More stories

  • in

    Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change

    1.IPCC. Shukla, P. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (2019).2.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    3.Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science (80-) 80(341), 504–508 (2013).ADS 

    Google Scholar 
    4.Gobiet, A. et al. 21st century climate change in the European Alps—A review. Sci. Total Environ. 493, 1138–1151 (2014).ADS 
    CAS 

    Google Scholar 
    5.Damschen, E. I., Harrison, S., Ackerly, D. D., Fernandez-Going, B. M. & Anacker, B. L. Endemic plant communities on special soils: early victims or hardy survivors of climate change?. J. Ecol. 100(5), 1122–1130 (2012).
    Google Scholar 
    6.Essl, F. et al. Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol. Conserv. 142, 2547–2558 (2009).
    Google Scholar 
    7.Hülber, K. et al. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619 (2016).ADS 

    Google Scholar 
    8.Wershow, S. T. & DeChaine, E. G. Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. Am. J. Bot. 105, 760–778 (2018).
    Google Scholar 
    9.Dagnino, D. et al. Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Reg. Environ. Change 20, 1–12 (2020).
    Google Scholar 
    10.Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 17, 990–996 (2011).ADS 

    Google Scholar 
    11.Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    12.Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S. & Grabherr, G. Assessing the long-term dynamics of endemic plants at summit habitats. in Alpine biodiversity in Europe 195–207 (Springer, 2003).13.Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).
    Google Scholar 
    14.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS 

    Google Scholar 
    15.Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    16.Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).ADS 

    Google Scholar 
    17.Patsiou, T. S., Conti, E., Zimmermann, N. E., Theodoridis, S. & Randin, C. F. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob. Change Biol. 20, 2286–2300 (2014).ADS 

    Google Scholar 
    18.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).ADS 

    Google Scholar 
    19.Körner, C. The alpine life zone. in Alpine Plant Life 9–20 (Springer, 2003).20.Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    21.Graae, B. J. et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
    Google Scholar 
    22.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Change Biol. 17, 1022–1035 (2011).ADS 

    Google Scholar 
    23.Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).
    Google Scholar 
    24.Hülber, K. et al. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob. Ecol. Conserv. 23, e01113 (2020).
    Google Scholar 
    25.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 

    Google Scholar 
    26.Vittoz, P. & Engler, R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117, 109–124 (2007).
    Google Scholar 
    27.Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science (80-) 80(334), 660–664 (2011).ADS 

    Google Scholar 
    28.Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Pignatti, E. & Pignatti, S. Plant life of the Dolomites. (Springer, 2016).30.Pawlowski, B. Remarks on endemism in the flora of the Alps and the Carpathians. Vegetatio 21, 181–243 (1970).
    Google Scholar 
    31.Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    32.Carton, A. & Soldati, M. Geomorphological features of the Dolomites (Italy). (1993).33.Bosellini, A., Gianolla, P. & Stefani, M. Geology of the Dolomites. Episodes 26(3), 181–185 (2003).
    Google Scholar 
    34.Gianolla, P., Panizza, M., Micheletti, C. & Viola, F. Nomination of the Dolomites for inscription on the World Natural Heritage list UNESCO, nomination document. Prov. di Belluno, Prov. Auton. di Bolzano—Bozen, Prov. di Pordenone, Prov. Auton. di Trento, Prov. di Udine (2008).35.Erschbamer, B. et al. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83, 387–401 (2011).
    Google Scholar 
    36.Unterluggauer, P., Mallaun, M. & Erschbamer, B. The higher the summit, the higher the diversity changes–results of a long-term monitoring project in the Dolomites. Gredleriana 16, 5–34 (2016).
    Google Scholar 
    37.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).
    Google Scholar 
    38.Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).
    Google Scholar 
    39.Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).ADS 

    Google Scholar 
    40.Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporating microclimate into species distribution models. Ecography (Cop.) 42, 1267–1279 (2019).
    Google Scholar 
    41.Perazza, G. & Lorenz, R. Le orchidee dell’Italia nordorientale. Atlante corologico e Guid. al riconoscimento. Ed. Osiride, Rovereto (2013).42.Prosser, F., Bertolli, A., Festi, F. & Perazza, G. Flora del Trentino. Fondazione Museo civico di Rovereto (2019)43.Bertolli A., Prosser F., Tomasi G., Argenti C., – Flora Dolomitica. 50 fiori da conoscere nel patrimonio Unesco. Edizioni Osiride, Rovereto, 68 pp. (2019)44.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R (Cambridge University Press, Cambridge, 2017).
    Google Scholar 
    45.Rossi G., Orsenigo S., Gargano D., Montagnani C., Peruzzi L., Fenu G., Abeli T., Alessandrini A., Astuti G., Bacchetta G., Bartolucci F., Bernardo L., Bovio M., Brullo S., Carta A., Castello M., Cogoni D., Conti F., Domina G., Foggi B., Gennai M., Gigante D., Iberite M., Lasen C., Magrini S., Nicolella G., Pinna M.S., Poggio L., Prosser F., Santangelo A., Selvaggi A., Stinca A., Tartaglini N., Troia A., Villani M.C., Wagensommer R.P., Wilhalm T., Blasi C.,. Lista Rossa della Flora Italiana. 2 Endemiti e altre specie minacciate. Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2020)46.Rossi G., Montagnani C., Gargano D., Peruzzi L., Abeli T., Ravera S., Cogoni A., Fenu G., Magrini S., Gennai M., Foggi B., Wagensommer R.P., Venturella G., Blasi C., Raimondo F.M., Orsenigo S. (Eds.), Lista Rossa della Flora Italiana. 1. Policy Species e altre specie minacciate. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare (2013)47.Buffa G., Carpenè B., Casarotto N., Da Pozzo M., Filesi L., Lasen C., Marcucci R., Masin R., Prosser F., Tasinazzo S., Villani M., Zanatta K. Lista rossa regionale piante vascolari del Veneto. Regione Veneto (2016)48.Wilhalm, T. & Hilpold, A. Rote Liste der gefährdeten Gefäßpflanzen Südtirols (Naturmuseum Südtirols, Bozen, 2006).
    Google Scholar 
    49.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. data 4, 1–20 (2017).
    Google Scholar 
    50.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. 117(33), 19656–19657 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).ADS 

    Google Scholar 
    52.Kassambara A., & Mundt F. factoextra: Extract
    and Visualize the Results of Multivariate Data Analyses. R package
    version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).53.Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography (Cop.) 40, 253–266 (2017).
    Google Scholar 
    54.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Google Scholar 
    55.Thuiller, W. et al. Package ‘biomod2’. Species Distrib. Model. within an ensemble Forecast. Framew. (2016).56.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
    Google Scholar 
    57.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
    Google Scholar 
    58.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    59.Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Google Scholar 
    60.Cao, Y. et al. Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecol. Modell. 259, 30–39 (2013).
    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing. (2020).62.Riley, S. J., DeGloria, S. D. & Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).
    Google Scholar 
    63.Irl, S. D. H. et al. Climate vs topography–spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 103, 1621–1633 (2015).
    Google Scholar 
    64.Tarquini, S. & Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 281, 108–115 (2017).ADS 

    Google Scholar 
    65.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Chang. Biol. 21, 997–1004 (2015).ADS 

    Google Scholar 
    66.Dexter, F. Wilcoxon-Mann-Whitney test used for data that are not normally distributed. Anesth. Anal. 117, 537–538 (2013)67.Geppert, C. et al. Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat. Commun. 11, 1–11 (2020).
    Google Scholar 
    68.Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    69.Muñoz-Sáez, A., Choe, H., Boynton, R. M., Elsen, P. R. & Thorne, J. H. Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Sci. Total Environ. 785, 147399 (2021).ADS 

