More stories

  • in

    Effects of reduced salinity caused by reclamation on population and physiological characteristics of the sesarmid crab Chiromantes dehaani

    1.Chen, L. et al. Spatiotemporal dynamics of coastal wetlands and reclamation in the Yangtze estuary during past 50 years (1960s–2015). Chin. Geogr. Sci. 28(3), 386–399 (2018).
    Google Scholar 
    2.Lv, W. et al. Effect of freshwater inflow on self-restoration of macrobenthic diversity in seaward intertidal wetlands influenced by reclamation projects in the Yangtze estuary, China. Mar. Pollut. Bull. 138, 177–186 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Lv, W. et al. Loss and selfrestoration of macrobenthic diversity in reclamation habitats of estuarine islands in Yangtze Estuary, China. Mar. Pollut. Bull. 103, 128–136 (2016).CAS 
    PubMed 

    Google Scholar 
    4.Matsuda, O. & Kokubu, H. Recent coastal environmental management based on new concept of Satoumi which promotes land-ocean interaction: A case study in Japan. Estuar. Coast. Shelf S 183, 179–186 (2016).ADS 

    Google Scholar 
    5.Wang, J. et al. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary. Ecol. Eng. 34, 57–64 (2008).CAS 

    Google Scholar 
    6.Lee, S. Y. & Khim, J. S. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia. Chemosphere 168, 765–776 (1998).ADS 

    Google Scholar 
    7.Wang, L. The complete larval development of Sesarma dehaani. J. Shanghai Fisheries Univ. 10(3), 199–206 (2001).CAS 

    Google Scholar 
    8.Liu, Z. et al. Different effects of reclamation methods on macrobenthos community structure in the Yangtze Estuary, China. Mar. Pollut. Bull. 127, 429–436 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Henry, R. P., Lucu, C., Onken, H. & Weihrauch, D. Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front. Physiol. 3, 431 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.McNamara, J. C. & Faria, S. C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: A review. J. Comp. Physiol. B. 182(8), 997–1014 (2012).CAS 
    PubMed 

    Google Scholar 
    11.Thabet, R., Ayadi, H., Koken, M. & Leignel, V. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia 799(1), 1–20 (2017).CAS 

    Google Scholar 
    12.Boonsanit, P. & Pairohakul, S. Effects of salinity on haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in the male mud crab Scylla olivacea (Herbst, 1796). Mar. Biol. Res. 17(1), 86–97 (2021).
    Google Scholar 
    13.Wang, R. et al. Osmotic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in mature Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura) exposed to different salinities. Crustaceana 85(12–13), 1431–1447 (2012).
    Google Scholar 
    14.Garçon, D. P. et al. Na+, K+-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): Modulation of ATP hydrolysis by the biogenic amines spermidine and spermine. J. Membr. Biol. 244, 9–20 (2011).PubMed 

    Google Scholar 
    15.Jiang, S. & Xu, Q. Influence of salinity stress on the activity of gill Na+/K+-ATPase in swimming crab(Portunus trituberculatus). J. Fish. China 35(10), 1475–1480 (2011).CAS 

    Google Scholar 
    16.Mo, J. L., Devos, P. & Trausch, G. Active absorption of Cl– and Na+ in posterior gills of Chinese crab, Eriocheir sinensis: modulation by dopamine and cAMP. J. Crust. Biol. 23, 505–512 (2003).
    Google Scholar 
    17.Charmantier, G. Ontogeny of osmoregulation in crustaceans: A review. Invertebr. Reprod. Dev. 33(2–3), 177–190 (1998).CAS 

    Google Scholar 
    18.Vargas-Chacoff, L. et al. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish Physiol. Biochem. 41, 1369–1381 (2015).CAS 
    PubMed 

    Google Scholar 
    19.Wang, R. et al. The response of digestive enzyme activity in the mature Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura), to gradual increase of salinity. Sci. Mar. 77(2), 323–329 (2013).
    Google Scholar 
    20.Li, E. et al. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274, 80–86 (2008).CAS 

    Google Scholar 
    21.Asaro, A., del Valle, J. C. & López Mañanes, A. A. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): Partial characterization and response to low environmental salinity. Sci. Mar. 75, 517–524 (2011).CAS 

    Google Scholar 
    22.Sǒderhǎll, I. et al. Hemocyte production andmaturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev. Comp. Immunol. 97(8), 661–672 (2004).
    Google Scholar 
    23.Liu, S., Jiang, X., Mou, H., Wang, H. & Guan, H. Effects of immunopoiysaccharide on LSZ, ALP, ACP and POD activities of Penaeus chinensis serum. Oceanol. Limnol. Sin. 30(3), 278–283 (1999).CAS 

    Google Scholar 
    24.Ma, Z., Zhang, F. & Jing, A. Overview and graph theory of the immune system of crustacean. Aquacul. Sci. Technol. 11(8), 19–23 (2010).CAS 

    Google Scholar 
    25.Gu, Q. & He, L. Analysis of hemolymph osmotic pressure in crab (Eriocheir sinensis H. Milne Edwards) during oogenesis. Acta Zool. Sin. 36(2), 165–171 (1990).
    Google Scholar 
    26.Esser, L. J. & Cumberlidge, N. Evidence that salt water may not be a barrier to the dispersal of Asian freshwater crabs (Decapoda: Brachyura: Gecarcinucidae and potamidae). Raffles B. Zool. 59(2), 259–268 (2011).
    Google Scholar 
    27.Novo, M. S., Miranda, R. B. & Bianchini, A. Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 323(2), 118–137 (2005).CAS 

    Google Scholar 
    28.Huong, D. T. T., Yang, W., Okuno, A. & Wilder, M. N. Changes in free amino acids in the hemolymph of giant freshwater prawn Macrobrachium rosenbergii exposed to varying salinities: Relationship to osmoregulatory ability. Comp. Biochem. Phys. A 128(2), 317–326 (2001).CAS 

    Google Scholar 
    29.Malmsten, M. & Larsson, A. Immobilization of trypsin on porous glycidyl methacrylate beads: Effects of polymer hydrophilization. Colloid. Surf. B 18, 277–284 (2000).CAS 

    Google Scholar 
    30.Hosoi, M. et al. Effect of salinity change on free amino acid content in Pacific oyster. Fish. Sci. 69(2), 395–400 (2003).CAS 

    Google Scholar 
    31.Wang, G. D., Xu, K. F., Tian, X. L., Dong, S. L. & Fang, Z. H. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole (Cynoglossus semilaevis) at different salinities. J. Ocean Univ. China 14(5), 881–887 (2015).ADS 
    CAS 

    Google Scholar 
    32.Johnston, D. & Freeman, J. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol. Bull. 208, 36–46 (2005).CAS 
    PubMed 

    Google Scholar 
    33.Zhang, Y. & Tong, C. Stomach content characteristics and feeding preference of Chiromantes dehaani in the salt marsh of Yangtze estuary. Chinese J. Ecol. 37(7), 2059–2066 (2018).
    Google Scholar 
    34.Ye, Y. et al. Comparative study on some traits of male and female Eriocheir sinensis raised in pond. Contemp. Aquacult. 38(4), 7–8 (2000).
    Google Scholar 
    35.Han, S. & Guan, W. Growth and maturity of Chiromantes dehaani in Dazhi River Estuary. Trans. Oceanol. Limnol. 15(1), 51–65 (2012).
    Google Scholar 
    36.Li, W., Guan, Y. & Yu, Z. Effects of salinity variation on outbreak of white spot syndrome and immunocompetence in Penaeus japonicas. Mar. Environ. Sci. 21(4), 6–9 (2002).
    Google Scholar 
    37.Pan, L. & Jiang, L. The effect of sudden changes in salinity and pH on immune activity of two species of shrimps. J. Ocean Univ. Qingdao 32(6), 903–910 (2002).CAS 

