Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change
1.IPCC. Shukla, P. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).2.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed
PubMed Central
Google Scholar
3.Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science (80-) 80(341), 504–508 (2013).ADS
Google Scholar
4.Gobiet, A. et al. 21st century climate change in the European Alps—A review. Sci. Total Environ. 493, 1138–1151 (2014).ADS
CAS
Google Scholar
5.Damschen, E. I., Harrison, S., Ackerly, D. D., Fernandez-Going, B. M. & Anacker, B. L. Endemic plant communities on special soils: early victims or hardy survivors of climate change?. J. Ecol. 100(5), 1122–1130 (2012).
Google Scholar
6.Essl, F. et al. Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol. Conserv. 142, 2547–2558 (2009).
Google Scholar
7.Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619 (2016).ADS
Google Scholar
8.Wershow, S. T. & DeChaine, E. G. Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. Am. J. Bot. 105, 760–778 (2018).
Google Scholar
9.Dagnino, D. et al. Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Reg. Environ. Change 20, 1–12 (2020).
Google Scholar
10.Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 17, 990–996 (2011).ADS
Google Scholar
11.Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed
PubMed Central
Google Scholar
12.Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. in Alpine biodiversity in Europe 195–207 (Springer, 2003).13.Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).
Google Scholar
14.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS
Google Scholar
15.Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
Google Scholar
16.Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).ADS
Google Scholar
17.Patsiou, T. S., Conti, E., Zimmermann, N. E., Theodoridis, S. & Randin, C. F. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob. Change Biol. 20, 2286–2300 (2014).ADS
Google Scholar
18.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).ADS
Google Scholar
19.Körner, C. The alpine life zone. in Alpine Plant Life 9–20 (Springer, 2003).20.Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).PubMed
PubMed Central
Google Scholar
21.Graae, B. J. et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
Google Scholar
22.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17, 1022–1035 (2011).ADS
Google Scholar
23.Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
Google Scholar
24.Hülber, K. et al. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob. Ecol. Conserv. 23, e01113 (2020).
Google Scholar
25.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS
CAS
Google Scholar
26.Vittoz, P. & Engler, R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117, 109–124 (2007).
Google Scholar
27.Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science (80-) 80(334), 660–664 (2011).ADS
Google Scholar
28.Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214 (2017).PubMed
PubMed Central
Google Scholar
29.Pignatti, E. & Pignatti, S. Plant life of the Dolomites. (Springer, 2016).30.Pawlowski, B. Remarks on endemism in the flora of the Alps and the Carpathians. Vegetatio 21, 181–243 (1970).
Google Scholar
31.Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).PubMed
PubMed Central
Google Scholar
32.Carton, A. & Soldati, M. Geomorphological features of the Dolomites (Italy). (1993).33.Bosellini, A., Gianolla, P. & Stefani, M. Geology of the Dolomites. Episodes 26(3), 181–185 (2003).
Google Scholar
34.Gianolla, P., Panizza, M., Micheletti, C. & Viola, F. Nomination of the Dolomites for inscription on the World Natural Heritage list UNESCO, nomination document. Prov. di Belluno, Prov. Auton. di Bolzano—Bozen, Prov. di Pordenone, Prov. Auton. di Trento, Prov. di Udine (2008).35.Erschbamer, B. et al. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83, 387–401 (2011).
Google Scholar
36.Unterluggauer, P., Mallaun, M. & Erschbamer, B. The higher the summit, the higher the diversity changes–results of a long-term monitoring project in the Dolomites. Gredleriana 16, 5–34 (2016).
Google Scholar
37.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
Google Scholar
38.Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).
Google Scholar
39.Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).ADS
Google Scholar
40.Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography (Cop.) 42, 1267–1279 (2019).
Google Scholar
41.Perazza, G. & Lorenz, R. Le orchidee dell’Italia nordorientale. Atlante corologico e Guid. al riconoscimento. Ed. Osiride, Rovereto (2013).42.Prosser, F., Bertolli, A., Festi, F. & Perazza, G. Flora del Trentino. Fondazione Museo civico di Rovereto (2019)43.Bertolli A., Prosser F., Tomasi G., Argenti C., – Flora Dolomitica. 50 fiori da conoscere nel patrimonio Unesco. Edizioni Osiride, Rovereto, 68 pp. (2019)44.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R (Cambridge University Press, Cambridge, 2017).