    Google Scholar 
    70.Dullinger, S. et al. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21, 829–840 (2012).
    Google Scholar 
    71.Sedlacek, J. F., Bossdorf, O., Cortés, A. J., Wheeler, J. A. & van Kleunen, M. What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic Appl. Ecol. 15(4), 305–315 (2014).
    Google Scholar 
    72.Di Nuzzo, L. et al. Contrasting multitaxon responses to climate change in Mediterranean mountains. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    73.Zecca, G., Casazza, G., Piscopo, S., Minuto, L. & Grassi, F. Are the responses of plant species to Quaternary climatic changes idiosyncratic? A demographic perspective from the Western Alps. Plant Ecol. Divers. 10, 273–281 (2017).
    Google Scholar 
    74.Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Chang. 7, 577–580 (2017).ADS 

    Google Scholar 
    75.Boisvert-Marsh, L., Périé, C. & de Blois, S. Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. J. Ecol. 107, 1956–1969 (2019).
    Google Scholar 
    76.Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. E. E. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    77.Casazza, G. et al. Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol. Conserv. 179, 129–138 (2014).
    Google Scholar 
    78.Körner, C. The use of ‘altitude’in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    79.Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography (Cop.) 32, 34–45 (2009).
    Google Scholar 
    80.Ozinga, W. A. et al. Dispersal failure contributes to plant losses in NW Europe. Ecol. Lett. 12, 66–74 (2009).
    Google Scholar 
    81.Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. 112, 12741–12745 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).
    Google Scholar 
    83.Trew, B. T. & Maclean, I. M. D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 30, 768–783 (2021).
    Google Scholar 
    84.Garcia, M. B. et al. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ. Exp. Bot. 170, 103886 (2020).
    Google Scholar 
    85.Tribsch, A. Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760 (2004).
    Google Scholar 
    86.Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
    Google Scholar 
    87.Panizza, M. The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1, 33–42 (2009).
    Google Scholar 
    88.Santini, L., Benitez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).
    Google Scholar 
    89.Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science (80-) 341, 499–504 (2013).ADS 
    CAS 

    Google Scholar 
    90.Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography (Cop.) 40, 1003–1013 (2017).
    Google Scholar 
    91.Ferrarini, A. et al. Planning for assisted colonization of plants in a warming world. Sci. Rep. 6, 1–6 (2016).
    Google Scholar 
    92.Casazza, G. et al. Combining conservation status and species distribution models for planning assisted colonisation under climate change. J. Ecol. 109, 2284–2295 (2021) More

  • in

    Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes

    1.Gartman A, Findlay AJ. Impacts of hydrothermal plume processes on oceanic metal cycles and transport. Nat Geosci. 2020;13:396–402.CAS 

    Google Scholar 
    2.Sander SG, Koschinsky A. Metal flux from hydrothermal vents increased by organic complexation. Nat Geosci. 2011;4:145–50.CAS 

    Google Scholar 
    3.German CR, Casciotti KA, Dutay JC, Heimbürger LE, Jenkins WJ, Measures CI, et al. Hydrothermal impacts on trace element and isotope ocean biogeochemistry. Philos Trans R Soc A Math Phys Eng Sci. 2016;374:20160035.
    Google Scholar 
    4.Ardyna M, Lacour L, Sergi S, d’Ovidio F, Sallée JB, Rembauville M, et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat Commun. 2019;10:1–8.CAS 

    Google Scholar 
    5.McCollom TM. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep Res Part I Oceanogr Res Pap. 2000;47:85–101.CAS 

    Google Scholar 
    6.Dick GJ, Tebo BM. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol. 2010;12:1334–47.CAS 
    PubMed 

    Google Scholar 
    7.Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci. 2014;1:1–24.
    Google Scholar 
    8.Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol. 2019;17:271–83.CAS 
    PubMed 

    Google Scholar 
    9.Sunamura M, Higashi Y, Miyako C, Ishibashi JI, Maruyama A. Two bacteria phylotypes are predominant in the Suiyo Seamount hydrothermal plume. Appl Environ Microbiol. 2004;70:1190–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lavik G, Stührmann T, Brüchert V, Van Der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.CAS 
    PubMed 

    Google Scholar 
    11.Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010;330:1375–8.CAS 
    PubMed 

    Google Scholar 
    12.Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1.CAS 

    Google Scholar 
    13.Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central baltic and black seas. Appl Environ Microbiol. 2013;79:2767–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pjevac P, Korlević M, Berg JS, Bura-Nakić E, Ciglenečki I, Amann R, et al. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl Environ Microbiol. 2015;81:298–308.PubMed 

    Google Scholar 
    15.Zhou K, Zhang R, Sun J, Zhang W, Tian RM, Chen C, et al. Potential interactions between clade SUP05 sulfur-oxidizing bacteria and phages in hydrothermal vent sponges. Appl Environ Microbiol. 2019;85:1–20.
    Google Scholar 
    16.Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-Médioni A, Amann R, et al. Dual symbiosis in a Bathymodiolus sp. mussel from a methane seep on the Gabon Continental Margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills. Appl Environ Microbiol. 2005;71:1694–700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol. 2019;4:2487–97.PubMed 

    Google Scholar 
    18.Anantharaman K, Breier JA, Sheik CS, Dick GJ. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc Natl Acad Sci USA. 2013;110:330–5.CAS 
    PubMed 

    Google Scholar 
    19.Wang W, Li Z, Zeng L, Dong C, Shao Z. The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J. 2020;14:1994–2006.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol. 2019;21:2391–401.CAS 
    PubMed 

    Google Scholar 
    21.Marshall KT, Morris RM. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J. 2013;7:452–5.CAS 
    PubMed 

    Google Scholar 
    22.Shah V, Morris RM. Genome sequence of “Candidatus Thioglobus autotrophica” strain EF1, a chemoautotroph from the SUP05 clade of marine Gammaproteobacteria. Genome Announc. 2015;3:e01156–15.PubMed 
    PubMed Central 

    Google Scholar 
    23.van Vliet DM, von Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol. 2021;23:2834–57.PubMed 

    Google Scholar 
    24.De Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, et al. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett. 2001;193:359–69.
    Google Scholar 
    25.De Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Sparks RJ, et al. Submarine hydrothermal activity along the mid-Kermadec Arc, New Zealand: large-scale effects on venting. Geochem Geophys Geosyst. 2007;8:Q07007.
    Google Scholar 
    26.Kleint C, Bach W, Diehl A, Fröhberg N, Garbe-Schönberg D, Hartmann JF, et al. Geochemical characterization of highly diverse hydrothermal fluids from volcanic vent systems of the Kermadec intraoceanic arc. Chem Geol. 2019;528:119289.CAS 

    Google Scholar 
    27.Baker ET, Resing JA, Haymon RM, Tunnicliffe V, Martinez F, Ferrini V, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Prog Earth Planet Sci. 2016;449:186–96.CAS 

    Google Scholar 
    28.Walker SL, Baker ET, Resing JA, Nakamura K, McLain PD. A new tool for detecting hydrothermal plumes: an ORP sensor for the PMEL MAPR. AGU Fall Meet Abstr. 2007;2007:V21D–0753.
    Google Scholar 
    29.Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Reintjes G, Tegetmeyer HE, Bürgisser M, Orlić S, Tews I, Zubkov M, et al. On-site analysis of bacterial communities of the ultraoligotrophic South Pacific Gyre. Appl Environ Microbiol. 2019;85:e00184–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    32.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bushnell B. BBMap (version 35.14) [Software]. 2015. https://sourceforge.net/projects/bbmap/.34.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Pernthaler A, Pernthaler J, Amann R.  Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics; 2010.38.Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:e00039–18.PubMed 
    PubMed Central 

    Google Scholar 
    39.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    40.Strous M, Kraft B, Bisdorf R, Tegetmeyer HE. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol. 2012;3:410.PubMed 
    PubMed Central 

    Google Scholar 
    41.Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 

    Google Scholar 
    42.Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.PubMed 