    Google Scholar 
    38.Gamperl, A. K., Vijayan, M. M. & Boutilier, R. G. Experimental control of stress hormone levels in fishes: Techniques and applications. Rev. Fish Biol. Fish. 4(2), 215–255 (1994).
    Google Scholar 
    39.Weerd, J. H. V. & Komen, J. The effects of chronic stress on growth in fish: A critical appraisal. Comp. Biochem. Phys. A 120(1), 107–112 (1998).
    Google Scholar 
    40.Barton, B. A., Schreck, C. B. & Barton, L. D. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Organ. 2(3), 173–185 (1987).CAS 

    Google Scholar 
    41.Zhao, Q., Qin, F., Li, C. & Jin, S. Preliminary study on the activities of enzymes in haemolymph of three species of marine crabs. J. Ningbo Univ. 22(1), 33–38 (2009).CAS 

    Google Scholar 
    42.Lv, W. et al. Macrobenthic diversity in protected, disturbed, and newly formed intertidal wetlands of a subtropical estuary in China. Mar. Pollut. Bull. 89, 259–266 (2014).CAS 
    PubMed 

    Google Scholar 
    43.Ma, Z., Jing, K., Tang, S. & Chen, J. Shorebirds in the eastern intertidal areas of Chongming island during the 2001 northern migration. Stilt 41, 6–10 (2002).
    Google Scholar 
    44.Sui, L., Wille, M., Cheng, Y., Wu, X. & Sorgeloos, P. Larviculture techniques of Chinese mitten crab Eriocheir sinensis. Aquaculture 315(1–2), 16–19 (2011).
    Google Scholar 
    45.Luo, M. et al. Community characteristics of macrobenthos in waters around the nature reserve of the Chinese sturgeon Acipenser sinensis and the adjacent waters in Yangtze River estuary. J. Appl. Ichthyol. 27, 425–432 (2011).
    Google Scholar 
    46.Yang, Z., Zhu, L., Zhao, X. & Cheng, Y. Effects of salinity stress on osmotic pressure, free amino acids, and immune-associated parameters of the juvenile Chinese mitten crab, Eriocheir sinensis. Aquaculture 549, 737776 (2022).
    Google Scholar 
    47.Tian, L., Tan, P., Yang, L., Zhu, W. & Xu, D. Effects of salinity on the growth, plasma ion concentrations, osmoregulation, non-specific immunity, and intestinal microbiota of the yellow drum (Nibea albiflora). Aquaculture 528, 735470 (2020).CAS 

    Google Scholar  More

  • in

    Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber

    1.Lloyd, G. T. et al. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275, 2483–2490 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    2.Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).CAS 
    PubMed 

    Google Scholar 
    3.Herrera-Flores, J. A., Stubbs, T. L. & Benton, M. J. Ecomorphological diversification of squamates in the Cretaceous. R. Soc. Open Sci. 8, 201961 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    4.Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 3667–3679 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    5.Roelants, K. et al. Global patterns of diversifcation in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, 900–903 (2012).
    Google Scholar 
    7.Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Buggs, R. J. The deepening of Darwin’s abominable mystery. Nat. Ecol. Evol. 1, 0169 (2017).
    Google Scholar 
    9.Friis, E. M., Crane, P. R., Pedersen, K. R., Stampanoni, M. & Marone, F. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551–554 (2015).PubMed 

    Google Scholar 
    10.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).11.Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 251–293 (2006).
    Google Scholar 
    12.Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286, 20190099 (2019).PubMed Central 

    Google Scholar 
    13.Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).PubMed 

    Google Scholar 
    14.Bond, W. J. & Midgley, J. J. Fire and the angiosperm revolutions. Int. J. Plant Sci. 173, 569–583 (2012).
    Google Scholar 
    15.Belcher, C. M. & Hudspith, V. A. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 213, 1521–1532 (2017).CAS 
    PubMed 

    Google Scholar 
    16.He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).PubMed 

    Google Scholar 
    17.Cruickshank, R. D. & Ko, K. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. J. Asian Earth Sci. 21, 441–455 (2003).
    Google Scholar 
    18.Shi, G. H. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).
    Google Scholar 
    19.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 166, 11345–11350 (2019).
    Google Scholar 
    20.Xing, L. D. & Qiu, L. Zircon U–Pb age constraints on the Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).
    Google Scholar 
    21.Xia, F. Y., Yang, G., Zhang, Q. & Shi, G. L. Amber Lives Through Time and Space (Beijing Science Press, 2015).22.Poinar, G. O. & Brown, A. E. A green algae (Chaetophorales: Chaetophoraceae) in Burmese amber. Hist. Biol. 33, 323–327 (2019).
    Google Scholar 
    23.Liu, Z. J., Huang, D., Cai, C. Y. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.Poinar, G. O. & Chambers, K. L. Tropidogyne pentaptera sp. nov., a new mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity 10, 135–140 (2017).
    Google Scholar 
    25.Poinar, G. O. & Chambers, K. L. Palaeoanthella huangii gen. and sp. nov., an Early Cretaceous flower (Angiospermae) in Burmese amber. SIDA 21, 2087–2092 (2005).
    Google Scholar 
    26.Goldblatt, P. An analysis of the flora of Southern Africa: its characteristics, relationships, and orgins. Ann. Mo. Bot. Gard. 65, 369–436 (1978).
    Google Scholar 
    27.Verboom, G. A. et al. in Fynbos: Ecology, Evolution and Conservation of a Megadiverse Region (eds Allsopp, N. et al.) 93–118 (Oxford Univ. Press, 2014).28.Hauenschild, F., Favre, A., Michalak, I. & Muellner-Riehl, A. N. The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). J. Biogeogr. 45, 2669–2677 (2018).
    Google Scholar 
    29.Onstein, R. E. & Linder, H. P. Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate. J. Ecol. 104, 665–677 (2016).
    Google Scholar 
    30.Brown, S., Scott, A. C., Glasspool, I. J. & Collinson, M. E. Cretaceous wildfires and their impact on the Earth system. Cretac. Res. 36, 162–190 (2012).
    Google Scholar 
    31.Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).CAS 
    PubMed 

    Google Scholar 
    32.Pillans, N. S. The genus Phylica. J. S. Afr. Bot. 8, 1–164 (1942).
    Google Scholar 
    33.Rebelo, T. et al. in The vegetation of South Africa, Lesotho and Swaziland (eds Mucina, L. & Rutherford, M. C.) 52–219 (South African National Biodiversity Institute, 2006).34.Gimingham, C. H. & Cowling, R. The ecology of fynbos: nutrients, fire and diversity. J. Ecol. 81, 195–196 (1993).
    Google Scholar 
    35.Richardson, J. E., Fay, M. F., Cronk, Q. C. B. & Cronk, M. W. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57, 816–827 (2003).PubMed 

    Google Scholar 
    36.Richardson, J. E. Molecular Systematics of the Genus Phylica L. With an Emphasis on the Island Species (Edinburgh Univ. Press, 1999).37.Schirarend, C. & Köhler, E. World Pollen and Spore Flora: Rhamnaceae Juss (Scandinavian Univ. Press, 1993).38.Medan, D. & Schirarend, C. in Flowering plants · Dicotyledons (ed. Kubitzki, K.) 320–338 (Springer, 2004).39.Gotelli, M. M., Galati, B. G. & Medan, D. Morphological and ultrastructural studies of floral nectaries in Rhamnaceae. J. Torrey Bot. Soc. 144, 63–73 (2017).
    Google Scholar 
    40.Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans–a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).CAS 

    Google Scholar 
    41.Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).CAS 

    Google Scholar 
    42.Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191 (1995).
    Google Scholar 
    43.Belcher, C. M., Yearsley, J. M., Hadden, R. M., Mcelwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).CAS 

    Google Scholar 
    45.Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).CAS 