Google Scholar
45.Rossi G., Orsenigo S., Gargano D., Montagnani C., Peruzzi L., Fenu G., Abeli T., Alessandrini A., Astuti G., Bacchetta G., Bartolucci F., Bernardo L., Bovio M., Brullo S., Carta A., Castello M., Cogoni D., Conti F., Domina G., Foggi B., Gennai M., Gigante D., Iberite M., Lasen C., Magrini S., Nicolella G., Pinna M.S., Poggio L., Prosser F., Santangelo A., Selvaggi A., Stinca A., Tartaglini N., Troia A., Villani M.C., Wagensommer R.P., Wilhalm T., Blasi C.,. Lista Rossa della Flora Italiana. 2 Endemiti e altre specie minacciate. Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2020)46.Rossi G., Montagnani C., Gargano D., Peruzzi L., Abeli T., Ravera S., Cogoni A., Fenu G., Magrini S., Gennai M., Foggi B., Wagensommer R.P., Venturella G., Blasi C., Raimondo F.M., Orsenigo S. (Eds.), Lista Rossa della Flora Italiana. 1. Policy Species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2013)47.Buffa G., Carpenè B., Casarotto N., Da Pozzo M., Filesi L., Lasen C., Marcucci R., Masin R., Prosser F., Tasinazzo S., Villani M., Zanatta K. Lista rossa regionale piante vascolari del Veneto. Regione Veneto (2016)48.Wilhalm, T. & Hilpold, A. Rote Liste der gefährdeten Gefäßpflanzen Südtirols (Naturmuseum Südtirols, Bozen, 2006).
Google Scholar
49.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 1–20 (2017).
Google Scholar
50.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117(33), 19656–19657 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
51.Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).ADS
Google Scholar
52.Kassambara A., & Mundt F. factoextra: Extract
and Visualize the Results of Multivariate Data Analyses. R package
version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).53.Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography (Cop.) 40, 253–266 (2017).
Google Scholar
54.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
Google Scholar
55.Thuiller, W. et al. Package ‘biomod2’. Species Distrib. Model. within an ensemble Forecast. Framew. (2016).56.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
57.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
Google Scholar
58.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
59.Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
Google Scholar
60.Cao, Y. et al. Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol. Modell. 259, 30–39 (2013).
Google Scholar
61.R Core Team. R: A Language and Environment for Statistical Computing. (2020).62.Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).
Google Scholar
63.Irl, S. D. H. et al. Climate vs topography–spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 103, 1621–1633 (2015).
Google Scholar
64.Tarquini, S. & Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 281, 108–115 (2017).ADS
Google Scholar
65.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Chang. Biol. 21, 997–1004 (2015).ADS
Google Scholar
66.Dexter, F. Wilcoxon-Mann-Whitney test used for data that are not normally distributed. Anesth. Anal. 117, 537–538 (2013)67.Geppert, C. et al. Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat. Commun. 11, 1–11 (2020).
Google Scholar
68.Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).
Google Scholar
69.Muñoz-Sáez, A., Choe, H., Boynton, R. M., Elsen, P. R. & Thorne, J. H. Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Sci. Total Environ. 785, 147399 (2021).ADS
Google Scholar
70.Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).
Google Scholar
71.Sedlacek, J. F., Bossdorf, O., Cortés, A. J., Wheeler, J. A. & van Kleunen, M. What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic Appl. Ecol. 15(4), 305–315 (2014).
Google Scholar
72.Di Nuzzo, L. et al. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci. Rep. 11, 1–12 (2021).
Google Scholar
73.Zecca, G., Casazza, G., Piscopo, S., Minuto, L. & Grassi, F. Are the responses of plant species to Quaternary climatic changes idiosyncratic? A demographic perspective from the Western Alps. Plant Ecol. Divers. 10, 273–281 (2017).
Google Scholar
74.Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).ADS
Google Scholar
75.Boisvert-Marsh, L., Périé, C. & de Blois, S. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J. Ecol. 107, 1956–1969 (2019).
Google Scholar
76.Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. E. E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).PubMed
PubMed Central
Google Scholar
77.Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).
Google Scholar
78.Körner, C. The use of ‘altitude’in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).PubMed
PubMed Central
Google Scholar
79.Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography (Cop.) 32, 34–45 (2009).
Google Scholar
80.Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).
Google Scholar
81.Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. 112, 12741–12745 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
82.Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).
Google Scholar
83.Trew, B. T. & Maclean, I. M. D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 30, 768–783 (2021).
Google Scholar
84.Garcia, M. B. et al. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ. Exp. Bot. 170, 103886 (2020).
Google Scholar
85.Tribsch, A. Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
Google Scholar
86.Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
Google Scholar
87.Panizza, M. The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1, 33–42 (2009).
Google Scholar
88.Santini, L., Benitez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).
Google Scholar
89.Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science (80-) 341, 499–504 (2013).ADS
CAS
Google Scholar
90.Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography (Cop.) 40, 1003–1013 (2017).
Google Scholar
91.Ferrarini, A. et al. Planning for assisted colonization of plants in a warming world. Sci. Rep. 6, 1–6 (2016).
Google Scholar
92.Casazza, G. et al. Combining conservation status and species distribution models for planning assisted colonisation under climate change. J. Ecol. 109, 2284–2295 (2021) More