1.Eckehard, G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2 (2017).Article
Google Scholar
2.Bastrup-Birk, A., Reker, J., Zal, N., Romao, C. & Cugny-Seguin, M. (2016) European Forest Ecosystems: State and Trends Technical Report No 5 (Publications Office of the European Union, European Environment Agency, 2016).
Google Scholar
3.Aznar-Sánchez, J. A., Belmonte-Ureña, L. J., López-Serrano, M. J. & Velasco-Muñoz, J. F. Forest ecosystem services: An analysis of worldwide research. Forests 9, 453. https://doi.org/10.3390/f9080453 (2018).Article
Google Scholar
4.Masiero, M. et al. Valuing Forest Ecosystem Services: A Training Manual for Planners and Project Developers. Forestry Working Paper No. 11 216 (FAO, 2019).
Google Scholar
5.Maes, J. et al. Mapping and Assessment of Ecosystems and their Services: An Analytical Framework for Ecosystem Condition (Publications Office of the European Union, 2018).
Google Scholar
6.Pastur, G. M., Perera, A. H., Peterson, U. & Iverson, L. R. Ecosystem services from forested landscapes: An overview. In Ecosystem Services from Forest Landscapes: Broadscale Considerations (eds Perera, A. H. et al.) 1–10 (Springer International, 2018).
Google Scholar
7.Jenkins, M. & Schaap, B. Background Analytical Study Forest Ecosystem Services, by, Background study prepared for the thirteenth session of the United Nations Forum on Forests (2018).8.Lellia, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717. https://doi.org/10.1016/j.foreco.2018.09.057 (2019).Article
Google Scholar
9.van der Plas, F. et al. Jack-of-all-trades effects drive biodiversityecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109. https://doi.org/10.1038/ncomms11109 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
10.van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealized potential for forest multifunctionality. Ecol. Lett. 21, 32–42. https://doi.org/10.1111/ele.12868 (2017).Article
Google Scholar
11.Onyekwelu, J. C. & Olabiwonnu, A. A. Can forest plantations harbour biodiversity similar to natural forest ecosystems over time?. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 12, 108–115. https://doi.org/10.1080/21513732.2016.1162199 (2016).Article
Google Scholar
12.Saikia, P. et al. Plant diversity patterns and conservation status of eastern Himalayan forests in Arunachal Pradesh, Northeast India. For. Ecosyst. 4, 28. https://doi.org/10.1186/s40663-017-0117-8 (2017).Article
Google Scholar
13.Mishra, B. P., Tripathi, O. & Laloo, R. C. Community characteristics of a climax subtropical humid forest of Meghalaya and population structure of ten important tree species. Trop. Ecol. 46, 241–251 (2005).
Google Scholar
14.de Gouvenain, R. C. & Silander, J. Temperate Forests. Reference Module in Life Sciences (Elsevier, 2017).
Google Scholar
15.FAO. 2016. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? Second Edition. Rome, Italy: FAO [www document]. http://www.fao.org/3/a-i4793e.pdf (2015).16.Durigan, M. R. et al. Soil organic matter responses to anthropogenic forest disturbance and land use change in the Eastern Brazilian Amazon. Sustainability 9, 379. https://doi.org/10.3390/su9030379 (2017).CAS
Article
Google Scholar
17.Mukhortova, L., Schepaschenko, D., Shvidenko, A., McCallum, I. & Kraxner, F. Soil contribution to carbon budget of Russian forests. Agric. For. Meteorol. 200, 97–108. https://doi.org/10.1016/j.agrformet.2014.09.017 (2015).ADS
Article
Google Scholar
18.Justine, M. F. Y. et al. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6, 3665–3682. https://doi.org/10.3390/f6103665 (2015).Article
Google Scholar
19.Hansson, K. Impact of tree species on carbon in forest soils. Doctoral Thesis, Swedish University of Agricultural Sciences. Faculty of Natural Resources and Agricultural Sciences (2011).20.Zhang, Y., Duan, B., Xian, J., Korpelainen, H. & Li, C. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. For. Ecol. Manage. 262, 361–369. https://doi.org/10.1016/j.foreco.2011.03.042 (2011).Article
Google Scholar
21.Sing, L., Metzger, M. J., Paterson, J. S. & Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. Forestry 91, 151–164. https://doi.org/10.1093/forestry/cpx042 (2018).Article
Google Scholar
22.Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322. https://doi.org/10.1111/geb.12126 (2014).Article