    Google Scholar 
    46.Poulsen, C. J., Tabor, C. & White, J. D. Long-term climate forcing by atmospheric oxygen concentrations. Science 348, 1238–1241 (2015).CAS 
    PubMed 

    Google Scholar 
    47.Hudspith, V. A. & Belcher, C. M. Fire biases the production of charred flowers: implications for the Cretaceous fossil record. Geology 45, 727–730 (2017).
    Google Scholar 
    48.Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 11–39 (2010).
    Google Scholar 
    49.Scott, A. C. The use of charcoal to interpret Cretaceous wildfires and volcanic activity. Glob. Geol. 22, 217–241 (2019).
    Google Scholar 
    50.Scott, A. C., Cripps, J. A., Nichols, G. J. & Collinson, M. E. The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 1–31 (2000).
    Google Scholar 
    51.Whtilock, C., Higuera, P. E., McWethy, D. B. & Briles, C. E. Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecol. J. 3, 6–23 (2010).
    Google Scholar 
    52.Bond, W. J. & Keeley, J. E. Fire as global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).PubMed 

    Google Scholar 
    53.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 

    Google Scholar 
    54.Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Paleogene boundary. Nat. Commun. 2, 193 (2011).PubMed 

    Google Scholar 
    55.Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. Bioscience 59, 593–601 (2009).
    Google Scholar 
    56.Scott, A. C. Burning Planet. The Story of Fire Through Time (Oxford Univ. Press, 2018).57.Scott, A. C. Fire: A Very Short Introduction (Oxford Univ. Press, 2020).58.Scott, A. C., Bowman, D. J. M. S., Bond, W. J., Pyne, S. J. & Alexander M. Fire on Earth: An Introduction (J. Wiley & Sons Press, 2014).59.Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).CAS 
    PubMed 

    Google Scholar 
    60.Lenton,T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M.) 289–308 (J. Wiley & Sons Press, 2013).61.Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R. & Kobylinska, J. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Ann. Mo. Bot. Gard. 86, 407–471 (1999).
    Google Scholar 
    62.He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).PubMed 

    Google Scholar 
    63.Cornwell, W. K. et al. Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytol. 206, 672–681 (2015).PubMed 

    Google Scholar 
    64.Lamont, B. B. & He, T. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evol. Biol. 12, 223 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    65.He, T., Lamont, B. B. & Manning, J. A. Cretaceous origin for fire adaptations in the Cape flora. Sci. Rep. 6, 34880 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. New Phytol. 191, 184–196 (2011).PubMed 

    Google Scholar 
    67.Midgley, J. & Bond, W. Pushing back in time, the role of fire in plant evolution. New Phytol. 191, 5–7 (2011).PubMed 

    Google Scholar 
    68.Scott, A. C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).
    Google Scholar 
    69.Midgley, J. J., Kruger, L. M. & Skelton, R. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae “fire-resisters”. S. Afr. J. Bot. 77, 381–386 (2011).
    Google Scholar 
    70.Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their non-laminarity. New Phytol. 207, 942–947 (2015).PubMed 

    Google Scholar 
    71.Lamont, B. B., He, T. & Yan, Z. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94, 903–928 (2019).PubMed 

    Google Scholar 
    72.Schwilk, D. W. & Kerr, B. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99, 431–442 (2002).
    Google Scholar 
    73.Kilian, D. & Cowling, R. M. Comparative seed biology and co-existence of two fynbos shrub species. J. Veg. Sci. 3, 637–646 (1992).
    Google Scholar 
    74.Hall, S. A., Newton, R. J., Holmes, P. M., Gaertner, M. & Esler, K. J. Heat and smoke pre‐treatment of seeds to improve restoration of an endangered Mediterranean climate vegetation type. Austral Ecol. 42, 354–366 (2017).
    Google Scholar 
    75.Ruprecht, E., Fenesi, A., Fodor, E. I., Kuhn, T. & Tklyi, J. Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspect. Plant Ecol. 17, 397–404 (2015).
    Google Scholar 
    76.Mohr, B. A. R. & Friis, E. M. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. Int. J. Plant Sci. 161, 155–167 (2000).
    Google Scholar 
    77.Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).CAS 
    PubMed 

    Google Scholar 
    78.Linder, H. P. Evolution of diversity: the Cape flora. Trends Plant Sci. 10, 536–541 (2005).CAS 
    PubMed 

    Google Scholar 
    79.Linder, H. P. The radiation of the Cape flora, southern Africa. Biol. Rev. 78, 597–638 (2003).CAS 
    PubMed 

    Google Scholar 
    80.Poinar, G. O. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 31, 1304–1309 (2019).
    Google Scholar 
    81.Oliveira, I. D. S. et al. Earliest onychophoran in amber reveals Gondwanan migration patterns. Curr. Biol. 26, 2594–2601 (2016).CAS 
    PubMed 

    Google Scholar 
    82.Poinar, G. O., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    83.Cai, C. Y. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 2175 (2019).
    Google Scholar 
    84.Zhang, W., Li, H., Shih, C., Zhang, A. & Ren, D. Phylogenetic analyses with four new Cretaceous bristletails reveal inter-relationships of Archaeognatha and Gondwana origin of Meinertellidae. Cladistics 34, 384–406 (2018).PubMed 

    Google Scholar 
    85.Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 5–6 (2019).
    Google Scholar 
    86.Metcalfe, I. in Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, J. D.) 25–41 (Backhuys Publishers Press,1998).87.Li, J., Wu, Y., Peng, J. & Batten, D. J. Palynofloral evolution on the northern margin of the Indian Plate, southern Xizang, China during the Cretaceous period and its phytogeographic significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 107–122 (2019).
    Google Scholar 
    88.Smith, A. G., Smith, D. G. & Funnell B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, 2004).89.Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).CAS 
    PubMed 

    Google Scholar 
    90.Coetzee, J. A. & Muller, J. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann. Mo. Bot. Gard. 71, 1088–1099 (1984).
    Google Scholar 
    91.De Villiers, S. E. & Cadman, A. The palynology of Tertiary sediments from a palaeochannel in Namaqualand, South Africa. Palaeontol. Afr. 34, 69–99 (1997).
    Google Scholar 
    92.De Villiers, S. E. & Cadman, A. An analysis of the palynomorphs obtained from Tertiary sediments at Koingnaas, Namaqualand, South Africa. J. Afr. Earth Sci. 33, 17–47 (2001).
    Google Scholar 
    93.Sandersen, A., Scott, L., McLachlan, I. R. & Hancox, P. J. Cretaceous biozonation based on terrestrial palynomorphs from two wells in the offshore Orange Basin of South Africa. Palaeontol. Afr. 46, 21–41 (2011).
    Google Scholar 
    94.Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (1988).
    Google Scholar 
    95.Scholtz, A. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus. 95, 1–109 (1985).
    Google Scholar 
    96.Sciscio, L. et al. Fluctuations in Miocene climate and sea levels along the south-western South African coast: inferences from biogeochemistry, palynology and sedimentology. Palaeontol. Afr. 48, 2–18 (2013).
    Google Scholar 
    97.Roberts, D. L. et al. Miocene fluvial systems and palynofloras at the southwestern tip of Africa: implications for regional and global fluctuations in climate and ecosystems. Earth Sci. Rev. 124, 184–201 (2013).
    Google Scholar 
    98.Roberts, D. L. et al. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa. Glob. Planet. Change 150, 1–23 (2017).
    Google Scholar 
    99.Grimaldi, D., Engel, M. S. & Nascimbene, P. Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 3361, 1–72 (2002).
    Google Scholar 
    100.Mao, Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).
    Google Scholar 
    101.Smith, R. D. & Ross, A. J. Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth Env. Sci. Trans. R. Soc. Edinb. 107, 239–247 (2018).
    Google Scholar 
    102.Schmidt, A. R. & Dilcher, D. L. Aquatic organisms as amber inclusions and examples from a modern swamp forest. Proc. Natl Acad. Sci. USA 104, 16581–16585 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Cole, L. E., Bhagwat, S. A. & Willis, K. J. Fire in the swamp forest: palaeoecological insights into natural and human-induced burning in intact tropical peatlands. Front. For. Glob. Change 2, 48 (2019).
    Google Scholar 
    104.Labandeira, C. C. in Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers (eds Laflamme, M. et al.) 163–216 (Cambridge Univ. Press, 2014).105.Seyfullah, L. J. et al. Production and preservation of resins–past and present. Biol. Rev. 93, 1684–1714 (2018).PubMed 

