1.Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 9, 421–432 (2008).CAS
PubMed
Google Scholar
2.Endler, J. A. Geographic Variation, Speciation and Clines (Princeton, 1977).
Google Scholar
3.Huey, R. B. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287, 308–309 (2000).ADS
CAS
PubMed
Google Scholar
4.Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).PubMed
Google Scholar
5.Holt, R. D. & Gomulkiewik, R. How does immigration influence local adaptation? A reexamination of a familiar paradim. Am. Nat. 149, 563–572 (1997).
Google Scholar
6.Ronce, O. & Kirkpatrick, M. When sources become sinks: Migrational meltdown in heterogeneous habitats. Evolution 55, 1520–1531 (2001).CAS
PubMed
Google Scholar
7.Bridle, J. R., Gavaz, S. & Kennington, W. J. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B Biol. Sci. 276, 1507–1515 (2009).
Google Scholar
8.Bridle, J. R., Polechová, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).PubMed
Google Scholar
9.Holt, R. D. & Keitt, T. H. Alternative causes for range limits: A metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).
Google Scholar
10.Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460 (2016).PubMed
Google Scholar
11.Arnaud-Haond, S. et al. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 15, 3515–3525 (2006).CAS
PubMed
Google Scholar
12.Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).ADS
CAS
PubMed
Google Scholar
13.Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).PubMed
Google Scholar
14.Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A. & Van Buskirk, J. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).PubMed
Google Scholar
15.Polechová, J. & Barton, N. H. Limits to adaptation along environmental gradients. Proc. Natl Acad. Sci. U. S. A. 112, 6401–6406 (2015).ADS
PubMed
PubMed Central
Google Scholar
16.Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. U. S. A. 108, 11704–11709 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
17.Angert, A. L., Bontrager, M. G. & Aringgren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).
Google Scholar
18.Ciborowski, J. J. H. Downstream and lateral transport of nymphs of two mayfly species (Ephemeroptera). Can. J. Fish. Aquat. Sci. 40, 2025–2029 (1983).
Google Scholar
19.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
Google Scholar
20.Markwith, S. H. & Scanlon, M. J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 94, 151–160 (2007).PubMed
Google Scholar
21.Congdon, B. C. Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995, 162 (1995).
Google Scholar
22.Schaefer, J. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshw. Biol. 46, 379–388 (2001).
Google Scholar
23.Moore, J. S., Gow, J. L., Taylor, E. B. & Hendry, A. P. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evolution 61, 2015–2026 (2007).PubMed
Google Scholar
24.Urabe, M. Diel change of activity and movement on natural river beds in Semisuleospira reiniana. VENUS 57, 17–27 (1998).
Google Scholar
25.Hastie, L. C., Boon, P. J., Young, M. R. & Way, S. The effects of a major flood on an endangered freshwater mussel population. Biol. Conserv. 98, 107–115 (2001).
Google Scholar
26.Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981 (2012).
Google Scholar
27.Terui, A. et al. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol. 4, 3004–3014 (2014).PubMed
PubMed Central
Google Scholar
28.Holomuzki, J. R. & Biggs, B. J. F. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87, 36 (1999).
Google Scholar
29.Urabe, M. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). J. Molluscan Stud. 66, 53–60 (2000).
Google Scholar
30.Gu, Q. H., Husemann, M., Ding, B., Luo, Z. & Xiong, B. X. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: Weak divergence across large geographic distances. Ecol. Evol. 5, 4906–4919 (2015).PubMed
PubMed Central
Google Scholar
31.Davis, C. D., Epps, C. W., Flitcroft, R. L. & Banks, M. A. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5(2), e1269 (2018).
Google Scholar
32.De Wit, P. & Palumbi, S. R. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).PubMed
Google Scholar
33.Sun, Y.-B. et al. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. 115, 201813593 (2018).
Google Scholar
34.Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T. & Christie, M. R. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol. Ecol. 27, 4041–4051 (2018).CAS
PubMed
Google Scholar
35.De Wit, P. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012).PubMed
Google Scholar
36.Yokomizo, T. & Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 10, 1–9 (2020).