Google Scholar
23.Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106. https://doi.org/10.1038/ncomms13106 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
24.Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565. https://doi.org/10.1038/s41467-018-04889-z (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
25.Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 5635. https://doi.org/10.1038/s41467-020-19460-y (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
26.Kendie, G., Addisu, S. & Abiyu, A. Biomass and soil carbon stocks in different forest types, Northwestern Ethiopia. Int. J. River Basin Manag. 19(1), 123–129. https://doi.org/10.1080/15715124.2019.159318 (2021).Article
Google Scholar
27.Omoro, L. M. A., Starr, M. & Pellikka, P. K. E. Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fenn. 47, 935. https://doi.org/10.14214/sf.935 (2013).Article
Google Scholar
28.Zhang, G., Zhang, P., Peng, S., Chen, Y. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7, 11754. https://doi.org/10.1038/s41598-017-12199-5 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Kerdraon, D. et al. Litter traits of native and non-native tropical trees influence soil carbon dynamics in timber plantations in panama. Forests 10, 209. https://doi.org/10.3390/f10030209 (2019).Article
Google Scholar
30.Novara, A. et al. Litter contribution to soil organic carbon in the processes of agriculture abandon. Solid Earth 6, 425–432. https://doi.org/10.5194/se-6-425-2015 (2015).ADS
Article
Google Scholar
31.Capellesso, E. S. et al. Effects of forest structure on litter production, soil chemical composition and litter–soil interactions. Acta Bot. Bras. 30(3), 329–335. https://doi.org/10.1590/0102-33062016abb0048 (2016).Article
Google Scholar
32.Castle, S. C. & Neff, J. C. Plant response to nutrient availability across variable bedrock geologies. Ecosystems 12, 101–113. https://doi.org/10.1007/s10021-008-9210-8 (2009).CAS
Article
Google Scholar
33.Gerdol, R., Marchesini, R. & Iacumin, P. Bedrock geology interacts with altitude in affecting leaf growth and foliar nutrient status of mountain vascular plants. Plant Ecol. 10, 839–850. https://doi.org/10.1093/jpe/rtw092 (2017).Article
Google Scholar
34.Sieber, I., Borges, P. & Burkhard, B. Hotspots of biodiversity and ecosystem services: The Outermost Regions and Overseas Countries and Territories of the European Union. One Ecosyst. 3, e24719. https://doi.org/10.3897/oneeco.3.e24719 (2018).Article
Google Scholar
35.Iranah, P., Lal, P., Wolde, B. T. & Burli, P. Valuing visitor access to forested areas and exploring willingness to pay for forest conservation and restoration finance: The case of small island developing state of Mauritius. J. Environ. Manage. 223, 868–877. https://doi.org/10.1016/j.jenvman.2018.07.008 (2018).Article
PubMed
Google Scholar
36.Balzan, M. V., Potschin-Young, M. & Haines-Young, R. Island ecosystem services: insights from a literature review on case-study island ecosystem services and future prospects. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 14, 71–90. https://doi.org/10.1080/21513732.2018.1439103 (2018).Article
Google Scholar
37.Wardle, D. A. Islands as model systems for understanding how species affect ecosystem properties. J. Biogeogr. 29, 583–591. https://doi.org/10.1046/j.1365-2699.2002.00708.x (2002).Article
Google Scholar
38.Wardle, D. A., Zackrisson, O., Hornberg, G. & Gallet, C. The influence of island area on ecosystem properties. Science 277, 1296–1299. https://doi.org/10.1126/science.277.5330.1296 (1997).CAS
Article
Google Scholar
39.Santamarta, J. C., Rodríguez-Martín, J. & Neris, J. Water resources management and forest engineering in volcanic islands. IERI Procedia 9, 129–134. https://doi.org/10.1016/j.ieri.2014.09.052 (2014).Article
Google Scholar
40.Fontes, J. C., Pereira, L. S. & Smith, R. E. Runoff and erosion in volcanic soils of Azores: Simulation with OPUS. CATENA 56, 199–212. https://doi.org/10.1016/j.catena.2003.10.011 (2004).Article
Google Scholar
41.Rodrigues, F. & Rodrigues, A. F. Distribution of environmental isotopes in precipitation on a small oceanic island (Terceira-Azores): Some particularities based on preliminary results. Arquipélago. Agrarian Sci. Environ. 1, 1–6 (2002).
