & Klobučar, G. The indigenous crayfish of Plitvice Lakes National Park, Croatia. Freshw. Crayfish 19, 91–96 (2013).
    Google Scholar 
    45.Njegovan, V., Orešković, M., Hudina, S. & Maguire, I. Crayfish fauna of the Maksimir lakes in the urban area of Zagreb. Freshw. Crayfish 23, 1–11 (2017).
    Google Scholar 
    46.Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2007).47.Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 18, 750–755 (2005).CAS 
    PubMed 

    Google Scholar 
    48.Karaman, S. Die Potamobiiden Jugoslaviens. Glas. Zemalj. Muz. Bosne Herceg. 41, 147–150 (1929).
    Google Scholar 
    49.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Tierno de Figueroa, J. M. et al. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719, 137–186 (2013).
    Google Scholar 
    51.Barnett, Z. C., Adams, S. B., Ochs, C. A. & Garrick, R. C. Crayfish populations genetically fragmented in streams impounded for 36–104 years. Freshw. Biol. 65, 768–785 (2020).
    Google Scholar 
    52.Hossain, M. A. et al. Assessing the vulnerability of freshwater crayfish to climate change. Divers. Distrib. 24, 1830–1843 (2018).
    Google Scholar 
    53.Piyapong, C., Tattoni, C., Ciolli, M., Dembski, S. & Paradis, E. Modelling the geographical distributions of one native and two introduced species of crayfish in the French Alps. Ecol. Inform. 60, 101172. https://doi.org/10.1016/j.ecoinf.2020.101172 (2020).Article 

    Google Scholar 
    54.Gallardo, B. & Aldridge, D. C. Evaluating the combined threat of climate change and biological invasions on endangered species. Biol. Conserv. 160, 225–233 (2013).
    Google Scholar 
    55.Peterson, K. & Bode, M. Using ensemble modeling to predict the impacts of assisted migration on recipient ecosystems. Conserv. Biol. 35, 678–687 (2021).PubMed 

    Google Scholar 
    56.Rodríguez-Rey, M., Consuegra, S., Börger, L. & Garcia de Leaniz, C. Improving species distribution modelling of freshwater invasive species for management applications. PLoS ONE 14, 0217896. https://doi.org/10.1371/journal.pone.0217896 (2019).CAS 
    Article 

    Google Scholar 
    57.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Google Scholar 
    58.Zhang, Z. et al. Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshw. Biol. 65, 353–365 (2020).
    Google Scholar 
    59.Olden, J. D., Kennard, M. J., Lawler, J. J. & Poff, N. L. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conserv. Biol. 25, 40–47 (2011).PubMed 

    Google Scholar 
    60.Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    61.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Google Scholar 
    62.Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, 2017).63.Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).Article 

    Google Scholar 
    64.Bucharova, A. Assisted migration within species range ignores biotic interactions and lacks evidence. Restor. Ecol. 25, 14–18 (2017).
    Google Scholar 
    65.Ghia, D. et al. Modelling environmental niche for the endangered crayfish Austropotamobius pallipes complex in northern and central Italy. Freshw. Crayfish 19, 189–195 (2013).
    Google Scholar 
    66.Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 

    Google Scholar 
    67.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    68.Mrugała, A., Šanda, R., Shumka, S. & Vukić, J. Filling the blank spot: First report on the freshwater crayfish distribution in Albania. Knowl. Manag. Aquat. Ecosyst. 418, 34. https://doi.org/10.1051/kmae/2017024 (2017).Article 

    Google Scholar 
    69.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    70.Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968 (2007).CAS 

    Google Scholar 
    71.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 

    Google Scholar 
    72.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Google Scholar 
    73.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 

    Google Scholar 
    74.Gross, R., Kõiv, K., Pukk, L. & Kaldre, K. Development and characterization of novel tetranucleotide microsatellite markers in the noble crayfish (Astacus astacus) suitable for highly multiplexing and for detecting hybrids between the noble crayfish and narrow-clawed crayfish (A. leptodactylus). Aquaculture 472, 50–56 (2017).CAS 

    Google Scholar 
    75.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    76.Rousset, F. genepop’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    77.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series. B. Stat. Methodol. 39, 1–38 (1977).MathSciNet 
    MATH 