    Google Scholar 
    106.Putz, M. K. & Taylor, E. L. Wound response in fossil trees assemblages from Antarctica and its potential as a palaeoenvironmental indicator. IAWA J. 17, 77–88 (1996).
    Google Scholar 
    107.McKellar, R. C. et al. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers. Proc. R. Soc. B 278, 3219–3224 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).
    Google Scholar 
    109.Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl Acad. Sci. USA 109, 14796–14801 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).PubMed 

    Google Scholar 
    111.Donoghue, P. Evolution: the flowering of land plant evolution. Curr. Biol. 29, 753–756 (2019).
    Google Scholar 
    112.Thulin, M. et al. Family relationships of the enigmatic rosid genera Barbeya and Dirachma from the Horn of Africa region. Plant Syst. Evol. 213, 103–119 (1998).
    Google Scholar 
    113.Wilf, P., Carvalho, M. R., Gandolfo, M. A. & Cúneo, N. R. Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355, 71–75 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products

    1.Pennington, R. T., Lehmann, C. E. R. & Rowland, L. M. Tropical savannas and dry forests. Curr. Biol. 28, R541–R545 (2018).CAS 
    PubMed 

    Google Scholar 
    2.Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Change Biol. 26, 300–318 (2019).ADS 

    Google Scholar 
    3.Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Moro, M. F., Nic Lughadha, E., de Araújo, F. S. & Martins, F. R. A phytogeographical metaanalysis of the semiarid caatinga domain in Brazil. Bot. Rev. 82, 91–148 (2016).6.Terra, M., et al. Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic–Cerrado–Caatinga transition, Brazil. J. Plant Ecol. 11, 803–814 (2018).7.Leite, M. B., Xavier, R. O., Oliveira, P. T. S., Silva, F. K. G. & Silva Matos, D. M. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil. 426, 1–15 (2018).8.Silvertown, J., Araya, Y. & Gowing, D. Hydrological niches in terrestrial plant communities: a review. J. Ecol. 103, 93–108 (2014).
    Google Scholar 
    9.Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).ADS 

    Google Scholar 
    10.Congalton, R. G., Gu, J., Yadav, K., Thenkabail, P. & Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 6(12), 12070–12093 (2014).ADS 

    Google Scholar 
    11.Phiri, D. & Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 9(9), 967 (2017).
    Google Scholar 
    12.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8(1), 70 (2016).ADS 

    Google Scholar 
    13.Xiao, J. et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383 (2019).ADS 

    Google Scholar 
    14.Françoso, R. D. et al. Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status. Biodivers. Conserv. 29, 1477–1500 (2019).
    Google Scholar 
    15.Eiten, G. Delimitation of the cerrado concept. Plant Ecol. 36, 169–178 (1978).
    Google Scholar 
    16.Ribeiro, J.F. & Walter, B.M.T. As principais fitofisionomias do bioma Cerrado in Cerrado: ecologia e flora (ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F.) 151–212 (EMBRAPA, 2008).17.Oliveria, P.S. & Marquis, R.J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. (Columbia University Press, 2002).18.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).ADS 

    Google Scholar 
    19.European Space Agency. Data. https://climate.esa.int/en/projects/land-cover/data/ (2021).20.Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).PubMed 

    Google Scholar 
    21.Vourlitis, G. L. et al. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in Southern Mato Grosso. Soil Sci. Soc. Am. J. 77, 1370–1379 (2013).ADS 
    CAS 

    Google Scholar 
    22.Abrahão, A. et al. Soil types select for plants with matching nutrient-acquisition and use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J. Ecol. 107, 1302–1316 (2018).
    Google Scholar 
    23.de Assis, A. C. C., Coelho, R. M., da Silva Pinheiro, E. & Durigan, G. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol. 212, 1135–1147 (2011).24.Oliveira, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. 10, e1759 (2016).25.de Oliveira Xavier, R., Leite, M. B., Dexter, K. & da Silva Matos, D. M. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia. 190, 471–483 (2019).26.Zappi, D. C., Moro, M. F., Meagher, T. R. & Nic Lughadha, E. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front. Plant Sci. 8, (2017).27.Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G. & Meira-Neto, J. A. A. Pedology and plant physiognomies in the cerrado, Brazil. An. Acad. Bras. Ciênc. 85, 87–102 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Simon, M. F. & Pennington, T. Evidence for Adaptation to Fire Regimes in the Tropical Savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711–723 (2012).
    Google Scholar 
    29.de Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).
    Google Scholar 
    30.da Silva, D. M. & Batalha, M. A. Soil–vegetation relationships in cerrados under different fire frequencies. Plant Soil 311, 87–96 (2008).CAS 

    Google Scholar 
    31.Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora. 268, 151612 (2020).32.Lloyd, J. & Veenendaal, E. M. Are fire mediated feedbacks burning out of control? (2016)33.Bueno, M. L. et al. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. J. Ecol. 106, 2109–2120 (2018).
    Google Scholar 
    34.Alencar, A. et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 12, 924 (2020).ADS 

    Google Scholar 
    35.INPE. Projeto TerraClass Cerrado Mapeamento do Uso e Cobertura Vegetal do Cerrado. http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php (2019)36.Sano, E. E., Rosa, R., Brito, J. L. S. & Ferreira, L. G. Land cover mapping of the tropical savanna region in Brazil. Environ. Monit. Assess. 166, 113–124 (2009).PubMed 

    Google Scholar 
    37.Sano, E. E. et al. Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. J. Environ. Manag. 232, 818–828 (2019).
    Google Scholar 
    38.Monteiro, L. M. et al. Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodivers. Conserv. 29, 1701–1722 (2018).
    Google Scholar 
    39.Silva, J. F., Farinas, M. R., Felfili, J. M. & Klink, C. A. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J. Biogeogr. 33, 536–548 (2006).
    Google Scholar 
    40.Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).
    Google Scholar 
    41.Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gomes, L., Miranda, H. S. & Bustamante, M. M. C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 417, 281–290 (2018).43.Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).ADS 

    Google Scholar 
    44.Cava, M. G. B., Pilon, N. A. L., Ribeiro, M. C. & Durigan, G. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. J. Appl. Ecol. 55, 1164–1172 (2017).
    Google Scholar 
    45.Brancalion, P. H. S. et al. Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Dev. Perspect. 3, 15–17 (2016).
    Google Scholar 
    46.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B. 375, 20190120 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.MMA. Plano de Manejo Parque Nacional Chapada dos Veadeiros. Ministro de Estado do Meio Ambiente. Brasília. (2009).48.Hunke, P., Roller, R., Zeilhofer, P., Schröder, B. & Mueller, E. N. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg. 4, 31–43 (2015).
    Google Scholar 
    49.Sampaio, A.B. et. al. Guia de restauração do Cerrado: volume 1: semeadura direta. Embrapa Cerrados-Livro técnico (INFOTECA-E, 2015).50.Schmidt, I. B. et al. Tailoring restoration interventions to the grassland-savanna-forest complex in central Brazil. Restor. Ecol. 27, 942–948 (2019).
    Google Scholar 
    51.Schmidt, I. B. et al. Community-based native seed production for restoration in Brazil: the role of science and policy. Plant Biol. J. 21, 389–397 (2018).
    Google Scholar 
    52.Strassburg, B. B. N. et al. Author Correction: Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 4, 765–765 (2020).PubMed 

