Matrix condition mediates the effects of habitat fragmentation on species extinction risk
1.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS
CAS
PubMed
Google Scholar
2.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).ADS
CAS
PubMed
Google Scholar
3.Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143 (2016).ADS
CAS
PubMed
Google Scholar
4.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS
PubMed
Google Scholar
5.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS
PubMed
PubMed Central
Google Scholar
6.Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Google Scholar
7.Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).
Google Scholar
8.Fahrig, L. Habitat fragmentation: a long and tangled tale. Glob. Ecol. Biogeogr. 28, 33–41 (2019).
Google Scholar
9.Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).
Google Scholar
10.Miller-Rushing, A. J. et al. How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology. Biol. Conserv. 232, 271–273 (2019).
Google Scholar
11.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Google Scholar
12.Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
Google Scholar
13.Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–993 (2015).
Google Scholar
14.Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
15.Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).ADS
CAS
PubMed
Google Scholar
16.Pardini, R. et al. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).ADS
PubMed
PubMed Central
Google Scholar
17.Villard, M.-A. & Metzger, J. P. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318 (2014).
Google Scholar
18.Prugh, L. R., Hodges, K. E., Sinclair, A. R. E. & Brashares, J. S. Effect of habitat area and isolation on fragmented animal populations. Proc. Natl Acad. Sci. USA 105, 20770–20775 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
19.Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl Acad. Sci. USA 106, 349–350 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
20.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).21.Haila, Y. A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol. Appl. 12, 321–334 (2002).
Google Scholar
22.Watson, D. M. A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. J. Biogeogr. 29, 823–834 (2002).
Google Scholar
23.Watson, J. E. M., Whittaker, R. J. & Freudenberger, D. Bird community responses to habitat fragmentation: how consistent are they across landscapes? J. Biogeogr. 32, 1353–1370 (2005).
Google Scholar
24.Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).ADS
CAS
PubMed
Google Scholar
25.Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez‐Azofeifa, A. Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. 17, 1814–1826 (2003).
Google Scholar
26.Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).ADS
CAS
PubMed
Google Scholar
27.Perfecto, I. & Vandermeer, J. Biodiversity conservation in tropical agroecosystems. Ann. N. Y. Acad. Sci. 1134, 173–200 (2008).ADS
PubMed
Google Scholar
28.Law, E. A. & Wilson, K. A. Providing context for the land-sharing and land-sparing debate. Conserv. Lett. 8, 404–413 (2015).
Google Scholar
29.Phalan, B. T. What have we learned from the land sparing-sharing model? Sustainability 10, 1760 (2018).
Google Scholar
30.Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).
Google Scholar
31.Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).
Google Scholar
32.Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. R. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal. Rev. 48, 312–327 (2018).
Google Scholar
33.Battin, J. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).
Google Scholar
34.Martin, L. J., Blossey, B. & Ellis, E. Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front. Ecol. Environ. 10, 195–201 (2012).
Google Scholar
35.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS
PubMed
Google Scholar
36.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed
PubMed Central
Google Scholar
37.Arroyo‐Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).PubMed
Google Scholar
38.Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).CAS
Google Scholar
39.Fisher, D. O., Blomberg, S. P. & Owens, I. P. F. Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc. R. Soc. Lond. B Biol. Sci. 270, 1801–1808 (2003).
Google Scholar
40.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).ADS
CAS
PubMed
Google Scholar
41.Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl Acad. Sci. USA 106, 10702–10705 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
42.Di Marco, M., Collen, B., Rondinini, C. & Mace, G. M. Historical drivers of extinction risk: using past evidence to direct future monitoring. Proc. R. Soc. B Biol. Sci. 282, 20150928 (2015).
Google Scholar
43.Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinction risk. Nat. Commun. 9, 4621 (2018).ADS
PubMed
PubMed Central
Google Scholar
44.Rondinini, C., Marco, M. D., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. 7, 126–130 (2014).
Google Scholar
45.Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).
Google Scholar
46.Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl Acad. Sci. USA 114, 7635–7640 (2017).CAS
PubMed
PubMed Central
Google Scholar
47.Lucas, P. M., González‐Suárez, M. & Revilla, E. Range area matters, and so does spatial configuration: predicting conservation status in vertebrates. Ecography 42, 1103–1114 (2019).
Google Scholar
48.Arregoitia, L. D. V. Biases, gaps, and opportunities in mammalian extinction risk research. Mammal. Rev. 46, 17–29 (2016).
Google Scholar
49.Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2633–2641 (2011).
Google Scholar
50.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
51.Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).
Google Scholar
52.Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS
CAS
PubMed
Google Scholar
53.Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS
CAS
PubMed
Google Scholar
54.Breiman, L. Random forests. Mach. Learn 45, 5–32 (2001).MATH
Google Scholar
55.Laurance, W. F. Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv. Biol. 5, 79–89 (1991).
