EU-Trees4F, a dataset on the future distribution of European tree species
1.FOREST EUROPE. State of Europe’s Forests (Ministerial Conference on the Protection of Forests in Europe, Bratislava, 2020).2.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1–8 (2013).
Google Scholar
3.Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiv. Conserv. 26, 3005–3035 (2017).
Google Scholar
4.Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).
Google Scholar
5.Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
Google Scholar
6.Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
Google Scholar
7.Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).
Google Scholar
8.Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).ADS
Google Scholar
9.Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed
Google Scholar
10.Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed
Google Scholar
11.Saltré, F. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).
Google Scholar
12.Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
Google Scholar
13.Pedlar, J. H. et al. Placing forestry in the assisted migration debate. BioScience 62, 835–842 (2012).
Google Scholar
14.Overpeck, J. T. & Breshears, D. D. The growing challenge of vegetation change. Science 372, 786–787 (2021).ADS
CAS
PubMed
Google Scholar
15.Strona, G. et al. Far from naturalness: How much does spatial ecological structure of European tree assemblages depart from potential natural vegetation? Plos One 11, e0165178 (2016).PubMed
PubMed Central
Google Scholar
16.Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 1–7 (2019).CAS
Google Scholar
17.Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).ADS
Google Scholar
18.Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).
Google Scholar
19.Nabuurs, G.-J. et al. Next-generation information to support a sustainable course for European forests. Nat. Sustain. 2, 815–818 (2019).
Google Scholar
20.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738–5742 (2007).ADS
CAS
PubMed
PubMed Central
Google Scholar
21.Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).CAS
PubMed
Google Scholar
22.Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change – is non-management an option? Ann. For. Sci. 76, 1–13 (2019).
Google Scholar
23.Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 24, 1150–1163 (2018).ADS
Google Scholar
24.Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).ADS
Google Scholar
25.Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430, 485–497 (2018).
Google Scholar
26.Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).ADS
CAS
PubMed
PubMed Central
Google Scholar
27.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS
CAS
PubMed
Google Scholar
28.Morin, X. et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8, 1–12 (2018).ADS
Google Scholar
29.Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).PubMed
Google Scholar
30.Messier, C. et al. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 1–16 (2019).
Google Scholar
31.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).ADS
Google Scholar
32.Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).
Google Scholar
33.Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1986 (2019).PubMed
PubMed Central
Google Scholar
34.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).
Google Scholar
35.Noce, S., Collalti, A. & Santini, M. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 7, 9358–9375 (2017).PubMed
PubMed Central
Google Scholar
36.Hickler, T. et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 21, 50–63 (2012).
Google Scholar
37.Takolander, A., Hickler, T., Meller, L. & Cabeza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Environ. Change 19, 251–266 (2019).
Google Scholar
38.Chen, M. et al. Global land use for 2015–2100 at 0.05 resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 1–11 (2020).ADS
Google Scholar
39.Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci. Data 4, 1–8 (2017).
Google Scholar
40.Strona, G., Mauri, A. & San-Miguel-Ayanz, J. A high-resolution pan-European tree occurrence dataset. Figshare https://doi.org/10.6084/m9.figshare.c.3288407.v1 (2016).41.Benito-Garzón, M. & Fernández-Manjarrés, J. F. Testing scenarios for assisted migration of forest trees in Europe. New For. 46, 979–994 (2015).
Google Scholar
42.Thuiller, W., Lavorel, S., Sykes, M. T. & Araújo, M. B. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 12, 49–60 (2006).
Google Scholar
43.Robinet, C. et al. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE 7, 10 (2012).
Google Scholar
44.European Commission. The European Green Deal. (Publications office of the European Union, 2019).45.European Commission. EU Biodiversity Strategy for 2030, Bringing nature back into our lives. (Publications office of the European Union, 2020).46.European Commission. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. (Publications office of the European Union, 2018).47.European Commission. New EU Forest Strategy for 2030. (Publications office of the European Union, 2021).48.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Google Scholar
49.ICP Forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. http://icp-forests.net/ (2019).50.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce–Distribution Atlas of Vascular Plants in Poland. (Nakladem Pracowni Chorologii Komputerowej Instytutu Botaniki Uniwersytetu – Laboratory of Computer Corology – Institute of Botany – Jagiellonian University, 2001).51.Gschwantner, T. et al. Common tree definitions for national forest inventories in Europe. Silva Fennica 43, 303–321 (2009).