    Google Scholar 
    78.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic soft-ware for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Goudet, J. FSTAT version 2. 9. 4: A program to estimate and test population genetics parameters. Updated from Goudet [1995]. http://www.unil.ch/izea/softwares/fstat.html (2003).80.Kalinowski, S. T. hp‐rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).81.Piry, S., Luikart, G. & Cornuet, J.-M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    82.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE—A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    84.Earl, D. A. & Von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    85.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    87.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    88.Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).
    Google Scholar 
    89.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar 
    90.Thuiller, W., Georges, D., Engler, R. & Breiner, F. ‘biomod2’: Ensemble Platform for Species Distribution Modeling. (2016).91.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).92.McSweeney, C. F., Jones, R. G., Lee, R. W. & Rowell, D. P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2015).
    Google Scholar 
    93.Cvitanović, M., Blackburn, G. A. & Jepsen, M. R. Characteristics and drivers of forest cover change in the post-socialist era in Croatia: Evidence from a mixed-methods approach. Reg. Environ. Change 16, 1751–1763 (2016).
    Google Scholar 
    94.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446. https://doi.org/10.1038/s41467-019-09519-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence only data. J. Biogeogr. 40, 778–789 (2013).
    Google Scholar  More

  • in

    Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations

    Model frameworkThe capture-recapture model applied here is the hierarchical model for stratified populations proposed by Royle et al.48. The model aims to estimate local population size or community structure49 using capture-recapture data from multiple independent locations. In the following, we briefly describe the model in our context, including addressing heterogeneity in detection probability.Let us consider that we establish S independent camera stations in a survey area. Then, we install K camera traps at each station to monitor exactly the same focal area (totally S × K camera traps will be used). We assume that these camera traps detect animals within the focal areas NT times in total. For animal pass i (i = 1, 2, 3, …, NT), we will obtain (1) at the station where the animal is detected (hereafter station identity; gi), and (2) how many of the K cameras at the station were successful in detecting the animal pass (hereafter detection history; yi). The hierarchal capture-recapture model uses these two data, gi and yi.Let the number of the animal passes at station s be Ns (s = 1, 2, 3, …, S). Then, we assume that Ns follows a Poisson distribution with a parameter λ. In this case, the probability of passage i occurring at station s is expected to be (frac{lambda }{lambda times S}). Thus, station identity, gi, can be modelled as follows:$$g_{i} sim {text{ Categorical}}; left(frac{lambda }{lambda times S}right)$$
    When the number of the animal passes at station s, Ns, may have larger variation than expected from the Poisson case, we may assume a negative binomial distribution model or may give a random effect to the parameter of the Poisson distribution at the camera station level.The detection history Y with elements yi can be modelled using a data augmentation procedure47. Specifically, the original detection Y is artificially augmented by many M – n passes with all-zero histories (i.e. not detected by any camera). The augmented data W with elements wi (y1, y2…yNT, 0, 0, … 0) will consist of the passage that occurred but was not detected by any camera (false zero), which occurs with probability ψ, and the passage that did not occur (structural zeros) with the probability 1 − ψ. A set of latent augmentation binary variables, z1, z2, … zM, is introduced, which denotes the false zero (z = 1) and the structural zero (z = 0). That is$$z_{i} sim {text{ Bernoulli }}left( psi right).$$The elements of the augmented data, wi, can be modelled conditional on the latent variables zi. There would be two alternative approaches to modelling the wi.The simplest one may regard wi as random binomial variables. That is$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p} right)$$When accounting for the heterogeneity of detection among animal passes, it can be accommodated using a beta distribution as follows;$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p_{i} } right)$$$$p_{i} sim {text{ Beta}}left( {alpha ,beta } right)$$The expected detection probability can be derived from (widehat{alpha }/(widehat{alpha }+widehat{beta })) and the correlation coefficients can be calculated by (1/(widehat{alpha }+widehat{beta }+1)).Alternatively, we can regard wi as a categorical variable that takes values from zero to K.$$w_{i} sim {text{ Categorical }}left( pi right)$$
