More stories

  • in

    Consider fungal friends

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Pantanal fires

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Giant sponge grounds of Central Arctic seamounts are associated with extinct seep life

    1.Maldonado, M. et al. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A. & del Valle, C.) (Springer, 2016).2.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).ADS 
    PubMed 

    Google Scholar 
    3.Beazley, L., Kenchington, E., Yashayaev, I. & Murillo, F. J. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest. Atl. Deep. Res. Part I 98, 102–114 (2015).
    Google Scholar 
    4.Klitgaard, A. B. & Tendal, O. S. Progress in oceanography distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).ADS 

    Google Scholar 
    5.Kazanidis, G. et al. Distribution of deep-sea sponge aggregations in an area of multisectoral activities and changing oceanic conditions. Front. Mar. Sci. 6, 163 (2019).
    Google Scholar 
    6.Hanz, U., Roberts, E. M., Duineveld, G., Davies, A. & Rapp, H. T. Long – term observations reveal environmental conditions and food supply mechanisms at an Arctic deep-sea sponge ground. J. Geophisical. Res. 126, 1–18 (2021).
    Google Scholar 
    7.Roberts, E. et al. Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar. Ecol. Prog. Ser. 659, 75–96 (2021).ADS 

    Google Scholar 
    8.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
    Google Scholar 
    9.Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).ADS 

    Google Scholar 
    10.Morganti, T., Coma, R., Yahel, G. & Ribes, M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 62, 1963–1983 (2017).ADS 
    CAS 

    Google Scholar 
    11.Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA — Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).ADS 

    Google Scholar 
    12.Bart, M. C. et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol. Oceanogr. 9999, 1–14 (2020).
    Google Scholar 
    13.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    14.Bruck, T. B., Self, W. T., Reed, J. K., Nitecki, S. S. & McCarthy, P. J. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME J. 4, 686–699 (2010).PubMed 

    Google Scholar 
    15.Schottner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.Hoffmann, F. et al. An anaerobic world in sponges. Geomicrobiol. J. 22, 1–10 (2005).
    Google Scholar 
    17.Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535, 276–279 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Cochran, J. R. Seamount volcanism along the Gakkel Ridge. Arct. Ocean. Geophys. J. Int. 174, 1153–1173 (2008).ADS 

    Google Scholar 
    19.Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).ADS 

    Google Scholar 
    20.Wassmann, P., Slagstad, D. & Ellingsen, I. Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results. Polar Biol. 33, 1641–1650 (2010).
    Google Scholar 
    21.Wiedmann, I. et al. What feeds the Benthos in the Arctic Basins? Assembling a carbon budget for the deep Arctic Ocean. Front. Mar. Sci. 7, 224 (2020).
    Google Scholar 
    22.Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. (2017).23.Alvizu, A., Xavier, J. R. & Rapp, H. T. Description of new chiactine-bearing sponges provides insights into the higher classification of Calcaronea (Porifera: Calcarea). Zootaxa 4615, 201–251 (2019).
    Google Scholar 
    24.Rybakova, E., Kremenetskaia, A., Vedenin, A., Boetius, A. & Gebruk, A. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS ONE 14, 1–27 (2019).
    Google Scholar 
    25.Astrom, E. K. L. et al. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 63, 209–231 (2018).
    Google Scholar 
    26.Sen, A., Didriksen, A., Hourdez, S., Svenning, M. M. & Rasmussen, T. L. Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. 10, 1339–1351 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    27.Henrich, R. et al. Facies belts and communities of the arctic Vesterisbanken Seamount (Central Greenland Sea). Facies 27, 71 (1992).
    Google Scholar 
    28.Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T. & Bannister, R. J. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol. Oceanogr. 63, 187–202 (2018).ADS 
    CAS 

    Google Scholar 
    29.Druffel, E. R. M., Griffin, S., Glynn, C. S., Benner, R. & Walker, B. D. Radiocarbon in dissolved organic and inorganic carbon of the Arctic Ocean. Geophys. Res. Lett. 44, 2369–2376 (2017).ADS 
    CAS 

    Google Scholar 
    30.Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 

    Google Scholar 
    31.Petersen, J. M., Wentrup, C., Verna, C., Knittel, K. & Dubilier, N. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals. Biol. Bull. 223, 123–137 (2012).CAS 
    PubMed 

    Google Scholar 
    32.Rubin-Blum, M. et al. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. ISME J. 13, 1209–1225 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150–18 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamke, J. et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 7, 2287–2300 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Bayer, K. et al. Microbial strategies for survival in the glass sponge Vazella pourtalesii. mSystems 5, e00473–20 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Van Duyl, F. C., Hegeman, J., Hoogstraten, A. & Maier, C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar. Ecol. Prog. Ser. 358, 137–150 (2008).ADS 

    Google Scholar 
    37.Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.von Appen, W.-J., Latarius, K. & Kanzow, T. Physical oceanography and current meter data from mooring F6-17. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven (2017). https://doi.org/10.1594/PANGAEA.870845.39.Woodgate, R. Arctic ocean circulation: going around at the top of the world. Nat. Educ. Knowl. 4, 8 (2013).
    Google Scholar 
    40.White, M., Bashmachnikov, I., Arístegui, J. & Martins, A. in Seamounts: Ecology, Fisheries & Conservation (eds Pitcher, T. J. et al.) Ch. 4 (Wiley, 2007).41.Buchs, D. M., Hoernle, K. & Grevemeyer, I. In Encyclopedia of Marine Geosciences (eds Harff, J., Meschede, M., Petersen, S. & Thiede, J.) (Springer, Dordrecht, 2015). https://doi.org/10.1007/978-94-007-6644-0_34-2.42.Emerson, D. & Moyer, C. Microbiology of seamounts: common patterns observed in community structure. Oceanography 23, 148–163 (2010).
    Google Scholar 
    43.Rimskaya-Korsakova, N. N. et al. First discovery of pogonophora (Annelida, Siboglinidae) in the Kara Sea coincide with the area of high methane concentration. Dokl. Biol. Sci. 490, 25–27 (2020).CAS 
    PubMed 

    Google Scholar 
    44.Cardenas, P. & Rapp, H. T. Demosponges from the Northern mid-Atlantic ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. J. Mar. Biol. Assoc. U. Kindom 95, 1475–1516 (2015).
    Google Scholar 
    45.Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep. Res. Part I Oceanogr. Res. Pap. 153, 103137 (2019).
    Google Scholar 
    46.Grebmeier, J. M. et al. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Prog. Oceanogr. 136, 92–114 (2015).ADS 

    Google Scholar 
    47.Oevelen, D. Van et al. The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS 

    Google Scholar 
    48.Hammel, J. U., Herzen, J., Beckmann, F. & Nickel, M. Sponge budding is a spatiotemporal morphological patterning process: insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma. Front. Zool. 6, 19 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Witte, U. & Graf, G. Metabolism of deep-sea sponges in the Greenland- Norwegian Sea. Mar. Biol. 198, 223–235 (1996).
    Google Scholar 
    50.Rovelli, L. et al. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar. Ecol. Prog. Ser. 525, 97–104 (2015).ADS 

    Google Scholar 
    51.De Clippele, L. H. et al. Mapping cold-water coral biomass: an approach to derive ecosystem functions. Coral Reefs 40, 215–231 (2021).
    Google Scholar 
    52.de Kluijver, A. et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front. Mar. Sci. 7, 1–18 (2021).
    Google Scholar 
    53.Lalande, C., Nothig, E.-M. & Fortier, L. Algal export in the Arctic ocean in times of global warming. Geophys. Res. Lett. 46, 1–9 (2019).
    Google Scholar 
    54.Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1433 (2013).55.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS 
    CAS 

    Google Scholar 
    56.Rix, L. et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 14, 2554–2567 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Ann. Rev. Mar. Sci. 5, 421–445 (2013).PubMed 

    Google Scholar 
    58.Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    59.Anderson, L. G. & Amon, R. M. W. DOM in the Arctic Ocean. In Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) Ch. 14 (Academic Press, 2015).60.Rossel, P. E., Bienhold, C., Boetius, A. & Dittmar, T. Dissolved organic matter in pore water of Arctic Ocean sediments: environmental influence on molecular composition. Org. Geochem. 97, 41–52 (2016).CAS 

