More stories

  • in

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    1.Dellwig O, Schnetger B, Brumsack H-J, Grossart H-P, Umlauf L. Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst. 2012;90:31–41.
    Google Scholar 
    2.Taylor GT, Iabichella M, Ho T, Scranton MI, Thunell RC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.CAS 

    Google Scholar 
    3.Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem. 2001;74:29–51.CAS 

    Google Scholar 
    4.Trefry JH, Presley BJ, Keeney-Kennicutt WL, Trocine RP. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar Lett. 1984;4:125–30.
    Google Scholar 
    5.Dahl TW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta. 2010;74:144–63.CAS 

    Google Scholar 
    6.Özsoy E, Ünlüata Ü. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev. 1997;42:231–72.
    Google Scholar 
    7.Wegwerth A, Eckert S, Dellwig O, Schnetger B, Severmann S, Weyer S, et al. Redox evolution during Eemian and Holocene sapropel formation in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;489:249–60.
    Google Scholar 
    8.Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, et al. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature. 1989;338:411–3.CAS 

    Google Scholar 
    9.Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Bahlo R, Dellwig O, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Dellwig O, Wegwerth A, Schnetger B, Schulz H, Arz HW. Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-Sci Rev. 2019;193:1–23.CAS 

    Google Scholar 
    11.Stanev EV, Poulain PM, Grayek S, Johnson KS, Claustre H, Murray JW. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys Res Lett. 2018;45:864–71.CAS 

    Google Scholar 
    12.Trouwborst RE. Soluble Mn(III) in suboxic zones. Science. 2006;313:1955–7.CAS 
    PubMed 

    Google Scholar 
    13.Vliet DM, Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol. 2021;23:2834–57.PubMed 

    Google Scholar 
    14.Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, et al. Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr. 2003;48:2369–76.CAS 

    Google Scholar 
    15.Lewis BL, Landing WM. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res A Oceanogr Res Pap. 1991;38:S773–S803.
    Google Scholar 
    16.Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem. 2007;107:388–410.CAS 

    Google Scholar 
    17.Gregg MC, Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophys Res Lett. 2005;32:1–4.
    Google Scholar 
    18.Schnetger B, Dellwig O. Dissolved reactive manganese at pelagic redoxclines (part I): a method for determination based on field experiments. J Mar Syst. 2012;90:23–30.
    Google Scholar 
    19.Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci. 2004;32:287–328.CAS 

    Google Scholar 
    20.Glockzin M, Pollehne F, Dellwig O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar Chem. 2014;160:67–74.CAS 

    Google Scholar 
    21.Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, et al. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta. 2010;74:7100–15.CAS 

    Google Scholar 
    22.Burdige DJ, Nealson KH. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J. 1986;4:361–87.CAS 

    Google Scholar 
    23.Yao W, Millero FJ. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta. 1993;57:3359–65.CAS 

    Google Scholar 
    24.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.CAS 
    PubMed 

    Google Scholar 
    25.Henkel JV, Dellwig O, Pollehne F, Herlemann DPR, Leipe T, Schulz-Vogt HN. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide. Proc Natl Acad Sci USA. 2019;116:12153–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol. 2021;44:1–11.27.Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol. 2008;74:7546–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol. 2007;73:7155–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Daims H, Bruhl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 
    PubMed 

    Google Scholar 
    32.Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;11:136–43.
    Google Scholar 
    33.Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.PubMed 

    Google Scholar 
    34.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    35.Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:1–14.
    Google Scholar 
    38.Schulz HD. Conceptual models and computer models. In: Schulz HD, Zabel M, editors. Marine geochemistry. Springer: Berlin, Heidelberg; 2006. p. 513–47.39.Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Informatik 2014. Bonn: Gesellschaft für Informatik e.V.; 2014.p. 1711–21.40.Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE. Construction of STOX oxygen sensors and their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol. 2011;486:325–41.CAS 
    PubMed 

    Google Scholar 
    42.Dahl C. A biochemical view on the biological sulfur cycle. In: Environmental technologies to treat sulphur pollution: principles and engineering. IWA Publishing: London; 2020;2:55–96.43.Murray JW, Yakushev EV. Past and present water column anoxia. Past and present water column anoxia. Dordrecht: Springer Netherlands; 2006.44.Schulz HD. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M, editors. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag; 2006. p. 73–124.45.Tebo BM. Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Res A. 1991;38:883–905.
    Google Scholar 
    46.Konovalov S, Samodurov A, Oguz T, Ivanov L. Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep Res Part I Oceanogr Res Pap. 2004;51:2027–45.CAS 

    Google Scholar 
    47.Lahme S, Callbeck CM, Eland LE, Wipat A, Enning D, Head IM, et al. Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments. Environ Microbiol. 2020;22:1784–1800.CAS 
    PubMed 

    Google Scholar 
    48.Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA. 2012;109:506–10.CAS 
    PubMed 

    Google Scholar 
    49.Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J, et al. Genome of the Epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol. 2008;74:1145–56.CAS 
    PubMed 

    Google Scholar 
    50.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.CAS 
    PubMed 

    Google Scholar 
    51.Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, et al. Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur- versus thiosulfate-oxidation by the chemolithoautotroph Sulfurimonas denitrificans. Environ Microbiol. 2019;21:244–58.PubMed 

    Google Scholar 
    52.Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys. Front Microbiol. 2018;9:1–12.
    Google Scholar 
    53.Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep‐sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol. 2021;23:965–79.CAS 
    PubMed 

    Google Scholar 
    55.Yao W, Millero FH. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. Mar Chem. 1996;52:1–16.CAS 

    Google Scholar 
    56.Herszage J, dos Santos Afonso M. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir. 2003;19:9684–92.CAS 

    Google Scholar 
    57.Glazer BT, Luther GW, Konovalov SK, Friederich GE, Nuzzio DB, Trouwborst RE, et al. Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep Res II Top Stud Oceanogr. 2006;53:1740–55.
    Google Scholar 
    58.Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res A Oceanogr Res Pap. 1991;38:1083–103.
    Google Scholar 
    59.Yiǧiterhan O, Murray JW. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Mar Chem. 2008;111:63–76.
    Google Scholar 
    60.Brewer PG, Spencer DW. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases: water. In: The Black Sea–Geology, Chemistry, and Biology. AAPG Special Volumes. AAPG; 1974;137–43.61.Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol. 2011;78:586–603.CAS 
    PubMed 

    Google Scholar 
    62.Kelly DP. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982;298:499–528.CAS 
    PubMed 

    Google Scholar 
    63.Kirkpatrick JB, Fuchsman CA, Yakushev EV, Egorov AV, Staley JT, Murray JW. Dark N2 fixation: nifH expression in the redoxcline of the Black Sea. Aquat Micro Ecol. 2018;82:43–58.
    Google Scholar 
    64.Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central baltic and black seas. Appl Environ Microbiol. 2013;79:2767–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.CAS 
    PubMed 

    Google Scholar 
    66.Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ Microbiol. 2017;19:2495–506.CAS 
    PubMed 

    Google Scholar 
    67.Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37:150–5.CAS 

    Google Scholar 
    68.Jensen MM, Kuypers MMM, Lavik G, Thamdrup B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr. 2008;53:23–36.CAS 

    Google Scholar 
    69.Hannig M, Lavik G, Kuypers MMM, Woebken D, Martens-Habbena W, Jürgens K. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr. 2007;52:1336–45.CAS 

    Google Scholar 
    70.Engström P, Dalsgaard T, Hulth S, Aller RC. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta. 2005;69:2057–65.
    Google Scholar 
    71.Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym Micro Technol. 2007;40:859–65.CAS 

    Google Scholar 
    72.Havig JR, McCormick ML, Hamilton TL, Kump LR. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim Cosmochim Acta. 2015;165:389–406.CAS 

    Google Scholar 
    73.Jürgens K, Taylor GT. Microbial ecology and biogeochemistry of oxygen-deficient water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 231–88.74.Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol. 2010;71:226–36.CAS 
    PubMed 

    Google Scholar 
    75.Aller RC, Rude PD. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta. 1988;52:751–65.CAS 

    Google Scholar 
    76.King GM. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol Ecol. 1990;73:131–8.CAS 

    Google Scholar  More

  • in

    Conservation agriculture based integrated crop management sustains productivity and economic profitability along with soil properties of the maize-wheat rotation