    where π is a probability vector of length K + 1. For simplicity, let us consider two camera traps installed at each station, and those cameras have equal detection probability. Then, wi can take either 0 (i.e. zi = 0 or both camera traps missed animals with conditional on zi = 1), 1 (i.e. only one camera trap detected animals with conditional on zi = 1), or 2 (i.e. both camera traps detected animals with conditional on zi = 1). Thus, when we define the probability that wi takes 0, 1, 2 with conditional on zi = 1, as φm (m = 1, 2, 3), the elements of π is equal to {zi × φ0 + (1 − zi)}, {zi × φ1}, {zi × φ2}, respectively.We then take different modelling approaches depending on whether detection probability among animal passes is heterogeneous or not. When two camera traps at a station detect animals independently with the same probability ρ, φ0, φ1, and φ2 can be expressed as a function of ρ, i.e. (1 − ρ)2, 2 × ρ × (1 − ρ)2, ρ2, respectively (Clare et al.47). On the other hand, when detections by the two camera traps are correlated, we need to estimate three real parameters φm that designate the probabilities of all outcomes wi|zi = 1. We assume that ρm follows the Dirichlet distribution with the parameter γm (m = 1, 2, 3). That is$$varphi_{m} sim {text{ Dirichlet}}left( {gamma_{1} ,gamma_{2} , , gamma_{3} } right)$$In this approach, the expected detection probability can be derived from ({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2}) and the correlation coefficients can be calculated by ({widehat{varphi }}_{2}-{({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2})}^{2}).Compared to the beta-binomial distribution approach, the approach using categorical-Dirichlet distribution might be more flexible in accommodating detection heterogeneity while it might be more challenging to estimate the model parameters. In either approach, the expected total number of animal passes can be expressed as (lambda times S). Thus, ψ can be fixed as follows:$$psi = frac{lambda times S}{M}$$For more details of the models, see Royle et al.48 and Clare et al.44.Testing the effectiveness of the hierarchical capture-recapture modelWe performed Monte Carlo simulations to evaluate the effectiveness of the hierarchical capture-recapture model. Because the model reliability has been confirmed well48, we here focused on the effects of heterogeneity in detection probability on the accuracy and precision of the estimates.We assumed that the number of detections by camera traps followed a negative binomial distribution with a mean of 5.0 and dispersion parameter 1.27, which derived the actual data on an ungulate in African rainforests34. We also assumed two camera traps each at 30 stations (i.e. 60 camera traps in total). We generated detection histories (i.e. the number of camera traps successfully detecting animals in each animal passage) using a beta-binomial distribution with the expected detection probability at 0.8 or 0.4. We varied the correlation coefficients (= 1/(α + β + 1)), from 0.1 to 0.5 in 0.1 increments. The scale parameters of the beta distributions for each scenario are shown in Table 1. Additionally, to determine the effects of sample sizes on the accuracy and precision of estimates, we increased the number of camera stations at 100. Since this setting requires much computation time, we only assumed a detection probability of 0.4 and a correlation coefficient of 0.3.We estimated the parameters of the hierarchical capture-recapture models assuming a beta-binomial distribution and a categorical-Dirichlet distribution using the Markov chain Monte Carlo (MCMC) implemented in JAGS (version 3.4.0) in all the simulations. We assumed that the number of animal passes followed a negative binomial distribution. For the model assuming a beta-binomial distribution, we transformed the scale parameters, α and β as p*phi and p*(1 − phi), respectively (p is an expected detection probability). Then we used a weakly informative prior (gamma distribution with shape = 10 and rate = 2) for phi and a non-informative uniform distribution from 0 to 1 for the detection probability49. For the model assuming a categorical-Dirichlet distribution, the Dirichlet prior distribution was induced by treating each γm ~ Gamma(1, 1) and calculating each probability by ({varphi }_{m}={{gamma }_{m}}/{sum }_{m=1}^{M}{gamma }_{m}) followingv and Clare et al.44. We generated three chains of 3000 iterations after a burn-in of 1000 and thinned by 5. The convergence of models was determined using the Gelman–Rubin statistic, where values  More