Google Scholar
42.Dias, E. & Melo, C. Factors influencing the distribution of Azorean mountain vegetation: Implications for nature conservation. Biodivers. Conserv. 19, 3311–3326. https://doi.org/10.1007/s10531-010-9894-x (2010).Article
Google Scholar
43.Louvat, P. & Allègre, C. J. Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chem. Geol. 148, 177–200. https://doi.org/10.1016/S0009-2541(98)00028-X (1998).ADS
CAS
Article
Google Scholar
44.Malheiro, A. Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability. J. Volcanol. Geotherm. Res. 156, 158–171. https://doi.org/10.1016/j.jvolgeores.2006.03.012 (2006).ADS
CAS
Article
Google Scholar
45.Marques, R., Zêzere, J., Trigo, R., Gaspar, J. & Trigo, I. Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): Relationships with the North Atlantic Oscillation. Hydrol. Process. https://doi.org/10.1002/hyp.6879 (2008).Article
Google Scholar
46.Lopes, F. & Amaral, B. The value of forest recreation in Azorean public parks. Rev. Econ. Sociol. Rural https://doi.org/10.1590/1806-9479.2021.238884 (2021).Article
Google Scholar
47.Pavão, D. C. et al. Land cover along hiking trails in a nature tourismdestination: the Azores as a case study. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-021-01356-6 (2021).Article
Google Scholar
48.Florestas.pt The Navigator Company Madeira de criptoméria: inovar para reforçar valor (https://florestas.pt/valorizar/madeira-de-criptomeria-inovar-para-reforcar-valor/) 07 de abril 202149.Marcelino, J. A. P., Silva, L., Garcia, P. V., Weber, E. & Soares, A. O. Using species spectra to evaluate plant community conservation value along a gradient of anthropogenic disturbance. Environ. Monit. Assess. 185, 6221–6233. https://doi.org/10.1007/s10661-012-3019-9 (2013).Article
PubMed
Google Scholar
50.Marcelino, J. A. P., Weber, E., Silva, L., Garcia, P. V. & Soares, A. O. Expedient metrics to describe plant community change across gradients of anthropogenic influence. Environ. Manage. 54, 1121–1130. https://doi.org/10.1007/s00267-014-0321-z (2014).ADS
Article
PubMed
Google Scholar
51.Abreu, P. M. R. Contributo da Criptoméria Para o Sequestro de carbono nos Açores 128 (Tese de Mestrado, Universidade de Aveiro, 2011).
Google Scholar
52.Vergílio, M., Fjøsneb, K., Nistorab, A. & Calado, H. Carbon stocks and biodiversity conservation on a small island: Pico (the Azores, Portugal). Land Use Policy 58, 196–207. https://doi.org/10.1016/j.landusepol.2016.07.020 (2016).Article
Google Scholar
53.Borges Silva, L. et al. Development allometric equations for estimating above-ground biomass of woody plants invaders: The Pittosporum undulatum the Azores archipelago. In Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics Vol. 195 (eds Pinto, A. & Ziberman, D.) 463–484 (Springer, 2017).
Google Scholar
54.Borges Silva, L., Teixeira, A., Alves, M., Elias, R. B. & Silva, L. Tree age determination in the widespread woody plant invader Pittosporum undulatum. For. Ecol. Manage. 400, 457–467. https://doi.org/10.1016/j.foreco.2017.06.027 (2017).Article
Google Scholar
55.Borges Silva, L. et al. Biomass valorization in the management of woody plant invaders: The case of Pittosporum undulatum in the Azores. Biomass Bioenergy 109, 155–165. https://doi.org/10.1016/j.biombioe.2017.12.025 (2018).Article
Google Scholar
56.Mendonça, E. F. E. P. Serviços dos Ecossistemas na Ilha Terceira: estudo preliminar com ênfase no sequestro de carbono e na biodiversidade 147 (Tese de Mestrado, Universidade dos Açores, 2012).
Google Scholar
57.Cruz, A. & Benedicto, J. Assessing socio-economic benefits of Natura 2000: A case study on the ecosystem service provided by SPA Pico da Vara/Ribeira do Guilherme. Output of the project Financing Natura 2000: Cost estimate and benefits of Natura 2000, 43 (2009).58.Cruz, A., Benedicto, J. & Gil, A. Socio-economic benefits of Natura 2000 in Azores Islands – a Case Study approach on ecosystem services provided by a Special Protected Area. J. Coast Res. 64, 1955–1959 (2011).
Google Scholar
59.Borges, P. A. V. et al. (eds) A List of the Terrestrial and Marine Biota from the Azores 432 (Princípia, 2010).
Google Scholar
60.Silva, L., Moura, M., Schaefer, H., Rumsey, F. & Dias, E. F. Vascular Plants (Tracheobionta). In A List of the Terrestrial and Marine Biota from the Azores (eds Borges, P. A. V. et al.) 117–146 (Princípia, 2010).
Google Scholar
61.Elias, R. B. et al. Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46, 107–123. https://doi.org/10.1127/phyto/2016/0132 (2016).Article
Google Scholar
62.Borges, P. A. V. et al. Community structure of woody plants on islands along a bioclimatic gradient. Front. Biogeogr. 10, 1–31. https://doi.org/10.21425/F5FBG40295 (2018).Article
Google Scholar
63.Fimbel, R. A. & Fimbel, C. A. The role of exotic conifer plantations in rehabilitating degraded tropical forest lands: A case study from the Kibale forest in Uganda. For. Ecol. Manage. 81, 215–226. https://doi.org/10.1016/0378-1127(95)03637-7 (1996).Article
Google Scholar
64.Omoro, L. M. A., Pellikka, P. K. E. & Rogers, P. C. Tree species diversity, richness, and similarity between exotic and indigenous forests in the cloud forests of Eastern Arc Mountains, Taita Hills, Kenya. J. For. Res. 21, 255–264. https://doi.org/10.1007/s11676-010-0069-0 (2010).Article
Google Scholar
65.Tenzin, J. & Hasenauer, H. Tree species composition and diversity in relation to anthropogenic disturbances in broad-leaved forests of Bhutan. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 12, 274–290. https://doi.org/10.1080/21513732.2016.1206038 (2016).Article
Google Scholar
66.Braun, A. C. Taxonomic diversity and taxonomic dominance: The example of forest plantations in south-central Chile. Open J. Ecol. 5, 199–212. https://doi.org/10.4236/oje.2015.55017 (2015).Article
Google Scholar
67.Cordeiro, N. & Silva, L. Seed production and vegetative growth of Hedychium gardnerianum Ker-Gawler (Zingiberaceae) in São Miguel Island (Azores). Arquipélago. Life Mar. Sci. 20A, 31–36 (2003).