    Experimental site, location and climateFive years’ field experimentation on ICM was started in 2014–15 at the ICAR-Indian Agricultural Research Institute (28°35′ N latitude, 77°12′ E longitude, 229 m MSL), New Delhi, India. The study site comes under the ‘Trans IGPs’, being semi-arid with an average annual rainfall of 650 mm, of which ~ 80% occurs in July–September (south-west monsoon). The mean max. / min. air temperature ranges between 20-40ºC and 4-28ºC, respectively. The five years (2014–2019) weather data were recorded from the observatory adjoining to the experimental field, and presented in Supplementary Table 1. Before start of the experiment, a rainy season Sesbania was grown in 2014 to ensure the uniform fertility across the blocks. Initial soil samples (0.0–0.15 m depth) were collected in October 2014 after incorporating the Sesbania residues in soil. The soil samples were processed for the chemical analysis. The study site had a pH of 7.9 (1:2.5 soil and water ratio)68, 3.8 g kg−1 soil organic-C69, 94.1 kg ha−1 KMnO4 oxidizable N70, 97 µg g−1 soil microbial biomass carbon71, 51.3 μg PNP g−1 soil h−1 alkaline phosphatase72, 53.0 μg TPF g−1 soil d−1 dehydrogenase73, and 13.5 μg NH4-N g−1 soil h−1urease74.Description of different ICM modulesThe eight ICM modules were tested, comprising of four conventional tillage (CT)-based (ICM1-4) and four conservation agriculture (CA)-based (ICM5-8) modules, replicated thrice in a complete randomized block design with the plot size of 60 m2 (15 m × 4.5 m) (Table 4). The crop residues were completely removed in the CT-based modules (ICM1-4), while in the ICM5-8 modules, in-situ wheat (~ 3 Mg ha−1 on dry weight basis)) and maize (~ 5 Mg ha−1, on dry weight basis) residues were retained on the soil surface during all the seasons of crops cultivation (Footnote Table 4, Fig. 6a,b).Table 4 Description of integrated crop management (ICM) modules adopted in maize and wheat crops during the five yearsˈ fixed plot experimentation.Full size tableIn the ICM1-4 modules, the field preparation was carried out by sequential tillage operations, such as, deep ploughing using the disc harrow, cultivator/rotavator twice (0.15–0.20 m), followed by levelling in each season. In the ICM3-4, the raised beds of 0.70 m bed width (bed top 0.40 m and furrow 0.30 m) were formed during each cropping cycle using the tractor mounted bed planter, and simultaneously wheat sowing was done (Fig. 6c). In the case of maize, ridges (0.67 m length) were prepared using the ridge maker. In the CA-based ICM5-8 modules, the tillage operations, such as, seed and fertilizer placement were restricted to the crop row-zone in maize and wheat both. In the ICM7&8, the permanent raised beds (0.67 m mid-furrow to mid-furrow, 0.37 m wide flat tops, and 0.15 m furrow depth), were prepared (Fig. 6d). However, these beds were reshaped using the disc coulter at the end of each cropping cycle without disturbing the surface residues. The sowing was accomplished using the raised bed multi-crop planter.Cultural operations and the fertilizer applicationDuring every season, the maize (cv. PMH 1) was sown in the first week of July using 20 kg seed ha−1. The wheat (cv. HD 2967) crop was sown in the first fortnight of November using the seed-cum fertilizer drill (ICM1-2), bed planter (ICM3-4) and zero-till seed drill (ICM5-8) at 100 kg seed ha−1. The chemical fertilizers (N, P and K) were applied as per the modules described in the footnote of Table 4. At sowing, the full doses of phosphorous (P) and potassium (K) were applied using the di-ammonium phosphate (DAP) and muriate of potash (MOP), and the nitrogen (N) supplied through DAP. The remaining N was top-dressed through urea in two equal splits after the first irrigation and tasseling / silking stages in maize, and crown root initiation and tillering stages of wheat. In the modules receiving ¾ fertilizers (ICM2,4,6,8), the seeds were treated with the NPK liquid bio-fertilizer (LBFs) (diluted 250 ml formulation 2.5 L of water ha−1), and an arbuscular mycorrhiza (AMF) was broadcasted at 12 kg ha−1 as has been described by75. This LBFs had the microbial consortia of N-fixer (Azotobacter chroococcum), P (Pseudomonas) and K (Bacillus decolorationis) solubilizers, procured from the commercial biofertilizer production unit of the Microbiology Division, ICAR-Indian Agricultural Research Institute, New Delhi (Patentee: ICAR, Govt. of India). Weeds were managed by integrating the pre- and post-emergence herbicides, and their combinations along with the hand weeding-mulching, as mentioned in the concerned modules (Footnote Table 4). However, in the CA-based modules (ICM5-8), the non-selective herbicide glyphosate (1 kg ha−1) was used 10 days before the sowing. The need-based integrated insect-pests and disease management practices were followed uniformly across the modules.Soil sampling and analysisBefore start of the experiment, the soil sampling was done from 0.0–0.15 m depth. Afterwards, five random samples from each module from 0.0–0.30 m soil depth were collected at the flowering stage of 5th season wheat. These samples were taken from the three soil depths (0.0 to 0.05, 0.05–0.15 and 0.150–0.30 m) using the core sampler. The ground, air-dried soil samples, passed through a 0.2 mm sieve were used for the determination of the Walkley and Black organic carbon (SOC), as described by76. For the soil biological properties, the soil samples were processed, and stored at 5ºC for 18–24 h, then analyzed the soil microbial biomass carbon (SMBC), dehydrogenase (SDH), alkaline phosphate (SAP) and the urease (URE) activities.The soil microbial biomass carbon (SMBC)The SMBC was measured using the fumigation extraction method as proposed by71. The pre-weighed samples from the respective soil depths were fumigated with the ethanol-free chloroform for the 24 h. Separately, a non–fumigated set was also maintained. Further, 0.5 M K2SO4 (soil: extractant 1:4) was added, and kept on a reciprocal shaker for 30 min. and then filtered through a Whatman No. 42 filter paper. OC of the filtrate was measured through the dichromate digestion, followed by the back titration with 0.05 N ferrous ammonium sulphate. The SMBC was then calculated using the equation:$${text{S}}_{{{text{MBC}}}} = {text{EC }} times { 2}.{64}$$where, EC = (Corg in fumigated soil – Corg in non-fumigated soil), and expressed in µg C g−1 soil.The dehydrogenase activity (SDH)The SDH activity (μg TPF g−1 soil d−1) was assessed using the method of73. The soil sample (~ 6 g) was saturated with 1.0 ml freshly prepared 3% triphenyltetrazolium chloride (TTC), and then incubated for 24 h under the dark. Later on, the methanol was added to stop the enzyme activity, and the absorbance of the filtered aliquot was read at 485 nm.The alkaline phosphatase activity (SAP)The APA activity was estimated in 1.0 g soil saturated with 4 ml of the modified universal buffer (MUB) along with 1 ml of p-nitrophenol phosphate followed by incubation at 37 °C for 1 h. After incubation, 1 ml of 0.5 M CaCl2 and 4 mL of NaOH were added and the contents filtered through Whatman No. 1 filter paper. The amount of p-nitrophenol in the sample was determined at 400 nm72 and the enzyme activity was expressed as µg p-NP g−1 soil h−1.The urease activityUrease activity was measured using 10 g soil suspended in 2.5 ml of urea solution (0.5%). After incubating for a day at 37 °C, 50 ml of 1 M KCl solution was added. This was kept on a shaker for 30 min and the aliquot was filtered through Whatman No. 1 filter paper. To the filtrate (10 ml), 5 ml of sodium salicylate and 2 ml of 0.1% sodium dichloro-isocyanide solution were added and the green color developed was measured at 690 nm74. These values are reported as µg NH4-N g−1 soil h−1.Water application and productivityIn experimental modules, water was given through the controlled border irrigation method. The current meter was fixed in the main lined rectangular channel, and the water velocity was measured. To get the flow discharge, then multiplied with area of cross section of the channel. The following formulae were used to calculate the applied irrigation water quantity and depth3:$${text{Irrigation water applied }}left( {text{L}} right) , = {text{ F }} times {text{ t (i)}}$$$${text{Depth }}left( {{text{mm}}} right) , = {text{ L}} div {text{A}}/{ 1}000$$where, F is flow rate (m3 s−1), t is time (s) taken in each irrigation in each module and A is area (m2).The effective precipitation (EP, difference between total rainfall and the actual evapotranspiration) was calculated, and then EP was added to the irrigation water applied to calculate the total water applied in each module. Across the maize and wheat modules (ICM1-8), irrigations were given at the critical growth stages, such as, knee high and silking / tasseling (maize) and crown root formation, maximum tillering, flowering, heading / milking (wheat) stages, and after long dry spell (≥ 10-days).On the basis of the soil water depletion pattern (at the depth of 0.60 m), in each season, 3–6 irrigations were given to maize, while wheat received 5–8 irrigations per season or crop including the pre-sowing irrigation. The rainfall data were obtained from the meteorological observatory located in the adjoining field. The water productivity (kg grains ha−1 mm−1 of water) was measured as per the equation given below:$${text{Water productivity }} = {text{ economic yield }}left( {{text{kg ha}}^{{ – {1}}} } right)/{text{ total water applied }}left( {{text{mm}}} right)$$Additionally, the systems water productivity (SWP) was also estimated by adding the water productivity (WP) of both maize and wheat crops grown under the MWR.Yield measurementsIn each season, the maize and wheat crops were harvested during the months of October and April, respectively, leaving 0.75 m border rows from all the corners of each module. The crops were harvested from the net sampling area (6 m × 3 m, 18 m2) located at the center of each plot. Maize crop was harvested manually and the wheat by using the plot combine harvester. All the harvested produce was sun dried before threshing and the grain and straw / stover yields were weighed separately. The stover/straw yields were measured by subtracting the grain weight from the total biomass. To compare the total (system) productivity of the different ICM modules, the system yield was computed, taking maize as the base crop, i.e., the maize equivalent yield (MGEY) using the equation20:$${text{M}}_{{{text{GEY}}}} left( {{text{Mg ha}}^{{ – {1}}} } right) , = {text{ Ym }} + , left{ {left( {{text{Yw }} times {text{ Pw}}} right) , div {text{ Pm}}} right}$$where, Ym = maize grain yield (Mg ha−1), Yw = wheat grain yield (Mg ha−1), Pm = price of maize grain (US$ Mg−1) and Pw = price of wheat grain (US$ Mg−1).Farm economicsUnder different ICM modules, the variable production costs and economic returns were worked out based on the prevailing market prices for the respective years. The production costs included the cost of various inputs, such as, rental value of land, seeds, pesticides, LBFs / consortia, AMF, labor, and machinery; tillage / sowing operations, irrigation, mineral fertilizers, plant protection, harvesting, and threshing etc. The costs for the crops’ residues were also considered. The system total returns were computed by adding the economic worth of the individual crop, however, the net returns were the differences between the total returns to the variable production costs of the respective module. The Govt. of India’s minimum support prices (MSP) were considered for the conversion of grain yield to the economic returns (profits) during the respective years. Further, the system net returns (SNR) were worked out by summing the net income from both maize and the wheat in Indian rupees (INR), and then converted to the US$, based on the exchange rates for different years.Sustainable yield index (SYI)77,78described the SYI as a quantitative measure of the sustainability of agricultural rotation/practice. The sustainability could be interpreted using the standard deviation (σ) values, where the lower values of the σ indicate the greater sustainability and vice-versa. Total crop productivity of maize and wheat under the different ICM modules was computed based on the five years’ mean yield data. SYI was calculated using equation78.$${text{S}}_{{{text{YI}}}} = , left( {{-}{overline{text{Y}}}_{{{text{a }}{-}}} sigma_{{text{n}}} {-}_{{1}} } right) , /{text{ Y}}^{{{-}{1}}}_{{text{m}}}$$where, –ȳa is the average yield of the crops across the years under the specific management practice, σn–1 is the standard deviation and Y–1 m is the maximum yield obtained under the set of an ICM module.Statistical analysisThe GLM procedure of the SAS 9.4 (SAS Institute, 2003, Cary, NC) was used for the statistical analysis of all the data obtained from different ICM modules to analyze the variance (ANOVA) under the randomized block design79. Tukey’s honest significant difference test was employed to compare the mean effect of the treatments at p = 0.05.Authors have confirmed that all the plant studies were carried out in accordance with relevant national, international or institutional guidelines. More