  • in

    Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating

    Timeseries imaging tracks gene expression in spatial systemsRecent studies have shown it possible to identify the members of microbial consortia as well as their gene expression within spatially-structured systems30,33,34. However, these methods capture data cross-sectionally and are unable to provide temporal insight into gene expression patterning as it emerges in these cell populations. To bridge this gap, we built a fluorescent imager inside an incubator (Supplementary Fig. 1). Our framework characterizes cellular growth and gene expression in spatially-structured environments with previously unattainable time-resolution and throughput. Fluorescently labeled cells are illuminated using LEDs connected to a custom-built control system (see methods). The images are background corrected and analyzed, tracking colony growth and gene expression information (Supplementary Figs. 2, 3) straight from the spatially-structured system.In our experiments, we utilized a dual-labeled P. aeruginosa PA14 strain harboring PBad-DsRed(EC2)35 driven by L-arabinose in the plate media, which cannot be metabolized by the cells36, and PrhlAB-GFP28,37. When grown in spatial structure, the constitutive expression of DsRed provided a measure of the local density of bacteria (Supplementary Fig. 4). In all our experiments, the dynamical expression of GFP, validated by RT-qPCR (Supplementary Fig. 5) (see methods), reported on the expression of rhlAB.Using these data, we were able to characterize how the surroundings experienced by these microbes influence the dynamics of their cooperative behavior directly in a spatially-structured setting.Rhamnolipid production differs in liquid and spatial environmentsRhamnolipids are necessary for cooperative swarming behavior in P. aeruginosa and for other traits related to virulence26. Rhamnolipids can be produced in liquid culture10,20,28,38, thus rhamnolipid production is often studied in detail there. Despite recent work indicating that gene expression related to quorum signaling systems in P. aeruginosa may differ in spatial structure29, no studies assess how downstream genes, such as rhlAB, may be affected in spatially-structured colonies. Given the relevance of these diffusible inputs to the rhlAB system, we hypothesized that there could be differences between gene expression patterns in liquid and spatial environments.We compared P. aeruginosa biomass growth and gene expression in the liquid and spatial environments (Fig. 1a). Liquid culture data was collected following prior methods28. To interrogate the spatial system, we used the protocol from the classic Colony Forming Unit (CFU) assay. Cells were seeded with extreme dilution and we observed the behavior of the resultant colonies (cCFUs) across time and within the random configurations generated.Fig. 1: Rhamnolipid production differs between liquid culture and surface-attached P. aeruginosa.a Cartoon depictions of liquid and spatially-structured environments used in this study. b Optical density timeseries describing P. aeruginosa growth in liquid culture. [Blue] Biomass growth without exogenous quorum signals. [Purple] Biomass growth with exogenous quorum signals. c DsRed fluorescent timeseries generated from a custom-built imager (Supplementary Fig. 1) and custom software (Supplementary Fig. 3) describing P. aeruginosa growth in colony forming units (CFU). [Blue] Biomass growth without exogenous quorum signals [Purple] Biomass growth with exogenous quorum signals added to the plate media. [Inset] Example plate showing colonies at 48 h. Scale bar 1 cm. d Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]) of PrhlAB with respect to culture growth rate (left[frac{d{{OD}}_{600}}{{dt}}cdot frac{1}{{{OD}}_{600}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals. e Promoter activity (left[frac{{dGFP}}{{dt}}cdot frac{1}{{DsRed}}right]) of PrhlAB with respect to CFU growth rate (left[frac{{dDsRed}}{{dt}}cdot frac{1}{{DsRed}}right]). [Blue] without exogenous quorum signals [Purple] with exogenous quorum signals provided in the plate media.Full size imageWe observed differences in growth between cells grown in liquid culture (Fig. 1b) and spatial structure (Fig. 1c) with the same media composition. The growth pattern observed in liquid culture recapitulates previously reported data22,28. In comparing WT growth (dark blue data in Fig. 1b, c) between environments, we observed that both achieve a period of exponential growth, followed by a period of slowed growth. This sub-exponential growth is prolonged and no period of biomass decay is observed in the spatially-structured environment during our observation window.Quorum signal perturbation has long been an experimental tool to determine if a phenotype is responsive to social signaling9,10. rhlAB gene expression in particular is known to be downstream of both the las and rhl quorum signal systems39,40. However, it has previously been shown that liquid culture perturbation with additional C4-HSL and 3-oxo-C12-HSL, the rhl and las quorum signal system auto-inducers respectively, do not illicit significant change in growth or PrhlAB dynamics in this strain of P. aeruginosa22. We replicated this liquid culture result (Fig. 1b, purple data). In the spatially-structured system, we performed this perturbation by including both quorum signal molecules in the plate media in the same concentration by volume as previously published22. This analysis was done using biological replicates with More