    Google Scholar 
    61.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413–e00417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ. Microbiol. 14, 1308–1324 (2012).63.Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 1–13 (2020).
    Google Scholar 
    64.Raimundo, I. et al. Functional metagenomics reveals differential chitin degradation and utilization features across free-living and host-associated marine microbiomes. Microbiome 9, 1–18 (2021).
    Google Scholar 
    65.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    PubMed 

    Google Scholar 
    66.Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S. & Schleper, C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ. Microbiol. 14, 909–923 (2012).CAS 
    PubMed 

    Google Scholar 
    67.Kahn, A. S., Chu, J. W. F. & Leys, S. P. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Sci. Rep. 8, 756 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Thiel, V. et al. Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Org. Geochem. 30, 1–14 (1999).CAS 

    Google Scholar 
    69.de Kluijver, A. et al. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 16, 1–18 (2021).
    Google Scholar 
    70.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    72.Middelburg, J. J. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11, 2357–2371 (2014).ADS 

    Google Scholar 
    73.Åström, E. et al. Chemosynthesis influences food web and community structure in high-Arctic benthos. Mar. Ecol. Prog. Ser. 629, 19–42 (2019).ADS 

    Google Scholar 
    74.Ravaux, J. et al. Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Mar. Biol. 143, 405–412 (2003).CAS 

    Google Scholar 
    75.Gooday, G. W. The Ecology of Chitin Degradation. In Advances in Microbial Ecology, (ed. Marshall, K. C.) vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_10.76.Schwarz, J. R., Yayanos, A. A. & Colwell, R. R. Metabolic activities of the intestinal microflora of a deep-sea invertebrate. Appl. Environ. Microbiol. 31, 46 LP–46 48 (1976).ADS 

    Google Scholar 
    77.Godefroy, N. et al. Sponge digestive system diversity and evolution: filter feeding to carnivory. Cell Tissue Res. 377, 341–351 (2019).PubMed 

    Google Scholar 
    78.Ehrlich, H. et al. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 308B, 347–356 (2007).CAS 

    Google Scholar 
    79.Bowden, D. A. et al. Cold seep epifaunal communities on the Hikurangi Margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE 8, e76869 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Georgieva, M. N. et al. Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps. J. Syst. Palaeontol. 17, 287–329 (2017).
    Google Scholar 
    81.Morganti, T. M. et al. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic. Curr. Biol. 31, R368–R370 (2021).CAS 
    PubMed 

    Google Scholar 
    82.Maldonado, M. An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Mar. Ecol. Prog. Ser. 185, 239–255 (1999).ADS 

    Google Scholar 
    83.Rice, A. L., Thurston, M. H. & New, A. L. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog. Oceanogr. 24, 179–196 (1990).ADS 

    Google Scholar 
    84.Roberts, E. M. et al. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep. Res. Part I Oceanogr. Res. Pap. 138, 98–113 (2018).ADS 

    Google Scholar 
    85.Purser, A. et al. Ocean floor observation and bathymetry system (OFOBS): a new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 44, 1–13 (2019).
    Google Scholar 
    86.Marcon, Y. & Purser, A. PAPARA(ZZ)I: an open-source software interface for annotating photographs of the deep-sea. SoftwareX 6, 69–80 (2017).ADS 

    Google Scholar 
    87.Morganti, T. M., Ribes, M., Yahel, G. & Coma, R. Size is the major determinant of pumping rates in marine sponges. Front. Physiol. 10, 1474 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    88.Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35, 275–294 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    89.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Bio. Ecol. 128, 219–240 (1989).CAS 

    Google Scholar 
    90.Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS 

    Google Scholar 
    91.Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI). Ger. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 496, 45–51 (2021).ADS 
    CAS 

    Google Scholar 
    92.Fallon, S. J., James, K., Norman, R., Kelly, M. & Ellwood, M. J. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1241–1243 (2010).ADS 
    CAS 

    Google Scholar 
    93.Griffith, D. R. et al. Carbon dynamics in the western Arctic Ocean: insights from full-depth carbon isotope profiles of DIC, DOC, and POC. Biogeosciences 9, 1217–1224 (2012).ADS 
    CAS 

    Google Scholar 
    94.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    96.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 

    Google Scholar 
    98.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS 
    PubMed 

    Google Scholar 
    102.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, 1–17 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, 10–13 (2004).
    Google Scholar 
    105.Thibodeau, B., Bauch, D. & Voss, M. Nitrogen dynamic in Eurasian coastal Arctic ecosystem: Insight from nitrogen isotope. Glob. Biogeochem. Cycles 31, 836–849 (2017).ADS 
    CAS 

    Google Scholar 
    106.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011). More

  • in

    Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes

    1.Ramganesh, S., Timothy, S., Sudharshan, S. & Willem, A. J. N. Industrial effluents harbor a unique diversity of fungal community structures as revealed by high-throughput sequencing analysis. Pol. J. Environ. Stud. 28(4), 2353–2362. https://doi.org/10.15244/pjoes/90791 (2019).Article 

    Google Scholar 
    2.Hailemariam, A. A. et al. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci. Rep. 9, 14056. https://doi.org/10.1038/s41598-019-50624-z (2019).CAS 
    Article 

    Google Scholar 
    3.Maza-Márquez, P., Lee, M. D. & Bebout, B. M. The abundance and diversity of fungi in a hypersaline microbial mat from Guerrero Negro, Baja California, México. J. Fungi 7, 210. https://doi.org/10.3390/jof7030210 (2021).CAS 
    Article 

    Google Scholar 
    4.Ma, X., Baron, J. L., Vikram, A., Stout, J. E. & Bibby, K. Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Res. 71, 197–206 (2015).CAS 
    Article 

    Google Scholar 
    5.Wei, Z. et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci. Total Environ. 628, 969–978 (2018).ADS 
    Article 

    Google Scholar 
    6.Ekowati, Y. et al. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int. J. Hyg. Environ. Health. 220, 1152–1160 (2017).Article 

    Google Scholar 
    7.Manoharachary, C., Kunwar, I. K. & Reddy, S. V. Biodiversity, phylogeny and evolution of fungi. In Nature at Work: Ongoing Saga of Evolution (ed. Sharma, V. P.) (Springer, New Delhi, 2010). https://doi.org/10.1007/978-81-8489-992-4_10.Chapter 

    Google Scholar 
    8.Raja, H. A., Miller, A. N., Pearce, C. J. & Oberlies, N. H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 80, 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Liu, J., Li, J., Tao, Y., Sellamuthu, B. & Walsh, R. Analysis of bacterial, fungal and archaeal populations from a municipal wastewater treatment plant developing an innovative aerobic granular sludge process. World J. Microbiol. Biotechnol. 33, 14 (2017).Article 

    Google Scholar 
    10.Simeos, M. F. et al. Soil and rhizosphere associated fungi in gray Mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320. https://doi.org/10.1016/j.gpb.2015.07.002 (2015).Article 

    Google Scholar 
    11.Helal, G. A., Mostafa, M. H. & El-Said, M. A. Fungi in the sewage-treatment Zeinein plant, Cairo, Egypt. J. Basic Appl. Mycol. 2(2011), 69–82 (2011).
    Google Scholar 
    12.Mishra, S. & Mishra, A. To study the diversity of fungal species in sewage water of Durg district. IOSR J. Environ. Sci. Toxicol. Food Technol. 1(6), 45–49 (2015).
    Google Scholar 
    13.Das, S., Dash, H. R., Mangwani, N., Chakraborty, J. & Kumari, S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 103, 80–100. https://doi.org/10.1016/j.mimet.2014.05.013 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Yin, G., Zhang, Y., Pennerman, K. K., Wu, G. & Hua, S. S. T. Characterization of Blue Mold Penicillium Species isolated from stored fruits using multiple highly conserved loci. J. Fungi. 3, 1–10. https://doi.org/10.3390/jof3010012 (2017).CAS 
    Article 

    Google Scholar 
    15.Rajeshkumar, K. C., Yilmaz, N. & Marathe, S. D. Morphology and multigene phylogeny of Talaromyces amyrossmaniae, a new synnematous species belonging to the section Trachyspermi from India. Mycokeys 45, 41–56. https://doi.org/10.3897/mycokeys.45.32549 (2019).Article 