Google Scholar
68.Ricketts, T. H. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 18, 1262–1271. https://doi.org/10.1111/j.1523-1739.2004.00227.x (2004).Article
Google Scholar
69.Bunker, D. E. et al. Species loss and above-ground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.11176821029-1031 (2005).ADS
CAS
Article
PubMed
Google Scholar
70.Phillpott, S. M. et al. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol. Appl. 19, 1858–1867. https://doi.org/10.1890/08-1928.1 (2009).Article
Google Scholar
71.Ifo, S. A. et al. Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: Case of the Forest of Likouala in the Republic of Congo. Int. J. For. Res. 2016, 1–12. https://doi.org/10.1155/2016/7593681 (2016).Article
Google Scholar
72.Borges, P. A. V., Santos, A. M. C., Elias, R. B. & Gabriel, R. The Azores Archipelago: Biodiversity erosion and conservation biogeography. In Encyclopedia of the World’s Biomes-Earth Systems and Environmental Sciences. Reference Module in Earth Systems and Environmental Sciences (eds Scott, E. et al.) 1–13 (Elsevier, 2019).
Google Scholar
73.Lourenço, P., Medeiros, V., Gil, A. & Silva, L. Distribution, habitat and biomass of Pittosporum undulatum, the most important woody plant invader in the Azores Archipelago. For. Ecol. Manage. 262, 178–187. https://doi.org/10.1016/j.foreco.2011.03.021 (2011).Article
Google Scholar
74.Gabriel, R. & Bates, J. W. Bryophyte community composition and habitat specificity in the natural forests of Terçeira, Azores. Plant Ecol. 177, 125–144. https://doi.org/10.1007/s11258-005-2243-6 (2005).Article
Google Scholar
75.Elias, R. B., Dias, E. & Pereira, F. Disturbance, regeneration and the spatial pattern of tree species in Azorean mountain forests. Community Ecol. 12, 23–30. https://doi.org/10.1556/ComEc.12.2011.1.4 (2011).Article
Google Scholar
76.Elias, R. B. & Dias, E. The effects of landslides on the mountain vegetation of Flores Island, Azores. J. Veg. Sci. 20, 706–717. https://doi.org/10.1111/j.1654-1103.2009.01070.x (2009).Article
Google Scholar
77.Gleadow, R. M., Rowan, K. S. & Ashton, D. H. Invasion by Pittosporum undulatum of the forests of Central Victoria IV. Shade tolerance. Aust J. Bot. 31, 151–160. https://doi.org/10.1071/BT9830151 (1983).Article
Google Scholar
78.Bradstock, R. A., Tozer, M. G. & Keith, D. A. Effects of high frequency fire on floristic composition and abundance in a fire-prone heathland near Sydney. Aust. J. Bot. 45, 641–655. https://doi.org/10.1071/BT96083 (1997).Article
Google Scholar
79.Gleadow, R. M. & Ashton, D. H. Invasion by Pittosporum undulatum of the forests of Central Victoria. I. Invasion patterns and plant morphology. Aust. J. Bot. 29, 705–720. https://doi.org/10.1071/BT9810705 (1981).Article
Google Scholar
80.Ramos, J. A. Introduction of exotic tree species as a threat to the azores bullfinch population. J. Appl. Ecol. 33, 710–722 (1996).
Google Scholar
81.Silva, L., Ojeda-Land, E. & Rodríguez-Luengo, J. L. Invasive terrestrial flora and fauna of Macaronesia. Top 100 in Azores, Madeira and Canaries 546 (ARENA, 2008).