Google Scholar
52.Rivers, M. et al. European Red List of Trees. (International Union for Conservation of Nature and Natural Resources, 2019).53.Rocchini, D. et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Sci. Total Environ. 584, 282–290 (2017).ADS
PubMed
Google Scholar
54.Bartlein, P. J., Prentice, I. C. & Webb III, T. Climatic response surfaces from pollen data for some eastern North American taxa. J. Biogeogr. 35–57 (1986).55.Woodward, F. I. & Woodward, F. Climate and plant distribution. (Cambridge University Press, 1987).56.Harrison, S. et al. Towards a global scheme of plant functional types for ecosystem modelling, palaeoecology and climate impact research. J Veg Sci 21, 300–317 (2009).
Google Scholar
57.Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS
Google Scholar
58.Prentice, I. C. et al. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 117–134 (1992).59.Pouteau, R. et al. Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Divers. Distrib. 27, 2063–2076 (2021).
Google Scholar
60.Naimi, B. USDM: Uncertainty analysis for species distribution models. https://www.rdocumentation.org/packages/usdm/versions/ (2015).61.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25, 1965–1978 (2005).
Google Scholar
62.Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
Google Scholar
63.Teutschbein, C. & Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456, 12–29 (2012).ADS
Google Scholar
64.Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdiscip. Rev. Clim. Change 6, 301–319 (2015).
Google Scholar
65.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).ADS
Google Scholar
66.Baker, B., Diaz, H., Hargrove, W. & Hoffman, F. Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Clim. Change 98, 113–131 (2010).ADS
Google Scholar
67.Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92 (2016).
Google Scholar
68.Klausmeyer, K. R. & Shaw, M. R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PloS One 4, e6392 (2009).ADS
PubMed
PubMed Central
Google Scholar
69.Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).PubMed
Google Scholar
70.Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1029–1136 (Cambridge University Press, 2013).71.Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).PubMed
PubMed Central
Google Scholar
72.Zhang, L. et al. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PloS One 10, e0120056 (2015).PubMed
PubMed Central
Google Scholar
73.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
Google Scholar
74.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
75.De Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. Shifts in global vegetation activity trends. Remote Sens. 5, 1117–1133 (2013).ADS
Google Scholar
76.Engler, R. & Guisan, A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009).
Google Scholar
77.Engler, R., Hordijk, W. & Guisan, A. The MIGCLIM R package–seamless integration of dispersal constraints into projections of species distribution models. Ecography 35, 872–878 (2012).
Google Scholar
78.Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Glob. Ecol. Biogeogr. 26, 243–258 (2017).
Google Scholar
79.Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed
PubMed Central
Google Scholar
80.Euro+Med. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ (2019).81.Summers, D. M., Bryan, B. A., Crossman, N. D. & Meyer, W. S. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob. Change Biol. 18, 2335–2348 (2012).ADS
Google Scholar
82.García-Valdés, R., Zavala, M. A., Araujo, M. B. & Purves, D. W. Chasing a moving target: Projecting climate change-induced shifts in non-equilibrial tree species distributions. J. Ecol. 101, 441–453 (2013).
Google Scholar
83.Lischke, H., Zimmermann, N. E., Bolliger, J., Rickebusch, S. & Löffler, T. J. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol. Model. 199, 409–420 (2006).
Google Scholar
84.Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).PubMed
Google Scholar
85.Thomson, F. J., Letten, A. D., Tamme, R., Edwards, W. & Moles, A. T. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol. 217, 407–415 (2018).PubMed
Google Scholar
86.Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS
Google Scholar
87.Mauri, A., Girardello, M. & Strona, G. EU-Trees4F. A dataset on the future distribution of European tree species, figshare, https://doi.org/10.6084/m9.figshare.c.5525688 (2021).88.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).
Google Scholar
89.Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
Google Scholar
90.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
91.Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18, 2255–2261 (2009).
Google Scholar
92.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
93.R Core Team. R: A language and environment for statistical computing. (2020). More