    Google Scholar 
    44.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    48.Gomes AÉ, Stuchi LP, Siqueira NM, Henrique JB, Vicentini R, Ribeiro ML, et al. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using Reverse Transcription Quantitative real-time PCR. Sci Rep. 2018;8:1–4.
    Google Scholar 
    49.Kolde R. pheatmap: Pretty heatmaps. 2015. https://CRAN.R-project.org/package=pheatmap.50.Garnier S. viridis: Default Color Maps from’matplotlib’. 2017. https://CRAN.R-project.org/.51.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.52.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community ecology package. 2020.53.Pena EA, Slate EH. gvlma: Global validation of linear models assumptions. R package version 1.0.0.3. 2019. https://CRAN.R-project.org/package=gvlma.54.Anderson MJ. A new method for non parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    55.Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.CAS 
    PubMed 

    Google Scholar 
    56.Anantharaman K, Breier JA, Dick GJ. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. ISME J. 2016;10:225–39.CAS 
    PubMed 

    Google Scholar 
    57.Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Data descriptor: marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:1–7.
    Google Scholar 
    58.Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    60.Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020;14:2060–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    62.Blackburn NT, Clarke AJ. Identification of four families of peptidoglycan lytic transglycosylases. J Mol Evol. 2001;52:78–84.CAS 
    PubMed 

    Google Scholar 
    63.Hashimoto W, Ochiai A, Momma K, Itoh T, Mikami B, Maruyama Y, et al. Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ. Biochem Biophys Res Commun. 2009;381:16–21.CAS 
    PubMed 

    Google Scholar 
    64.Ilbert M, Bonnefoy V. Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg. 2013;1827:161–75.CAS 

    Google Scholar 
    65.Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:1–13.67.Duarte CM. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–14.
    Google Scholar 
    68.Sheik CS, Anantharaman K, Breier JA, Sylvan JB, Edwards KJ, Dick GJ. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME J. 2015;9:1434–45.PubMed 

    Google Scholar 
    69.Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    70.Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Shah V, Zhao X, Lundeen RA, Ingalls AE, Nicastro D, Morris RM. Morphological plasticity in a sulfur-oxidizing marine bacterium from the SUP05 clade enhances dark carbon fixation. MBio. 2019;10:e00216–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Yamamoto M, Takai K. Sulfur metabolisms in Epsilon- and Gammaproteobacteria in deep-sea hydrothermal fields. Front Microbiol. 2011;2:192.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN, Clarke TA. Mechanisms of bacterial extracellular electron exchange. Adv Micro Physiol. 2016;68:87–138.CAS 

    Google Scholar 
    74.Findlay AJ, Estes ER, Gartman A, Yücel M, Kamyshny A, Luther GW. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nat Commun. 2019;10:1–7.CAS 

    Google Scholar 
    75.Gartman A, Luther GW. Oxidation of synthesized sub-micron pyrite (FeS2) in seawater. Geochim Cosmochim Acta. 2014;144:96–108.CAS 

    Google Scholar 
    76.Bonnefoy V, Holmes DS. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol. 2012;14:1597–611.CAS 
    PubMed 

    Google Scholar 
    77.Singh VK, Singh AL, Singh R, Kumar A. Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution. Environ Sustain. 2018;1:221–31.
    Google Scholar 
    78.He S, Barco RA, Emerson D, Roden EE. Comparative genomic analysis of neutrophilic iron(II) oxidizer genomes for candidate genes in extracellular electron transfer. Front Microbiol. 2017;8:1584.PubMed 
    PubMed Central 

    Google Scholar 
    79.McAllister SM, Polson SW, Butterfield DA, Glazer BT, Sylvan JB, Chan CS. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems. 2020;5:e00553–19.PubMed 
    PubMed Central 

    Google Scholar 
    80.Barco RA, Hoffman CL, Ramírez GA, Toner BM, Edwards KJ, Sylvan JB. In-situ incubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ Microbiol. 2017;19:1322–37.CAS 
    PubMed 

    Google Scholar 
    81.Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J. 2012;6:2257–68.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Reed DC, Breier JA, Jiang H, Anantharaman K, Klausmeier CA, Toner BM, et al. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J. 2015;9:1857–69.PubMed 
    PubMed Central 

    Google Scholar 
    83.Maki JS. Bacterial intracellular sulfur globules: structure and function. J Mol Microbiol Biotechnol. 2013;23:270–80.CAS 
    PubMed 

    Google Scholar 
    84.Neuholz R, Kleint C, Schnetger B, Koschinsky A, Laan P, Middag R, et al. Submarine hydrothermal discharge and fluxes of dissolved Fe and Mn, and He isotopes at Brothers Volcano based on radium isotopes. Minerals. 2020;10:969.CAS 

    Google Scholar 
    85.Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.PubMed 
    PubMed Central 

    Google Scholar 
    86.Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Addendum: comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2018;9:772.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Functional consequences of Palaeozoic reef collapse

    1.Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198. https://doi.org/10.1126/science.1182241 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Kiessling, W. Geological and biologic controls on the evolution of reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173–192. https://doi.org/10.1146/annurev.ecolsys.110308.120251(2009) (2009).Article 

    Google Scholar 
    3.Talent, J. A. Organic reef-building: Episodes of extinction and symbiosis?. Senckenb. Lethaea 69, 315–368 (1988).
    Google Scholar 
    4.Flügel, E. & Kiessling, W. Patterns of Phanerozoic reef crises. SEPM Spec. Public. 72, 691–733 (2002).
    Google Scholar 
    5.Pandolfi, J. M. & Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7, 52–58. https://doi.org/10.1016/j.cosust.2013.11.020 (2014).Article 

    Google Scholar 
    6.Copper, P. Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).ADS 
    Article 

    Google Scholar 
    7.Copper, P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM Spec. Public. 72, 181–238 (2002).
    Google Scholar 
    8.Copper, P. & Scotese, C. R. Megareefs in Middle Devonain supergreenhouse climates. Spec. Public. Geol. Soc. Am. 370, 209–230. https://doi.org/10.1130/0-8137-2370-1.209 (2003).Article 

    Google Scholar 
    9.Ries, J. B. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7(9), 2795–2849 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Scotese, C. R., Song, H., Mills, B. J. & van der Meer, D. G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2021.103503 (2021).Article 

    Google Scholar 
    11.Zapalski, M. K., Nowicki, J., Jakubowicz, M. & Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 416–429. https://doi.org/10.1016/j.palaeo.2017.09.028 (2017).Article 

    Google Scholar 
    12.Mora, C. I., Driese, S. G. & Seager, P. G. Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19(10), 1017–1020 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8(1), 1–8. https://doi.org/10.1038/ncomms14845 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Kiessling, W., Flügel, E. & Golonka, J. Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bull. 83(10), 1552–1587 (1999).
    Google Scholar 
    15.Burchette, T. P. European Devonian reefs: a review of current concepts and models. SEPM Spec. Public. 30, 85–142 (1981).
    Google Scholar 
    16.Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E. & Bambach, R. K. Paleozoic paleogeography. Annu. Rev. Earth Planet. Sci. 7(1), 473–502 (1979).ADS 
    Article 

    Google Scholar 
    17.Belka, Z. & Narkiewicz, M. Devonian. In: McCann, T. The Geology of Central Europe, 1: Precambrian and Palaeozoic. 383–410. The Geological Society of London (2008).18.Golonka, J. Plate-tectonic maps of the Phanerozoic. SEPM Spec. Public. 72, 21–75 (2002).
    Google Scholar 
    19.Oczlon, M. S. Ocean currents and unconformities: the north Gondwana Middle Devonian. Geology 18(6), 509–512 (1990).ADS 
    Article 

    Google Scholar 
    20.Dopieralska, J. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts. Geochem. Geophys. Geosyst. 10(3), Q03015. https://doi.org/10.1029/2008GC002247 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Jakubowicz, M. et al. At the southern limits of the Devonian reef zone: Palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geol. J. 54(1), 10–38. https://doi.org/10.1002/gj.3152 (2019).Article 

    Google Scholar 
    22.Wood, R. Reef evolution (Oxford University Press, 1999).
    Google Scholar 
    23.Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215(4539), 1501–1503 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    24.McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40(2), 147–150. https://doi.org/10.1016/j.palaeo.2004.05.010 (2012).ADS 
    Article 