Google Scholar
82.Castro, S. A. et al. Floristic homogenization as a teleconnected trend in oceanic islands. Divers. Distrib. 16, 902–910. https://doi.org/10.1111/j.1472-4642.2010.00695.x (2010).Article
Google Scholar
83.Kueffer, C. et al. Magnitude and form of invasive plant impacts on oceanic islands: A global comparison. Perspect. Plant Ecol. Evol. Syst. 12, 145–161. https://doi.org/10.1016/j.ppees.2009.06.002 (2010).Article
Google Scholar
84.Gil, A., Lobo, A., Abadi, M., Silva, L. & Calado, H. Mapping invasive woody plants in Azores Protected Areas by using very high-resolution multispectral imagery. Eur. J. Remote. Sens. 46, 289–304. https://doi.org/10.5721/EuJRS20134616 (2013).Article
Google Scholar
85.DRRF. Plano de Gestão Florestal-Perímetro Florestal e Matas Regionais da Ilha de São Miguel. Direção Regional dos Recursos Florestais. Secretaria Regional da Agricultura e Florestas. Região Autónoma dos Açores. (http://drrf.azores.gov.pt/areas/cert/Documents/PGF_do_Perimetro_Florestal_e_Matas_Regionais_da_Ilha_de_Sao_Miguel_2017.pdf) (2017).86.Dutra Silva, L., Azevedo, E. B., Elias, R. B. & Silva, L. Species distribution modeling: Comparison of fixed and mixed effects models using INLA. Int. J. Geogr. Inf. Sci. 6, 1–35. https://doi.org/10.3390/ijgi6120391 (2017).Article
Google Scholar
87.Dutra Silva, L., Azevedo, E. B., Reis, F. V., Elias, R. B. & Silva, L. Limitations of species distribution models based on available climate change data: a case study in the Azorean forest. Forests 10, 575. https://doi.org/10.3390/f10070575 (2019).Article
Google Scholar
88.Hortal, J., Borges, P. A. V., Jiménez-Valverde, A., Azevedo, E. B. & Silva, L. Assessing the areas under risk of invasion within islands through potential distribution modelling: The case of Pittosporum undulatum in São Miguel, Azores. J. Nat. Conserv. 18, 247–257. https://doi.org/10.1016/j.jnc.2009.11.002 (2010).Article
Google Scholar
89.Gil, A., Yu, Q., Abadi, M. & Calado, H. Using ASTER multispectral imagery for mapping woody invasive species in Pico da Vara Natural Reserve (Azores Islands, Portugal). Revista Árvore. 38, 391–401 (2014).
Google Scholar
90.Magurran, A. E. Ecological Diversity and Its Measurement 178 (Croom Helm, 1988).
Google Scholar
91.Dias, E., Elias, R. B., Melo, C. & Mendes, C. O elemento insular na estruturação das florestas da Macaronésia. In Árvores e Florestas de Portugal. Volume 6. Açores e Madeira. A Floresta das ilhas 362 (Público, Comunicação Social, SA. Fundação Luso-Americana para o Desenvolvimento, 2007).
Google Scholar
92.Dias, E., Elias, R. B., Melo, C. & Mendes, C. O elemento insular na estruturação das florestas da Macaronésia. Açores Madeira 6, 15–48 (2007).
Google Scholar
93.Kacholi, D. S. Analysis of structure and diversity of the Kilengwe forest in the Morogoro Region, Tanzania. Int. J. Biodivers. 2014, 1–8. https://doi.org/10.1155/2014/516840 (2014).Article
Google Scholar
94.Jögren, E. Recent changes in the vascular flora and vegetation of the Azores Islands, Memórias da Sociedade Broteriana. Agric. For. 22, 1–113 (1973).
Google Scholar
95.Silva, L. & Smith, C. W. A quantitative approach to the study of non- indigenous plants: An example from the Azores Archipelago. Biodivers. Conserv. 15, 1661–1679. https://doi.org/10.1007/s10531-004-5015-z (2006).Article
Google Scholar
96.Szmyt, J. Structural diversity of selected oak stands (Quercus robur L.) on the Krotoszyn Plateau in Poland. For. Res. Pap. 78, 4–27. https://doi.org/10.1515/frp-2017-0002 (2017).Article
Google Scholar
97.Lillo, E. P., Fernando, E. S. & Lillo, M. J. R. Plant diversity and structure of forest habitat types on Dinagat Island, Philippines. J. Asia Pac. Biodivers. 12, 83–105. https://doi.org/10.1016/j.japb.2018.07.003 (2018).Article
Google Scholar
98.Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219. https://doi.org/10.1111/j.1461-0248.2011.01691.x (2011).Article
PubMed
Google Scholar
99.Park, J., Kim, H. S., Jo, H. K. & Jung, B. The influence of tree structural and species diversity on temperate forest productivity and stability in Korea. Forests https://doi.org/10.3390/f10121113 (2019).Article
Google Scholar
100.Yang, Y., Luo, Y. & Finzi, A. Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytol. 190, 977–989. https://doi.org/10.1111/j.1469-8137.2011.03645.x (2011).CAS
Article
PubMed
Google Scholar
101.Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03. https://doi.org/10.1029/2009JG000935 (2009).ADS
Article
Google Scholar
102.Matos, B. et al. Linking dendrometry and dendrochronology in the Dominant Azorean Tree Laurus azorica (Seub.) Franco. Forests 10, 538. https://doi.org/10.3390/f10070538 (2019).Article
Google Scholar
103.Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341. https://doi.org/10.1016/j.scitotenv.2020 (2021).ADS
CAS
Article
PubMed
Google Scholar
104.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215. https://doi.org/10.1038/nature07276 (2008).ADS
CAS
Article
PubMed
Google Scholar
105.Pavão, D. C. et al. Dendrochronological potential of the Azorean endemic gymnosperm Juniperus brevifolia. Dendrochronologica 71, 125901. https://doi.org/10.1016/j.dendro.2021.125901 (2022).Article
Google Scholar
106.Fernández-Palácios, J. M., Garcia Esteban, J. J., López, R. J. & Luzardo, M. C. Aproximación a la estima de la biomassa y producción primaria neta aéreas en una estación de la Laurisilva tinerfeña. Vieraea 20, 11–20 (1991).