    Google Scholar 
    16.Adeniyi, M. et al. Molecular identification of some wild Nigerian mushrooms using internal transcribed spacer: Polymerase chain reaction. AMB Express 8, 1–9. https://doi.org/10.1186/s13568-018-0661-9 (2018).CAS 
    Article 

    Google Scholar 
    17.Houbraken, J. & Samson, R. A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 70, 1–51. https://doi.org/10.3114/sim.2011.70.01 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Visagie, C. M. et al. Studies in mycology. Stud. Mycol. 78, 343–371. https://doi.org/10.1016/j.simyco.2014.09.001 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Asan, A., Kolanlarli, T. K., Sen, B. & Okten, S. Biodiversity of Penicillium species isolated from Edirne Söğütlük Forest soil (Turkey ). Nisan 10, 26–39 (2019).
    Google Scholar 
    20.De Carvalho, M. J. A. et al. Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet. Biol. 39, 204–210. https://doi.org/10.1016/S1087-1845(03)00044-6 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.De Cassia Garcia Simao, R. & Gomes, S. L. Structure, expression, and functional analysis of the gene coding for calmodulin in the chytridiomycete Blastocladiella emersonii. J. Bacteriol. 183, 2280–2288. https://doi.org/10.1128/JB.183.7.2280-2288.2001 (2001).Article 

    Google Scholar 
    22.Gerber, A., Ito, K., Chu, C. N. & Roeder, R. G. Induced RPB1 depletion reveals a direct gene-specific control of RNA Polymerase III function by RNA Polymerase II. Mol. Cell 78, 765–778. https://doi.org/10.1016/j.molcel.2020.03.023 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Malkus, A. et al. RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria. Mycol. Res. 110, 1152–1164 (2006).CAS 
    Article 

    Google Scholar 
    24.Vetrovsky, T., Kolarik, M., Zifcakova, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16, 388–401. https://doi.org/10.1111/1755-0998.12456 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Machido, D. A., Ezeonuegbu, B. A. & Yakubu, S. E. Resistance to some heavy metals among fungal flora of raw refinery effluent. J. Appl. Sci. Environ. Manag. 18, 623–627. https://doi.org/10.4314/jasem.v18i4.10 (2014).CAS 
    Article 

    Google Scholar 
    26.Ezeonuegbu, B. A., Machido, D. A. & Yakubu, S. E. Resistance of some heavy metals among fungal flora of raw refinery effluent. J. Appl. Sci. Environ. Manag. 18, 623–627 (2014).CAS 

    Google Scholar 
    27.Barnett, H. L. & Hunter, B. B. Illustrated Genera of Imperfect Fungi 4th edn. (Prentice Hall, 1999).
    Google Scholar 
    28.Hakeem, A. S. & Bhatnagar, B. Heavy metal reduction of pulp and paper mill effluent by indigenous microbes. Asian J. Exp. Biol. Sci. 1, 203–210 (2010).
    Google Scholar 
    29.Viegas, C., Sabino, R., Botelho, D., Santos, M. & Gomes, A. Q. Assessment of exposure to Penicillium glabrum complex in cork industry using complementing methods. Arch. Ind. Hyg. Toxicol. 66, 203–207. https://doi.org/10.1515/aiht-2015-66-2614 (2015).Article 

    Google Scholar 
    30.Khandavilli, R., Meena, R. & Bd, S. Fungal phylogenetic diversity in estuarine sediments of Gautami. Curr. Res. Environ. Appl. Mycol. 6, 268–276. https://doi.org/10.5943/cream/6/4/4 (2016).Article 

    Google Scholar 
    31.Houbraken, J., Frisvad, J. C. & Samson, R. A. Sex in penicillium series roqueforti. IMA Fungus 1, 171–180 (2010).Article 

    Google Scholar 
    32.Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL_EBI. Nucleic Acids Res. 38, W695–W699 (2010).CAS 
    Article 

    Google Scholar 
    33.Kumar, S., Stecher, G. & Tamura, K. MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870 (2015).Article 

    Google Scholar 
    34.Sidiq, F., Hoostal, M. & Rogers, S. O. Rapid identification of fungi in culture – negative clinical blood and respiratory samples by DNA sequence analyses. BMC. Res. Notes 9, 1–8. https://doi.org/10.1186/s13104-016-2097-0 (2016).CAS 
    Article 

    Google Scholar 
    35.Oyebanji, E. O., Adekunle, A. A., Coker, H. A. B. & Adebami, G. E. Mycotic loads’ determination of non-sterile pharmaceuticals in lagos state and 16s rdna identification of the fungal isolates. J. Appl. Pharm. Res. 6, 16–28. https://doi.org/10.18231/2348-0335.2018.0007 (2018).CAS 
    Article 

    Google Scholar 
    36.Tiwari, P., Kumar, B., Kaur, G. & Kaur, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci. 1, 98–106 (2011).
    Google Scholar 
    37.Ozdil, S., Asan, A., Sen, B. & Okten, S. Biodiversity of Airborne Fungi in the Indoor Environment of Refrigerators Used in Houses. J. Fungus. 8, 109–124. https://doi.org/10.15318/fungus.2017.41 (2017).Article 

    Google Scholar 
    38.Ashtiani, N. M., Kachuei, R., Yalfani, R. & Harchegani, A. B. Identification of Aspergillus sections Flavi, Nigri, and Fumigati and their differentiation using specific primers. Infez. Med. 2, 127–132 (2017).
    Google Scholar 
    39.Eulalia, M. M., Agnieszka, F. & Zalewska, E. D. Aspergillus penicillioides Speg. Implicated in Keratomycosis. Pol. J. Microbiol. 67, 407–416 (2018).Article 

    Google Scholar 
    40.Kamarudin, N. A. & Zakaria, L. Characterization of two xerophilic Aspergillus spp. from peanuts (Arachis hypogaea) Nur. Malays. J. Microbiol. 14, 41–48 (2018).CAS 

    Google Scholar 
    41.Samson, R. A. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wolski, E. A., Barrera, V., Castellari, C. & Gonzalez, J. F. Biodegradation of phenol in static cultures by Penicillium chrysogenum EK1: catalytic abilities and residual photo toxicity. Rev. Argent. Microbiol. 44, 113–121 (2012).CAS 
    PubMed 

    Google Scholar  More

  • in

    Study on landscape evaluation and optimization strategy of Central Park in Qingkou Town