  • in

    Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior

    1.Andrews, K. L. Latin-American research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Florida Entomol. 71, 630–653. https://doi.org/10.2307/3495022 (1988).Article 

    Google Scholar 
    2.Brevault, T. et al. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Senegal. Entomologia Generalis 37, 129–142. https://doi.org/10.1127/entomologia/2018/0553 (2018).Article 

    Google Scholar 
    3.Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafa, G. & Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. https://doi.org/10.1038/s41598-017-04238-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamo, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0165632 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Jacobs, A., van Vuuren, A. & Rong, I. H. Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith) (Lepidoptera: Noctuidae) from South Africa. Afr. Entomol. 26, 45–49. https://doi.org/10.4001/003.026.0045 (2018).Article 

    Google Scholar 
    6.Day, R. et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks Pest Manag. 28, 196–201. https://doi.org/10.1564/v28_oct_02 (2017).Article 

    Google Scholar 
    7.Stokstad, E. New crop pest takes Africa at lightning speed. Science 356, 473–474. https://doi.org/10.1126/science.356.6337.473 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Luginbill, P. The fall armyworm. US Dept. Agric. Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    9.Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467. https://doi.org/10.1002/ece3.268 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Westbrook, J., Fleischer, S., Jairam, S., Meagher, R. & Nagoshi, R. Multigenerational migration of a pest insect. Ecosphere 10, e02919. https://doi.org/10.1002/ecs2.2919 (2019).Article 

    Google Scholar 
    11.Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Ge, S. S. et al. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 20, 707–714. https://doi.org/10.1016/S2095-3119(20)63166-5 (2021).Article 

    Google Scholar 
    13.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE https://doi.org/10.1371/journal.pone.0217755 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Jr. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Nagoshi, R. N. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. https://doi.org/10.1038/s41598-018-21954-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of Cytochrome Oxidase Subunit I gene. Florida Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).CAS 
    Article 

    Google Scholar 
    19.Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).CAS 
    Article 

    Google Scholar 
    20.Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).Article 
    PubMed 

    Google Scholar 
    21.Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).Article 

    Google Scholar 
    22.Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).CAS 
    Article 

    Google Scholar 
    24.Nagoshi, R. N. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann. Entomol. Soc. Am. 105, 351–358. https://doi.org/10.1603/AN11138 (2012).CAS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. https://doi.org/10.1038/s41598-019-44744-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE 16, e0253528. https://doi.org/10.1371/journal.pone.0253528 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Koffi, D. et al. Trapping Spodoptera frugiperda (Lepidoptera: Noctuidae) moths in different crop habitats in Togo and Ghana. J. Econ. Entomol. 114, 1138–1144. https://doi.org/10.1093/jee/toab048 (2021).Article 
    PubMed 

    Google Scholar 
    30.Thenkabail, P. S. et al. Assessing future risks to agricultural productivity, water Resources and food security: How can remote sensing help?. Photogramm. Eng. Remote. Sens. 78, 773–782 (2012).
    Google Scholar 
    31.Teluguntla, P. et al. (eds.). Global Cropland Area Database (GCAD) derived from remote sensing in support of food security in the twenty-first century: Current achievements and future possibilities. Chapter 7 Vol. II. Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook edited by Prasad S. Thenkabail.32.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nagoshi, R. N., Fleischer, S. J. & Meagher, R. L. Texas is the overwintering source of fall armyworm in central Pennsylvania: Implications for migration into the northeastern United States. Environ. Entomol. 38, 1546–1554. https://doi.org/10.1603/022.038.0605 (2009).Article 
    PubMed 

    Google Scholar 
    34.Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).CAS 
    Article 

    Google Scholar 
    35.Assefa, Y., Mitchell, A. & Conlong, D. E. Phylogeography of Eldana saccharine Walker (Lepidoptera : Pyralidae). Annales de la Société Entomologique de France 42, 331–337. https://doi.org/10.1080/00379271.2006.10697465 (2006).Article 

    Google Scholar 
    36.Sezonlin, M. et al. Phylogeographic pattern and regional evolutionary history of the maize stalk borer Busseola fusca (Fuller) (Lepidoptera : Noctuidae) in sub-Saharan Africa. Annales de la Société Entomologique de France 42, 339–351. https://doi.org/10.1080/00379271.2006.10697466 (2006).Article 

    Google Scholar 
    37.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—A sibling species complex. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    39.Nagoshi, R. N. & Meagher, R. Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. Insect Mol. Biol. 12, 453–458 (2003).CAS 
    Article 

    Google Scholar 
    40.Nagoshi, R. N. & Meagher, R. L. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ. Entomol. 33, 881–889 (2004).Article 

    Google Scholar 
    41.Juárez, M. L. et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: Are they host strains?. Entomol. Exp. Appl. 152, 182–199. https://doi.org/10.1111/eea.12215 (2014).CAS 
    Article 

    Google Scholar 
    42.Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).Article 

    Google Scholar 
    43.Pashley, D. P., Hardy, T. N. & Hammond, A. M. Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88, 748–755 (1995).Article 

    Google Scholar 
    44.Groot, A. T., Marr, M., Heckel, D. G. & Schofl, G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol. Entomol. 35, 105–118. https://doi.org/10.1111/J.1365-2311.2009.01138.X (2010).Article 

    Google Scholar 
    45.Kost, S., Heckel, D. G., Yoshido, A., Marec, F. & Groot, A. T. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 70, 1418–1427. https://doi.org/10.1111/evo.12940 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Pashley, D. P., Hammond, A. M. & Hardy, T. N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85, 400–405 (1992).Article 

    Google Scholar 
    47.Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575. https://doi.org/10.1093/jee/tox229 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Gouin, A. et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci. Rep. 7, 11816. https://doi.org/10.1038/s41598-017-10461-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Schlum, K. A. et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genom. 22, 179. https://doi.org/10.1186/s12864-021-07492-7 (2021).CAS 
    Article 

    Google Scholar 
    50.Sperling, F. A. H. Sex-linked genes and species-differences in lepidoptera. Can. Entomol. 126, 807–818 (1994).Article 

    Google Scholar 
    51.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).Article 
    PubMed 

    Google Scholar 
    52.Jeger, M. et al. Pest risk assessment of Spodoptera frugiperda for the European Union. Efsa J. https://doi.org/10.2903/j.efsa.2018.5351 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Rwomushana, I. et al. Fall armyworm: Impacts and implications for Africa. In CABI Evidnece Notes (CABI, Oxfordshire, 2018) http://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf54.Stanaway, M. A., Zalucki, M. P., Gillespie, P. S., Rodriguez, C. M. & Maynard, G. V. Pest risk assessment of insects in sea cargo containers. Aust. J. Entomol. 40, 180–192. https://doi.org/10.1046/j.1440-6055.2001.00215.x (2001).Article 

    Google Scholar  More

  • in

    Ericaceous vegetation of the Bale Mountains of Ethiopia will prevail in the face of climate change

    1.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24(12), 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).Article 
    PubMed 