    Google Scholar 
    53.Assis, G. B., Pilon, N. A. L., Siqueira, M. F. & Durigan, G. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restor. Ecol. 29, (2020).54.Torello-Raventos, M. et al. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecol. Divers. 6, 101–137 (2013).
    Google Scholar 
    55.da Silva, D. P., Amaral, A. G., Bijos, N. R. & Munhoz, C. B. R. Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?. Acta Bot. Bras. 32, 47–54 (2017).
    Google Scholar 
    56.Munhoz, C. B. R. & Felfili, J. M. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota. Neotrop. 7, 205–215 (2007).
    Google Scholar 
    57.Franco, A. C. et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees 19, 326–335 (2004).
    Google Scholar 
    58.Oliveras, I. & Malhi, Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Phil. Trans. R. Soc. B. 371, 20150308 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    59.Cianciaruso, MV. & Batalha, MA. A year in a Cerrado wet grassland: a non-seasonal island in a seasonal savanna environment. Braz. J. Biol. 68, 495–501 (2008).60.MapBiomas. MapBiomas v5.0. https://mapbiomas.org (2021).61.Souza, C. M. Jr. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sens. 12, 2735 (2020).ADS 

    Google Scholar 
    62.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 

    Google Scholar 
    63.Crouzeilles, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect. Ecol. Conserv. 17, 80–83 (2019).
    Google Scholar 
    64.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).ADS 

    Google Scholar 
    65.Rosan, T. M. et al. Extensive 21st-Century Woody Encroachment in South America’s Savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).ADS 

    Google Scholar 
    66.Schwieder, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 52, 361–370 (2016).ADS 

    Google Scholar 
    67.Ribeiro, F. F. et al. Geographic Object-Based Image Analysis Framework for Mapping Vegetation Physiognomic Types at Fine Scales in Neotropical Savannas. Remote Sens. 12, 1721 (2020).ADS 

    Google Scholar 
    68.Jacon, A. D., Galvão, L. S., dos Santos, J. R. & Sano, E. E. Seasonal characterization and discrimination of savannah physiognomies in Brazil using hyperspectral metrics from Hyperion/EO-1. Int. J. Remote Sens. 38, 4494–4516 (2017).
    Google Scholar 
    69.Neves, A. K. et al. Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning. J. App. Remote Sens. 15, 044504–1–044504–23 (2021).70.de Souza Mendes, F., Baron, D., Gerold, G., Liesenberg, V. & Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered cerrado/amazon ecotone of nova mutum—mato grosso. Remote Sens. 11, 1161 (2019).ADS 

    Google Scholar 
    71.Sano, E. E., Ferreira, L. G., Asner, G. P. & Steinke, E. T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 28, 2739–2752 (2007).
    Google Scholar 
    72.Flores-Anderson, A.I., Herndon, K.E., Thapa, R.B. & Cherrington, E. The SAR handbook: comprehensive methodologies for forest monitoring and biomass estimation. (SERVIR, 2019).73.Bendini, H. N. et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth. Obs. Geoinf. 82, 101872 (2019).74.Bendini, H. N. et al. Combining environmental and Landsat analysis ready data for vegetation mapping: a case study in the Brazilian savanna biome. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B3–2020, 953–960 (2020).75.ECMWF. Climate reanalysis. https://climate.copernicus.eu/climate-reanalysis (2021).76.UNESCO. MINOR MODIFICATIONS PROPOSAL TO THE BOUNDARIES of Cerrado Protected Areas World Heritage: Chapada dos Veadeiros and Emas National Parks. (UNESCO Brasília, 2019)77.ICUN. Advisory mission to Cerrado Protected Areas World Heritage Property (Chapada Dos Veadeiros component) (Brazil). (International Union for Conservation of Nature, 2016)78.EMBRAPA. Sistema brasileiro de classificação dos solos. (EMBRAPA, 2006)79.IBGE. Mapa de Solos do Brasil do IBGE escala 1:250.000 https://www.ibge.gov.br/geociencias/downloads-geociencias.html (IBGE, 2020).80.Rodrigues, J. A. et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth. Obs. Geoinf. 78, 318–331 (2019).ADS 

    Google Scholar 
    81.NASA, MCD64A1 v6. https://lpdaac.usgs.gov/products/mcd64a1v006/ (2021)82.GEE. Earth Engine Data Catalog. https://developers.google.com/earth-engine/datasets (2021)83.Vreugdenhil, M. et al. Sensitivity of sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10, 1396 (2018).ADS 

    Google Scholar 
    84.Harfenmeister, K., Spengler, D. & Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using sentinel-1 backscatter data. Remote Sens. 11, 1569 (2019).ADS 

    Google Scholar 
    85.European Space Agency. Level-2A Algorithm Overview https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (2021)86.GEE. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (2021).87.GEE. USGS Landsat 8 Level 2, Collection 2, Tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (2021)88.Xue, J. & Su, B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017, 1353691 (2017).
    Google Scholar 
    89.Parente, L. & Ferreira, L. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens. 10, 606 (2018).ADS 

    Google Scholar 
    90.Hill, M. J., Zhou, Q., Sun, Q., Schaaf, C. B. & Palace, M. Relationships between vegetation indices, fractional cover retrievals and the structure and composition of Brazilian Cerrado natural vegetation. Int. J. Remote Sens. 38, 874–905 (2017).
    Google Scholar 
    91.Nomura, K. & Mitchard, E. More than meets the eye: using sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 10, 1693 (2018).ADS 

    Google Scholar 
    92.Hagen-Zanker, A. A computational framework for generalized moving windows and its application to landscape pattern analysis. Int. J. Appl. Earth. Obs. Geoinf. 44, 205–216 (2016).ADS 

    Google Scholar 
    93.Wantzen, K. M. et al. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 151, 70–79 (2012).CAS 

    Google Scholar 
    94.ESA. Copernicus DEM: Global and European Digital Elevation Model (COP-DEM). https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198 (2021)95.Breiman, L. Mach. Learn. 45, 5–32 (2001).96.Chen, D. & Wei, H. The effect of spatial autocorrelation and class proportion on the accuracy measures from different sampling designs. ISPRS J. Photogramm. Remote Sens. 64, 140–150 (2009).ADS 

    Google Scholar 
    97.Olofsson, P., Foody, G. M., Stehman, S. V. & Woodcock, C. E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129, 122–131 (2013).ADS 

    Google Scholar 
    98.Foody, G. M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 80, 185–201 (2002).ADS 

    Google Scholar 
    99.Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M. & Alves, G. F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 65, 1132 (2014).100.Oliveira, J. et al. Choosing pasture maps: An assessment of pasture land classification definitions and a case study of Brazil. Int. J. Appl. Earth. Obs. Geoinf. 93, 102205 (2020).101.Pereira, O., Ferreira, L., Pinto, F. & Baumgarten, L. Assessing pasture degradation in the Brazilian cerrado based on the analysis of MODIS NDVI time-series. Remote Sens. 10, 1761 (2018).ADS 