    Google Scholar 
    25.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. 113(42), E6325–E6334. https://doi.org/10.1073/pnas.1613094113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Zapalski, M. K., Wrzołek, T., Skompski, S. & Berkowski, B. Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland). Coral Reefs 36(3), 847–860. https://doi.org/10.1007/s00338-017-1575-8 (2017).ADS 
    Article 

    Google Scholar 
    27.Zapalski, M. K., Baird, A. H., Bridge, T., Jakubowicz, M. & Daniell, J. Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef. Coral Reefs 40(2), 417–431. https://doi.org/10.1007/s00338-020-02048-9 (2021).Article 

    Google Scholar 
    28.Zapalski, M. K., Hubert, B. L., Nicollin, J. P., Mistiaen, B. & Brice, D. The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of the Ardennes–changes through time. Bulletin de la Société Géologique de France 178(5), 383–390. https://doi.org/10.2113/gssgfbull.178.5.383 (2007).Article 

    Google Scholar 
    29.Zapalski, M., Pinte, E. & Mistiaen, B. Late Famennian? Chaetosalpinx in Yavorskia (Tabulata): the youngest record of tabulate endobionts. Acta Geol. Pol. 58(3), 321–324 (2008).
    Google Scholar 
    30.Zapalski, M. K. & Berkowski, B. The oldest species of? Yavorskia (Tabulata) from the upper Famennian of the Holy Cross Mountains (Poland). Acta Geol. Pol. 62(2), 197–204 (2012).
    Google Scholar 
    31.Zapalski, M. K., Berkowski, B. & Wrzołek, T. Tabulate corals after the Frasnian/Famennian crisis: a unique fauna from the Holy Cross Mountains, Poland. PLoS ONE 11(3), e0149767. https://doi.org/10.1371/journal.pone.0149767 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Stanley, G. D. Jr. & Lipps, J. H. Photosymbiosis: the driving force for reef success and failure. Paleontol. Soc. Paper 17, 33–60 (2011).Article 

    Google Scholar 
    33.Coates, A. G. & Jackson, J. B. C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13, 363–378 (1987).Article 

    Google Scholar 
    34.Zapalski, M. K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc B Biol. Sci. 281(1775), 20132663. https://doi.org/10.1098/rspb.2013.2663 (2014).CAS 
    Article 

    Google Scholar 
    35.Zapalski, M. K. & Berkowski, B. The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38(1), 137–147. https://doi.org/10.1007/s00338-018-01761-w (2019).ADS 
    Article 

    Google Scholar 
    36.Coates, A. G., & Oliver Jr, W. A. Coloniality of Coral Zoantharia: Animal Colonies.–3–29 (1973).37.Lipps, J. H., & Stanley, G. D. Photosymbiosis in past and present reefs. In Coral Reefs at the Crossroads (pp. 47–68). Springer (2016).38.Blieck, A., Brice, D., Fesir, R., Guillot, F., Majesté-Mejoulas, C., and Meillez, F., The Devonian of France and Belgium, in McMillan, A.F., Embry, A.F., and Glass, D.J., eds., Devonian of the world, Canadian Society of Petroleum Geologists, Calgary, 1, p. 359–400 (1988)39.Porter, J. W. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110, 731–742 (1976).ADS 
    Article 

    Google Scholar 
    40.McGhee, G. R. Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 260–270 (2013).Article 

    Google Scholar 
    41.Aboussalam, Z. S. & Becker, R. T. The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304(1–2), 136–164 (2011).Article 

    Google Scholar 
    42.Zambito, J. J., Brett, C. E., & Baird, G. C. The Late Middle Devonian (Givetian) Global Taghanic Biocrisis in its type area (northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In Earth and Life (pp. 677–703). Springer (2012).43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371), 80–83. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Racki, G. A volcanic scenario for the Frasnian-Fammenian major biotic crisis and other Late Devonian global changes: More answers than questions?. Global Planet. Change 189, 103174 (2020).Article 

    Google Scholar 
    45.Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17(1), 56–67 (2011).ADS 
    Article 

    Google Scholar 
    46.Kowalewski, M. Time-averaging, overcompleteness, and the geological record. J. Geol. 104(3), 317–326 (1996).ADS 
    Article 

    Google Scholar 
    47.Hubert, B. L., Zapalski, M., Nicollin, J. P., Mistiaen, B. & Brice, D. Selected benthic faunas from the Devonian of the Ardennes: an estimation of palaeobiodiversity. Acta Geol. Pol. 57(2), 223–262 (2007).
    Google Scholar 
    48.Zapalski, M. K. Tabulata (anthozoa) from the givetian and frasnian of the southern region of the holy cross Mts. (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).
    Google Scholar 
    49.Nowiński, A. Tabulata and chaetetida from the devonian and carboniferous of southern Poland. Palaeontol. Pol. 35, 1–125 (1976).
    Google Scholar 
    50.McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Natl. Acad. Sci. 115(12), 3084–3089. https://doi.org/10.1073/pnas.1716643115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    52.Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12.53.Mouillot, D., Graham, N. A. J., Villeger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbance. Trends Ecol. Evol. 28, 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin et al. “Package ‘vegan’.” (2020). More

  • in

    The pollen virome of wild plants and its association with variation in floral traits and land use

    Pollen collection and RNA extractionPollen is a microscopic and notoriously resistant plant product. Thus, methods to collect a sufficient and roughly equivalent volume of pollen per species, and to ensure RNA was collected from viruses both internal and external to pollen grains, were developed specifically for this work. At each of the four regions, we identified visually asymptomatic plants species that were in full flower and in high enough abundance to achieve our pollen sample minimum. Many of the pollen samples were collected from public roadsides. However, some from the California Grasslands were collected from the University of California’s McLaughlin Natural Reserve, and some from the Eastern Deciduous Agro-forest Interface were collected from the University of Pittsburgh’s Pymatuning Laboratory of Ecology. We had permission to sample in both places. In addition, we obtained permission from the USDA Forest Service to sample in the Till Ridge Cove area of the Chattahoochee-Oconee National Forest for sampling in Central Appalachia. None of the sampled plants displayed classic viral symptoms (e.g., leaf yellowing, vein clearing, leaf distortions, growth abnormalities). To achieve the broadest representation of plant species, we selected species in different families, where feasible. Also when possible, we focused primarily on perennial species to avoid any effects of life history variation. From these, we collected 30 to 50 mg of pollen from newly dehiscing anthers (3–967 fresh hermaphroditic flowers from 1–27 plants per species; Supplementary Table 3) in situ using a sterile sonic dismembrator (Fisherbrand Model 50, Fisher Scientific, Waltham, MA, USA) with a frequency of 20 Hz. We removed non-pollen tissues (e.g., anther debris) with sterile forceps. In addition to removing non-pollen debris that was visible to the naked eye in the field at the time of pollen sample collection, we conducted microscopic and gene expression analyses to confirm the purity of the pollen samples in the lab (Supplementary Methods). Visibly pure pollen from a single species was transferred to a 2-mL collection tube with Lysing Matrix D (MP Biomedicals, Irvine, CA, USA) and kept on dry ice until transported to and stored at −80°C at the University of Pittsburgh (Pittsburgh, PA, USA).Before extracting the total RNA, we freeze-dried the pollen samples (FreeZone 4.5 Liter Benchtop Freeze Dry System, Labconco Corporation, Kansas City, MO, USA) and lysed with a TissueLyser II (Qiagen, Inc., Germantown, MD, USA) at 30 Hz with varying times for different plant species (Supplementary Table 3). We confirmed via microscopy that this protocol resulted in the breakage of ≥50% of the pollen grains in a sample. The total RNA, including dsRNA, was extracted using the Quick-RNA Plant Miniprep Extraction Kit (Zymo Research Corporation, Irvine, CA, USA), following the full manufacturer’s protocol, including the optional steps of in-column DNA digestion and inhibitor removal.RNA sequencingWe assessed the quantity and quality of the total RNA extracted from each pollen sample with a Qubit 2.0 fluorometer (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) and with TapeStation analyses performed by the Genomics Research Core (GRC) at the University of Pittsburgh. Only samples with an RNA integrity value of ≥1.9 were used (Supplementary Table 3). Stranded RNA libraries were prepared by the GRC using the TruSeq Total RNA Library Kit (Illumina, Inc., San Diego, CA, USA), and ribosomal depletion was performed using a RiboZero Plant Leaf Kit (Illumina, Inc., San Diego, CA, USA). At the GRC, we pooled depleted RNA libraries from six species on a single lane of an Illumina NextSeq500 platform.Pre-virus detection stepsA sequencing depth of 117–260 million 75 bp paired-end reads was achieved per sample (Supplementary Table 3). Sequences were demultiplexed and trimmed of adapter sequences. We used the Pickaxe pipeline42,60,61 to detect known and novel pollen-associated viruses. First, Pickaxe removes poor-quality raw reads42,60,61 and aligns the quality-filtered reads using the Bowtie2 aligner with default parameters62 to a subtraction library. Each customized subtraction library contained the host plant species genome or the most closely related plant genomes in the National Center for Biotechnology Information (NCBI) database, if the host plant genome was not available (Supplementary Table 7), as well as other possible contaminant genomes (e.g., the human genome)42,60,61. The subtraction libraries with 1–8 closely related plant genomes, a bioinformatically tractable amount, were used to remove plant sequences, which allows for a conservative estimate of the viruses associated with pollen to be made. The size of the subtraction libraries did not influence the number of identified viruses, as there was no correlation between library size and either estimate of virus richness (conservative: r = 0.08, P = 0.75; relaxed: r = 0.06, P = 0.77). After subtraction, only non-plant reads remained and were used for viral detection.Known RNA virus detection, identity confirmationWith Pickaxe, we used the Bowtie2 aligner with default parameters62 (v2.3.4.2-3) to align viral non-plant reads to Viral RefSeq42,60,61 (hereafter, VRS; Index of /refseq/release/viral (nih.gov)). Each known virus reflects the top hit of an alignment to VRS42,60,61. Following Cantalupo et al.42, we considered a known virus to be present if the viral reads covered at least 20% of the top hit and aligned to it at least ten times. For viruses with segmented genomes, at least one segment was required to meet these criteria.Contig annotation and extension; novel RNA viral genome detection, identity confirmationViral reads were assembled into contigs using the CLC Assembly Cell (Qiagen Digital Insights, Redwood City, CA, USA), and Pickaxe was used to remove repetitive, short ( More