Google Scholar
37.Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. 1–12 (2021).38.Moore, J. S. & Hendry, A. P. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 364, 1533–1542 (2009).
Google Scholar
39.Ingvarsson, P. K. Restoration of genetic variation lost – The genetic rescue hypothesis. Trends Ecol. Evol. 16, 62–63 (2001).PubMed
Google Scholar
40.Shimada, K. & Urabe, M. Drift and upstream movement of Semisulcospira libertina (Caenogastropoda: Pleuroceridae) in a natural stream. Vinus 63, 49–59 (2004).
Google Scholar
41.Nyitray, L., Goodwin, E. B. & Szent-Gyorgyi, A. G. Complete primary structure of a scallop striated muscle myosin heavy chain: Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–18476 (1991).CAS
PubMed
Google Scholar
42.Ponder, W. F., Lindberg, D. R. & Ponder, J. M. Shell, Body, and Muscles (CRC Press, Taylor and Francis Group, Boca Raton, 2019).
Google Scholar
43.Lesoway, M. P., Abouheif, E. & Collin, R. Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J. Exp. Zool. Part B Mol. Dev. Evol. 326, 151–167 (2016).CAS
Google Scholar
44.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
Google Scholar
45.Berger, V. J. & Kharazova, A. D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997).CAS
Google Scholar
46.Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760 (2017).PubMed
Google Scholar
47.Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Osmoregulation and mRNA expression of a heat shock protein 68 and glucose-regulated protein 78 in the Pacific oyster Crassostrea gigas in response to salinity changes. J. Aquac. 20, 205–211 (2007).CAS
Google Scholar
48.Eierman, L. E. & Hare, M. P. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. BMC Genomics 15, 1–15 (2014).
Google Scholar
49.X. Zhao, H. Yu, L. Kong, Q. Li, Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS ONE 7 (2012).50.Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J. Proteome Res. 14, 304–317 (2015).CAS
PubMed
Google Scholar
51.Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160 (2016).
Google Scholar
52.Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell Tissue Biol. 10, 160–169 (2016).
Google Scholar
53.Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N. & Granovitch, A. Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): A proteomic analysis. Biol. Commun. 62, 202–213 (2017).
Google Scholar
54.Maynard, A., Bible, J. M., Pespeni, M. H., Sanford, E. & Evans, T. G. Transcriptomic responses to extreme low salinity among locally adapted populations of Olympia oyster (Ostrea lurida). Mol. Ecol. 27, 4225–4240 (2018).CAS
PubMed
Google Scholar
55.Ma, E., Gu, X. Q., Wu, X., Xu, T. & Haddad, G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J. Clin. Invest. 107, 685–693 (2001).CAS
PubMed
PubMed Central
Google Scholar
56.Jepson, J. E. C. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: Regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).CAS
PubMed
Google Scholar
57.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Google Scholar
58.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS
PubMed
PubMed Central
Google Scholar
59.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS
PubMed
PubMed Central
Google Scholar
60.Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013).
Google Scholar
61.Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).CAS
PubMed
PubMed Central
Google Scholar
62.Dobin, A. et al. STAR: ULTRAFAST universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS
Google Scholar
63.McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Rsearch 20, 1297–1303 (2010).CAS
Google Scholar
64.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS
PubMed
PubMed Central
Google Scholar
65.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).CAS
Google Scholar
66.Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).
Google Scholar
67.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
PubMed Central
Google Scholar
68.Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed
PubMed Central
Google Scholar
69.Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).
Google Scholar
70.Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Google Scholar
71.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed
PubMed Central
Google Scholar
72.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed
PubMed Central
Google Scholar
73.Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).CAS
PubMed
Google Scholar
74.Parrish, N., Hormozdiari, F., & Eskin, E. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinformatics. 12, S3 (2011).75.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS
PubMed
PubMed Central
Google Scholar
76.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).PubMed
PubMed Central
Google Scholar
77.Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14(1), 1–14 (2013).CAS
Google Scholar More