    Comprehensive parks in small towns generally serve the urban residents within a few kilometers of the park. Parks are generally in an area with a large flow of people in a small town15. However, the geographical blockage indicates that the users of parks in small towns are generally of limited educational level, so the investigation process is more complicated. This study adopts a multimethod design with DPOE (diagnostic post-use evaluation) as the main research method, supplemented by the analytic hierarchy process (AHP) and GIS technology, to quantitatively evaluate the current use of comprehensive parks in small cities and towns, and make a decision based on the evaluation results regarding the corresponding optimization and promotion strategy. The research was divided into the following three stages.EvaluateBasis of evaluationBased on the perspective of “human body—movement—space—place—environment”21, stimulation theory and control theory in environmental psychology are used as the main directions for setting up and investigating recreational behaviors. Field investigations were conducted on the current environment, region, culture and other relevant factors of Central Park in Qingkou Town from April to May 2020. The survey covered weekdays, weekends and holidays, sunny/rainy days and mornings and evenings. The main task of the survey was to supervise the development and use of parks in small towns, the number of users, the types of facilities, and the appearance and maintenance of the park22 and to list the problems related to the environment and its ecology, the benefits provided by groups of parks, or the benefits provided to the surrounding enterprises and schools. Especially after the epidemic, residents have had a more active and urgent need for the participation of green space. To cover a wider range of weather and time conditions, data were collected in sequence during the observation period according to a preset scheme for four periods of the day, alternating between two working days and one weekend each week23. Two team members (interviewers) were in contact with tourists at different times in the park from 8 am to 8 pm. In order to minimize selection errors, each respondent was invited to participate in the survey (the targets included adults, children, and adolescents). Elderly people who agreed to participate in the survey were asked about their visit activities and usage behaviors in the park, such as the frequency of visits, distance, and satisfaction with respect to park maintenance, safety, and infrastructure construction24. Finally, the survey requested relevant social demographic information, such as age, highest education level, and marital status (with or without children).Construction of a performance evaluation index system for comprehensive park landscapes in small townsThe evaluation index of the general applicability of small-town parks was established using a field investigation and the combination of the American landscape performance series (LPS)25. The index system was divided into three levels. The first level was the target level, that is, the evaluation index system of the comprehensive landscape performance of small-town parks. The second level was the criterion level, including environmental performance, health performance and economic performance. As the embodiment of the second level, the three-level index layer mainly includes park construction, infrastructure setting, landscape quality, garden atmosphere, and tourist behavior. Considering the accuracy of comprehensive park evaluation in small towns, the three-level index layer was used to obtain 19 related indexes after expert advice and screening20.Questionnaire designSince this study is aimed at parks in small towns and the surrounding residents generally have a low level of education, to obtain more effective data, the questionnaire was in the form of ticking. In terms of content, the questionnaire was divided into two parts. The first part collected basic information about tourists, such as the mode of transportation to the park and visit frequency. Second, there were 19 evaluation index factors. The Likert method was used to evaluate the index26, and the answers each had five levels: very satisfied, satisfied, average, dissatisfied and very dissatisfied.Combination weight analysisSome papers in the past ten years have discussed the limitations of the AHP in dealing with the complexity and uncertainty of evaluation indicators and used fuzzy comprehensive evaluation methods to deal with the problem of uncertainty27,28,29,30. However, the fuzzy evaluation method has gradually been eliminated due to its inability to quickly determine the evaluation content31. Therefore, this study used indicator weights for analysis and evaluation. On the basis of the AHP analytic hierarchy process, the coefficient of variation (CV) is added to the weight of each indicator32. The main purpose of adopting this method is to establish a landscape performance evaluation system for Qingkou Central Park, refer to the satisfaction evaluation of tourists through the DPOE, and determine the content that the park needs to be optimized.SurveyThe places where tourists gather or where tourists are the most often have a certain reference significance for the planning and design of parks. Therefore, collecting data on tourist gathering places is needed in the research process33. An increasing number of studies have pointed to the use of social media to examine users’ daily life behaviors and spatial distribution relationships. Wood et al. attempted to evaluate the access rate of entertainment venues based on the location of photos posted on Flickr34. Hamstead et al. use geolocation data from Flickr and Twitter to assess changes in the use of all parks in New York city35. Because the identification system for comprehensive parks in most small towns is not clear, tourists cannot clearly identify a place to visit or a location they often visit. Therefore, the following attempts were made: (1) A total of 182 points of interest of tourists in Qingkou Central Park were collected through Octopus Aata Collector 8, Six-Feet and other software. (2) The distribution of interest points and on-site observations were used to identify five gathering points that cover most of the park landscape. They were named A, B, C, D and E (Table 1) for fixed video recording. The average weekday traffic and weekend traffic information was obtained. (3) The collected data were imported into Excel for sorting, and the utilization of parks was visually expressed in different time periods through GIS. (4) From May to August 2020, 300 copies of paper questionnaires were distributed at nodes A, B, C, D and E. (5) In addition, the questionnaire content was imported into Excel for simple processing, classification and deletion of duplicate data. (6) Finally, the spatial and temporal distribution results and comprehensive evaluation results of tourists in comprehensive parks in small towns were obtained, and optimization suggestions were summarized.Table 1 Landscape node and application of the Central Park.Full size tableSpatial distribution and experience of respondentsThe behavior track, gathering area and spatial distribution of tourists in the park affect the evaluation of the park. However, due to the different behavioral habits of tourists, some areas of the park will have a crowd gathering effect36. As a result, the use of environmental resources in the park is uneven, resulting in the waste of environmental resources and ecological damage.During the study, to make the data more accurate, a total of six samples were randomly selected from three working days and three weekends from May to July 2020 for data collection. The collection method consisted of five people at five important nodes in the park that basically cover the popular areas (including A. Northeast Main Entrance Square, B. Southwest Main Entrance Square, C. West Secondary Entrance Square, D. Sports Theme Square, and E. Waterfront wooden platform); the sites were filmed from 06:00 to 20:00 (fifteen minutes were taken from 06:00–08:00, 08:00–11:00, 11:00–13:00, 13:00–17:00 and 17:00–20:00 for each time period) to record the activity track of tourists in a day. Then, the average weekday samples and weekend samples were averaged, and the data of the flow of people and the length of stay were processed. The flow of people in the different periods of each node of the two samples was sorted using Excel, and coordinate marks were made on the construction drawings according to the image data to screen out repeated and unreasonable data37,38. Then, ArcGIS was used to perform data visualization (scenic spot heat), and the following conclusions could be drawn: there was a significant difference in the stay time of tourists at different nodes (Fig. 2).Figure 2Schematic diagram of the flow of people in different times and spaces.Full size imageThrough node analysis, it was found that tourists stayed in the park for at least 30 min. Compared with the research process, it took approximately 1 h and 10 min to complete the whole track through the Six-Foot app, which showed that tourists stayed in the park for a longer time. Among them, the passenger flow peaks were during 06:00–08:00, 11:00–13:00 and 17:00–20:00, while the passenger flow was lower at other times. In addition, according to observation and survey data summary, passenger flow was not evenly concentrated among the five node areas6. Overall, node A and node B had a large flow of tourists and a longer stay time. Node D was ranked next, while node C and node E had less traffic and shorter stay times.Overview of respondentsAccording to the POE field survey and questionnaire survey, 292 valid questionnaires (recovery rate 97.3%) were obtained, among which 58.2% (169 persons) were female, slightly higher than the 41.8% (123 persons) that were male. Among them, 40.5% (118 persons) were carrying children under 8 years old. In terms of age, young people between 30 and 39 years old accounted for 43.7% (128 people), most of whom carried children, followed by younger people between 19 and 29 years old and young people between 40 and 49 years old, which fully showed that the urban center where the park is located was dominated by young people. Among the visitors, 71.9% (210 people) were local residents, 18.5% (54 people) were temporary residents, and 9.6% (28 people) were foreign tourists. In terms of how people arrived at the park, most of them came by walking (116 people), accounting for 38.9%, followed by electric vehicles and private cars (61 people each), accounting for 21.6%. Among them, 53% (154 people) chose to come to the park when they were free, and 24% (70 people) came to the park three or four times a week. In the park system of this small town, the public green space served the local residents to a large extent and gradually became a recreational place for the real-time entertainment of nearby residents (Table 2).AHP-CV comprehensive weight analysisThe development of the AHP-CV combined weights has led to a change in the method of determining indicator weights from a single subjectiveness to a comprehensive objectivity39. In order to avoid the evolution of the AHP to a single weighting method, the AHP method is combined with the SW and CV methods here to calculate objective weight, based on the principle of minimum information entropy combining two kinds of weighted information40.

    1.

    To ensure the reliability of the data, first, check the consistency of the paired comparison matrix:$${text{RC }} = {text{ IC}}/{text{IR}}$$
    If RC  More

  • in

    Parent–offspring conflict and its outcome under uni-and biparental care

    1.Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249–264 (1974).
    Google Scholar 
    2.Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Routledge, 1972).
    Google Scholar 
    3.Godfray, H. C. J. Evolutionary theory of parent–offspring conflict. Nature 376, 133–138 (1995).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Parker, G. A. & Macnair, M. R. Models of parent-offspring conflict. IV. Suppression: Evolutionary retaliation by the parent. Anim. Behav. 27, 1210–1235 (1979).
    Google Scholar 
    5.Wells, J. C. K. Parent-offspring conflict theory, signaling of need, and weight gain in early life. Q. Rev. Biol. 78, 169–202 (2003).PubMed 

    Google Scholar 
    6.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: The evolution of parent-offspring signalling. Philos. Trans. R. Soc. B 355, 1581–1591 (2000).CAS 

    Google Scholar 
    7.Mock, D. W. & Parker, G. A. Siblicide, family confilct and the evolutionary limits of selfishness. Anim. Behav. 56, 1–10 (1997).
    Google Scholar 
    8.Wilson, A. J. et al. Selection on mothers and offspring: Whose phenotype is it and does it matter?. Evolution 59, 451–463 (2005).PubMed 