  • in

    Cold shock induces a terminal investment reproductive response in C. elegans

    Acute cold shock causes drastic phenotypic alterationsThe duration of cold exposure for young adult hermaphrodite C. elegans at 2 °C is negatively correlated to post-shock survival rates15. Wild-type hermaphrodite worms exposed to a 4-h cold shock (CS) do not initially display high mortality rates (Fig. 1a); this allows observation of a range of phenotypic transitions as they recover from the limited-duration cold stress at their preferred temperature of 20℃. One of the most striking phenotypes exhibited in post-cold shock (post-CS) animals during the recovery period is a dramatic decrease in pigmentation in the normally highly pigmented intestine, so that the body becomes almost entirely clear (Fig. 1b, c)15. This is often accompanied by motor and reproductive disruptions such as mobility loss, withering of the gonad arms, decreased number of internal embryos, and the eventual death of about 30% of the population (Fig. 1a–d)15. It should be noted that these phenotypic responses do not appear to be due to any relative heat shock following the transition from 2 to 20 °C as the expression of GFP-tagged HSP-4 (heat shock protein) is not induced following cold shock (Fig. 1e). Neither is the reduced pigmentation following cold shock due to a period of starvation presumably experienced by the worms while they are at 2 °C. At this extreme cold temperature, the worms enter a “chill coma” in which pharyngeal pumping and virtually all other movement ceases15,16; however, a total absence of food for a similar time period does not induce a comparable clearing phenotype (Supplemental Fig. S1). Interestingly, some CS wild-type animals regain pigmentation after clearing; these worms do not die and display a general reversal of the other negative impacts of cold shock (Fig. 1b)15. We sought to better understand the factors regulating the post-CS recovery program in wild-type worms, focusing particularly on the functional role of pigmentation loss and the genetic components involved in producing it.Figure 1Cold-shocked worms show decrease in survival and characteristic phenotypic alterations. N2 young adult hermaphrodites were shifted from 20 to 2 °C for a 4 h cold shock (CS) and thereafter recovered at 20 °C for 96 h with assessment of (a) survival and (b) phenotypic alterations (n = 177). Death and immobility were assayed by nose tap; worms were considered to be immobile if the tap elicited slight movement in the head region but no other body movement, and dead worms were completely unresponsive (Chi-squared Test for Homogeneity: P  More