    Google Scholar 
    3.Malcolm, J. R., Liu, C., Neilson, R. O., Hansen, A. & Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x (2006).Article 
    PubMed 

    Google Scholar 
    4.Gentili, R. et al. Review: Potential warm stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecol. Complex. 21, 87–99. https://doi.org/10.1016/j.ecocom.2014.11.006 (2015).Article 

    Google Scholar 
    5.Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical rainforest regions. Trans. R. Soc. Lond. B. 359, 311–329. https://doi.org/10.1098/rstb.2003.1433Phil (2004).Article 

    Google Scholar 
    6.IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team (eds. Pachauri, R. K., Meyer, L. A.) 155 (IPCC, Geneva, 2014).7.Kreyling, J., Wana, D. & Beierkuhnlein, C. Climate warming and tropical plant species—consequence of the potential upslope shift of isotherms in southern Ethiopia. Divers. Distrib. 16, 593–605. https://doi.org/10.1111/j.1472-4642.2010.00675.x (2010).Article 

    Google Scholar 
    8.Beierkuhnlein, C. Biogeografie. Die räumliche Organisation des Lebens in einer sich verändernden Welt (Eugen Ulmer Verlag, 2007).Book 

    Google Scholar 
    9.Körner, C. The use of “altitude” for ecological research. Trends Ecol. Evol. 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).Article 
    PubMed 

    Google Scholar 
    10.Messerli, B., and Ives, J.D. (1997). Mountains of the world: a global priority. edited by B. Messerli and J.D. Ives. Parthenon Pub. Group, New York. 495p.11.Flantua, S. G. A. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Glob. Ecol. Biogeogr. 29, 1651–1673. https://doi.org/10.1111/geb.13155 (2020).Article 

    Google Scholar 
    12.Steinbauer, M. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25(9), 1097–1107. https://doi.org/10.1111/geb.12469 (2016).Article 

    Google Scholar 
    13.Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).Article 

    Google Scholar 
    14.Buytaert, W., Cuesta-Camacho, F. & Tobon, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20, 19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x (2011).Article 

    Google Scholar 
    15.Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).Article 

    Google Scholar 
    16.Nagy, L. & Grabherr, G. The Biology of Alpine Habitats (Oxford University Press, 2009).
    Google Scholar 
    17.Razgour, O., Kasso, M., Santos, H. & Juste, J. Up in the air: Threats to Afromontane biodiversity from climate change and habitat loss revealed by genetic monitoring of the Ethiopian Highlands bat. Evol. Appl. 14, 794–806. https://doi.org/10.1111/eva.13161 (2021).Article 

    Google Scholar 
    18.Vuilleumier, F. & Monasterio, M. Introduction: high tropical Mountain Biota of the world. In High mountains tropical biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986).
    Google Scholar 
    19.Gehrke, B. & Linder, H. P. Species richness, endemism, and species composition in the tropical afroalpine flora. Alp. Bot. 124, 165–177 (2014).Article 

    Google Scholar 
    20.Hedberg, O. Features of afroalpine plant ecology. Acta Phytogeogr. Suec. 49, 1–144 (1964).
    Google Scholar 
    21.Hedberg, O. Vegetation belts of the East African mountains. Sven. Bot. Tidskr. 45, 140–202 (1951).
    Google Scholar 
    22.Hillman, J. C. The Bale Mountains National Park Area, Southeast Ethiopia and its management. Mt. Res. Dev. 8(2/3), 253–258 (1988).Article 

    Google Scholar 
    23.Miehe, S. & Miehe, G. Ericaceous Forests and Heathlands in the Bale Mountains of South Ethiopia .Ecology and Man’s Impact (Stiftung Walderhaltung in Africa, 1994).
    Google Scholar 
    24.Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, 1–12. https://doi.org/10.1016/j.gecco.2019.e00670 (2019).Article 

    Google Scholar 
    25.McGuire, A. F., Kathleen, A. & Kron, K. A. Phylogenetic relationships of European and African Ericas. Int. J. Plant Sci. 162(2), 311–318. https://doi.org/10.1086/427478 (2005).Article 

    Google Scholar 
    26.Wesche, K. The importance of occasional droughts for afroalpine landscape ecology. J. Trop. Ecol. 19, 197–208. https://doi.org/10.1017/S0266467403003225 (2003).Article 

    Google Scholar 
    27.Gil-Romera, G. et al. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biol. Lett. 15, 20190357. https://doi.org/10.1098/rsbl.2019.0357 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Gizaw, A. et al. Phylogeography of the heathers Erica arborea and E. trimera in the afro-alpine “sky islands” inferred from AFLPs and plastid DNA sequences. Flora 208, 453–463 (2013).Article 

    Google Scholar 
    29.Johansson, M. Fire and Grazing in Subalpine Heathlands and Forests of Bale Mountains, Ethiopia (Swedish University of Agricultural Sciences, 2013).
    Google Scholar 
    30.Johansson, M. U., Frisk, C. A., Nemomissa, S. & Hylander, K. Disturbance from traditional fire management in subalpine heathlands increases Afro-alpine plant resilience to climate change. Glob. Change Biol. 24(7), 2952–2964. https://doi.org/10.1111/gcb.14121 (2018).ADS 
    Article 

    Google Scholar 
    31.Wesche, K., Miehe, G. & Kaeppeli, M. The significance of fire for afroalpine ericaceous vegetation. Mt. Res. Dev. 20, 340–347. https://doi.org/10.1659/0276-4741(2000)020[0340:TSOFFA]2.0.CO;2 (2000).Article 

    Google Scholar 
    32.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682. https://doi.org/10.1038/NCLIMATE1887 (2013).ADS 
    Article 

    Google Scholar 
    34.Hillman, J. C. Conservation in Ethiopia’s Bale Mountains. Endanger. Species 3, 1–4 (1986).
    Google Scholar 
    35.Johansson, M. U. & Granström, A. Fuel, fire, and cattle in African highlands: traditional management maintains a mosaic heathland landscape. J. Appl. Ecol. 51, 1396–1405. https://doi.org/10.1111/1365-2664.12291 (2014).Article 

    Google Scholar 
    36.Ossendorf, G. et al. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365(6453), 583–587. https://doi.org/10.1126/science.aaw8942 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Uhlig, S. & Uhlig, K. Mountain chronicles. Studies on the altitudinal zonation of forests and alpine plants in the Central Bale Mountains, Ethiopia. Mt. Res. Dev. 11, 153–256 (1991).Article 

    Google Scholar 
    38.Umer, M. et al. Late Pleistocene Holocene vegetation history of the Bale Mountains, Ethiopia. Quatern. Sci. Rev. 26, 2229–2246 (2007).ADS 
    Article 

    Google Scholar 
    39.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46. https://doi.org/10.1080/17550870802262166 (2008).Article 

    Google Scholar 
    40.Di Falco, S., Veronesi, M. & Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 93(3), 829–846. https://doi.org/10.1093/ajae/aar006 (2011).Article 

    Google Scholar 
    41.Nsengiyumva, P. African mountains in a changing climate: trends, impacts, and adaptation solutions. Mt. Res. Dev. 39(2), 1–8. https://doi.org/10.1659/MRD-JOURNAL-D-19-00062.1 (2019).Article 

    Google Scholar 
    42.IPCC. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) (2018).43.Araújo, M. B. & Guisan, A. Five (or so) challenges for species distribution modeling. J. Biogeogr. 33(10), 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x (2006).Article 

    Google Scholar 
    44.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    45.Bonnefille, R. Evidence for a cooler and drier climate in the Ethiopian uplands towards 2.5 Myr ago. Nature 303, 487–491. https://doi.org/10.1038/303487a0 (1983).ADS 
    Article 

    Google Scholar 
    46.Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimate for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).ADS 
    Article 

    Google Scholar 
    47.Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286 (2004).CAS 
    Article 

    Google Scholar 
    48.Smith, A. P. & Young, T. P. Tropical alpine plant ecology. Annu. Rev. Ecol. Syst. 18, 137–158 (1987).Article 

    Google Scholar 
    49.Kidane, Y. O., Stahlman, R. & Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 184(12), 7473–7489. https://doi.org/10.1007/S10661-011-2514-8 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Hedberg, O. Origins of the afroalpine Flora. In High Mountains Tropical Biogeography (eds Vuilleumier, F. & Monasterio, M.) (Oxford University Press, 1986) (Published by Oxford University Press and the American Museum of Natural History).
    Google Scholar 
    51.United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (2015). Accessed November 19, 2021.52.QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).53.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 (2002).ADS 
    Article 

    Google Scholar 
    54.Wegmann, M., Leutner, B. & Dech, S. Remote Sensing and GIS for Ecologists: Using Open Software 333 (Pelagic Publishing, UK, 2016).
    Google Scholar 
    55.Duveiller, G., Defourny, P., Descle’e, B. & Mayaux, P. Deforestation in Central Africa: Estimates at regional, national, and landscape levels by advanced processing of systematically distributed Landsat extracts. Remote Sens. Environ. 112(5), 1969–1981. https://doi.org/10.1016/j.rse.2007.07.026 (2008).ADS 
    Article 