  • in

    Extensive oceanic mesopelagic habitat use of a migratory continental shark species

    1.Angel, M. V. Biodiversity of the Pelagic Ocean. Conserv. Biol. 7, 760–772 (1993).Article 

    Google Scholar 
    2.Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. https://doi.org/10.1038/ncomms4271 (2014).Article 
    PubMed 

    Google Scholar 
    3.Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiology 503, 163–170. https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).Article 

    Google Scholar 
    4.Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. 398, 1–8. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).Article 

    Google Scholar 
    6.Dulvy, N. K. et al. You can swim but you can’t hide: The global status and conservation of oceanic pelagic sharks and rays. Aquat. Conserv. 18, 459–482 (2008).Article 

    Google Scholar 
    7.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571. https://doi.org/10.1038/s41586-020-03173-9 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Compagno, L. J. V. Pelagic elasmobranch diversity. In Sharks of the Open Ocean, 14–23 (2008).9.Howey, L. A. et al. Into the deep: The functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6, 5290–5304. https://doi.org/10.1002/ece3.2260 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Francis, M. P. et al. Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (Isurus oxyrinchus). Mar. Biol. 166, 5. https://doi.org/10.1007/s00227-018-3453-5 (2018).Article 

    Google Scholar 
    11.Skomal, G. et al. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the western north Atlantic. Front. Mar. Sci. 8, 16 (2021).Article 

    Google Scholar 
    12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363. https://doi.org/10.1038/s41598-018-25565-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Coelho, R., Fernandez-Carvalho, J. & Santos, M. N. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res. 112, 91–99. https://doi.org/10.1016/j.marenvres.2015.10.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Arostegui, M. C. et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): Insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43, 387–394. https://doi.org/10.3354/esr01079 (2020).Article 

    Google Scholar 
    15.Coffey, D. M., Carlisle, A. B., Hazen, E. L. & Block, B. A. Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. Sci. Rep. 7, 10434. https://doi.org/10.1038/s41598-017-11059-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Coffey, D. M., Royer, M. A., Meyer, C. G. & Holland, K. N. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLoS One 15, e0228253. https://doi.org/10.1371/journal.pone.0228253 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Francis, M. P., Holdsworth, J. C. & Block, B. A. Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Mar. Biol. 162, 2305–2323. https://doi.org/10.1007/s00227-015-2756-z (2015).Article 

    Google Scholar 
    18.Jorgensen, S. J. et al. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7, e47819. https://doi.org/10.1371/journal.pone.0047819 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nelson, D. R. et al. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fish. 49, 389–399. https://doi.org/10.1023/A:1007369619576 (1997).Article 

    Google Scholar 
    20.Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761. https://doi.org/10.1111/j.1365-2656.2005.00971.x (2005).Article 

    Google Scholar 
    21.Watanabe, Y. Y. & Papastamatiou, Y. P. Distribution, body size and biology of the megamouth shark Megachasma pelagios. J. Fish Biol. 95, 992–998. https://doi.org/10.1111/jfb.14007 (2019).Article 
    PubMed 

    Google Scholar 
    22.Braun, C. D., Skomal, G. B. & Thorrold, S. R. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00025 (2018).Article 

    Google Scholar 
    23.Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688. https://doi.org/10.1098/rspb.2009.1155 (2010).Article 
    PubMed 

    Google Scholar 
    24.Lipscombe, R. S. et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J. Mar. Sci. 77, 3127–3137. https://doi.org/10.1093/icesjms/fsaa212 (2020).Article 