  • in

    Large herbivores facilitate the persistence of rare taxa under tundra warming

    Study site and experimental designThe study site, experimental design, and annual sampling protocol have been described in previous publications15,22,47 but a summary will be provided here. The experiment was conducted in a remote study site approximately 20 km northeast of Kangerlussuaq, Greenland, at 67.11° N latitude and 50.34° W longitude, approximately 160 km inland from Baffin Bay. Annual growing season (May through July) mean temperature and total precipitation at the study site during the duration of this experiment (2002–2017) were 8.62 ± 0.20 °C and 43 ± 6.78 mm, respectively47. The surrounding area has functioned as an important caribou (Rangifer tarandus) migration corridor, calving ground, and Indigenous Peoples hunting site for at least approximately 4000 years48, and was designated as a UNESCO World Heritage Site, Aasivissuit—Nipisat, by the United Nations in 2018. Caribou are present in greatest numbers seasonally, with most of the animals that use the site migrating into it during late winter and early spring and migrating out of it in mid to late summer; some male caribou remain at the site through winter. Muskoxen (Ovibos moschatus) are present at the site year-round. Arctic hares (Lepus arcticus) and rock ptarmigan (Lagopus muta) occupy the site in low numbers. In contrast to other locations in the Arctic where they are important herbivores, this site does not harbor voles or lemmings.In June 2002 we erected six exclosures constructed of woven wire fencing material supported by steel t-posts; each exclosure was circular and measured 800 m2. Adjacent to each exclosure, and separated from it by approximately 20–50 m, we located a comparable control site. Exclosure sites and adjacent control sites covered a range of elevations from approximately 275–300 m above sea level. In early May 2003, prior to onset of the plant growing season, we installed passive, open-topped warming chambers constructed of UV neutral glazing material on three plots inside and three plots outside of one exclosure site and three plots inside and four plots outside of a second exclosure site. In early May 2004, we added three warming chambers inside and three warming chambers outside one of the sites equipped in 2003, and we installed an additional three warming chambers on plots inside and three warming chambers on plots outside of a third exclosure site, thus resulting in a total of 12 warmed plots distributed among three exclosure sites and 13 warmed plots distributed among three control (grazed) sites. An ambient (control) plot was located near, but not closer than 2 m to, each warmed plot, thus resulting in 25 warmed plots and 25 ambient plots distributed among three exclosures and adjacent grazed sites. No plot was located closer than 2 m to the edge of any exclosure. Warming chambers were constructed according to the International Tundra Experiment (ITEX) protocol49, were 1.5 m in basal diameter, and encompassed 1.77 m2. Warming chambers were installed in early May each year, anchored to plots using metal garden stakes, and removed annually at the time of vegetation sampling, which was intended to coincide with peak aboveground abundance at mid to late July in most years (except in 2006, when sampling was conducted in mid-June, and in 2003 and 2011 when sampling was conducted in mid-August)47. Warming chambers significantly elevated near surface temperature by approximately 1.5–3.0 °C, and resulted in a non-significant reduction of soil moisture22,50.Vegetation samplingVegetation sampling was conducted non-destructively using a square Plexiglas tabletop point frame on adjustable aluminum legs. The point frame measured 0.25 m2 and was centered within each plot for sampling. The corners of each plot were equipped with hollow aluminum tubes sunk into the soil surface at the cardinal directions, and the legs of the point frame were inserted into these tubes to ensure consistent orientation and location of the frame during sampling. Once the frame was positioned, a steel welding pin was lowered through each of 20 randomly located holes in the point frame tabletop, and each encounter by the tip of the pin with vegetation was recorded until the pin struck soil, litter, or rock. In 2003 and 2004, vegetation was recorded at the species level for deciduous shrubs (Betula nana and Salix glauca) and at the functional group level for graminoids (including grasses, rushes, and sedges of the genera Calamagrostis sp., Poa sp., Festuca sp., Hierochloë sp., Trisetum spicatum, Luzula sp., Carex sp., and Kobresia sp.), forbs, mosses, lichens, and fungi. Beginning in 2005, vegetation was recorded at the species level for forbs, in addition to deciduous shrubs, and at the genus level for lichens (Peltigera sp.), fungi [Calvatia sp.; most likely C. cretacea51], and mosses (Aulacomnium sp.). Graminoids were not resolved to the genus or species levels due to concerns about consistent identification. All taxa were identified in the field by the authors on the basis of visual inspection of live individuals in consultation with reference guides52,53,54,55. In adherence with the Guidelines for Professional Ethics established by the Botanical Society of America, sampling and identification were done non-destructively, and no voucher specimens were collected.Commonness estimationEcologically meaningful estimation of commonness is inherently relative; a taxon is only common or rare in relation to other taxa5. While there exist a considerable array of quantitative indices of commonness56, we opted for one that integrates abundance and occurrence by assigning equal weight to each. Using annual abundance sums obtained during point frame sampling, we calculated commonness for each taxon as the product of its proportional abundance across all plots within each treatment and its proportional occurrence across all plots within each treatment. Hence, the commonness (C) of an individual taxon, i, in a given year, t, can be expressed as the product of its proportional abundance (A) and proportional occurrence (O) in that year:$$C_{it} = A_{it} *O_{it}$$
    (1)
    in which proportional abundance of taxon i in year t is the sum of point frame pin intercepts, h, for that taxon in that year across all plots sampled that year divided by the total number of point frame pin intercepts, H, of live vegetation biomass recorded across all plots sampled that year:$$A_{it} = h_{it} /H_{t}$$
    (2)
    and in which proportional occurrence of taxon i in year t is the sum of the number of plots, p, on which point frame pin intercepts of taxon i were recorded in year t divided by the total number of plots, P, sampled in year t:$$O_{it} = p_{it} /P_{t}$$
    (3)
    This index was used to estimate taxon-specific commonness within each experimental treatment combination (i.e., exclosed ambient, exclosed warmed, grazed ambient, and grazed warmed treatments), as well as across the entire site (sitewide commonness) for derivation of baseline commonness. To derive baseline commonness for subsequent analysis of its contribution to taxon-specific trends in commonness over the course of the experiment, we used sitewide commonness of each taxon in the year 2006. As described above, greater taxonomic resolution beyond functional group was not widely applied in our sampling until the third year of the experiment, 2005. However, we decided against using 2005 as a baseline for commonness at the site because it also happened to be the final year of a two-year outbreak of caterpillar larvae of a noctuid moth, Eurois occulta, that reduced aboveground abundance of nearly all taxa on our plots22,57. Except for the fungus C. cretacea, all taxa, whether recorded by pin intercepts during point-frame sampling or not, were observed on at least one plot under each of the four experimental treatment combinations. The rarest forb in this study, Pyrola grandiflora, was observed on a single plot under each of the exclosed ambient, exclosed warmed, and grazed warmed treatments, and on two plots under the grazed warmed treatment, but was not recorded during point frame sampling of exclosed ambient or grazed ambient plots. Hence, any conclusions about the effects of warming on this species must be limited. Similarly, the lichen Peltigera sp., which was also very rare in this study, was recorded during point frame sampling on plots under each treatment combination, but was not detected by sampling on exclosed warmed plots after 2005 even though it was observed on one exclosed warmed plot after that. This might be considered corroboration of the negative effect on this genus of warming under herbivore exclusion reported in the Results, but caution may also be warranted. The fungus C. cretacea first appeared under the grazed ambient treatment in 2008 and then under the exclosed ambient treatment in 2012, but was not recorded under the grazed warmed or exclosed warmed treatments. This might in and of itself suggest a negative effect of warming on the establishment or occurrence of this species, or fungi in general, and might be consistent with limiting effects of reduced moisture availability under warming. However, we urge caution with this interpretation because fungi may not form fruiting bodies every growing season, and such fruiting bodies may emerge aboveground in different locations from one growing season to the next, thereby potentially confounding repeated detection by sampling methods such as ours.Analysis of experimental treatment effects on plant functional group abundanceWe used a Gaussian generalized linear model (GLM) with an identity link function to analyze variation in functional group abundance among experimental treatment combinations. This GLM included total annual abundance, for the period 2003–2017, of deciduous shrubs (comprising summed abundances of Betula nana and Salix glauca leaf and stem point frame pin intercepts), graminoids (comprising all grass, rush, and sedge tissue point frame pin intercepts), forbs, mosses, lichens, or fungi, in separate models with the two experimental treatments (warming and herbivore exclusion) and their interaction as factors, year as a factor, and day of year of sampling as a continuous covariate. Significance of individual treatment effects of warming and herbivore exclusion, as well as their interaction, was determined based on Wald Chi-square statistics and associated two-tailed P-values (with significance indicated at P ≤ 0.05).Analysis of experimental treatment effects on commonnessAnalyses of commonness data were performed at higher taxonomic resolution than were analyses of abundance data, and so were limited to analysis of data from the last 12 years of the experiment, 2006–2017. Using Eq. (1), commonness was estimated for 14 taxa, including two species of deciduous shrubs, Betula nana and Salix glauca; graminoids, comprising at least eight non-distinguished genera of grasses, rushes, and sedges listed above in the sub-section Vegetation sampling; eight species of forbs, including Equisetum arvense, Stellaria longipes, Cerastium alpinum, Bistorta vivipara, Draba nivalis, Campanula gieseckiana, Viola canina, and Pyrola grandiflora; one genus of moss, Aulacomnium sp.; one genus of fungus, Calvatia sp.; and one genus of lichen, Peltigera sp.We first investigated general characteristics of and treatment effects on commonness across the study site. We examined the skewness of commonness to determine whether the distribution of the 14 focal taxa was significantly right-skewed, indicating greater numbers of rare than of common taxa2. We obtained an estimate of skewness and its standard error across pooled data for the period 2003–2017, derived a 95% confidence interval, and compared it to zero. Next, we examined experimental treatment effects on sitewide commonness. To do this, we used a Gaussian GLM with identity link function to analyze pooled commonness of all taxa for the period 2006–2017, with commonness as the dependent variable and the two experimental treatments and their interaction as factors, year as a factor, taxon as a factor, and day of year of sampling as a covariate. We determined significance of individual treatment effects and their interaction by examining Wald Chi-square statistics, with significance indicated if the two-tailed P ≤ 0.05. We then tested for experimental treatment effects on individual taxa using the same analytical approach, but with taxon-specific commonness as the dependent variable, and treatment and year as factors, with day of year of sampling as a covariate.Analysis of trends in commonness and skewness of commonness over the last 12 years of the experimentWe next investigated whether common and rare taxa displayed different trends in commonness over the course of the last 12 years of the experiment. This was motivated by a presupposition that warming and/or herbivore exclusion might have differentially altered commonness of common vs. rare species. We first examined linear trends in sitewide commonness of all 14 taxa pooled across experimental treatments by testing for significance of linear regressions of taxon-specific commonness vs. year for the period 2006–2017. We then conducted the same analysis for each taxon individually under each experimental treatment combination to determine whether our experimental manipulations contributed to trends differentially in common vs. rare taxa. We then investigated whether the distribution of commonness across the 14 focal taxa displayed directional change over the course of the final 12 years of the experiment, and whether it might have done so differently in relation to experimental treatment combinations. To do this, we tested for significance of linear regressions of treatment-specific skewness of commonness vs. year for the period 2006–2017. Finally, we examined whether trends in commonness were related to baseline commonness for the 13 taxa resolved to the genus or species level, excluding graminoids because this group comprised multiple unresolved genera. This analysis was motivated by interest in determining whether taxa that were common at the beginning of the experiment tended to become more common and taxa that were rare at the beginning of the experiment tended to become rarer, thus indicating that degree of commonness itself might be an important driver of changes in commonness over the course of a multi-annual experiment such as ours. To do this, we fit a non-linear regression model using a von Bertalanffy equation to quantify the relationship between taxon-specific commonness trend (standardized coefficient from the regression of commonness vs. year, ranging between − 1 and 1) and baseline commonness by treatment. This equation took the form:$$Y = 1 – left( {1 – a} right)e^{ – bX}$$
    (4)
    In which Y = taxon- and treatment-specific commonness trend, estimated in this case using the standardized coefficient from a linear regression of commonness of taxon i under a given experimental treatment combination vs. year; a = the Y-intercept; b = the slope; and X = baseline commonness of taxon i under the same treatment combination in 2006. Significance of regressions for each treatment was determined by calculating an F-statistic using corrected model sums of squares, error sums of squares, model degrees of freedom, and error degrees of freedom. Non-linear regression models were considered significant if the F-associated P ≤ 0.05. More