    Google Scholar 
    56.Smeeton, N. C. Early history of the kappa statistic. Biometrics 41(3), 795–795 (1985).
    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [Internet]. http://www.R-project.org/ (2019).58.Naimi, B. & Araújo, M. B. SDM: a reproducible and extensible R platform for species distribution modeling. Ecography 39, 368–375. https://doi.org/10.1111/ecog.01881 (2016).Article 

    Google Scholar 
    59.Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modeling? Ecography 37(2), 191–203 (2014).Article 

    Google Scholar 
    60.Austin, M. P. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157, 101–118 (2002).Article 

    Google Scholar 
    61.World Climate Research Program (WCRP). Coupled Model Intercomparison Project 5 (CMIP5). https://esgf-node.llnl.gov/projects/cmip5 (2021).62.Hijmans, R. J., & Elith, J. Species distribution modelling with R. https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (2017). Accessed July 2018.63.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–881 (2009).Article 

    Google Scholar 
    64.Hijmans, R. J. & van Etten, J. Raster: Geographic Analysis and Modelling with Raster Data. R package version 1.8-39. http://CRAN.R-project.org/package=raster (2011). Accessed July 2018.65.Elith, J. et al. Novel methods improve prediction of “species” distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    66.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).Article 

    Google Scholar 
    67.Carpenter, G., Gillison, A. N. & Winter, J. Domain: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2, 667–680 (1993).Article 

    Google Scholar 
    68.Vapnik, V. Statistical Learning Theory (Wiley, 1998).MATH 

    Google Scholar 
    69.Mateo, R. G., Felicísimo, Á. M., Pottier, J., Guisan, A. & Muñoz, J. Do stacked species distribution models reflect altitudinal diversity patterns?. PloS ONE 7(3), e32586. https://doi.org/10.1371/journal.pone.0032586 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Thuiller, W. BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    71.Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Monographs in Population Biology-49 (Princeton University Press, 2011).Book 

    Google Scholar 
    72.Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 https://doi.org/10.1038/s41586-018-0005-6 (2018).Article 
    PubMed 

    Google Scholar 
    73.Chala, D., Niklaus, E., Zimmermann, E. Z., Brochmann, C. & Bakkestuen, V. Migration corridors for alpine plants among the “sky islands” of eastern Africa: do they, or did they exist?. Alp. Bot. 127, 133–144. https://doi.org/10.1007/s00035-017-0184-z (2017).Article 

    Google Scholar 
    74.Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383. https://doi.org/10.3390/d13080383 (2021).Article 

    Google Scholar 
    75.Winkler, M. et al. The rich sides of mountain summit a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43(11), 2261–2273. https://doi.org/10.1111/Jbi.12835 (2016).Article 

    Google Scholar 
    76.United States Geological Survey (USGS). Landsat Archive. Landsat standard data products. http://landsat.usgs.gov (2018). Accessed July 17, 2018.77.Di Falco, S., Yesuf, M., Kohlin, G. & Ringler, C. Estimating the impact of climate change on agriculture in low-income countries: household level evidence from the Nile Basin, Ethiopia. Environ. Resour. Econ. 52, 457–478. https://doi.org/10.1007/s10640-011-9538-y (2011).Article 

    Google Scholar  More

  • in

    Contrasting impacts of forests on cloud cover based on satellite observations

    Cloud cover and environmental datasetsThe monthly mean MODIS cloud fraction at 0.05° used in this study was computed from the daily cloud mask data (“cloudy” label for the bits 0–1 of “state_1 km” band) included in the MODIS Surface Reflectance product (MYD09GA.006, overpass at local time of 13:30) of Aqua from 2002 to 2018, using the reduceResolution function with “mean” aggregation method on Google Earth Engine (https://earthengine.google.com/). The 1-km cloud mask was produced based on the MOD35_L2 cloud mask product, which had been extensively validated71,72. Before computing cloud fractions, a snow/ice flag (the bit 12 of “state_1km” band) was used to remove snow or ice pixels in the cloud record because the high reflectivity of snow/ice degrades the accuracy of cloud detection, especially during winter in the northern hemisphere. Therefore, the estimated cloud effect would have larger uncertainty in boreal winter than in summer.To complement MODIS-based cloud analyses, we used the Meteosat Second Generation (MSG) hourly cloud fraction data of 2004–2013 at a spatial resolution of 0.05°. The Coordinated Universal Time (UTC) of the raw MSG hourly cloud cover data was converted to local time before being used for analysis.The cloud fraction from Sentinel-5P Near Real-Time (NRTI) data product was used in this analysis. This dataset is available from 2018-07-05 at a spatial resolution of 0.01° and it has an overpass time of 13:30 similar to MODIS. The Sentinel-5P cloud data, although having a short period of 2 years, allows for the separation of cloud effects into different cloud types, with the help of a cloud classification scheme based on cloud top pressure and cloud optical depth information30.Environmental variables include evapotranspiration (ET, MOD16A2 V6), land surface temperature (LST, MYD11A1 V6) from MODIS, and soil moisture (SM) from the TerraClimate dataset. All these environmental variables were averaged into monthly means at 0.05° resolution.Elevation data are from SRTM Digital Elevation Data at 0.05° resolution. Land cover data include MODIS (MOD12C1) and European Space Agency (ESA) global land cover products, which were aggregated to 0.05°.Defining forest cover changeTo define forest/non-forest and forest cover change, we used the Global forest cover (GFC) product which provides global tree cover for the year 2000 (baseline), yearly forest loss from 2001 to 2018, and forest gain from 2000–2012 at 30 m resolution53. The GFC data were aggregated to fractions at 0.05°. Net forest cover change was calculated as the sum of the loss and gain accumulated throughout the study period. Pixels with net forest cover change fractions smaller than 0.05 are considered to be “unchanged” and greater than 0.05 are considered to be “changed”. Unchanged forests and unchanged non-forest were defined as pixels with baseline tree cover fraction greater or less than 0.5 and with net forest change 0.15. Forest loss defined this way is expected to pose a stronger signal on clouds than that with a lower threshold, and thus improves the detectability of cloud impact against natural variability of cloud cover.Estimating potential and actual impacts of forest loss on cloud coverThe potential effect of forest on cloud (ΔCloud) was quantified as the mean cloud difference between unchanged forests and nearby non-forest as:$$Delta {{{{{rm{Cloud}}}}}}={{{{{{rm{Cloud}}}}}}}_{{{{{{rm{forest}}}}}}}-{{{{{{rm{Cloud}}}}}}}_{{{{{{rm{nonforest}}}}}}}$$
    (1)
    where Cloudforest and Cloudnonforest are multiyear or yearly mean cloud fractions averaged over unchanged forest and unchanged non-forest pixels, respectively. ΔCloud defined this way, with the reversed sign, represents the potential impact of forest loss on cloud cover at a given location. The methodology is designed to isolate the cloud effects of land surface conditions from those caused by meteorological conditions. It refers to local cloud impact (caused by land surface conditions) because effects from synoptic conditions and large-scale circulation changes/climate changes (meteorological conditions) are shared by both forest and non-forest and are therefore minimized through subtraction. If there is no effect of forests on cloud cover, the resulting ΔCloud would show random patterns with mixed positive and negative values instead of a systematic pattern, which indicates a cloud preference over forests or non-forest.To implement Eq. 1, we used a moving window approach to search for comparison samples between forest and nearby non-forest pixels at locations that underwent “forest change” (i.e., net forest change >0.05) across the globe73. Each moving window was sized at 9 × 9 pixels (0.45° × 0.45°) and two adjacent windows were half-overlapped with a distance of 5 pixels (i.e., the centers of two windows were 5 pixels apart along latitudinal and longitudinal direction). To avoid cloud inhibition effects from water bodies74, water pixels and their one-pixel buffer zone were masked out in the window searching strategy for ΔCloud. Therefore, ΔCloud can be calculated using unchanged forest and non-forest pixels within each moving window. This window searching strategy ensures the proximity of the forest and non-forest pixels to pixels that underwent forest change, making the estimated potential effect more representative of the actual forest change impact. To test the sensitivity of ΔCloud to window size and time period, ΔCloud was also estimated using alternative window sizes: 11 × 11 (0.55° × 0.55°), 21 × 21 (1.05° × 1.05°), 51 × 51 (2.55° × 2.55°) pixels and different periods (2002–2007, 2008–2013, and 2014–2018). The resulting ΔCloud was similar to results with the window size of 9 × 9 (0.45° × 0.45°) and among split time periods (Supplementary Figs. 2, 3). Unlike using direct comparison in cloud cover (and other biophysical variables) between forest and non-forest, an alternative method is to utilize the regression coefficients of cloud cover (dependent variable) to land cover fraction (independent variable) and estimate cloud effects assuming 100% land conversion, as adopted by ref. 58. The alternative regression-based approach is mathematically more complicated, and its implementation involves non-trivial post-processing compared with our method while producing qualitatively similar results.A similar window searching strategy was applied to estimate the differences between forests and non-forest in LST (ΔLST), ET (ΔET), and soil moisture (ΔSM) (Supplementary Fig. 10).The cloud impact estimated as the cloud differences between forest and non-forest could be confounded by their differences in topography, which is known to be an important factor for cloud formation. To minimize the topographic influence, we calculated the standard deviation (s.d.) of elevation within each moving window and removed samples with s.d. >100 m from the analysis. This filtering effectively excluded comparison samples over complex terrain such as mountainous regions so that the retained samples came from relatively flat areas.The actual effect of forest loss on cloud (ΔCloudloss) was quantified as the cloud cover difference between forest loss (Cloudloss) and nearby unchanged forest pixels (Cloudforest) using the same window searching strategy as the potential effect (Eq. 2).$$Delta {{{{{{rm{Cloud}}}}}}}_{{{{{{rm{loss}}}}}}}={{{{{{rm{Cloud}}}}}}}_{{{{{{rm{loss}}}}}}}-{{{{{{rm{Cloud}}}}}}}_{{{{{{rm{forest}}}}}}}$$
    (2)
    where ΔCloudloss is the actual impact of forest loss on cloud cover, Cloudloss and Cloudforest are the multiyear or yearly mean cloud cover averaged over forest loss and unchanged forest pixels, respectively. The actual impact (deforested vs. forests) shows good spatial resemblance to the potential effect (non-forest vs. forests, ΔCloud with the reversed sign), suggesting that the potential effect can provide a priori prediction of possible cloud change induced by forest loss (the correlation of the spatial pattern is 0.44, p  200 W/m2).Scale-dependency of potential cloud effect of forestTo investigate how the potential cloud effect varies with spatial scale, we reprocessed the MODIS cloud cover and GFC data into different spatial resolutions to emulate the scale change (using “mean” for cloud cover and “major” method for forest cover). Specifically, the 0.05° cloud and GFC data used in the main analysis were aggregated to coarser resolutions (0.1°, 0.25°, 0.5°, and 1°) and ΔCloud was re-estimated with the window searching strategy of slightly different configurations to accommodate the resolution change (Supplementary Fig. 12). The specific parameters of the window searching strategy under different resolutions are provided in Supplementary Table 2, including raw data resolution, window size, window distance, and display resolution. For a given resolution, ΔCloud was estimated with two-parameter combinations to ensure the robustness of the results. More

