Physiology can predict animal activity, exploration, and dispersal
1.Lihoreau, M. et al. Collective foraging in spatially complex nutritional environments. Philos. Trans. R. Soc. B 372, 20160238–11 (2017).
Google Scholar
2.Ron, R., Fragman-Sapir, O. & Kadmon, R. Dispersal increases ecological selection by increasing effective community size. Proc. Natl Acad. Sci. USA 115, 11280–11285 (2018).CAS
PubMed
PubMed Central
Google Scholar
3.Yeakel, J. D., Gibert, J. P., Gross, T., Westley, P. A. H. & Moore, J. W. Eco-evolutionary dynamics, density-dependent dispersal and collective behaviour: implications for salmon metapopulation robustness. Philos. Trans. R. Soc. B 373, 20170018–13 (2018).
Google Scholar
4.Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).PubMed
Google Scholar
5.Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).
Google Scholar
6.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).PubMed
Google Scholar
7.Kerr, J. T. Racing against change: understanding dispersal and persistence to improve species’ conservation prospects. Proc. R. Soc. B 287, 20202061–10 (2020).CAS
PubMed
PubMed Central
Google Scholar
8.Clobert, J., Galliard, J. L., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed
Google Scholar
9.Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed
Google Scholar
10.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).PubMed
Google Scholar
11.Benard, M. F. & McCauley, S. J. Integrating across life‐history stages: consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).PubMed
Google Scholar
12.LeRoy, A. & Seebacher, F. Transgenerational effects and acclimation affect dispersal in guppies. Funct. Ecol. 32, 1819–1831 (2018).
Google Scholar
13.McGhee, K. E., Barbosa, A. J., Bissell, K., Darby, N. A. & Foshee, S. Maternal stress during pregnancy affects activity, exploration and potential dispersal of daughters in an invasive fish. Anim. Behav. 171, 41–50 (2021).
Google Scholar
14.Yip, E. C., Smith, D. R. & Lubin, Y. Causes of plasticity and consistency of dispersal behaviour in a group-living spider. Anim. Behav. 175, 99–109 (2021).
Google Scholar
15.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19052–19059 (2008).CAS
PubMed
PubMed Central
Google Scholar
16.Hawkes, C. Linking movement behaviour, dispersal and population processes: is individual variation a key? J. Anim. Ecol. 78, 894–906 (2009).PubMed
Google Scholar
17.Capelli, P., Pivetta, C., Esposito, M. S. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 56, 465–22 (2017).
Google Scholar
18.Jiang, Y. et al. Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water. J. Evol. Biol. 30, 681–695 (2017).CAS
PubMed
Google Scholar
19.Malishev, M. & Kramer-Schadt, S. Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecol. Model. 441, 109413 (2021).
Google Scholar
20.Klarevas‐Irby, J. A., Wikelski, M. & Farine, D. R. Efficient movement strategies mitigate the energetic cost of dispersal. Ecol. Lett. 24, 1432–1442 (2021).PubMed
Google Scholar
21.Mathot, K. J., Dingemanse, N. J. & Nakagawa, S. The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta‐analytic insights. Biol. Rev. 94, 1056–1074 (2019).PubMed
Google Scholar
22.Killen, S. S., Marras, S., Ryan, M. R., Domenici, P. & McKenzie, D. J. A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct. Ecol. 26, 134–143 (2012).
Google Scholar
23.Metcalfe, N. B., Leeuwen, T. E. V. & Killen, S. S. Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish. Biol. 88, 298–321 (2016).CAS
PubMed
Google Scholar
24.Gordon, A. M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).CAS
PubMed
Google Scholar
25.Gundersen, K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol. Rev. 86, 564–600 (2011).PubMed
Google Scholar
26.Lichtwark, G. A. & Wilson, A. M. A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes. J. Exp. Biol. 208, 2831–2843 (2005).CAS
PubMed
Google Scholar
27.Seebacher, F., Tallis, J. A. & James, R. S. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis Daudin. J. Exp. Biol. 217, 1940–1945 (2014).PubMed
Google Scholar
28.Denton, R. D., Higham, T., Greenwald, K. R. & Gibbs, H. L. Locomotor endurance predicts differences in realized dispersal between sympatric sexual and unisexual salamanders. Funct. Ecol. 31, 915–926 (2017).