Google Scholar
107.Brown, S. & Lugo, A. E. Biomass of tropical forests: A new estimate based on forest volumes. Science 223, 1290–1293. https://doi.org/10.1126/science.223.4642.1290 (1984).ADS
CAS
Article
PubMed
Google Scholar
108.Silva, J. Açores e Madeira: A Floresta das Ilhas Vol. 6, 362 (Coleção Árvores e florestas de Portugal,1ª Edição, Fundação Luso-Americana para o Desenvolvimento, 2007).
Google Scholar
109.Fukuda, M., Iehara, T. & Matsumoto, M. Carbon stock estimates for Sugi and Hinoki forests in Japan. For. Ecol. Manage. 184, 1–16. https://doi.org/10.1016/S0378-1127(03)00146-4 (2003).Article
Google Scholar
110.Sasaki, N. & Kim, S. Biomass carbon sinks in Japanese forests: 1966–2012. Forestry 82, 105–115. https://doi.org/10.1093/forestry/cpn049 (2009).Article
Google Scholar
111.Dar, J. A. & Sundarapandian, S. M. Soil organic carbon stock assessment in two temperate forest types of western Himalaya of Jammu and Kashmir, India. For. Res. 3, 114. https://doi.org/10.4172/2168-9776.1000114 (2013).Article
Google Scholar
112.Gilliam, F. S. Excess nitrogen in temperate forest ecosystems decreases herbaceous layer diversity and shifts control from soil to canopy structure. Forests 10, 66. https://doi.org/10.3390/f10010066 (2019).Article
Google Scholar
113.Li, P., Wang, Q., Endo, T., Zhao, X. & Kakubari, Y. Soil organic carbon stock is closely related to vegetation properties in cold-temperate mountainous forests. Geoderma 154, 407–415. https://doi.org/10.1016/j.geoderma.2009.11.023 (2010).ADS
CAS
Article
Google Scholar
114.Diaz-Pines, E., Rubio, A., Miegroet, H. V., Montes, F. & Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests. For. Ecol Manage. 262, 1895–1904. https://doi.org/10.1016/j.foreco.2011.02.004 (2011).Article
Google Scholar
115.Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 133, 13–22. https://doi.org/10.1016/S0378-1127(99)00294-7 (2000).Article
Google Scholar
116.Boring, L. R. & Hendricks, J. J. Litter quality of native herbaceous legumes in a burned pine forest of the Gerogia Piedmont. Can. J. For. Res. 22, 2007–2010. https://doi.org/10.1139/x92-263 (1992).Article
Google Scholar
117.Thuille, A. & Schulze, E. D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Chang. Biol. 6, 325–342. https://doi.org/10.1111/j.1365-2486.2005.01078.x (2006).ADS
Article
Google Scholar
118.Jandl, R. et al. How strongly can forest management influence soil carbon sequestration?. Geoderma 137, 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003 (2007).ADS
CAS
Article
Google Scholar
119.van Wesemael, B. & Veer, M. A. C. Soil organic matter accumulation, litter decomposition and humus forms in Mediterranean forests of southern Tuscany, Italy. J. Soil Sci. 43, 133–144. https://doi.org/10.1111/j.1365-2389.1992.tb00125.x (1992).Article
Google Scholar
120.Kavvadias, V. A., Alifragis, D. A., Tsiontsis, A., Brofas, G. & Stamatelos, G. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol Manage. 144, 113–127. https://doi.org/10.1016/S0378-1127(00)00365-0 (2001).Article
Google Scholar
121.Rahman, M. M., Tsukamoto, J., Tokumoto, Y. & Ashikur, R. S. The role of quantitative traits of leaf litter on decomposition and nutrient cycling of the forest ecosystems. J. For. Sci. 29, 38–48. https://doi.org/10.7747/JFS.2013.29.1.38 (2013).Article
Google Scholar
122.Bowden, R. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75. https://doi.org/10.2136/sssaj2013.09.0413nafsc (2014).Article
Google Scholar
123.Madeira, M. et al. (eds) Soils of Volcanic Regions in Europe (Springer, 2007).