  • in

    EU-Trees4F, a dataset on the future distribution of European tree species

    1.FOREST EUROPE. State of Europe’s Forests (Ministerial Conference on the Protection of Forests in Europe, Bratislava, 2020).2.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1–8 (2013).
    Google Scholar 
    3.Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiv. Conserv. 26, 3005–3035 (2017).
    Google Scholar 
    4.Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).
    Google Scholar 
    5.Forzieri, G. et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    6.Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
    Google Scholar 
    7.Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).
    Google Scholar 
    8.Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).ADS 

    Google Scholar 
    9.Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 

    Google Scholar 
    10.Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed 

    Google Scholar 
    11.Saltré, F. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).
    Google Scholar 
    12.Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).
    Google Scholar 
    13.Pedlar, J. H. et al. Placing forestry in the assisted migration debate. BioScience 62, 835–842 (2012).
    Google Scholar 
    14.Overpeck, J. T. & Breshears, D. D. The growing challenge of vegetation change. Science 372, 786–787 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Strona, G. et al. Far from naturalness: How much does spatial ecological structure of European tree assemblages depart from potential natural vegetation? Plos One 11, e0165178 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    16.Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 1–7 (2019).CAS 

    Google Scholar 
    17.Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).ADS 

    Google Scholar 
    18.Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).
    Google Scholar 
    19.Nabuurs, G.-J. et al. Next-generation information to support a sustainable course for European forests. Nat. Sustain. 2, 815–818 (2019).
    Google Scholar 
    20.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738–5742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).CAS 
    PubMed 

    Google Scholar 
    22.Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change – is non-management an option? Ann. For. Sci. 76, 1–13 (2019).
    Google Scholar 
    23.Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 24, 1150–1163 (2018).ADS 

    Google Scholar 
    24.Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).ADS 

    Google Scholar 
    25.Thurm, E. A. et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430, 485–497 (2018).
    Google Scholar 
    26.Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    28.Morin, X. et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8, 1–12 (2018).ADS 

    Google Scholar 
    29.Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).PubMed 

    Google Scholar 
    30.Messier, C. et al. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 1–16 (2019).
    Google Scholar 
    31.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).ADS 

    Google Scholar 
    32.Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).
    Google Scholar 
    33.Buras, A. & Menzel, A. Projecting tree species composition changes of European forests for 2061–2090 under RCP 4.5 and RCP 8.5 scenarios. Front. Plant Sci. 9, 1986 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    34.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).
    Google Scholar 
    35.Noce, S., Collalti, A. & Santini, M. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 7, 9358–9375 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    36.Hickler, T. et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob. Ecol. Biogeogr. 21, 50–63 (2012).
    Google Scholar 
    37.Takolander, A., Hickler, T., Meller, L. & Cabeza, M. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Reg. Environ. Change 19, 251–266 (2019).
    Google Scholar 
    38.Chen, M. et al. Global land use for 2015–2100 at 0.05 resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 1–11 (2020).ADS 

    Google Scholar 
    39.Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci. Data 4, 1–8 (2017).
    Google Scholar 
    40.Strona, G., Mauri, A. & San-Miguel-Ayanz, J. A high-resolution pan-European tree occurrence dataset. Figshare https://doi.org/10.6084/m9.figshare.c.3288407.v1 (2016).41.Benito-Garzón, M. & Fernández-Manjarrés, J. F. Testing scenarios for assisted migration of forest trees in Europe. New For. 46, 979–994 (2015).
    Google Scholar 
    42.Thuiller, W., Lavorel, S., Sykes, M. T. & Araújo, M. B. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 12, 49–60 (2006).
    Google Scholar 
    43.Robinet, C. et al. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE 7, 10 (2012).
    Google Scholar 
    44.European Commission. The European Green Deal. (Publications office of the European Union, 2019).45.European Commission. EU Biodiversity Strategy for 2030, Bringing nature back into our lives. (Publications office of the European Union, 2020).46.European Commission. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. (Publications office of the European Union, 2018).47.European Commission. New EU Forest Strategy for 2030. (Publications office of the European Union, 2021).48.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar 
    49.ICP Forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. http://icp-forests.net/ (2019).50.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce–Distribution Atlas of Vascular Plants in Poland. (Nakladem Pracowni Chorologii Komputerowej Instytutu Botaniki Uniwersytetu – Laboratory of Computer Corology – Institute of Botany – Jagiellonian University, 2001).51.Gschwantner, T. et al. Common tree definitions for national forest inventories in Europe. Silva Fennica 43, 303–321 (2009).
    Google Scholar 
    52.Rivers, M. et al. European Red List of Trees. (International Union for Conservation of Nature and Natural Resources, 2019).53.Rocchini, D. et al. Anticipating species distributions: Handling sampling effort bias under a Bayesian framework. Sci. Total Environ. 584, 282–290 (2017).ADS 
    PubMed 

    Google Scholar 
    54.Bartlein, P. J., Prentice, I. C. & Webb III, T. Climatic response surfaces from pollen data for some eastern North American taxa. J. Biogeogr. 35–57 (1986).55.Woodward, F. I. & Woodward, F. Climate and plant distribution. (Cambridge University Press, 1987).56.Harrison, S. et al. Towards a global scheme of plant functional types for ecosystem modelling, palaeoecology and climate impact research. J Veg Sci 21, 300–317 (2009).
    Google Scholar 
    57.Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 

    Google Scholar 
    58.Prentice, I. C. et al. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 117–134 (1992).59.Pouteau, R. et al. Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Divers. Distrib. 27, 2063–2076 (2021).
    Google Scholar 
    60.Naimi, B. USDM: Uncertainty analysis for species distribution models. https://www.rdocumentation.org/packages/usdm/versions/ (2015).61.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Google Scholar 
    62.Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
    Google Scholar 
    63.Teutschbein, C. & Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456, 12–29 (2012).ADS 

    Google Scholar 
    64.Ekström, M., Grose, M. R. & Whetton, P. H. An appraisal of downscaling methods used in climate change research. Wiley Interdiscip. Rev. Clim. Change 6, 301–319 (2015).
    Google Scholar 
    65.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).ADS 

    Google Scholar 
    66.Baker, B., Diaz, H., Hargrove, W. & Hoffman, F. Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Clim. Change 98, 113–131 (2010).ADS 

    Google Scholar 
    67.Barredo, J. I., Caudullo, G. & Dosio, A. Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Appl. Geogr. 75, 83–92 (2016).
    Google Scholar 
    68.Klausmeyer, K. R. & Shaw, M. R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PloS One 4, e6392 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).PubMed 

    Google Scholar 
    70.Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1029–1136 (Cambridge University Press, 2013).71.Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    72.Zhang, L. et al. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PloS One 10, e0120056 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    73.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Google Scholar 
    74.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).
    Google Scholar 
    75.De Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. Shifts in global vegetation activity trends. Remote Sens. 5, 1117–1133 (2013).ADS 

    Google Scholar 
    76.Engler, R. & Guisan, A. MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 (2009).
    Google Scholar 
    77.Engler, R., Hordijk, W. & Guisan, A. The MIGCLIM R package–seamless integration of dispersal constraints into projections of species distribution models. Ecography 35, 872–878 (2012).
    Google Scholar 
    78.Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Glob. Ecol. Biogeogr. 26, 243–258 (2017).
    Google Scholar 
    79.Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    80.Euro+Med. Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ (2019).81.Summers, D. M., Bryan, B. A., Crossman, N. D. & Meyer, W. S. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob. Change Biol. 18, 2335–2348 (2012).ADS 