    Google Scholar 
    9.Janzen, F. J. & Warner, D. A. Parent-offspring conflict and selection on egg size in turtles. J. Evol. Biol. 22, 2222–2230 (2009).CAS 
    PubMed 

    Google Scholar 
    10.Hinde, C. A., Johnstone, R. A. & Kilner, R. M. Parent-offspring conflict and coadaptation. Science 327, 1373–1376 (2010).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Kölliker, M. et al. Parent-offspring conflict and the genetic trade-offs shaping parental investment. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    12.Kilner, R. M. & Hinde, C. A. Parent–offspring conflict. In The Evolution of Parental Care (eds Royle, N. J. et al.) 119–132 (Oxford University Press, 2012).
    Google Scholar 
    13.Mas, F. & Kölliker, M. Maternal care and offspring begging in social insects: Chemical signalling, hormonal regulation and evolution. Anim. Behav. 76, 1121–1131 (2008).
    Google Scholar 
    14.Hale, R. E. & Travis, J. The evolution of developmental dependence, or ‘Why do my kids need me so much?’. Evol. Ecol. Res. 14, 207–221 (2012).
    Google Scholar 
    15.Gomendio, M. Suckling behaviour and fertility in rhesus macaques (Macaca multatta). J. Zool. 217, 449–467 (1989).
    Google Scholar 
    16.Hamada, Y., Murata, T., Watanabe, S. & Kanda, I. Inhibitory effect of prolactin on ovulation in the in vitro perfused rabbit ovary. Nature 285, 161–163 (1980).CAS 
    PubMed 
    ADS 

    Google Scholar 
    17.Short, R. V. Breast feeding. Sci. Am. 250, 35–41 (1984).CAS 
    PubMed 

    Google Scholar 
    18.Traynor, K. S., Le Conte, Y. & Page, R. E. Age matters: Pheromone profiles of larvae differentially influence foraging behaviour in the honeybee, Apis mellifera. Anim. Behav. 99, 1–8 (2015).
    Google Scholar 
    19.Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, 1–7 (2010).
    Google Scholar 
    20.Capodeanu-Nägler, A., De La Torre, E. R., Eggert, A. K., Sakaluk, S. K. & Steiger, S. Divergent coevolutionary trajectories in parent–ofspring interactions and discrimination against brood parasites revealed by interspecifc cross-fostering. R. Soc. Open Sci. 5, 180819 (2018).
    Google Scholar 
    21.Smiseth, P. T. & Moore, A. J. Behavioral dynamics between caring males and females in a beetle with facultative biparental care. Behav. Ecol. 15, 621–628 (2004).
    Google Scholar 
    22.Eggert, A. K. Alternative male mate-finding tactics in burying beetles. Behav. Ecol. 3, 243–254 (1992).
    Google Scholar 
    23.Pukowski, E. Ökologische untersuchungen an Necrophorus F. Z. Morphol. Ökol. Tiere 27, 518–586 (1933).
    Google Scholar 
    24.Eggert, A.-K. & Müller, J. K. Biparental care and social evolution in burying beetles: Lessons from the larder. Soc. Behav. Insects Arachn. (1997).25.Royle, N. J., Hopwood, P. E. & Head, M. L. Burying beetles. Curr. Biol. 23, R907 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).CAS 
    PubMed 

    Google Scholar 
    27.Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).CAS 
    PubMed 

    Google Scholar 
    28.Cotter, S. C. & Kilner, R. M. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J. Anim. Ecol. 79, 35–43 (2010).PubMed 

    Google Scholar 
    29.Vogel, H. et al. The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nat. Commun. 6, 1–10 (2017).
    Google Scholar 
    30.Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl. Acad. Sci. USA. 115, 11274–11279 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: Lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).PubMed 

    Google Scholar 
    32.Miller, C. J., Bates, S. T., Gielda, L. M. & CurtisCreighton, J. Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens. PLoS ONE 14, 1–13 (2019).
    Google Scholar 
    33.Suzuki, S. Suppression of fungal development on carcasses the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4, 403–405 (2001).
    Google Scholar 
    34.Eggert, A. K., Reinking, M. & Müller, J. K. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55, 97–107 (1998).CAS 
    PubMed 

    Google Scholar 
    35.Trumbo, S. T. Feeding upon and preserving a carcass: The function of prehatch parental care in a burying beetle. Anim. Behav. 130, 241–249 (2017).
    Google Scholar 
    36.Smiseth, P. T., Darwell, C. T. & Moore, A. J. Partial begging: An empirical model for the early evolution of offspring signalling. Proc. R. Soc. B Biol. Sci. 270, 1773–1777 (2003).
    Google Scholar 
    37.Rauter, C. M. & Moore, A. J. Do honest signalling models of offspring solicitation apply to insects?. Proc. R. Soc. B Biol. Sci. 266, 1691–1696 (1999).
    Google Scholar 
    38.Royle, N. J., Russell, A. F. & Wilson, A. J. The evolution of flexible parenting. Science 345, 776–781 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Capodeanu-Nägler, A., Eggert, A. K., Vogel, H., Sakaluk, S. K. & Steiger, S. Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behav. Ecol. 29, 42–50 (2018).
    Google Scholar 
    40.Müller, J. K. Replacement of a lost clutch: A strategy for optimal resource utilization in Necrophorus vespilloides (Coleoptera: Silphidae). Ethology 76, 74–80 (1987).
    Google Scholar 
    41.Müller, J. K., Braunisch, V., Hwang, W. & Eggert, A. K. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18, 196–203 (2007).
    Google Scholar 
    42.Müller, J. K. & Eggert, A. K. Time-dependent shifts between infanticidal and parental behavior in female burying beetles a mechanism of indirect mother-offspring recognition. Behav. Ecol. Sociobiol. 27, 11–16 (1990).
    Google Scholar 
    43.Smiseth, P. T. & Parker, H. J. Is there a cost to larval begging in the burying beetle Nicrophorus vespilloides?. Behav. Ecol. 19, 1111–1115 (2008).
    Google Scholar 
    44.Steiger, S. Bigger mothers are better mothers: Disentangling size-related prenatal and postnatal maternal effects. Proc. R. Soc. B. 280, 1225 (2013).
    Google Scholar 
    45.Keppner, E. M. et al. Beyond cuticular hydrocarbons: Chemically mediated mate recognition in the subsocial burying beetle Nicrophorus vespilloides. J. Chem. Ecol. 43, 84–93 (2017).CAS 
    PubMed 

    Google Scholar 
    46.Schrader, M. & Galanek, J. Stridulation is unimportant for effective parental care in two species of burying beetle. Ecol. Entomol. 47, 1–18 (2021).
    Google Scholar 
    47.Curtis Creighton, J., Heflin, N. D. & Belk, M. C. Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. 174, 673–684 (2009).PubMed 

    Google Scholar 
    48.Engel, K. C. et al. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nat. Commun. 7, 1–10 (2016).
    Google Scholar 
    49.Trumbo, S. T. Reproductive benefits of infanticide in a biparental burying beetle Nicrophorus orbicollis. Behav. Ecol. Sociobiol. 27, 269–273 (1990).
    Google Scholar 
    50.Skinner, S. W. Clutch size as an optimal foraging problem for insects. Behav. Ecol. Sociobiol. 17, 231–238 (1985).
    Google Scholar 
    51.Lack, D. The significance of clutch-size. Ibis 89, 302–352 (1946).
    Google Scholar 
    52.Lyon, B. E. Optimal clutch size and conspecific brood parasitism. Nature 392, 380–383 (1998).CAS 
    ADS 

    Google Scholar 
    53.Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theor. Popul. Biol. 26, 27–48 (1984).MATH 

    Google Scholar 
    54.Godfray, H. C. J., Partridge, L. & Harvey, P. H. Clutch size. Annu. Rev. Ecol. Syst. 22, 409–429 (1991).
    Google Scholar 
    55.Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: a manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).
    Google Scholar 
    56.Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).
    Google Scholar 
    57.Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119–1128 (2003).
    Google Scholar 
    58.Parker, G. A., Royle, N. J. & Hartley, I. R. Intrafamilial conflict and parental investment: a synthesis. Philos. Trans. R. Soc. B 357, 295–307 (2002).
    Google Scholar 
    59.Godfray, H. C. J. & Parker, G. A. Clutch size, fecundity and parent-offspring conflict. Philos. Trans. R. Soc. Lond. B 332, 67–79 (1991).ADS 