  • in

    Population transcriptomics reveals the effect of gene flow on the evolution of range limits

    1.Hoffmann, A. A. & Willi, Y. Detecting genetic responses to environmental change. Nat. Rev. Genet. 9, 421–432 (2008).CAS 
    PubMed 

    Google Scholar 
    2.Endler, J. A. Geographic Variation, Speciation and Clines (Princeton, 1977).
    Google Scholar 
    3.Huey, R. B. Rapid evolution of a geographic cline in size in an introduced fly. Science. 287, 308–309 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Bridle, J. R. & Vines, T. H. Limits to evolution at range margins: when and why does adaptation fail?. Trends Ecol. Evol. 22, 140–147 (2007).PubMed 

    Google Scholar 
    5.Holt, R. D. & Gomulkiewik, R. How does immigration influence local adaptation? A reexamination of a familiar paradim. Am. Nat. 149, 563–572 (1997).
    Google Scholar 
    6.Ronce, O. & Kirkpatrick, M. When sources become sinks: Migrational meltdown in heterogeneous habitats. Evolution 55, 1520–1531 (2001).CAS 
    PubMed 

    Google Scholar 
    7.Bridle, J. R., Gavaz, S. & Kennington, W. J. Testing limits to adaptation along altitudinal gradients in rainforest Drosophila. Proc. R. Soc. B Biol. Sci. 276, 1507–1515 (2009).
    Google Scholar 
    8.Bridle, J. R., Polechová, J., Kawata, M. & Butlin, R. K. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 13, 485–494 (2010).PubMed 

    Google Scholar 
    9.Holt, R. D. & Keitt, T. H. Alternative causes for range limits: A metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).
    Google Scholar 
    10.Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460 (2016).PubMed 

    Google Scholar 
    11.Arnaud-Haond, S. et al. Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol. Ecol. 15, 3515–3525 (2006).CAS 
    PubMed 

    Google Scholar 
    12.Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).PubMed 

    Google Scholar 
    14.Bachmann, J. C., van Rensburg, A. J., Cortazar-Chinarro, M., Laurila, A. & Van Buskirk, J. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).PubMed 

    Google Scholar 
    15.Polechová, J. & Barton, N. H. Limits to adaptation along environmental gradients. Proc. Natl Acad. Sci. U. S. A. 112, 6401–6406 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. U. S. A. 108, 11704–11709 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Angert, A. L., Bontrager, M. G. & Aringgren, J. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).
    Google Scholar 
    18.Ciborowski, J. J. H. Downstream and lateral transport of nymphs of two mayfly species (Ephemeroptera). Can. J. Fish. Aquat. Sci. 40, 2025–2029 (1983).
    Google Scholar 
    19.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Google Scholar 
    20.Markwith, S. H. & Scanlon, M. J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. Am. J. Bot. 94, 151–160 (2007).PubMed 

    Google Scholar 
    21.Congdon, B. C. Unidirectional gene flow and maintenance of genetic diversity in mosquitofish Gambusia holbrooki (Teleostei: Poeciliidae). Copeia 1995, 162 (1995).
    Google Scholar 
    22.Schaefer, J. Riffles as barriers to interpool movement by three cyprinids (Notropis boops, Campostoma anomalum and Cyprinella venusta). Freshw. Biol. 46, 379–388 (2001).
    Google Scholar 
    23.Moore, J. S., Gow, J. L., Taylor, E. B. & Hendry, A. P. Quantifying the constraining influence of gene flow on adaptive divergence in the lake-stream threespine stickleback system. Evolution 61, 2015–2026 (2007).PubMed 

    Google Scholar 
    24.Urabe, M. Diel change of activity and movement on natural river beds in Semisuleospira reiniana. VENUS 57, 17–27 (1998).
    Google Scholar 
    25.Hastie, L. C., Boon, P. J., Young, M. R. & Way, S. The effects of a major flood on an endangered freshwater mussel population. Biol. Conserv. 98, 107–115 (2001).
    Google Scholar 
    26.Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981 (2012).
    Google Scholar 
    27.Terui, A. et al. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis. Ecol. Evol. 4, 3004–3014 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    28.Holomuzki, J. R. & Biggs, B. J. F. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87, 36 (1999).
    Google Scholar 
    29.Urabe, M. Phenotypic modulation by the substratum of shell sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceridae). J. Molluscan Stud. 66, 53–60 (2000).
    Google Scholar 
    30.Gu, Q. H., Husemann, M., Ding, B., Luo, Z. & Xiong, B. X. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: Weak divergence across large geographic distances. Ecol. Evol. 5, 4906–4919 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    31.Davis, C. D., Epps, C. W., Flitcroft, R. L. & Banks, M. A. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5(2), e1269 (2018).
    Google Scholar 
    32.De Wit, P. & Palumbi, S. R. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).PubMed 

    Google Scholar 
    33.Sun, Y.-B. et al. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. 115, 201813593 (2018).
    Google Scholar 
    34.Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T. & Christie, M. R. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol. Ecol. 27, 4041–4051 (2018).CAS 
    PubMed 

    Google Scholar 
    35.De Wit, P. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012).PubMed 

    Google Scholar 
    36.Yokomizo, T. & Takahashi, Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    37.Kottler, E. J., Dickman, E. E., Sexton, J. P., Emery, N. C., & Franks, S. J. Draining the swamping hypothesis: Little evidence that gene flow reduces fitness at range edges. Trends Ecol. Evol. 1–12 (2021).38.Moore, J. S. & Hendry, A. P. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philos. Trans. R. Soc. B Biol. Sci. 364, 1533–1542 (2009).
    Google Scholar 
    39.Ingvarsson, P. K. Restoration of genetic variation lost – The genetic rescue hypothesis. Trends Ecol. Evol. 16, 62–63 (2001).PubMed 

    Google Scholar 
    40.Shimada, K. & Urabe, M. Drift and upstream movement of Semisulcospira libertina (Caenogastropoda: Pleuroceridae) in a natural stream. Vinus 63, 49–59 (2004).
    Google Scholar 
    41.Nyitray, L., Goodwin, E. B. & Szent-Gyorgyi, A. G. Complete primary structure of a scallop striated muscle myosin heavy chain: Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–18476 (1991).CAS 
    PubMed 

    Google Scholar 
    42.Ponder, W. F., Lindberg, D. R. & Ponder, J. M. Shell, Body, and Muscles (CRC Press, Taylor and Francis Group, Boca Raton, 2019).
    Google Scholar 
    43.Lesoway, M. P., Abouheif, E. & Collin, R. Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J. Exp. Zool. Part B Mol. Dev. Evol. 326, 151–167 (2016).CAS 