    Google Scholar 
    82.García-Valdés, R., Zavala, M. A., Araujo, M. B. & Purves, D. W. Chasing a moving target: Projecting climate change-induced shifts in non-equilibrial tree species distributions. J. Ecol. 101, 441–453 (2013).
    Google Scholar 
    83.Lischke, H., Zimmermann, N. E., Bolliger, J., Rickebusch, S. & Löffler, T. J. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol. Model. 199, 409–420 (2006).
    Google Scholar 
    84.Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).PubMed 

    Google Scholar 
    85.Thomson, F. J., Letten, A. D., Tamme, R., Edwards, W. & Moles, A. T. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytol. 217, 407–415 (2018).PubMed 

    Google Scholar 
    86.Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 

    Google Scholar 
    87.Mauri, A., Girardello, M. & Strona, G. EU-Trees4F. A dataset on the future distribution of European tree species, figshare, https://doi.org/10.6084/m9.figshare.c.5525688 (2021).88.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).
    Google Scholar 
    89.Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Google Scholar 
    90.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    91.Fitzpatrick, M. C. & Hargrove, W. W. The projection of species distribution models and the problem of non-analog climate. Biodivers. Conserv. 18, 2255–2261 (2009).
    Google Scholar 
    92.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    93.R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Wave attenuation through forests under extreme conditions

    1.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).Article 

    Google Scholar 
    4.Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change https://doi.org/10.1007/s10584-010-0003-7 (2011).Article 

    Google Scholar 
    5.Zhu, Z. et al. Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. 3, 1 (2020).Article 

    Google Scholar 
    6.Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: A systematic review and meta-analysis. Plos One 6, e27374 (2011).7.Coops, H., Boeters, R. & Smit, H. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41, 333–352 (1991).Article 

    Google Scholar 
    8.van Wesenbeeck, B. K. et al. Coastal and riverine ecosystems as adaptive flood defenses under a changing climate. Mitig. Adapt. Strateg. Glob. Chang. 22, 1–8 (2016).
    Google Scholar 
    9.Quartel, S., Kroon, A., Augustinus, P. G. E. F., Van Santen, P. & Tri, N. H. Wave attenuation in coastal mangroves in the Red River Delta Vietnam. J. Asian Earth Sci. 29, 576–584 (2007).ADS 
    Article 

    Google Scholar 
    10.Bao, T. Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53, 1 (2011).
    Google Scholar 
    11.Horstman, E. M. et al. Wave attenuation in mangroves: A quantitative approach to field observations. Coast. Eng. 94, 47–62 (2014).Article 

    Google Scholar 
    12.Dalrymple, R. A., Kirby, J. T. & Hwang, P. A. Wave diffraction due to areas of energy dissipation. J. Waterw. Ports Coast. Eng. 110, 67–69 (1984).Article 

    Google Scholar 
    13.Suzuki, T., Zijlema, M., Burger, B., Meijer, M. C. & Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 59, 64–71 (2012).Article 

    Google Scholar 
    14.Maza, M., Lara, J. L. & Losada, I. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest. Adv. Water Resour. 131, 1 (2019).Article 

    Google Scholar 
    15.Nepf, H. M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35, 479–489 (1999).ADS 
    Article 

    Google Scholar 
    16.Wolters, M. et al. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).Article 

    Google Scholar 
    17.Vuik, V., Jonkman, S. N., Borsje, B. W. & Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 116, 42–56 (2016).Article 

    Google Scholar 
    18.Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary. Estuaries Coasts 35, 169–182 (2012).Article 

    Google Scholar 
    19.Bouma, T. J. et al. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).Article 

    Google Scholar 
    20.Bouma, T. J., De Vries, M. B. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).CAS 
    Article 

    Google Scholar 
    21.Ysebaert, T. et al. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. in Wetlands vol. 31 (2011).22.Granek, E. & Ruttenberg, B. I. Changes in biotic and abiotic processes following mangrove clearing. Estuar. Coast. Shelf Sci. 80, 555–562 (2008).ADS 
    Article 

    Google Scholar 
    23.Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T. & Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 14, 365–378 (2006).Article 

    Google Scholar 
    24.IAHR Design Manual. in (eds. Frostick, L. E., McLelland, S. J. & Mercer, T. G.) (CRC Press/Balkema, 2011).25.Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7, 727–731 (2014).ADS 
    Article 

    Google Scholar 
    26.Booij, N., Ris, R. C. & Holthuijsen, L. H. A third-generation wave model for coastal regions: 1 Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999).ADS 
    Article 

    Google Scholar 
    27.Mendez, F. J. & Losada, I. J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51, 103–118 (2004).Article 

    Google Scholar 
    28.Järvelä, J. Determination of flow resistance caused by non-submerged woody vegetation. Int. J. River Basin Manag. 2, 61–70 (2004).Article 

    Google Scholar 
    29.Sumer, M. & Fredsøe, J. Book review hydrodynamics around cylindrical structures, B. M. Sumer and J. Fredsøe, World Scientific, Singapore. J. Fluids Struct. 12, 221–222 (1998).30.Mendez, F. J., Losada, I. J., Dalrymple, R. A. & Losada, M. A. Effects of wave reflection and dissipation on wave-induced second order magnitudes. in Coastal Engineering 1998, Vols 1–3 (ed. Edge, B. L.) 537–550 (1999).31.Jadhav, R. & Chen, Q. Field investigation of wave dissipation over salt marsh vegetation during tropical cyclone. (2012).32.Anderson, M. E. & Smith, J. M. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 83, 82 (2014).Article 

    Google Scholar 
    33.Möller, I. et al. Wave dissipation and transformation over coastal vegetation under extreme hydrodynamic loading. HYDRALAB IV Jt. user Meet. 1–6 (2014).34.Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99 (2013).Article 

    Google Scholar 
    35.Ozeren, Y., Wren, D. G. & Wu, W. Experimental Investigation of Wave Attenuation through Model and Live Vegetation. J. Waterw. Port Coast. Ocean Eng. 140, 4019 (2014).Article 

    Google Scholar 
    36.He, F., Chen, J. & Jiang, C. Surface wave attenuation by vegetation with the stem, root and canopy. Coast. Eng. 152, 1 (2019).Article 

    Google Scholar 
    37.Keulegan, G. H. & Carpenter, L. H. Forces on cylinders and plates in an oscillating fluid. J. Res. Natl. Bur. Stand. 60, 1 (1958).Article 

    Google Scholar 
    38.Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. & Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).ADS 
    Article 

    Google Scholar 
    39.Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).Article 

    Google Scholar 
    40.Cheong, S. M. et al. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 3, 787–791 (2013).ADS 
    Article 

    Google Scholar 
    41.Wieselsberger, C. New data on the laws of fluid resistance /. (National Advisory Committee for Aeronautics, 1922).42.Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).Article 

    Google Scholar 
    43.Massel, S. R. & Brinkman, R. M. On the determination of directional wave spectra for practical applications. Appl. Ocean Res. 20, 357–374 (1998).Article 

    Google Scholar 
    44.Klopman, G. & Meer, J. W. Random wave measurements in front of reflective structures. J. Waterw. Port Coast. Ocean Eng. 125, 39–45 (1999).Article 

    Google Scholar 
    45.Wuytack, T. et al. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environ. Monit. Assess. 171, 197–204 (2010).Article 

    Google Scholar  More

  • in

    Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way

    Bagheri Z, Talebi AA, Asgari S, Mehrabadi M (2021) Wolbachia promotes successful sex with siblings in the parasitoid Habrobracon hebetor. Pest Manag Sci 78:362–368PubMed 

    Google Scholar 
    Bordenstein SR, Werren JH (2000) Do Wolbachia influence fecundity in Nasonia vitripennis? Heredity 84:54–62PubMed 

    Google Scholar 
    Bordenstein SR, Uy JJ, Werren JH (2003) Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia. Genetics 164:223–233CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breeuwer JA, Werren JH (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135:565–574CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bressac C, Rousset F (1993) The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol 61:226–230CAS 
    PubMed 

    Google Scholar 
    Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368PubMed 
    PubMed Central 

    Google Scholar 
    Buchner P (1965) Endosymbiosis of animals with plant microorganisms. John Wiley and Sons, New York, NY
    Google Scholar 
    Clark ME, Veneti Z, Bourtzis K, Karr TL (2003) Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech Dev 120:185–198CAS 
    PubMed 

    Google Scholar 
    Corbin C, Heyworth ER, Ferrari J, Hurst GD (2017) Heritable symbionts in a world of varying temperature. Heredity 118:10–20CAS 
    PubMed 

    Google Scholar 
    Crespi BJ (1992) Eusociality in Australian gall thrips. Nature 359:724–726
    Google Scholar 
    Crespi BJ (1993) Sex ratio selection in Thysanoptera. In: Wrensch DL, Ebert M eds. Evolution and Diversity of Sex Ratio in Insects and Mites. Chapman and Hall, New York, NY, p 214–234
    Google Scholar 
    Cui X, Wan F, Xie M, Liu T (2008) Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. J Insect Sci 8:24PubMed Central 