    Google Scholar 
    25.Walker, T. I. et al. Galeorhinus galeus. The IUCN Red List of Threatened Species 2020: e.T39352A2907336. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39352A2907336.en (2020). (Downloaded on 18 June 2021).26.Chabot, C. L. Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark Galeorhinus galeus (Triakidae). J. Fish Biol. 87, 371–385. https://doi.org/10.1111/jfb.12727 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS One 12, e0184481. https://doi.org/10.1371/journal.pone.0184481 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Stevens, J. D. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Assoc. UK 70, 707–720. https://doi.org/10.1017/S0025315400058999 (1990).Article 

    Google Scholar 
    29.West, G. J. & Stevens, J. D. Archival tagging of school shark, Galeorhinus galeus, in Australia: Initial results. Environ. Biol. Fish. 60, 283–298 (2001).Article 

    Google Scholar 
    30.Thorburn, J. et al. Ontogenetic variation in movements and depth use, and evidence of partial migration in a Benthopelagic Elasmobranch. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00353 (2019).Article 

    Google Scholar 
    31.McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Partial female migration and cool-water migration pathways in an overfished shark. ICES J. Mar. Sci. 76, 1083–1093. https://doi.org/10.1093/icesjms/fsy181 (2019).Article 

    Google Scholar 
    32.Walker, T. Galeorhinus galeus fisheries of the World, in: Case studies of management of elasmobranch fisheries. FAO Fish. Tech. Pap. 378, 728–773 (1999).
    Google Scholar 
    33.Brown, L., Bridge, N. & Walker, T. Summary of tag releases and recaptures in the Southern Shark Fishery. Mar. Freshw. Resour. Inst. Rep. 16, 60 (2000).
    Google Scholar 
    34.Lucifora, L., Menni, R. & Escalante, A. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. Environ. Biol. Fish. 71, 199–209. https://doi.org/10.1007/s10641-004-0305-6 (2004).Article 

    Google Scholar 
    35.Jaureguizar, A. J., Argemi, F., Trobbiani, G., Palma, E. D. & Irigoyen, A. J. Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20170050 (2018).Article 

    Google Scholar 
    36.Nosal, A. P. et al. Triennial migration and philopatry in the critically endangered soupfin shark Galeorhinus galeus. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13848 (2021).Article 

    Google Scholar 
    37.Cuevas, J., Garcia, M. & Di Giacomo, E. Diving behaviour of the critically endangered tope shark Galeorhinus galeus in the Natural Reserve of Bahia San Blas, northern Patagonia. Anim. Biotelemetry 2, 11 (2014).Article 

    Google Scholar 
    38.Iosilevskii, G., Papastamatiou, Y. P., Meyer, C. G. & Holland, K. N. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294, 172–181. https://doi.org/10.1016/j.jtbi.2011.11.008 (2012).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    39.Carey, F. G., Scharold, J. V. & Kalmijn, A. J. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).Article 

    Google Scholar 
    40.Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K. & Meyer, C. G. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237–246 (2011).ADS 
    Article 

    Google Scholar 
    41.Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. https://doi.org/10.1038/ncomms5274 (2014).Article 
    PubMed 

    Google Scholar 
    42.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Nat. Acad. Sci. 116, 17187–17192. https://doi.org/10.1073/pnas.1903067116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B. & Meekan, M. G. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. Fish. 29, 335–354. https://doi.org/10.1007/s11160-019-09555-1 (2019).Article 

    Google Scholar 
    44.Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS One 10, e0127807. https://doi.org/10.1371/journal.pone.0127807 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119. https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. I(126), 85–102. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).Article 

    Google Scholar 
    47.Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).Article 

    Google Scholar 
    48.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Peña, M. et al. Acoustic detection of mesopelagic fishes in scattering layers of the Balearic Sea (western Mediterranean). Can. J. Fish. Aquat. Sci. 71, 1186–1197. https://doi.org/10.1139/cjfas-2013-0331 (2014).CAS 
    Article 

    Google Scholar 
    50.Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep Sea Res. II(113), 125–144. https://doi.org/10.1016/j.dsr2.2014.10.026 (2015).Article 

    Google Scholar 
    51.Urmy, S. S. & Horne, J. K. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California. Deep Sea Res. I(113), 22–32. https://doi.org/10.1016/j.dsr.2016.04.004 (2016).Article 