    Google Scholar 
    60.Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Google Scholar 
    61.Kilner, R. M. & Hinde, C. A. Information warfare and parent-offspring conflict. Adv. Stud. Behav. 38, 283–336 (2008).
    Google Scholar 
    62.Kilner, R. M. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Trends Ecol. Evol. 12, 11–15 (1997).CAS 
    PubMed 

    Google Scholar 
    63.Godfray, H. C. J. Signalling of need by offspring to their parents. Lett. Nat. 352, 328–330 (1991).
    Google Scholar 
    64.Johnstone, R. A. Begging signals and parent-offspring conflict: Do parents always win?. Proc. R. Soc. B. 263, 1677–1681 (1996).ADS 

    Google Scholar 
    65.Parker, G. A., Royle, N. J. & Hartley, I. R. Begging scrambles with unequal chicks: Interactions between need and competitive ability. Ecol. Lett. 5, 206–215 (2002).
    Google Scholar 
    66.Keller, L. & Nonacs, P. The role of queen pheromones in social insects: Queen control or queen signal?. Anim. Behav. 45, 787–794 (1993).
    Google Scholar 
    67.Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275 (2011).CAS 
    PubMed 

    Google Scholar 
    68.Oi, C. A. et al. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. BioEssays 37, 808–821 (2015).CAS 
    PubMed 

    Google Scholar 
    69.Smiseth, P. T. & Moore, A. J. Does resource availability affect offspring begging and parental provisioning in a partially begging species?. Anim. Behav. 63, 577–585 (2002).
    Google Scholar 
    70.Andrews, C. P. & Smiseth, P. T. Differentiating among alternative models for the resolution of parent-offspring conflict. Behav. Ecol. 24, 1185–1191 (2013).
    Google Scholar 
    71.Steiger, S., Peschke, K., Francke, W. & Müller, J. K. The smell of parents: Breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B Biol. Sci. 274, 2211–2220 (2007).CAS 

    Google Scholar 
    72.Steiger, S., Franz, R., Eggert, A. K. & Müller, J. K. The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proc. R. Soc. B Biol. Sci. 275, 1831–1838 (2008).
    Google Scholar 
    73.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 1–9 (2015).CAS 

    Google Scholar 
    74.Steiger, S. Recognition and family life: Recognition mechanisms in the biparental burying beetle. in Social Recognition in Invertebrates: The Knowns and the Unknowns (eds. Aquiloni, L. & Tricarico, E.) 249–266 (2015).75.Takata, M., Mitaka, Y., Steiger, S. & Mori, N. A parental volatile pheromone triggers offspring begging in a burying beetle. Science 19, 1260–1278 (2019).
    Google Scholar 
    76.Mäenpää, M. I. & Smiseth, P. T. Resource allocation is determined by both parents and offspring in a burying beetle. J. Evol. Biol. 33(11), 1567–1578 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    77.Mattey, S. N., Richardson, J., Ratz, T. & Smiseth, P. T. Effects of offspring and parental inbreeding on parent-offspring communication. Am. Nat. 191, 716–725 (2018).PubMed 

    Google Scholar 
    78.Steiger, S. & Stökl, J. Pheromones regulating reproduction in subsocial beetles: insights with references to eusocial insects. J. Chem. Ecol. 44, 785–795 (2018).CAS 
    PubMed 

    Google Scholar 
    79.Haig, D. Genetic conflict in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993).CAS 
    PubMed 

    Google Scholar 
    80.Paquet, M., Drummond, H. & Smiseth, P. T. Offspring are predisposed to beg more towards females in the burying beetle Nicrophorus vespilloides. Anim. Behav. 141, 195–201 (2018).
    Google Scholar 
    81.Sakaluk, S. K., Eggert, A.-K. & Müller, J. K. The ‘widow effect’ and its consequences for reproduction in burying beetles, Nicrophorus vespilloides (Coleoptera: Silphidae). Ethology 104, 553–564 (1998).
    Google Scholar 
    82.De Gasperin, O., Duarte, A., Troscianko, J. & Kilner, R. M. Fitness costs associated with building and maintaining the burying beetle’s carrion nest. Sci. Rep. 6, 1–6 (2016).
    Google Scholar 
    83.Bartlett, J. Male mating success and paternal care in Nicrophorus vespilloides (Coleoptera: Silphidae). Behav. Ecol. Sociobiol. 23, 297–303 (1988).
    Google Scholar 
    84.Müller, J. K., Eggert, A. K. & Sakaluk, S. K. Carcass maintenance and biparental brood care in burying beetles: are males redundant?. Ecol. Entomol. 23, 195–200 (1998).
    Google Scholar 
    85.Smiseth, P. T., Dawson, C., Varley, E. & Moore, A. J. How do caring parents respond to mate loss? Differential response by males and females. Anim. Behav. 69, 551–559 (2005).
    Google Scholar 
    86.Parker, D. J. et al. Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nat. Commun. 6, 1–10 (2015).CAS 

    Google Scholar 
    87.Keppner, E. M., Ayasse, M. & Steiger, S. Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecol. Evol. 10, 3535–3543 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    88.Schedwill, P., Paschkewitz, S., Teubner, H. & Steinmetz, N. From the host’ s point of view: Effects of variation in burying beetle brood care and brood size on the interaction with parasitic mites. Plosone 15, 1–14 (2020).
    Google Scholar 
    89.Pilakouta, N., Hanlon, E. J. H. & Smiseth, P. T. Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness. Proc. R. Soc. B. 285, 875 (2018).
    Google Scholar 
    90.Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Staying with the young enhances the fathers’ attractiveness in burying beetles. Evolution 71, 985–994 (2017).PubMed 

    Google Scholar  More

  • in

    Integrating population genetics and species distribution modelling to guide conservation of the noble crayfish, Astacus astacus, in Croatia

    1.Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 05. https://doi.org/10.1051/kmae/2014007 (2014).Article 

    Google Scholar 
    3.Chucholl, C. The bad and the super-bad: Prioritising the threat of six invasive alien to three imperilled native crayfishes. Biol. Invasions 18, 1967–1988 (2016).
    Google Scholar 
    4.Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Phil. Trans. R. Soc. B. 370, 20140060. https://doi.org/10.1098/rstb.2014.0060 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jussila, J., Edsman, L., Maguire, I., Diéguez-Uribeondo, J. & Theissinger, K. Money kills native ecosystems: European crayfish as an example. Front. Ecol. Evol. (2021) (accepted).6.Maguire, I. et al. Recent changes in distribution pattern of freshwater crayfish in Croatia—Threats and perspectives. Knowl. Manag. Aquatic Ecosyst. 409, 2. https://doi.org/10.1051/kmae/2017053 (2018).Article 

    Google Scholar 
    7.Schrimpf, A. et al. Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshw. Biol. 59, 761–776 (2014).CAS 

    Google Scholar 
    8.Laggis, A. et al. Microevolution of the noble crayfish (Astacus astacus) in the Southern Balkan Peninsula. BMC Evol. Biol. 17, 122. https://doi.org/10.1186/s12862-017-0971-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Gross, R. et al. Genetic diversity and structure of the noble crayfish populations in the Balkan Peninsula revealed by mitochondrial and microsatellite DNA markers. PeerJ 9, 11838. https://doi.org/10.7717/peerj.11838 (2021).Article 

    Google Scholar 
    10.Gross, R. et al. Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. Conserv. Genet. 14, 809–821 (2013).CAS 

    Google Scholar 
    11.Schrimpf, A. et al. Genetic characterization of Western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies. Conserv. Genet. 18, 1299–1315 (2017).CAS 