    Google Scholar 
    Currin-Ross D, Husdell L, Pierens GK, Mok NE, O’Neill SL, Schirra HJ, Brownlie JC (2021) The metabolic response to infection with Wolbachia implicates the insulin/insulin-like-growth factor and hypoxia signaling pathways in Drosophila melanogaster. Front Ecol Evol 9:158
    Google Scholar 
    De Crespigny FC, Pitt TD, Wedell N (2006) Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol 19:1964–1972PubMed 

    Google Scholar 
    Doremus MR, Kelly SE, Hunter MS (2019) Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrasting effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 15:e1008022CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS (2020) Cardinium localization during its parasitoid wasp host’s development provides insights into cytoplasmic incompatibility. Front Microbiol 11:606399PubMed 
    PubMed Central 

    Google Scholar 
    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34CAS 
    PubMed 

    Google Scholar 
    Egas M, Vala F, Breeuwer JAJ (2002) On the evolution of cytoplasmic incompatibility in haplodiploid species. Evolution 56:1101–1109PubMed 

    Google Scholar 
    Evans JD, Shearman DCA, Oldroyd BP (2004) Molecular basis of sex determination in haplodiploids. Trends Ecol Evol 19:1–3PubMed 

    Google Scholar 
    Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N et al. (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121PubMed 
    PubMed Central 

    Google Scholar 
    Godfray HCJ (1990) The causes and consequences of constrained sex allocation in haplodiploid animals. J Evol Biol 3:3–17
    Google Scholar 
    Gunnarsson B, Goodacre SL, Hewitt GM (2009) Sex ratio, mating behaviour and Wolbachia infections in a sheetweb spider. Biol J Linn Soc 98:181–186
    Google Scholar 
    Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE et al. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256CAS 
    PubMed 

    Google Scholar 
    Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701PubMed 

    Google Scholar 
    Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774CAS 
    PubMed 

    Google Scholar 
    Hurst LD (1992) Intragenomic conflict as an evolutionary force. Proc R Soc B: Biol Sci 248:135–140
    Google Scholar 
    Hurst GD, Johnson AP, Schulenburg JHGV, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156:699–709CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurst GD, Frost CL (2015) Reproductive parasitism: maternally inherited symbionts in a biparental world. Cold Spring Harb Perspect Biol 7:a017699PubMed 
    PubMed Central 

    Google Scholar 
    Iossa G, Gage MJ, Eady PE (2016) Micropyle number is associated with elevated female promiscuity in Lepidoptera. Biol Lett 12:20160782PubMed 
    PubMed Central 

    Google Scholar 
    Kageyama D, Narita S, Watanabe M (2012) Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications. Insects 3:161–199PubMed 
    PubMed Central 

    Google Scholar 
    Katlav A, Cook JM, Riegler M (2021b) Egg size‐mediated sex allocation and mating‐regulated reproductive investment in a haplodiploid thrips species. Funct Ecol 35:485–498
    Google Scholar 
    Katlav A, Nguyen DT, Cook JM, Riegler M (2021a) Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition. Evolution 75:1525–1536PubMed 

    Google Scholar 
    Keller L, Liautard C, Reuter M, Brown WD, Sundström L, Chapuisat M (2001) Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity 87:227–233CAS 
    PubMed 

    Google Scholar 
    King BH (1987) Offspring sex ratios in parasitoid wasps. Q Rev Biol 62:367–396
    Google Scholar 
    Li C, He M, Yun Y, Peng Y (2020) Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J Invertebr Pathol 169:107307CAS 
    PubMed 

    Google Scholar 
    Macke E, Magalhaes S, Khan HDT, Luciano A, Frantz A, Facon B, Olivieri I (2011) Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proc R Soc B: Biol Sci 278:1054–1063
    Google Scholar 
    Martel V, Boivin G (2007) Unequal distribution of local mating opportunities in an egg parasitoid. Ecol Entomol 32:393–398
    Google Scholar 
    Moiroux J, Brodeur J, Boivin G (2014) Sex ratio variations with temperature in an egg parasitoid: behavioural adjustment and physiological constraint. Anim Behav 91:61–66
    Google Scholar 
    Mouton L, Henri H, Bouletreau M, Vavre F (2005) Multiple infections and diversity of cytoplasmic incompatibility in a haplodiploid species. Heredity 94:187–192CAS 
    PubMed 

    Google Scholar 
    Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49–56CAS 
    PubMed 

    Google Scholar 
    Murray TJ, Tissue DT, Ellsworth DS, Riegler M (2013) Interactive effects of pre-industrial, current and elevated atmospheric [CO2] and temperature on an insect herbivore of Eucalyptus. Oecologia 171:1025–1035Nagelkerke CJ, Hardy IC (1994) The influence of developmental mortality on optimal sex allocation under local mate competition. Behav Ecol 5:401–411
    Google Scholar 
    Navarro-Campos C, Pekas A, Aguilar A, Garcia-Marí F (2013) Factors influencing citrus fruit scarring caused by Pezothrips kellyanus. J Pest Sci 86:459–467
    Google Scholar 
    Nelson‐Rees WA (1960) A study of sex predetermination in the mealy bug Planococcus citri (Risso). J Exp Zool 144:111–137PubMed 

    Google Scholar 
    Newton IL, Rice DW (2020) The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J Bacteriol 202:e00589–19CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M (2017) Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution 71:995–1008CAS 
    PubMed 

    Google Scholar 
    Nguyen DT, Spooner-Hart RN, Riegler M (2015) Polyploidy versus endosymbionts in obligately thelytokous thrips. BMC Evol Biol 15:1–12CAS 

    Google Scholar 
    Nguyen DT, Spooner-Hart RN, Riegler M (2016) Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biol Invasions 18:197–214
    Google Scholar 
    Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266CAS 
    PubMed 

    Google Scholar 
    Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T et al. (2012) Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8:e1003012CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price TA, Wedell N (2008) Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 134:99–111PubMed 

    Google Scholar 
    Ros VID, Breeuwer JAJ (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity 102:413–422CAS 
    PubMed 

    Google Scholar 
    Ross L, Langenhof MB, Pen I, Beukeboom LW, West SA, Shuker DM (2010a) Sex allocation in a species with paternal genome elimination: the roles of crowding and female age in the mealybug Planococcus citri. Evol Ecol Res 12:89–104Ross L, Pen I, Shuker DM (2010b) Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol Rev 85:807–828Ross PA, Ritchie SA, Axford JK, Hoffmann AA (2019) Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Negl Trop Dis 13:e0007357PubMed 
    PubMed Central 

    Google Scholar 
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CAS 

    Google Scholar 
    Seidelmann K, Ulbrich K, Mielenz N (2010) Conditional sex allocation in the red mason bee, Osmia rufa. Behav Ecol Sociobiol 64:337–347
    Google Scholar 
    Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS (2019) The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc R Soc B: Biol Sci 286:20191677CAS 

    Google Scholar 
    Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stearns SC (1992) The evolution of life histories. Oxford University Press.Stouthamer R, Hurst GD, Breeuwer JA (2002) Sex ratio distorters and their detection. Sex ratios. Concepts and research methods. In: Hardy ICW ed. Sex Ratios Concepts and Research Methods. Cambridge University Press, Cambridge, p 195–215
    Google Scholar 
    Turelli M (1994) Evolution of incompatibility‐inducing microbes and their hosts. Evolution 48:1500–1513PubMed 

    Google Scholar 
    Vala F, Breeuwer JAJ, Sabelis MW (2003) Sorting out the effects of Wolbachia, genotype and inbreeding on life-history traits of a spider mite. Exp Appl Acarol 29:253–264CAS 
    PubMed 

    Google Scholar 
    Varikou K, Tsitsipis I, Alexandrakis V, Hoddle M (2009) Effect of temperature on the development and longevity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 102:835–841
    Google Scholar 
    Varikou K, Birouraki A, Tsitsipis I, Sergentani CHR (2012) Effect of temperature on the fecundity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 105:60–65
    Google Scholar 
    Vavre F, Fleury F, Varaldi J, Fouillet P, Bouleatreau M (2000) Evidence for female mortality in Wolbachia‐mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution 54:191–200CAS 
    PubMed 

    Google Scholar 
    Vavre F, Fouillet P, Leury F (2003) Between‐and within‐host species selection on cytoplasmic incompatibility‐inducing Wolbachia in haplodiploids. Evolution 57:421–427PubMed 

    Google Scholar 
    Wang YB, Ren FR, Yao YL, Sun X, Walling LL, Li NN et al. (2020) Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME J 14:2923–2935CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B: Biol Sci 282:20150249
    Google Scholar 
    Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci USA 108:10863–10870CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werren JH, Charnov EL (1978) Facultative sex ratios and population dynamics. Nature 272:349–350CAS 
    PubMed 

    Google Scholar 
    Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751CAS 
    PubMed 

    Google Scholar 
    Werren JH, Beukeboom LW (1998) Sex determination, sex ratios, and genetic conflict. Annu Rev Ecol Evol Syst 29:233–261
    Google Scholar 
    White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102:483–489CAS 
    PubMed 

    Google Scholar 
    Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada (7-12May 2011). ACM, New York, NY, p 143–146Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111PubMed 

    Google Scholar 
    Zulkifli AN, Zakeri HA, Azmi WA (2018) Food consumption, developmental time, and protein profile of the digestive system of the red palm weevil, Rhynchophorus ferrugineus (Coleptera: Dryophthoridae) larvae reared on three different diets. J Insect Sci 18:1–7CAS 

    Google Scholar  More