Google Scholar
29.Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).CAS
PubMed
Google Scholar
30.Jahn, M. & Seebacher, F. Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish (Danio rerio). J. Exp. Biol. 222, jeb201400–jeb201407 (2019).PubMed
Google Scholar
31.Pettersen, A. K., Marshall, D. J. & White, C. R. Understanding variation in metabolic rate. J. Exp. Biol. 221, jeb166876 (2018).PubMed
Google Scholar
32.Svendsen, J. C., Tirsgaard, B., Cordero, G. A. & Steffensen, J. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport. Front. Physiol. 6, 43 (2017).
Google Scholar
33.Seebacher, F. & Little, A. G. Plasticity of performance curves in ectotherms: individual variation modulates population responses to environmental change. Front. Physiol. 12, 733305 (2021).PubMed
PubMed Central
Google Scholar
34.Freedberg, S., Urban, C. & Cunniff, B. M. Dispersal reduces interspecific competitiveness by spreading locally harmful traits. J. Evol. Biol. 34, 1477–1487 (2021).PubMed
Google Scholar
35.Ashe, A., Colot, V. & Oldroyd, B. P. How does epigenetics influence the course of evolution? Philos. Trans. R. Soc. B 376, 20200111 (2021).CAS
Google Scholar
36.Hardie, D. C. & Hutchings, J. A. Evolutionary ecology at the extremes of species ranges. Environ. Rev. 18, 1–20 (2010).
Google Scholar
37.Charmantier, A., Doutrelant, C., Dubuc‐Messier, G., Fargevieille, A. & Szulkin, M. Mediterranean blue tits as a case study of local adaptation. Evol. Appl. 9, 135–152 (2016).PubMed
Google Scholar
38.Rohr, J. R. & Cohen, J. M. Understanding how temperature shifts could impact infectious disease. PLoS Biol. 18, e3000938 (2020).CAS
PubMed
PubMed Central
Google Scholar
39.Seebacher, F. & Krause, J. Physiological mechanisms underlying animal social behaviour. Philos. Trans. R. Soc. B 372, 20160231–20160238 (2017).
Google Scholar
40.Avaria-Llautureo, J. et al. Historical warming consistently decreased size, dispersal and speciation rate of fish. Nat. Clim. Change 11, 787–793 (2021).
Google Scholar
41.Radinger, J. et al. The future distribution of river fish: the complex interplay of climate and land use changes, species dispersal and movement barriers. Glob. Chan. Biol. 23, 4970–4986 (2017).
Google Scholar
42.Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).PubMed
Google Scholar
43.Husak, J. F. Measuring selection on physiology in the wild and Manipulating phenotypes (in terrestrial nonhuman vertebrates). Compr. Physiol. 6, 63–85 (2016).
Google Scholar
44.Hostrup, M. & Bangsbo, J. Limitations in intense exercise performance of athletes—effect of speed endurance training on ion handling and fatigue development. J. Physiol. 595, 2897–2913 (2017).CAS
PubMed
Google Scholar
45.Reale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B 365, 4051–4063 (2010).
Google Scholar
46.Auer, S. K. et al. Metabolic rate interacts with resource availability to determine individual variation in microhabitat use in the wild. Am. Nat. 196, 132–144 (2020).PubMed
Google Scholar
47.Fewell, J. H. & Harrison, J. F. Scaling of work and energy use in social insect colonies. Behav. Ecol. Sociobiol. 70, 1047–1061 (2016).
Google Scholar
48.LeRoy, A., Mazué, G. P. F., Metcalfe, N. B. & Seebacher, F. Diet and temperature modify the relationship between energy use and ATP production to influence behavior in zebrafish (Danio rerio). Ecol. Evol. 11, 9791–9803 (2021).
Google Scholar
49.Alcaraz, G. & García-Cabello, K. N. Feeding and metabolic compensations in response to different foraging costs. Hydrobiologia 787, 217–227 (2017).