    Google Scholar 
    102.Meirelles, M.L., Ferreira, E.A.B. and Franco, A.C. Dinâmica sazonal do carbono em campo úmido do cerrado. Embrapa Cerrados-Documentos (INFOTECA-E, 2006).103.França, A. M. S., Paiva, R. J. O., Sano, E. E. & Carvalho, A. M. Estimates for carbon stocks in soil under humid grassland areas in the federal district of Brazil. OJE 04, 777–787 (2014).
    Google Scholar 
    104.Silveira, F. A. O. et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. 403, 129–152 (2015).
    Google Scholar 
    105.Pereira, E. G., Siqueira-Silva, A. I., de Souza, A. E., Melo, N. M. J. & Souza, J. P. Distinct ecophysiological strategies of widespread and endemic species from the megadiverse campo rupestre. Flora 238, 79–86 (2018).
    Google Scholar 
    106.Moreira, S. N., Pott, V. J., Pott, A., da Silva, R. H. & Júnior, G. A. D. Flora and vegetation structure of Vereda in southwestern Cerrado. Oecol. Aust. 23, 776–798 (2019).
    Google Scholar 
    107.Pinto, J. R. R., Lenza, E. & Pinto, A. de S. Composição florística e estrutura da vegetação arbustivo-arbórea em um cerrado rupestre, Cocalzinho de Goiás, Goiás. Rev. Bras. Bot. 32, (2009).108.Gomes, L., Lenza, E., Maracahipes, L., Marimon, B. S. & Oliveira, E. A. de. Comparações florísticas e estruturais entre duas comunidades lenhosas de cerrado típico e cerrado rupestre, Mato Grosso, Brasil. Acta Bot. Bras. 25, 865–875 (2011).109.Gomes, D.L. Classificação fitofisionômica do cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM Landsat. (Dissertação de Mestrado, Brasília, 2008).110.Neyret, M. et al. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecol. Evol. 6, 5674–5689 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    111.Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).112.Morais, V. A. et al. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil. Cerne 19, 237–245 (2013).
    Google Scholar 
    113.Bispo, P. da C. et al. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12, 2685 (2020).114.Taberelli, M. & Gascon, C. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv. Biol. 19, 734–739 (2005).
    Google Scholar 
    115.Holder, D. N. H., Dockary, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288 (1983).
    Google Scholar 
    116.Li, J. & Roy, D. A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 9, 902 (2017).ADS 

    Google Scholar 
    117.Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sens. 12, 198 (2020).ADS 

    Google Scholar 
    118.Ramos, D. M., Diniz, P., Ooi, M. K. J., Borghetti, F. & Valls, J. F. M. Avoiding the dry season: dispersal time and syndrome mediate seed dormancy in grasses in Neotropical savanna and wet grasslands. J. Veg. Sci. 28, 798–807 (2017).
    Google Scholar 
    119.de Camargo, M. G. G., de Carvalho, G. H., Alberton, B. de C., Reys, P. & Morellato, L. P. C. Leafing patterns and leaf exchange strategies of a cerrado woody community. Biotropica. 50, 442–454 (2018).120.Rüetschi, M., Schaepman, M. & Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify deciduous and coniferous forests in Northern Switzerland. Remote Sens. 10, 55 (2017).ADS 

    Google Scholar 
    121.Sano, E. E., Ferreira, L. G. & Huete, A. R. Synthetic aperture radar (L band) and optical vegetation indices for discriminating the Brazilian savanna physiognomies: a comparative analysis. Earth Interact. 9, 1–15 (2005).
    Google Scholar 
    122.Joshi, N. et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 8, 70 (2016).ADS 

    Google Scholar 
    123.Nicolau, A. P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer, F. J. Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. Int. J. Appl. Earth. Obs. Geoinf. 94, 102214 (2021).124.Notarnicola, C. & Posa, F. Inferring vegetation water content from C- and L-band SAR images. IEEE Trans. Geosci. Remote Sens. 45, 3165–3171 (2007).ADS 

    Google Scholar 
    125.El Hajj, M., Baghdadi, N., Bazzi, H. & Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 11, 31 (2018).ADS 

    Google Scholar 
    126.JAXA. Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map. https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm (JAXA, 2021).127.Zimbres, B. et al. Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manag. 499, 119615 (2021).128.Ryan, C. M. et al. Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob. Change Biol. 18, 243–257 (2011).ADS 

    Google Scholar 
    129.Yu, Y. & Saatchi, S. Sensitivity of L-Band SAR backscatter to aboveground biomass of global forests. Remote Sens. 8, 522 (2016).ADS 

    Google Scholar 
    130.Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the cerrado ground layer. J. Ecol. 109, 154–166 (2020).
    Google Scholar 
    131.Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora. 268, 151613 (2020).132.Boschetti, L. et al. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 235, 111490 (2019).133.Humber, M. L., Boschetti, L., Giglio, L. & Justice, C. O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth. 12, 460–484 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    134.Arruda, V. L. S., Piontekowski, V. J., Alencar, A., Pereira, R. S. & Matricardi, E. A. T. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 22, 100472 (2021).135.Santos, F. L. M. et al. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote Sens. 41, 8300–8327 (2020).
    Google Scholar 
    136.Marques, E. Q. et al. Redefining the Cerrado-Amazonia transition: implications for conservation. Biodivers. Conserv. 29, 1501–1517 (2019).
    Google Scholar 
    137.Marimon, B. S. et al. Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecol. Divers. 7, 281–292 (2013).
    Google Scholar 
    138.Mellor, A., Boukir, S., Haywood, A. & Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 105, 155–168 (2015).ADS 

    Google Scholar 
    139.DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science. 353, 1383–1387 (2016). More

  • in

    Species characteristics and cultural value of stone wall trees in the urban area of Macao