    Google Scholar 
    44.Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).
    Google Scholar 
    45.Berger, V. J. & Kharazova, A. D. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355, 115–126 (1997).CAS 

    Google Scholar 
    46.Rivera-Ingraham, G. A. & Lignot, J. H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 220, 1749–1760 (2017).PubMed 

    Google Scholar 
    47.Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Osmoregulation and mRNA expression of a heat shock protein 68 and glucose-regulated protein 78 in the Pacific oyster Crassostrea gigas in response to salinity changes. J. Aquac. 20, 205–211 (2007).CAS 

    Google Scholar 
    48.Eierman, L. E. & Hare, M. P. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassostrea virginica. BMC Genomics 15, 1–15 (2014).
    Google Scholar 
    49.X. Zhao, H. Yu, L. Kong, Q. Li, Transcriptomic responses to salinity stress in the pacific oyster Crassostrea gigas. PLoS ONE 7 (2012).50.Zhang, Y. et al. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J. Proteome Res. 14, 304–317 (2015).CAS 
    PubMed 

    Google Scholar 
    51.Veiga, M. P. T., Gutierre, S. M. M., Castellano, G. C. & Freire, C. A. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): Behaviour and maintenance of tissue water content. J. Molluscan Stud. 82, 154–160 (2016).
    Google Scholar 
    52.Muraeva, O. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. Mechanisms of adaption to salinity stress in marine gastropods Littorina saxatilis: a proteomic analysis. Cell Tissue Biol. 10, 160–169 (2016).
    Google Scholar 
    53.Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N. & Granovitch, A. Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): A proteomic analysis. Biol. Commun. 62, 202–213 (2017).
    Google Scholar 
    54.Maynard, A., Bible, J. M., Pespeni, M. H., Sanford, E. & Evans, T. G. Transcriptomic responses to extreme low salinity among locally adapted populations of Olympia oyster (Ostrea lurida). Mol. Ecol. 27, 4225–4240 (2018).CAS 
    PubMed 

    Google Scholar 
    55.Ma, E., Gu, X. Q., Wu, X., Xu, T. & Haddad, G. G. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster. J. Clin. Invest. 107, 685–693 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Jepson, J. E. C. et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: Regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J. Biol. Chem. 286, 8325–8337 (2011).CAS 
    PubMed 

    Google Scholar 
    57.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13 (2013).
    Google Scholar 
    61.Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Dobin, A. et al. STAR: ULTRAFAST universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 

    Google Scholar 
    63.McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Rsearch 20, 1297–1303 (2010).CAS 

    Google Scholar 
    64.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).CAS 

    Google Scholar 
    66.Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 4, 1–16 (2015).
    Google Scholar 
    67.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    68.Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    69.Mussmann, S. M., Douglas, M. R., Chafin, T. K. & Douglas, M. E. BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol. Evol. 10, 1808–1813 (2019).
    Google Scholar 
    70.Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    71.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    72.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    73.Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).CAS 
    PubMed 

    Google Scholar 
    74.Parrish, N., Hormozdiari, F., & Eskin, E. Assembly of non-unique insertion content using next-generation sequencing. BMC Bioinformatics. 12, S3 (2011).75.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    77.Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14(1), 1–14 (2013).CAS 

    Google Scholar  More

  • in

    Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region

    1.Canadell, J. G. et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10, 370–384. https://doi.org/10.1016/j.envsci.2007.01.009 (2007).Article 

    Google Scholar 
    2.Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 22, 964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x (2008).Article 

    Google Scholar 
    3.He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau China. Catena 137, 679–685. https://doi.org/10.1016/j.catena.2015.01.027 (2016).CAS 
    Article 

    Google Scholar 
    4.Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116, 391–396. https://doi.org/10.1016/s0269-7491(01)00215-9 (2002).CAS 
    Article 

    Google Scholar 
    5.Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Yang, J. et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).CAS 
    Article 

    Google Scholar 
    8.Wan, Z. & Song, C. Advance on response of soil enzyme activity to ecological environment. Chin. J. Soil Sci. 40(4), 951–956 (2009).CAS 

    Google Scholar 
    9.Liu, G. et al. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 237, 274–279 (2017).CAS 
    Article 

    Google Scholar 
    10.Li, Z., Chaonian, F., Mengjie, L. & Huanchao, Z. Nutrient and biological characteristics of different salinized soils in coastal areas of northern Jiangsu Province. J. Anhui Agric. Univ. 46, 86–92 (2019).
    Google Scholar 
    11.Bueis, T., Turrion, M. B., Bravo, F., Pando, V. & Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. https://doi.org/10.1007/s13595-018-0720-z (2018).Article 

    Google Scholar 
    12.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Marx, M. C., Kandeler, E., Wood, M., Wermbter, N. & Jarvis, S. C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35–48. https://doi.org/10.1016/j.soilbio.2004.05.024 (2005).CAS 
    Article 

    Google Scholar 
    14.Bais, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006(57), 233–266 (2006).Article 

    Google Scholar 
    15.Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12, 15. https://doi.org/10.3390/su122310095 (2020).CAS 
    Article 

    Google Scholar 
    16.Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152. https://doi.org/10.1016/s0167-1987(02)00022-3 (2002).Article 

    Google Scholar 
    17.Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 30, 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).Article 

    Google Scholar 
    18.Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352. https://doi.org/10.1046/j.1365-2486.2003.00674.x (2003).ADS 
    Article 

    Google Scholar 
    19.Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).CAS 
    Article 

    Google Scholar 
    20.Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Sci. Agric. Sinica 33, 78–84 (2000).
    Google Scholar 
    21.Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River. China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).Article 

    Google Scholar 
    22.Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154, 632–646. https://doi.org/10.1017/s002185961500057x (2015).Article 

    Google Scholar 
    23.Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain China. Environ. Earth Sci. 59, 837–845. https://doi.org/10.1007/s12665-009-0079-4 (2009).CAS 
    Article 

    Google Scholar 
    24.Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 487961. https://doi.org/10.1155/2014/487961 (2014).CAS 
    Article 

    Google Scholar 
    25.Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310, 65–76. https://doi.org/10.1016/j.geoderma.2017.08.041 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J. Soil Sediment. 12, 1309–1315. https://doi.org/10.1007/s11368-012-0551-8 (2012).CAS 
    Article 

    Google Scholar 
    27.Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province China. J. Geochem. Explor. 112, 347–356. https://doi.org/10.1016/j.gexplo.2011.10.003 (2012).CAS 
    Article 

    Google Scholar 
    28.Zheng, B. Technical Guide for Soil Analysis (China Agriculture Press, 2013).
    Google Scholar 
    29.Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).CAS 
    Article 

    Google Scholar 
    30.Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282. https://doi.org/10.1007/s11104-015-2492-7 (2015).CAS 
    Article 

    Google Scholar 
    31.Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 125, 244–250. https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).CAS 
    Article 

    Google Scholar 
    32.Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA 105, 17842–17847. https://doi.org/10.1073/pnas.0808254105 (2008).ADS 
    Article 

    Google Scholar 
    33.Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).CAS 
    Article 

    Google Scholar 
    34.Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci. 25, 161–164 (2006).CAS 

    Google Scholar 
    35.Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll. 228, 9. https://doi.org/10.1007/s11270-016-3200-9 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 30, 695–702. https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).CAS 
    Article 

    Google Scholar 
    38.Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol. 57, 691–699 (2016).CAS 

    Google Scholar 
    39.Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley. Mexico. Appl. Environ. Microbiol. 80, 5282–5291 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    40.Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol. 13, 991–1009 (2011).CAS 
    Article 

    Google Scholar 
    41.Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, 201–212 (2013).CAS 
    Article 

    Google Scholar 
    42.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands 36, 361–371 (2016).Article 

    Google Scholar 
    44.Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manage. 26, 2–11 (2010).Article 

    Google Scholar  More