Google Scholar
124.Arnalds, O. et al. (eds) Soils of Volcanic Regions in Europe (Springer, 2007).
Google Scholar
125.Zheng, X., Wei, X. & Zhang, S. Tree species diversity and identity effects on soil properties in the Huoditang area of the Qinling Mountains, China. Ecosphere 8, e01732. https://doi.org/10.1002/ecs2.1732 (2017).Article
Google Scholar
126.Duan, L., Huang, Y., Hao, J., Xie, S. & Hou, M. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification. Sci. Total Environ. 330, 187–198. https://doi.org/10.1016/j.scitotenv.2004.03.035 (2004).ADS
CAS
Article
PubMed
Google Scholar
127.Heath, L. S., Kimble, J. M., Birdsey, R. A. & Lal, R. The potential of U.S. forest soils to sequester carbon. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect (eds Kimble, J. M. et al.) 385–394 (CRC Press, 2003).
Google Scholar
128.D’Amore, D. & Kane, E. Climate Change and Forest Soil Carbon. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/forest-soil-carbon (2016).129.Ramade, F. Ecology of Natural Resources (Wiley, 1981).
Google Scholar
130.Osman, K. T. Physical properties of forest soils. In Forest Soils 19–44 (Springer, 2013).
Google Scholar
131.Sanchez, P. A. & Logan, T. J. Myths and science about the chemistry and fertility of soils in the tropics. In Myths and Science of Soils of the Tropics Vol. 29 (eds Lal, R. & Sanchez, P. A.) 35–46 (SSSA, 1992).
Google Scholar
132.Sibrant, A. L. R. et al. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira rift, Azores). J. Volcanol. Geotherm. Res. 301, 90–106. https://doi.org/10.1016/j.jvolgeores.2015.04.011 (2015).ADS
CAS
Article
Google Scholar
133.Hildenbrand, A., Weis, D., Madoreira, P. & Marques, F. O. Recent plate reorganization at the Azores triple junction: Evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic islands. Lithos 210–211, 27–39. https://doi.org/10.1016/j.lithos.2014.09.009 (2014).ADS
CAS
Article
Google Scholar
134.Demand, J., Fabriol, R., Gerard, F., Lundt, F. & Chovelon, P. Prospection Géothermique, íles de Faial et de Pico (Açores). Rapport géologique, geochimique et gravimétrique. Technical report, BRGM 82 SGN 003 GTH (1982).135.Elias, R. B. & Dias, E. Ecologia das florestas de Juniperus dos Açores Cadernos de Botânica nº5 (Herbário da Universidade dos Açores, 2008).
Google Scholar
136.DRRF. Avaliação da Biomassa Disponível em Povoamentos Florestais na Região Autonoma dos Açores (Evaluation of Available Biomass in Forestry Stands in the Azores Autonomic Region) 8 (Inventário Florestal da Regiao Autonoma dos Açores Direcção Regional dos Recursos Florestais, Secretaria Regional da Agricultura e Florestas da Região Autonoma dos Açores, 2007).
Google Scholar
137.Silva, L. & Smith, C. W. A characterization of the non-indigenous flora of the Azores Archipelago. Biol. Invasions 6, 193–204. https://doi.org/10.1023/B:BINV.0000022138.75673.8c (2004).Article
Google Scholar
138.Fernandes, A. & Fernandes, R. B. Iconographia Selecta Florae Azoricae Vol. I, 131 (Fasc. 1. Coimbra, 1980).
Google Scholar
139.Fernandes, A. & Fernandes, R. B. Iconographia Selecta Florae Azoricae Vol. II, 178 (Fasc. 1 Edição da Secretaria Regional da Cultura da Região Autónoma dos Açores, 1983).
Google Scholar
140.Mengistu, B. & Asfaw, Z. Woody species diversity and structure of agroforestry and adjacent land uses in Dallo Mena District, South-East Ethiopia. Nat. Resour. 7, 515–534. https://doi.org/10.4236/nr.2016.710044 (2016).Article
Google Scholar
141.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Biol. Sci. 285, 20181240. https://doi.org/10.1098/rspb.2018.1240 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
142.Lou, J. Entropy & diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).Article
Google Scholar
143.Whittaker, R. H. Communities and Ecosystems 162 (MacMillan, 1970).