    Species composition of stone wall treesFamilies and genera of stone wall treesThere were 96 stone wall trees belonging to 6 genera and 5 families in Macao. Among them, Moraceae and Ficus appeared the most frequently, both reaching 85 times, accounting for 88.5% (Table 1). It showed that Moraceae, a kind of tropical distribution family, was dominant in the stone wall trees communities, which meant that stone wall trees species in Macao appeared distinctly tropical nature18.Table 1 Frequency of occurrence of stone wall Trees in different families and genera.Full size tableSpecies of stone wall treesThere were 16 species of the stone wall trees in Macao including Bridelia tomentosa, Celtis sinensis, Eriobotrya japonica, Ficus altissima, F. benjamina, F. elastica, F. hispida, F. microcarpa, F. pandurata, F. subpisocarpa, F. tinctoria subsp. gibbosa, F. rumphii, F. variegata, F. virens, Leucaena leucocephala, and Trema cannabina (Fig. 2).Figure 216 species of stone wall trees in Macao (photo was taken by Professor Qin Xingsheng).Full size imageBased on the frequency of occurrence of various tree species, the frequency was concentrated in the range of 1–5%. Among them, Ficus microcarpa had the highest frequency, reaching 58 times, with a frequency of 60.4% (Fig. 3). This tree species is robust, adaptable and fast growing, which is the main population of Ficus19.Figure 3Frequency distribution of stone wall tree species in Macao.Full size imageStone wall trees in the historic center of MacaoThe historic center of Macao, covering an area of about 2.8 km2, is the heartland of Macao’s historical and cultural heritage, which plays a significant role in the cultural heritage around the world18. The historic center of Macao provides valuable historical and cultural resources that enable Macao to transform into a world tourism center20.A total of 14 plots were located in the historic Center of Macao (Fig. 4), with 45 stone wall trees, accounting for 47.9% of the total number of trees in the survey. Among them, Jardim Luís de Camões has the largest number of 9 stone wall trees. The park, built in the mid-eighteenth century, is one of the oldest gardens in Macao and has the largest number of old trees in Macao. The park had provided good time and environmental conditions for the growth of stone wall trees.Figure 4(a) Schematic diagram of distribution and number of stone wall trees in the historic Center of Macao. (b) Schematic diagram of historic center of Macao. (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif).Full size imageAccording to Decree No. 56/84/M of the Macao Special Administrative Region Government Printing Department, immovable property that represents the creation of man, or the development of nature or technology and has cultural significance is considered tangible cultural property. The occurrence of the stone wall tree was inextricably linked to ancient wall-building techniques of that time, which was of great significance for the study of the technological development and ecological landscape of the historic center of Macao. The concept of “historic urban landscape” was proposed by Zhang Song20, who argued that cities were organisms in continuous evolution, emphasizing respect for the interrelationship between natural and man-made environments. The stone wall trees in the historic center of Macao have been associated with the local culture and ecology tightly and should be preserved as important urban landscape.Symbiotic relationship between tree and stone wallsAs shown in the table below (Table 2), it was found that most of the stone wall trees had root systems that were not only superficially attached to the wall but also extended to the top or bottom of the wall. In particular, Ficus spp. whose strong root system could closely mosaic with the wall, thus forming a strong symbiosis.Table 2 The relationship between the root system of the stone wall tree and the wall.Full size tableStone walls can imitate the traditional nature-accommodating features to permit spontaneous establishment of a diverse plant assemblage. Besides vegetative diversities in terms of species composition, growth form and biomass structure, stone walls can support a mass collection of urban wildlife and provide various ecosystem service. It is highly recommended that modern urban design be created to embrace stone wall landscape as an integral part of naturalistic or ecological design.Vision for the establishment of the stone wall tree trail system in the historic of MacaoThe traditional street environment in the Macao Peninsula is a kind of distinctive urban landscape, which can highlight the specificity and value of the urban context. The combination of the stone wall trees and walls, together with the traditional streets, form a spatial urban landscape. Starting from the location of the stone wall tree landscape, the dots and lines are prospective to promote the establishment of a comprehensive stone wall tree landscape trail system (Fig. 5), so that the public can make use of the existing biological resources to have a better understanding of the land on which they live.Figure 5Schematic diagram of the stone wall trees trail system on the Macao Peninsula (URL of the Macao map: https://www.d-maps.com/m/asia/china/macau/macau02.gif and the finished map is created by Meisi Chen through the Photoshop CS6 and Arc GIS 10.2).Full size imageSince 2012, the Macao Government has been implementing the “Strolling along Macao Street” project, which aims at studying and exploring the history and culture of the streets of Macao through an in-depth cultural tourism route and promoting it to different levels of society. The establishment of the stone wall tree trail system can rely on this project to raise the public’s awareness of the protection and cultural identity of the stone wall tree landscape through a variety of ways. For example, route design competition, photography competition and exhibition, recruitment of “Stonewall Tree Protection Ambassadors” and other forms of participation, so that the public could complete the “role change” in the high degree of such participation—from “onlookers” to “bystanders”.Survey results of associated plant speciesSpecies composition and occurrence of frequencyThe survey showed that there were 101 species of stone wall tree associated plants in Macao, under 88 genera and 51 families. Most associated plants belonged to Euphorbiaceae, Compositae, and Araceae.There were 85 species with a frequency of 1–5 times, accounting for 84.2% of total species. A total of 11 species appeared 11–15 times, accounting for 4.0% (Fig. 6). There were a total of 4 species that appeared more than 15 times. They were Cocculus orbiculatus, Pteris cretica, Paederia scandens, and Pyrrosia adnascens. Most of the associated species appeared only 1–5 times, indicating that most plants were selective and accidental for the growth conditions of stone wall sites.Figure 6Occurrence frequency in various species of associated plants.Full size imageLife form compositionHerbaceous plants with 37 species, accounting the percentage of 52.3% (Fig. 7), were dominant in the associated plant species because the seeds of herbaceous plants are lighter and can be propagated to the wall surface by wind force.Figure 7Life form of associated plants with stone wall trees in Macao.Full size imageSimilarity analysis of the associated plants in MacaoIn order to compare the similarity of associated plant species in different environment, the surveyed sample sites for this study were divided into three categories: motorized lanes, non-motorized lanes, and park habitats (Table 3). According to Jaccard’s similarity principle, Sj is extremely dissimilar when it is 0.00–0.25, and the analysis showed that the similarity of companion plant species in all three habitats was extremely dissimilar. Therefore, it indicated that the companion plants in different habitats had obvious diversity and uniqueness.Table 3 Jaccard similarity index for companion plant species composition among three habitats.Full size table More

  • in

    Integrated molecular and behavioural data reveal deep circadian disruption in response to artificial light at night in male Great tits (Parus major)

    ALAN advances timing of activity and BMAL1 expressionDaily cycles of activity were strongly affected by the ALAN treatment (GAMM, p = 0.001, Fig. 2A and Fig. S2; Table S4). In the 5 lux group birds were generally active 6–7 h before lights-on, whereas birds in the other two light treatments (0.5 and 1.5 lux) advanced morning activity to a much lesser extent. Because of the advanced onset of activity, 40% of the overall diel activity in the 5 lux group occurred during the night, compared to 11 and 14% in the 0.5 and 1.5 lux groups, and less than 1% in the control dark group. Thus, with increasing ALAN, nocturnal activity also increased (LMM, treatment p  0.1 for pairwise comparison), and thereafter their timing remained stable. The group exposed to 5 lux showed a much larger instantaneous phase advance of almost five hours (mean ± SEM = 289 ± 21 min), and thereafter continued to gradually phase-advance until reaching a stable phase after 10 days (interaction treatment × day, p  More

  • in

    Richard Leakey (1944–2022)

    OBITUARY
    28 January 2022

    Richard Leakey (1944–2022)

    Palaeontologist of human origins, conservationist and politician.

    Marta Mirazón Lahr

    0

    Marta Mirazón Lahr

    Marta Mirazón Lahr is professor of human evolutionary biology and prehistory at the University of Cambridge, UK. Leakey was a friend, colleague and supporter of her work in Turkana, where she directs research in human origins.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Download PDF

    Credit: William Campbell/Sygma/Getty

    Richard Leakey made palaeontological discoveries of lasting significance, and brought animal poaching to the world’s attention. His fossil finds at Koobi Fora on the shores of Lake Turkana, Kenya, transformed our understanding of the diversity of human ancestors. He directed Kenya’s national museum, reorganized the country’s wildlife services and headed Kenya’s civil service. He died aged 77, at home in the Ngong Hills, Kenya.In science, he liked exploration, big-picture problems and building institutions. He made huge strides in conservation, empowering organizations and deploying shock tactics. He entered politics, creating an opposition party, then worked in government, finally becoming its corruption watchdog. He mentored young Kenyan scholars, conservationists and artists who are now leaders in their field.Born in Nairobi, Richard was the middle child of pioneers in African palaeontology and archaeology Louis and Mary Leakey. He abandoned school at 16 to open an animal-trapping and safari business, earning enough to pay for flying lessons and his own small plane. In 1963, a mix of interest in his parents’ world and a wish to prove himself to them lured him into the study of the past, and he found his first important hominin fossil — a 1.5 million-year-old mandible of Paranthropus boisei — in 1964.
    Fifty years after Homo habilis
    In 1967, Leakey’s father asked him to direct an expedition to the Omo Valley of southern Ethiopia. There, Leakey found two Homo sapiens fossils now known to be 230,000 years old (C. M. Vidal et al. Nature https://doi.org/gn3794; 2022), key evidence of our species’ African origins. Flying over the eastern shore of Lake Turkana, he recognized the potential of sediments at Koobi Fora, which proved to be a trove of hominin fossils. The discovery of different hominin species living at the same time between 2 million and 1.5 million years ago (P. boisei, Homo habilis, Homo rudolfensis and Homo erectus) changed views of how humans evolved.In 1968, Leakey became director of the National Museums of Kenya, which became a hub of thriving research. Soon afterwards, he met the young British zoologist Meave Epps. They married after his first marriage ended, and became life-long personal and scientific partners. Their work with researchers dubbed the Hominid Gang, led by Kamoya Kimeu, resulted in the discovery of dozens of hominin fossils, including a new genus and four new species (Paranthropus aethiopicus, Australopithecus anamensis and Kenyanthropus platyops, as well as H. rudolfensis). A 1.6-million-year-old skeleton of a juvenile H. erectus proved to have grown more slowly than apes and faster than humans, giving insights into the evolution of human life-history.Leakey became involved in acrimonious scientific arguments — sometimes he was right, sometimes not — which, during the 1970s, gave an antagonistic tone to human-origins research. His health deteriorated, and he had his first kidney transplant (donated by his brother Philip) in 1980. In 1989, Kenya’s president, Daniel arap Moi, asked him to run the Kenya Wildlife Service (KWS). Leakey declared war on poachers, burnt the stockpile of Kenyan ivory and massively reduced elephant deaths. His controversial tactics had an impact on a web of corrupt practices and created serious enemies. In 1993, the plane he was piloting crashed; both his legs had to be amputated below the knee. Sabotage was rumoured.
    Human evolution’s ties to tectonics
    The relationship with Moi became increasingly hostile. In 1995, Leakey left KWS to create an opposition party, Safina, becoming a member of the Kenyan parliament in 1998. His time in opposition was tense. Leakey was beaten and received death threats. But Kenya needed large investments, and funders demanded assurances. Capitalizing on Leakey’s reputation for integrity, in 1998 Moi asked him to direct KWS again, and in 1999 to head the civil service. Over three years, Leakey raised hundreds of millions of dollars for Kenya and fought corruption.In 2002, he accepted a position at Stony Brook University, New York, that allowed him to live in Kenya and create the Turkana Basin Institute (TBI), which he chaired from 2005 until his death. TBI fostered a burst of discoveries: Miocene primates, hominins, the oldest stone tools in the world at 3.3 million years, evidence of prehistoric warfare, and the earliest monumental architecture in sub-Saharan Africa. In 2004, Leakey founded WildlifeDirect, a non-governmental conservation body, serving on its board for 10 years. In 2007, he became chair of Transparency International Kenya, continuing his battle against corruption.By this time, Leakey had skin cancer and progressively worse health. He underwent a second kidney transplant in 2006, with Meave as the donor, and a liver transplant in 2013. Yet, in 2015, he accepted President Uhuru Kenyatta’s request to return to KWS as chair until 2018. For the past six years, he worked to create a new Kenyan museum, called Ngaren — of which I am a board member — to celebrate science, evolution and humanity’s African origins.Richard was special — fun, insightful, generous, with a sharp sense of humour, and a fabulous cook and sommelier. He embraced life, good and bad, and imbued those around him with the sheer excitement of what could be done, discovered, resolved and enjoyed.