Google Scholar
50.Boratyński, Z., Szyrmer, M. & Koteja, P. The metabolic performance predicts home range size of bank voles: a support for the behavioral–bioenergetics theory. Oecologia 193, 547–556 (2020).PubMed
Google Scholar
51.Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. Aerobic capacity influences the spatial position of individuals within fish schools. Proc. R. Soc. B 279, 357–364 (2012).PubMed
Google Scholar
52.Salin, K. et al. Differences in mitochondrial efficiency explain individual variation in growth performance. Proc. R. Soc. B 286, 20191466–20191468 (2019).CAS
PubMed
PubMed Central
Google Scholar
53.Wilson, R. S. & Husak, J. F. Introduction to the symposium: Towards a general framework for predicting animal movement speeds in nature. Integr. Comp. Biol. 55, 1121–1124 (2015).PubMed
Google Scholar
54.Wheatley, R., Niehaus, A. C., Fisher, D. O. & Wilson, R. S. Ecological context and the probability of mistakes underlie speed choice. Funct. Ecol. 32, 990–1000 (2018).
Google Scholar
55.Martin, G. R. Understanding bird collisions with man‐made objects: a sensory ecology approach. Ibis 153, 239–254 (2011).
Google Scholar
56.Husak, J. F. & Fox, S. F. Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): compensation and sexual selection. Evolution 60, 1888–1895 (2006).PubMed
Google Scholar
57.Mouchet, A. & Dingemanse, N. J. A quantitative genetics approach to validate lab- versus field-based behavior in novel environments. Behav. Ecol. 32, 903–911 (2021).
Google Scholar
58.O’Connor, E. A., Cornwallis, C. K., Hasselquist, D., Nilsson, J.-Å. & Westerdahl, H. The evolution of immunity in relation to colonization and migration. Nat. Ecol. Evol. 2, 841–849 (2018).PubMed
Google Scholar
59.Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA 106, 3543–3548 (2009).CAS
PubMed
PubMed Central
Google Scholar
60.Jaikumar, G., Slabbekoorn, H., Sireeni, J., Schaaf, M. & Tudorache, C. The role of the glucocorticoid receptor in the regulation of diel rhythmicity. Physiol. Behav. 223, 112991 (2020).CAS
PubMed
Google Scholar
61.Castillo-Ramírez, L. A., Ryu, S. & Marco, R. J. D. Active behaviour during early development shapes glucocorticoid reactivity. Sci. Rep. 9, 55–59 (2019).
Google Scholar
62.Bruijn, Rde & Romero, L. M. The role of glucocorticoids in the vertebrate response to weather. Gen. Comp. Endocrinol. 269, 11–32 (2018).PubMed
Google Scholar
63.Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).PubMed
Google Scholar
64.Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
Google Scholar
65.White, C. R. et al. Geographical bias in physiological data limits predictions of global change impacts. Funct. Ecol. 35, 1572–1578 (2021).
Google Scholar
66.Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015).PubMed
PubMed Central
Google Scholar
67.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 1–10 (2016).
Google Scholar
68.Debeffe, L. et al. Exploration as a key component of natal dispersal: dispersers explore more than philopatric individuals in roe deer. Anim. Behav. 86, 143–151 (2013).
Google Scholar
69.Careau, V. & T. G., Jr. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol. Biochem. Zool. 85, 543–571 (2012).PubMed
Google Scholar
70.Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade‐offs. Glob. Chang. Biol. 22, 494–512 (2016).PubMed
Google Scholar
71.Arnold, P. A., Delean, S., Cassey, P. & White, C. R. Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J. Comp. Physiol. B 191, 1097–1110 (2021).PubMed
Google Scholar
72.Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: the metaDigitise R package. Method. Ecol. Evol. 10, 426–431 (2019).
Google Scholar
73.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis. (Academic Press, 1985).74.Hedges, L. V., Gurevich, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Google Scholar
75.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS
PubMed
PubMed Central
Google Scholar
76.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Method. Ecol. Evol. 7, 1476–1481 (2016).
Google Scholar
77.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
Google Scholar
78.Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
79.Bürkner, P. Advanced Bayesian multilevel modeling with the R package brms. R Journal 10, 395–411 (2018).80.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Google Scholar
81.Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 1–14 (2017).
Google Scholar
82.Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. (in press, 2021) https://doi.org/10.1111/2041-210X.13724.83.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).
Google Scholar
84.Wu, N. C. & Seebacher, F. Data for Physiology can predict animal activity, exploration, and dispersal. https://github.com/nicholaswunz/dispersal-meta-analysis. More