    Google Scholar 
    52.Korneliussen, R. J. et al. Acoustic target classification. ICES Coop. Res. Rep. 344, 110. https://doi.org/10.17895/ices.pub.4567 (2018).Article 

    Google Scholar 
    53.D’Elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Res. I(115), 91–102. https://doi.org/10.1016/j.dsr.2016.05.014 (2016).Article 

    Google Scholar 
    54.Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. https://doi.org/10.1121/1.4906177 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00364 (2019).Article 

    Google Scholar 
    56.Shea, E. K. & Vecchione, M. Ontogenic changes in diel vertical migration patterns compared with known allometric changes in three mesopelagic squid species suggest an expanded definition of a paralarva. ICES J. Mar. Sci. 67, 1436–1443. https://doi.org/10.1093/icesjms/fsq104 (2010).Article 

    Google Scholar 
    57.Lucifora, L. O., Garcia, V. B., Menni, R. C. & Escalante, A. H. Food habits, selectivity, and foraging modes of the school shark Galeorhinus galeus. Mar. Ecol. Prog. Ser. 315, 259–270 (2006).ADS 
    Article 

    Google Scholar 
    58.Morato, T., Sola, E., Gros, M. P. & Menezes, G. Diets of thornback ray (Raja clavata) and tope shark (Galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fish. Bull. 101, 590–602 (2003).
    Google Scholar 
    59.Ellis, J. R., Pawson, M. G. & Shackley, S. E. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Mar. Biol. Assoc. UK. 76, 89–106. https://doi.org/10.1017/S0025315400029039 (1996).Article 

    Google Scholar 
    60.Clarke, M. R., Clarke, D. C., Martins, H. R. & Silva, H. M. The diet of blue shark (Prionace glauca) in Azorean waters, Arquipélago. Life Mar. Sci. 14A, 41–56 (1996).
    Google Scholar 
    61.Bond, M. E., Tolentino, E., Mangubhai, S. & Howey, L. A. Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Anim. Biotelemetry 3, 19. https://doi.org/10.1186/s40317-015-0055-6 (2015).Article 

    Google Scholar 
    62.Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1–26. https://doi.org/10.1002/lno.11709 (2021).CAS 
    Article 

    Google Scholar 
    63.Arkhipkin, A. I. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Sea Res. II(95), 7–20. https://doi.org/10.1016/j.dsr2.2012.07.003 (2013).CAS 
    Article 

    Google Scholar 
    64.Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2, 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).Article 
    PubMed 

    Google Scholar 
    65.Spaet, J. L. Y., Lam, C. H., Braun, C. D. & Berumen, M. L. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea. Anim. Biotelemetry 5, 20. https://doi.org/10.1186/s40317-017-0135-x (2017).Article 

    Google Scholar 
    66.ICES. Working Group on Elasmobranch Fishes (WGEF). ICES Sci. Rep. 2, 789. https://doi.org/10.17895/ices.pub.7470 (2020).Article 

    Google Scholar 
    67.Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B 288, 20201600. https://doi.org/10.1098/rspb.2020.1600 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Pastoors, M. A., van Helmond, E. B., van Marlen, B., van Overzee, H. & de Graaf, E. Pelagic pilot project discard ban, 2013–2014. (IMARES, Wageningen UR, Report Number C071/14) (2014).69.Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS 
    Article 

    Google Scholar 
    70.NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. (NOAA National Centers for Environmental Information, 2009).71.Pedersen, M. W., Patterson, T. A., Thygesen, U. H. & Madsen, H. Estimating animal behaviour and residency from movement data. Oikos 120, 1281–1290. https://doi.org/10.1111/j.1600-0706.2011.19044.x (2011).Article 

    Google Scholar 
    72.Bauer, R. RchivalTag: Analyzing Archival Tagging Data. A set of functions to generate, access and analyze standard data products from archival tagging data. (2020). https://cran.r-project.org/package=RchivalTag.
    Accessed on 8 November 2021.73.Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    74.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, 4th ed. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.75.Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (2012). https://cran.r-project.org/package=mgcv. Accessed on 8 November 2021.76.Wood S. N. Generalized Additive Models. An Introduction with R. 2nd ed. (Chapman & Halll, 2017). https://doi.org/10.1201/9781315370279. More