    Google Scholar 
    12.Edsman, L., Füreder, L., Gherardi, F. & Souty-Grosset, C. Astacus astacus. in IUCN 2010, IUCN Red List of Threatened Species. http://www.iucnredlist.org (2010).13.Gottstein, S. et al. Red List of Freshwater and Brackish Water Crustaceans of Croatia. (State Institute for Nature Protection, 2011).14.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. (The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 2000).15.Dragičević, P., Faller, M., Kutleša, P. & Hudina, S. Update on the signal crayfish, Pacifastacus leniusculus (Dana, 1852) range expansion in Croatia: A 10-year report. BioInvasions Rec. 9, 793–807 (2020).
    Google Scholar 
    16.Dobrović, A., Maguire, I., Boban, M., Grbin, D. & Hudina, S. Reproduction dynamics of the marbled crayfish Procambarus virginalis Lyko, 2017 from an anthropogenic lake in northern Croatia. Aquat. Invasions 16, 482–498 (2021).
    Google Scholar 
    17.Lovrenčić, L. et al. New insights into the genetic diversity of the stone crayfish: Taxonomic and conservation implications. BMC Evol. Biol. 20, 146. https://doi.org/10.1186/s12862-020-01709-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Eizaguirre, C. & Baltazar-Soares, M. Evolutionary conservation—Evaluating the adaptive potential of species. Evol. Appl. 7, 963–967 (2014).PubMed Central 

    Google Scholar 
    19.Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).PubMed 

    Google Scholar 
    20.Hewitt, N. et al. Taking stock of the assisted migration debate. Biol. Conserv. 144, 2560–2572 (2011).
    Google Scholar 
    21.Butt, N. et al. Importance of species translocations under rapid climate change. Biol. Conserv. 35, 775–783 (2021).
    Google Scholar 
    22.Abdul-Muneer, P. M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. https://doi.org/10.1155/2014/691759 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bláha, M., Žurovcová, M., Kouba, A., Policar, T. & Kozák, P. Founder event and its effect on genetic variation in translocated populations of noble crayfish (Astacus astacus). J. Appl. Genet. 57, 99–106 (2016).PubMed 

    Google Scholar 
    24.Panicz, R. et al. Genetic diversity in natural populations of noble crayfish (Astacus astacus L.) in north-western Poland on the basis of combined SSR and AFLP data. PeerJ 7, 7301. https://doi.org/10.7717/peerj.7301 (2019).Article 

    Google Scholar 
    25.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    26.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: Distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).
    Google Scholar 
    27.Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).
    Google Scholar 
    28.Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).PubMed 

    Google Scholar 
    29.Chucholl, C. Niche-based species distribution models and conservation planning for endangered freshwater crayfish in south-western Germany. Aquat. Conserv. 27, 698–705 (2017).
    Google Scholar 
    30.Préau, C. et al. Niche modelling to guide conservation actions in France for the endangered crayfish Austropotamobius pallipes in relation to the invasive Pacifastacus leniusculus. Freshw. Biol. 65, 304–315 (2020).
    Google Scholar 
    31.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    32.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Kouba, A. et al. The significance of droughts for hyporheic dwellers: Evidence from freshwater crayfish. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    34.Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conserv. Biol. 27, 731–740 (2013).PubMed 

    Google Scholar 
    35.Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 

    Google Scholar 
    36.Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).CAS 

    Google Scholar 
    37.Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–Climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).ADS 

    Google Scholar 
    38.Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    39.Maguire, I. et al. Two distinct evolutionary lineages of the Astacus leptodactylus species-complex (Decapoda: Astacidae) inferred by phylogenetic analyses. Invertebr. Syst. 28, 117–123 (2014).
    Google Scholar 
    40.Akhan, S., Bektas, Y., Berber, S. & Kalayci, G. Population structure and genetic analysis of narrow-clawed crayfish (Astacus leptodactylus) populations in Turkey. Genetica 142, 381–395 (2014).PubMed 

    Google Scholar 
    41.Jelić, M. et al. Insights into the molecular phylogeny and historical biogeography of the white-clawed crayfish (Decapoda, Astacidae). Mol. Phylogenet. Evol. 103, 26–40 (2016).PubMed 

    Google Scholar 
    42.Bláha, M. et al. Genetic diversity, phylogenetic position and morphometric analysis of Astacus colchicus (Decapoda, Astacidae): A new insight into Eastern European crayfish fauna. Integr. Zool. 16, 368–378 (2021).PubMed 

    Google Scholar 
    43.Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 183–195 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Maguire, I., Špoljarić, I. & Klobučar, G. The indigenous crayfish of Plitvice Lakes National Park, Croatia. Freshw. Crayfish 19, 91–96 (2013).
    Google Scholar 
    45.Njegovan, V., Orešković, M., Hudina, S. & Maguire, I. Crayfish fauna of the Maksimir lakes in the urban area of Zagreb. Freshw. Crayfish 23, 1–11 (2017).
    Google Scholar 
    46.Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2007).47.Frankham, R. Stress and adaptation in conservation genetics. J. Evol. Biol. 18, 750–755 (2005).CAS 
    PubMed 

    Google Scholar 
    48.Karaman, S. Die Potamobiiden Jugoslaviens. Glas. Zemalj. Muz. Bosne Herceg. 41, 147–150 (1929).
    Google Scholar 
    49.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Tierno de Figueroa, J. M. et al. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719, 137–186 (2013).
    Google Scholar 
    51.Barnett, Z. C., Adams, S. B., Ochs, C. A. & Garrick, R. C. Crayfish populations genetically fragmented in streams impounded for 36–104 years. Freshw. Biol. 65, 768–785 (2020).
    Google Scholar 
    52.Hossain, M. A. et al. Assessing the vulnerability of freshwater crayfish to climate change. Divers. Distrib. 24, 1830–1843 (2018).
    Google Scholar 
    53.Piyapong, C., Tattoni, C., Ciolli, M., Dembski, S. & Paradis, E. Modelling the geographical distributions of one native and two introduced species of crayfish in the French Alps. Ecol. Inform. 60, 101172. https://doi.org/10.1016/j.ecoinf.2020.101172 (2020).Article 

    Google Scholar 
    54.Gallardo, B. & Aldridge, D. C. Evaluating the combined threat of climate change and biological invasions on endangered species. Biol. Conserv. 160, 225–233 (2013).
    Google Scholar 
    55.Peterson, K. & Bode, M. Using ensemble modeling to predict the impacts of assisted migration on recipient ecosystems. Conserv. Biol. 35, 678–687 (2021).PubMed 

    Google Scholar 
    56.Rodríguez-Rey, M., Consuegra, S., Börger, L. & Garcia de Leaniz, C. Improving species distribution modelling of freshwater invasive species for management applications. PLoS ONE 14, 0217896. https://doi.org/10.1371/journal.pone.0217896 (2019).CAS 
    Article 

    Google Scholar 
    57.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Google Scholar 
    58.Zhang, Z. et al. Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshw. Biol. 65, 353–365 (2020).
    Google Scholar 
    59.Olden, J. D., Kennard, M. J., Lawler, J. J. & Poff, N. L. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conserv. Biol. 25, 40–47 (2011).PubMed 

    Google Scholar 
    60.Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    61.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Google Scholar 
    62.Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, 2017).63.Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).Article 

    Google Scholar 
    64.Bucharova, A. Assisted migration within species range ignores biotic interactions and lacks evidence. Restor. Ecol. 25, 14–18 (2017).
    Google Scholar 
    65.Ghia, D. et al. Modelling environmental niche for the endangered crayfish Austropotamobius pallipes complex in northern and central Italy. Freshw. Crayfish 19, 189–195 (2013).
    Google Scholar 
    66.Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 

    Google Scholar 
    67.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    68.Mrugała, A., Šanda, R., Shumka, S. & Vukić, J. Filling the blank spot: First report on the freshwater crayfish distribution in Albania. Knowl. Manag. Aquat. Ecosyst. 418, 34. https://doi.org/10.1051/kmae/2017024 (2017).Article 

    Google Scholar 
    69.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    70.Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968 (2007).CAS 

    Google Scholar 
    71.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    PubMed 

    Google Scholar 
    72.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Google Scholar 
    73.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 16, 37–45 (2001).CAS 
    PubMed 

    Google Scholar 
    74.Gross, R., Kõiv, K., Pukk, L. & Kaldre, K. Development and characterization of novel tetranucleotide microsatellite markers in the noble crayfish (Astacus astacus) suitable for highly multiplexing and for detecting hybrids between the noble crayfish and narrow-clawed crayfish (A. leptodactylus). Aquaculture 472, 50–56 (2017).CAS 

    Google Scholar 
    75.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    76.Rousset, F. genepop’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    77.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series. B. Stat. Methodol. 39, 1–38 (1977).MathSciNet 
    MATH 

