Beyond Demonstrators—tackling fundamental problems in amplifying nature-based solutions for the post-COVID-19 world
1.Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447 (2020).CAS
Google Scholar
2.European Commission. Towards an EU Research and Innovation policy agenda for nature-based solutions and renaturing cities. Final Report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities, (European Commission, Brussels, 2015).3.Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 98, 20–29 (2019).
Google Scholar
4.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).
Google Scholar
5.Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain 2, 29–38 (2019).
Google Scholar
6.Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G. & Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Greening 37, 3–12 (2019).
Google Scholar
7.Pan, H., Page, J., Cong, C., Barthel, S. & Kalantari, Z. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 35, 100297 (2021).
Google Scholar
8.Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).CAS
Google Scholar
9.Hack, J. & Schröter, B. Nature-based solutions for river restoration in metropolitan areas. Brears, R. The Palgrave Encyclopedia of Urban and Regional Futures. 1–10 (Springer International Publishing, Cham, 2021).10.Lam, D. P. M. et al. Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transform 2, 3 (2020).
Google Scholar
11.Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain 3, e15 (2020).
Google Scholar
12.Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).CAS
Google Scholar
13.Sabel, C. F. & Zeitlin, J. Experimentalist Governance. Levi-Faur, D. The Oxford Handbook of Governance. 169–183 (Oxford Univ. Press, Oxford, 2012).14.Kern, K. Cities as leaders in EU multilevel climate governance: embedded upscaling of local experiments in Europe. Environ. Polit. 28, 125–145 (2019).
Google Scholar
15.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar
16.Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M. & Stillwell, A. S. The green experiment: cities, green stormwater infrastructure, and sustainability. Sustainability 9 (2017).17.McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 1, 5 (2021).
Google Scholar
18.Scoones, I. et al. Transformations to sustainability: combining structural, systemic and enabling approaches. Curr. Opin. Environ. Sustain. 42, 65–75 (2020).
Google Scholar
19.Han, S. & Kuhlicke, C. Reducing hydro-meteorological risk by nature-based solutions: what do we know about people’s perceptions? Water 11, 2599 (2019).
Google Scholar
20.Albert, C. et al. Planning nature-based solutions: principles, steps, and insights. Ambio, 1446–1461 (2020).21.Matthews, T., Lo, A. Y. & Byrne, J. A. Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Planning 138, 155–163 (2015).
Google Scholar
22.Myllyvirta, L. China’s CO2 emissions have surged back from the coronavirus lockdown, rising by 4-5% year-on-year in May, analysis of new government data shows. https://www.carbonbrief.org/analysis-chinas-co2-emissions-surged-past-pre-coronavirus-levels-in-may (2020).23.Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Preprint at https://doi.org/10.31219/osf.io/3wx5a (2020).24.Mahoney, J. Path dependence in historical sociology. Theory Soc. 29, 507–548 (2000).
Google Scholar
25.Davies, C. & Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 80, 406–409 (2019).
Google Scholar
26.Kuzemko, C. et al. Covid-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 68, 101685 (2020).
Google Scholar
27.Kanda, W. & Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 68, 101666 (2020).
Google Scholar
28.Cohen, M. J. Does the COVID-19 outbreak mark the onset of a sustainable consumption transition? Sustain.: Sci. Pract. Policy 16, 1–3 (2020).
Google Scholar
29.Pearson, R. M., Sievers, M., McClure, E. C., Turschwell, M. P. & Connolly, R. M. COVID-19 recovery can benefit biodiversity. Science 368, 838 (2020).
Google Scholar
30.Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).CAS
Google Scholar
31.Kavousi, J., Goudarzi, F., Izadi, M. & Gardner, C. J. Conservation needs to evolve to survive in the post-pandemic world. Glob. Change Biol. 26, 4651–4653 (2020).
Google Scholar
32.Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec., 1–6 (2020).33.Khetan, A. K. COVID-19: why declining biodiversity puts us at greater risk for emerging infectious diseases, and what we can do. J. Gen. Intern. Med. 35, 2746–2747 (2020).
Google Scholar
34.Sugiyama, T. et al. Four Recommendations for Greener, Healthier Cities in the Post-Pandemic. https://www.thenatureofcities.com/2020/06/30/four-recommendations-for-greener-healthier-cities-in-the-post-pandemic/ (2020).35.Thorslund, J. et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
Google Scholar
36.Albert, C. et al. Addressing societal challenges through nature-based solutions: how can landscape planning and governance research contribute? Landsc.Urban Plan. 182, 12–21 (2019).
Google Scholar
37.Albert, C., Von Haaren, C., Othengrafen, F., Krätzig, S. & Saathoff, W. Scaling policy conflicts in ecosystem services governance: a framework for spatial. Analysis. J. Environ. Policy Plan. 19, 574–592 (2017).
