Global mapping reveals increase in lacustrine algal blooms over the past decade
1.Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6–13 (2016).
Google Scholar
2.Lopez, C., Jewett, E., Dortch, Q., Walton, B. & Hudnell, H. Scientific Assessment of Freshwater Harmful Algal Blooms (United States National Ocean Service, 2008)3.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).
Google Scholar
4.Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).
Google Scholar
5.Carmichael, W. W. The toxins of cyanobacteria. Sci. Am. 270, 78–86 (1994).
Google Scholar
6.Carmichael, W. W. et al. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Persp. 109, 663–668 (2001).
Google Scholar
7.Botswana: mystery elephant deaths caused by cyanobacteria. BBC News https://www.bbc.com/news/world-africa-54234396 (2020).8.Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
Google Scholar
9.O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).
Google Scholar
10.Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179–2189 (2004).
Google Scholar
11.Kutser, T., Metsamaa, L., Strömbeck, N. & Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67, 303–312 (2006).
Google Scholar
12.Binding, C. E., Pizzolato, L. & Zeng, C. EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes. Ecol. Indic. 121, 106999 (2021).
Google Scholar
13.Stumpf, R. P. et al. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173 (2016).
Google Scholar
14.Matthews, M. W. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sens. Environ. 155, 161–177 (2014).
Google Scholar
15.Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).
Google Scholar
16.Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).
Google Scholar
17.Song, K. et al. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 55, 2929–2938 (2021).
Google Scholar
18.Coffer, M. M., Schaeffer, B. A., Darling, J. A., Urquhart, E. A. & Salls, W. B. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecol. Indic. 111, 105976 (2020).
Google Scholar
19.Ho, J., Michalak, A. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
Google Scholar
20.Dierssen, H. M., Kudela, R. M., Ryan, J. P. & Zimmerman, R. C. Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr. 51, 2646–2659 (2006).
Google Scholar
21.Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013).
Google Scholar
22.Binding, C., Greenberg, T., McCullough, G., Watson, S. & Page, E. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 44, 436–446 (2018).
Google Scholar
23.Guo, L. Doing battle with the green monster of Taihu Lake. Science 317, 1166–1166 (2007).
Google Scholar
24.Moradi, M. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Mar. Pollut. Bull. 87, 311–322 (2014).
Google Scholar
25.Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).
Google Scholar
26.Qin, B. et al. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 54, 3191–3198 (2020).
Google Scholar
27.Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).
Google Scholar
28.Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).
Google Scholar
29.Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).
Google Scholar
30.Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl Acad. Sci. USA 114, 4177–4182 (2017).
Google Scholar
31.Wang, Z. China’s wastewater treatment goals. Science 338, 604–604 (2012).
Google Scholar
32.Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).33.Litke, D. W. Review of Phosphorus Control Measures in the United States and Their Effects on Water Quality (US Geological Survey, 1999).34.Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012).
Google Scholar
35.Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).
Google Scholar
36.Wells, M. L. et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015).
Google Scholar
37.Elliott, J. A. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Change Biol 16, 864–876 (2010).
Google Scholar
38.Jeppesen, E. et al. in Shallow Lakes ’95 (eds Kufel, L. et al.) 151–164 (Springer, 1997).39.O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 773–710,781 (2015).
Google Scholar
40.Janssen, A. B. G. et al. How to model algal blooms in any lake on earth. Curr. Opin. Environ. Sustain 36, 1–10 (2019).
Google Scholar
41.Woodcock, C. E. et al. Free access to Landsat imagery. Science 320, 1011 (2008).
Google Scholar
42.Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).
Google Scholar
43.Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72 (2006).
Google Scholar
44.Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).
Google Scholar
45.Irish, R. R. Landsat 7 Science Data Users Handbook 415–430 (US Geological Survey, 2000).46.Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
Google Scholar
47.Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).
Google Scholar
48.Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Google Scholar
49.McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4, 170012 (2017).
Google Scholar
50.CIESIN Gridded Population of the World v.4 (NASA SEDAC, 2018).51.Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl Acad. Sci. USA 110, 20882–20887 (2013).
Google Scholar
52.Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).
Google Scholar
53.Feng, L. & Hu, C. Land adjacency effects on MODIS Aqua top-of-atmosphere radiance in the shortwave infrared: statistical assessment and correction. J. Geophys. Res. Oceans 122, 4802–4818 (2017).
Google Scholar
54.Walsh, S. E. et al. Global patterns of lake ice phenology and climate: model simulations and observations. J. Geophys. Res. Atmos. 103, 28825–28837 (1998).
Google Scholar
55.Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).
Google Scholar
56.Hu, C. et al. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. Appl. Opt. 51, 6045–6062 (2012).
Google Scholar
57.Kuhn, C. & Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl Acad. Sci. USA 118, e2021219118 (2021).
Google Scholar
58.Kirillin, G. et al. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682 (2012).
Google Scholar
59.Kotovirta, V., Toivanen, T., Järvinen, M., Lindholm, M. & Kallio, K. Participatory surface algal bloom monitoring in Finland in 2011–2013. Environ. Syst. Res. 3, 24 (2014).
Google Scholar
60.Cronberg, G., Annadotter, H. & Lawton, L. A. The occurrence of toxic blue-green algae in Lake Ringsjön, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404, 123–129 (1999).
Google Scholar
61.Romarheim, A. T. & Riise, G. Development of Cyanobacteria in Årungen (Norsk vannforening, 2009)62.Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 2, 7–11 (1977).
Google Scholar
63.Mouw, C. B. et al. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens. Environ. 160, 15–30 (2015).
Google Scholar
64.Wasmund, N., Nausch, G. & Matthäus, W. Phytoplankton spring blooms in the southern Baltic Sea—spatio-temporal development and long-term trends. J. Plankton Res. 20, 1099–1117 (1998).
Google Scholar
65.Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 113, 2118–2129 (2009).
Google Scholar
66.Fairman, H. S., Brill, M. H. & Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 22, 11–23 (1997).
Google Scholar
67.Chander, G., Markham, B. L. & Helder, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113, 893–903 (2009).
Google Scholar
68.Feng, L. et al. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: a solution for large view angle associated problems. Remote Sens. Environ. 174, 56–68 (2016).
Google Scholar
69.Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).
Google Scholar
70.Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).
Google Scholar
71.Lee, Z., Pahlevan, N., Ahn, Y.-H., Greb, S. & O’Donnell, D. Robust approach to directly measuring water-leaving radiance in the field. Appl. Opt. 52, 1693–1701 (2013).
Google Scholar
72.Liu, L., Peng, W., Wu, L. & Liu, L. Water quality assessment of Danjiangkou Reservoir and its tributaries in China. IOP Conf. Ser. Earth Environ. Sci. 112, 012008 (2018).
Google Scholar
73.Li, X. et al. The color formation mechanism of the blue karst lakes in Jiuzhaigou Nature Reserve, Sichuan, China. Water 12, 771 (2020).
Google Scholar
74.Wurtsbaugh, W. & Marcarelli, A. Eutrophication in Farmington Bay, Great Salt Lake, Utah 2005 Annual Report (Utah State Univ., 2006).75.Hammer, U. T. Saline Lake Ecosystems of the World Vol. 59 (Springer, 1986). More