    Google Scholar 
    78.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic soft-ware for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Goudet, J. FSTAT version 2. 9. 4: A program to estimate and test population genetics parameters. Updated from Goudet [1995]. http://www.unil.ch/izea/softwares/fstat.html (2003).80.Kalinowski, S. T. hp‐rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).81.Piry, S., Luikart, G. & Cornuet, J.-M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Google Scholar 
    82.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE—A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    84.Earl, D. A. & Von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    85.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 

    Google Scholar 
    87.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    88.Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).
    Google Scholar 
    89.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar 
    90.Thuiller, W., Georges, D., Engler, R. & Breiner, F. ‘biomod2’: Ensemble Platform for Species Distribution Modeling. (2016).91.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).92.McSweeney, C. F., Jones, R. G., Lee, R. W. & Rowell, D. P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2015).
    Google Scholar 
    93.Cvitanović, M., Blackburn, G. A. & Jepsen, M. R. Characteristics and drivers of forest cover change in the post-socialist era in Croatia: Evidence from a mixed-methods approach. Reg. Environ. Change 16, 1751–1763 (2016).
    Google Scholar 
    94.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446. https://doi.org/10.1038/s41467-019-09519-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence only data. J. Biogeogr. 40, 778–789 (2013).
    Google Scholar  More

  • in

    Double-observer approach with camera traps can correct imperfect detection and improve the accuracy of density estimation of unmarked animal populations

    Model frameworkThe capture-recapture model applied here is the hierarchical model for stratified populations proposed by Royle et al.48. The model aims to estimate local population size or community structure49 using capture-recapture data from multiple independent locations. In the following, we briefly describe the model in our context, including addressing heterogeneity in detection probability.Let us consider that we establish S independent camera stations in a survey area. Then, we install K camera traps at each station to monitor exactly the same focal area (totally S × K camera traps will be used). We assume that these camera traps detect animals within the focal areas NT times in total. For animal pass i (i = 1, 2, 3, …, NT), we will obtain (1) at the station where the animal is detected (hereafter station identity; gi), and (2) how many of the K cameras at the station were successful in detecting the animal pass (hereafter detection history; yi). The hierarchal capture-recapture model uses these two data, gi and yi.Let the number of the animal passes at station s be Ns (s = 1, 2, 3, …, S). Then, we assume that Ns follows a Poisson distribution with a parameter λ. In this case, the probability of passage i occurring at station s is expected to be (frac{lambda }{lambda times S}). Thus, station identity, gi, can be modelled as follows:$$g_{i} sim {text{ Categorical}}; left(frac{lambda }{lambda times S}right)$$
    When the number of the animal passes at station s, Ns, may have larger variation than expected from the Poisson case, we may assume a negative binomial distribution model or may give a random effect to the parameter of the Poisson distribution at the camera station level.The detection history Y with elements yi can be modelled using a data augmentation procedure47. Specifically, the original detection Y is artificially augmented by many M – n passes with all-zero histories (i.e. not detected by any camera). The augmented data W with elements wi (y1, y2…yNT, 0, 0, … 0) will consist of the passage that occurred but was not detected by any camera (false zero), which occurs with probability ψ, and the passage that did not occur (structural zeros) with the probability 1 − ψ. A set of latent augmentation binary variables, z1, z2, … zM, is introduced, which denotes the false zero (z = 1) and the structural zero (z = 0). That is$$z_{i} sim {text{ Bernoulli }}left( psi right).$$The elements of the augmented data, wi, can be modelled conditional on the latent variables zi. There would be two alternative approaches to modelling the wi.The simplest one may regard wi as random binomial variables. That is$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p} right)$$When accounting for the heterogeneity of detection among animal passes, it can be accommodated using a beta distribution as follows;$$w_{i} |z_{i} = , 1sim {text{ Binomial }}left( {K,p_{i} } right)$$$$p_{i} sim {text{ Beta}}left( {alpha ,beta } right)$$The expected detection probability can be derived from (widehat{alpha }/(widehat{alpha }+widehat{beta })) and the correlation coefficients can be calculated by (1/(widehat{alpha }+widehat{beta }+1)).Alternatively, we can regard wi as a categorical variable that takes values from zero to K.$$w_{i} sim {text{ Categorical }}left( pi right)$$
    where π is a probability vector of length K + 1. For simplicity, let us consider two camera traps installed at each station, and those cameras have equal detection probability. Then, wi can take either 0 (i.e. zi = 0 or both camera traps missed animals with conditional on zi = 1), 1 (i.e. only one camera trap detected animals with conditional on zi = 1), or 2 (i.e. both camera traps detected animals with conditional on zi = 1). Thus, when we define the probability that wi takes 0, 1, 2 with conditional on zi = 1, as φm (m = 1, 2, 3), the elements of π is equal to {zi × φ0 + (1 − zi)}, {zi × φ1}, {zi × φ2}, respectively.We then take different modelling approaches depending on whether detection probability among animal passes is heterogeneous or not. When two camera traps at a station detect animals independently with the same probability ρ, φ0, φ1, and φ2 can be expressed as a function of ρ, i.e. (1 − ρ)2, 2 × ρ × (1 − ρ)2, ρ2, respectively (Clare et al.47). On the other hand, when detections by the two camera traps are correlated, we need to estimate three real parameters φm that designate the probabilities of all outcomes wi|zi = 1. We assume that ρm follows the Dirichlet distribution with the parameter γm (m = 1, 2, 3). That is$$varphi_{m} sim {text{ Dirichlet}}left( {gamma_{1} ,gamma_{2} , , gamma_{3} } right)$$In this approach, the expected detection probability can be derived from ({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2}) and the correlation coefficients can be calculated by ({widehat{varphi }}_{2}-{({widehat{varphi }}_{1}/2+{widehat{varphi }}_{2})}^{2}).Compared to the beta-binomial distribution approach, the approach using categorical-Dirichlet distribution might be more flexible in accommodating detection heterogeneity while it might be more challenging to estimate the model parameters. In either approach, the expected total number of animal passes can be expressed as (lambda times S). Thus, ψ can be fixed as follows:$$psi = frac{lambda times S}{M}$$For more details of the models, see Royle et al.48 and Clare et al.44.Testing the effectiveness of the hierarchical capture-recapture modelWe performed Monte Carlo simulations to evaluate the effectiveness of the hierarchical capture-recapture model. Because the model reliability has been confirmed well48, we here focused on the effects of heterogeneity in detection probability on the accuracy and precision of the estimates.We assumed that the number of detections by camera traps followed a negative binomial distribution with a mean of 5.0 and dispersion parameter 1.27, which derived the actual data on an ungulate in African rainforests34. We also assumed two camera traps each at 30 stations (i.e. 60 camera traps in total). We generated detection histories (i.e. the number of camera traps successfully detecting animals in each animal passage) using a beta-binomial distribution with the expected detection probability at 0.8 or 0.4. We varied the correlation coefficients (= 1/(α + β + 1)), from 0.1 to 0.5 in 0.1 increments. The scale parameters of the beta distributions for each scenario are shown in Table 1. Additionally, to determine the effects of sample sizes on the accuracy and precision of estimates, we increased the number of camera stations at 100. Since this setting requires much computation time, we only assumed a detection probability of 0.4 and a correlation coefficient of 0.3.We estimated the parameters of the hierarchical capture-recapture models assuming a beta-binomial distribution and a categorical-Dirichlet distribution using the Markov chain Monte Carlo (MCMC) implemented in JAGS (version 3.4.0) in all the simulations. We assumed that the number of animal passes followed a negative binomial distribution. For the model assuming a beta-binomial distribution, we transformed the scale parameters, α and β as p*phi and p*(1 − phi), respectively (p is an expected detection probability). Then we used a weakly informative prior (gamma distribution with shape = 10 and rate = 2) for phi and a non-informative uniform distribution from 0 to 1 for the detection probability49. For the model assuming a categorical-Dirichlet distribution, the Dirichlet prior distribution was induced by treating each γm ~ Gamma(1, 1) and calculating each probability by ({varphi }_{m}={{gamma }_{m}}/{sum }_{m=1}^{M}{gamma }_{m}) followingv and Clare et al.44. We generated three chains of 3000 iterations after a burn-in of 1000 and thinned by 5. The convergence of models was determined using the Gelman–Rubin statistic, where values  More