Google Scholar
38.Hutchins, M. G. et al. Why scale is vital to plan optimal nature-based solutions for resilient cities. Environ. Res. Lett. 16, 044008 (2021).
Google Scholar
39.Raška, P., Slavíková, L. & Sheehan, J. in Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge 9–20 (Springer International Publishing, 2019).40.Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466 (2019).
Google Scholar
41.Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S. & Torres, A. S. A framework for assessing benefits of implemented nature-based solutions. Sustainability 11, 6788 (2019).
Google Scholar
42.Wurzel, R. K. W., Liefferink, D. & Torney, D. Pioneers, leaders and followers in multilevel and polycentric climate governance. Environ. Polit. 28, 1–21 (2019).
Google Scholar
43.Frantzeskaki, N. et al. Examining the policy needs for implementing nature-based solutions in cities: findings from city-wide transdisciplinary experiences in Glasgow (UK), Genk (Belgium) and Poznań (Poland). Land Use Policy 96, 104688 (2020).
Google Scholar
44.Zingraff-Hamed, A. et al. Governance models for nature-based solutions: cases from Germany. Ambio 50, 1610–1627 (2020).
Google Scholar
45.Toxopeus, H. et al. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 105, 102839 (2020).
Google Scholar
46.Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).
Google Scholar
47.Pérez Rubi, M. & Hack, J. Co-design of experimental nature-based solutions for decentralized dry-weather runoff treatment retrofitted in a densely urbanized area in Central America. Ambio 50, 1498–1513 (2021).
Google Scholar
48.Chapa, F., Pérez, M. & Hack, J. Experimenting transition to sustainable urban drainage systems—identifying constraints and unintended processes in a tropical highly urbanized. Watershed. Water 12, 3554 (2020).
Google Scholar
49.Chen, V., Bonilla Brenes, J. R., Chapa, F. & Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. Ambio 50, 1462–1476 (2021).
Google Scholar
50.Hüesker, F. & Moss, T. The politics of multi-scalar action in river basin management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 42, 38–47 (2015).
Google Scholar
51.WBCSD. Incentives for Natural Infrastructure: review of existing policies, incentives and barriers related to permitting, finance and insurance of natural infrastructure. (World Business Council for Sustainable Development, Geneva, 2017).52.Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).
Google Scholar
53.Toxopeus, H. S. Taking Action for Urban Nature: Business Model Catalogue, NATURVATION Guide (2019).54.Duraiappah, A. K. et al. Managing the mismatches to provide ecosystem services for human well-being: a conceptual framework for understanding the New Commons. Curr. Opin.Environ. Sustain 7, 94–100 (2014).
Google Scholar
55.Young, O. R. Vertical interplay among scale-dependent environmental and resource regimes. Ecol. Soc. 11, 27 (2006).
Google Scholar
56.Cumming, G. S., Cumming, D. H. M. & Redman, C. L. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol. Soc. 11, 14 (2006).
Google Scholar
57.Naidoo, R. & Fisher, B. Sustainable development goals: pandemic reset. Nature 583, 198–201 (2020).CAS
Google Scholar
58.Fyfe, J. C. et al. Quantifying the influence of short-term emission reductions on climate. Sci. Adv. 7, eabf7133 (2021).CAS
Google Scholar
59.Linnér, B.-O. & Wibeck, V. Conceptualising variations in societal transformations towards sustainability. Environ. Sci.Pol. 106, 221–227 (2020).
Google Scholar
60.Harrabin, R. Coronavirus: Lockdown ‘could boost wild flowers’. https://www.bbc.com/news/science-environment-52215273 (2020).61.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).
Google Scholar
62.Honey-Rosés, J. et al. The impact of COVID-19 on public space: an early review of the emerging questions—design, perceptions and inequities. Cities & Health, 1-17(2020).63.Sanyé-Mengual, E., Anguelovski, I., Oliver-Solà, J., Montero, J. I. & Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food production as a driver for innovative forms of urban agriculture. Agric. Human Values 33, 101–120 (2016).
Google Scholar
64.PIANC. Guide for applying Working with Nature to navigation infrastructure projects. (Brussels, Belgium, 2018).65.Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 10, 369–382 (2012). https://doi.org/10.1080/15715124.2012.739173.66.Li, H., Ding, L., Ren, M., Li, C. & Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water (Australia) 9, 594 (2017).67.Kurth, A.-M. & Schirmer, M. Thirty years of river restoration in Switzerland: implemented measures and lessons learned. Environ. Earth Sci. 72, 2065–2079 (2014). https://doi.org/10.1007/s12665-014-3115-y.68.Petty, K. Wildflowers on road verges: an uplifting sight during the coronavirus lockdown. (2020). https://www.plantlife.org.uk/uk/blog/wildflowers-on-road-verges-an-uplifting-sight-during-the-coronavirus-lockdown. More