Google Scholar
56.Viveiros de Castro, E. B. & Fernandez, F. A. S. Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol. Conserv. 119, 73–80 (2004).
Google Scholar
57.Reider, I. J., Donnelly, M. A. & Watling, J. I. The influence of matrix quality on species richness in remnant forest. Landsc. Ecol. 33, 1147–1157 (2018).
Google Scholar
58.Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).PubMed
Google Scholar
59.Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS
CAS
PubMed
Google Scholar
60.Tracewski, Ł. et al. Toward quantification of the impact of 21st-century deforestation on the extinction risk of terrestrial vertebrates. Conserv. Biol. 30, 1070–1079 (2016).PubMed
Google Scholar
61.Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. B Biol. Sci. 275, 1441–1448 (2008).
Google Scholar
62.Murray, K. A., Arregoitia, L. D. V., Davidson, A., Marco, M. D. & Fonzo, M. M. I. D. Threat to the point: improving the value of comparative extinction risk analysis for conservation action. Glob. Change Biol. 20, 483–494 (2014).ADS
Google Scholar
63.Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).PubMed
Google Scholar
64.Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).ADS
PubMed
PubMed Central
Google Scholar
65.Watling, J. I., Nowakowski, A. J., Donnelly, M. A. & Orrock, J. L. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Glob. Ecol. Biogeogr. 20, 209–217 (2011).
Google Scholar
66.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).67.Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
68.May, S. A. & Norton, T. W. Influence of fragmentation and disturbance on the potential impact of feral predators on native fauna in Australian forest ecosystems. Wildl. Res 23, 387–400 (1996).
Google Scholar
69.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian Forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).
Google Scholar
70.Laurance, W. F. & Useche, D. C. Environmental synergisms and extinctions of tropical species. Conserv. Biol. 23, 1427–1437 (2009).PubMed
Google Scholar
71.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).
Google Scholar
72.Didham, R. K., Kapos, V. & Ewers, R. M. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121, 161–170 (2012).
Google Scholar
73.Ruffell, J., Banks‐Leite, C. & Didham, R. K. Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation. Oikos 125, 117–125 (2016).
Google Scholar
74.Morante‐Filho, J. C. et al. Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecol. Appl. 28, 2024–2032 (2018).PubMed
Google Scholar
75.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).PubMed
Google Scholar
76.Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed
Google Scholar
77.Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).
Google Scholar
78.Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).PubMed
Google Scholar
79.IUCN. IUCN Red List of Threatened Species. Version 2021-1. (2021).80.IUCN. A global standard for the identification of Key Biodiversity Areas. Version 1.0. (IUCN, Gland, 2016).81.Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).
Google Scholar
82.Ripple, W. J., Bradshaw, G. A. & Spies, T. A. Measuring forest landscape patterns in the cascade range of Oregon, USA. Biol. Conserv. 57, 73–88 (1991).
Google Scholar
83.Li, B.-L. & Archer, S. Weighted mean patch size: a robust index for quantifying landscape structure. Ecol. Model. 102, 353–361 (1997).
Google Scholar
84.Di Marco, M., Rondinini, C., Boitani, L. & Murray, K. A. Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biol. Conserv. 165, 203–211 (2013).
Google Scholar
85.IUCN. IUCN Red List of Threatened Species. Version 2012-1. (2012).86.Cutler, D. R. et al. Random forests for Classification in ecology. Ecology 88, 2783–2792 (2007).PubMed
Google Scholar
87.Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).ADS
CAS
PubMed
Google Scholar
88.McNab, B. K. The influence of food habits on the energetics of eutherian mammals. Ecol. Monogr. 56, 1–19 (1986).
Google Scholar
89.Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob. Ecol. Biogeogr. 23, 1105–1114 (2014).
Google Scholar
90.Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).PubMed
Google Scholar
91.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
92.Cohen, J. Statistical Power Analysis for the Behavioral Sciences. (Academic Press, 1988).93.ESRI. ArcGIS Pro version 2.8.2, https://www.esri.com/en-us/home (2021).94.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).95.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
96.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Google Scholar
97.Molnar, C. & Schratz, P. iml: Interpretable Machine Learning. R package version 0.10.1, https://CRAN.R-project.org/package=iml (2020).98.Torchiano, M. effsize: Efficient Effect Size Computation. R package version 0.8.1, https://CRAN.R-project.org/package=effsize (2020).99.Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0, https://CRAN.R-project.org/package=rredlist (2020).100.Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403–3403 (2003).
Google Scholar
101.Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).
Google Scholar
102.Tacutu, R. et al. Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2013).CAS
PubMed
Google Scholar
103.Verde Arregoitia, L. D., Blomberg, S. P. & Fisher, D. O. Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk. Proc. R. Soc. B Biol. Sci. 280, 20131092 (2013).
Google Scholar
104.Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed
Google Scholar
105.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Google Scholar
106.Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930 (2014).PubMed
PubMed Central
Google Scholar More