Google Scholar
144.Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564. https://doi.org/10.1016/j.tree.2018.04.012 (2018).Article
PubMed
Google Scholar
145.Oksanen, J. et al. Community Ecology Package. Vegan Tutorial (2018).146.Pavão, D. C., Elias, R. E. & Silva, L. Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities. Ecol. Model. 402, 93–106. https://doi.org/10.1016/j.ecolmodel.2019.03.021 (2019).Article
Google Scholar
147.Legendre, P. & Legendre, L. Numerical Ecology 2nd edn, 853 (Elsevier, 1998).MATH
Google Scholar
148.Oksanen F.G. et al. Vegan: Community Ecology Package. R Package Version 2.4-2 (2017).149.Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366. https://doi.org/10.2307/2963459 (1997).Article
Google Scholar
150.Silva, L., Le Jean, F., Marcelino, J. & Soares, A. O. Using bayesian inference to validate plant community assemblages and determine indicator species. In Modeling, Dynamics, Optimization and Bioeconomics II. DGS 2014. Springer Proceedings in Mathematics & Statistics Vol. 195 (eds Pinto, A. & Zilberman, D.) (Springer, 2017).
Google Scholar
151.van Rensburg, B. J., McGeoch, M. A., Chown, S. L. & van Jaarsveld, A. S. Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol. Conserv. 88, 145–153. https://doi.org/10.1016/S0006-3207(98)00109-8 (1999).Article
Google Scholar
152.Solomou, A. D. & Sfougaris, A. I. Herbaceous plant diversity and identification of indicator species in olive groves in Central Greece. Commun. Soil Sci. Plant Anal. 44, 320–330. https://doi.org/10.1080/00103624.2013.741926 (2013).CAS
Article
Google Scholar
153.De Caceres, M. & Jansen, F. Indicspecies: Relationship Between Species and Groups of Sites. R package version 1.7.5. (2016).154.Aboal, J., Arévalo, J. R. & Fernández, Á. Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora 200, 264–274. https://doi.org/10.1016/j.flora.2004.11.001 (2005).Article
Google Scholar
155.Lim, K. H., Lee, K.-H., Lee, K. H. & Park, I. H. Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in southern. J. For. Res. 18, 316–322. https://doi.org/10.1007/s10310-012-0353-2 (2013).CAS
Article
Google Scholar
156.Paul, K. I. et al. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For. Ecol. Manage. 310, 483–494. https://doi.org/10.1016/j.foreco.2013.08.054 (2013).Article
Google Scholar
157.Acosta-Mireles, M., Vargas-Hernández, J., Velázquez-Martínez, A. & Etchevers-Barra, J. D. Aboveground biomass estimation by means of allometric relationships in six hardwood species in Oaxaca, México. Agrociência 36, 725–736 (2002).
Google Scholar
158.Zianis, D. & Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manage. 187, 311–332. https://doi.org/10.1016/j.foreco.2003.07.007 (2004).Article
Google Scholar
159.IPCC. Guidelines for National Greenhouse Gas Inventories Vol. 4 (Intergovernmental Panel on Climate Change (IPCC), Agriculture, Forestry and Other Land Use (AFLOLU), Institute for Global Environmental Strategies, 2006).
Google Scholar
160.Mokany, K., Raison, J. R. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Chang. Biol. 12, 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x (2006).ADS
Article
Google Scholar
161.Lamlom, S. & Savidge, R. A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy. 25, 381–388. https://doi.org/10.1016/S0961-9534(03)00033-3 (2003).CAS
Article
Google Scholar
162.Jew, E. K. K., Dougill, A. J., Sallu, S. M., O’Connell, J. & Benton, T. G. Miombo woodland under threat: consequences for tree diversity and carbon storage. For. Ecol. Manage. 361, 144–153. https://doi.org/10.1016/j.foreco.2015.11.0110378-1127 (2016).Article
Google Scholar
163.Hetland, J., Yowargana, P., Leduc, S. & Kraxner, F. Carbon-negative emissions: systemic impacts of biomass conversion: A case study on CO2 capture and storage options. Int. J. Greenh. Gas Control. 49, 330–342 (2016).CAS
Google Scholar
164.Macías, C. A. S., Orihuela, J. C. A. & Abad, S. I. Estimation of above-ground live biomass and carbon stocks in different plant formations and in the soil of dry forests of the Ecuadorian coast. Food Energy Secur. 6, e115. https://doi.org/10.1002/fes3.115 (2017).Article
Google Scholar
165.Yigini, Y. et al. Soil Organic Carbon Mapping Cookbook 2nd edn, 220 (FAO, 2018).
Google Scholar
166.Azevedo, E. B. & Pereira, L. S. Modelling the local climate in island environments: Water balance applications. Agric. Water Manag. 40, 393–403 (1999).
Google Scholar
167.Costa, H. et al. Predicting successful replacement of forest invaders by native species using species distribution models: The case of Pittosporum undulatum and Morella faya in the Azores. For. Ecol. Manage. 279, 90–96. https://doi.org/10.1016/j.foreco.2012.05.022 (2012).Article
Google Scholar
168.Costa, H., Medeiros, V., Azevedo, E. B. & Silva, L. Evaluating the ecological-niche factor analysis as a modelling tool for environmental weed management in island systems. Weed Res. 53, 221–230. https://doi.org/10.1111/wre.12017 (2013).Article
Google Scholar More