    Nature 602, 29 (2022)
    doi: https://doi.org/10.1038/d41586-022-00211-6

    Competing Interests
    M.M.L. is a member of the board of directors of Ngaren, a non-governmental organization founded by Richard Leakey to support the creation of a museum of evolution in Kenya.

    Related Articles

    Human evolution’s ties to tectonics

    The past, present and future of human evolution

    Fifty years after Homo habilis

    Obituary: Louis Leakey

    Collection: Human evolution

    Subjects

    History

    Evolution

    Conservation biology

    Politics

    Latest on:

    History

    From the archive
    News & Views 25 JAN 22

    Nobel nominators — which women will you suggest?
    Correspondence 18 JAN 22

    From the archive
    News & Views 18 JAN 22

    Evolution

    Where did Omicron come from? Three key theories
    News Feature 28 JAN 22

    The foreign trees that now reign over Asia’s jungles
    Research Highlight 27 JAN 22

    Evolution of inner ear neuroanatomy of bats and implications for echolocation
    Article 26 JAN 22

    Jobs

    Post-doc in Mathematics (Geometry and Mathematical Quantization)

    University of Luxembourg
    Luxembourg, Luxembourg

    Post-Doctoral Fellow in Mathematics (Statistics)

    University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) student position in autism and ADHD

    Karolinska Institutet, doctoral positions
    Stockholm, Sweden

    Proteomics Platform Scientist (m/f/d)

    Research Center for Molecular Medicine (CeMM), ÖAW
    Vienna, Austria More

  • in

    Syntax errors do not disrupt acoustic communication in the common cuckoo

    Study areaThe study was conducted in central Hungary, ca. 25–60 km south of Budapest, at around the settlements Alsónémedi (47°18′; 19°09′), Apaj (47°06′; 19°05′), Kunszentmiklós (47°01′; 19°07′) and Tass (47°01′; 19°01′) during the 2020 and 2021 breeding seasons. We also used heterospecific controls with Eurasian collared doves for comparisons conducted in the year 2016. In this study area common cuckoos can be found in high densities in their breeding season (May and June). They almost exclusively parasitize great reed warblers (Acrocephalus arundinaceus) locally, a large host which breeds in narrow reed-beds along small irrigation and flood-relief channels47.All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Local animal ethics regulations and agreements were followed for fieldwork. All work complied with the Hungarian laws, and the Middle-Danube-Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management, Budapest, provided permission for research (permit no. PE/KTF/17190-3/2015).Playback filesWe used cuckoo calls recorded in May between 2016 and 2019. Recording were made with a Telinga Universal parabola dish, equipped with a Sennheiser ME-62 microphone, a K6 powering module, a FEL MX mono preamp, and a Marantz PMD-620 MKII recorder (sampling rate: 48 kHz, 24-bit quality)30.We constructed ten different sound files for playback from the basic “cu-coo” calls:Heterospecific (negative) control(1) The calls of a neutral species from the local avifauna, the Eurasian collared dove, were used for interspecific vocalization control.Natural (positive) control(2) Normal (natural) “cu-coo” calls.Experimental treatments; one-note calls(3) Deleting the second note, i.e. contained “cu”, only.(4) Deleting the first note, i.e. contained “coo”, only.Two-note calls(5) Reversal of the basic “cu-coo” call, i.e. “coo-cu”.(6) Repeating the first note, and deleting the second note, i.e. “cu-cu”.(7) Repeating the second note, and deleting the first note, i.e. “coo-coo”.Three-note calls(8) Repeating the first note, i.e. “cu-cu-coo”.(9) Repeating the second note. i.e. “cu-coo-coo”.Three-note natural(10) Normal (but rare and context specific) “nat. cu-cu-coo”.The experimental 3-note variant of the calls (“cu-cu-coo”; call type No. (8)) differs from our natural 3-note calls (“nat. cu-cu-coo”; call type No. (10)) in two out of the three acoustic parameters (length: F1,18 = 79.258, P  More

  • in

    Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems

    1.Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.CAS 
    PubMed 

    Google Scholar 
    2.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    3.Buckley DH, Graber JR, Schmidt TM. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol. 1998;64:4333–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2000;66:499–508.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66:83–101.CAS 
    PubMed 

    Google Scholar 
    7.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.CAS 
    PubMed 

    Google Scholar 
    9.Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H, Martens-Habbena W, et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 2020;14:2596–609.
    Google Scholar 
    10.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–00420.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang Y, Huang J-M, Cui G-J, Nunoura T, Takaki Y, Li W-L, et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ Microbiol. 2019b;21:716–29.CAS 
    PubMed 

    Google Scholar 
    13.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome. 2020;8:78.PubMed 
    PubMed Central 

    Google Scholar 
    14.Wang B, Qin W, Ren Y, Zhou X, Jung M-Y, Han P, et al. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J. 2019a;13:3067–79.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Gaze WH, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:5494.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    17.Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, Zhou M, et al. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Mol Biol Evol. 2021;38:3637–48.PubMed 
    PubMed Central 

    Google Scholar 
    18.Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    19.Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol. 2008;66:331–42.PubMed 

    Google Scholar 
    20.Wang Z, Wang Z, Huang C, Pei Y. Vertical distribution of ammonia-oxidizing archaea (AOA) in the hyporheic zone of a eutrophic river in North China. World J Microbiol Biotechnol. 2014;30:1335–46.CAS 
    PubMed 

    Google Scholar 
    21.Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    22.Biller S, Mosier A, Wells G, Francis C. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol. 2012;3:252.23.Beman JM, Francis CA. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol. 2006;72:7767–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Auguet J-C, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol. 2011;77:1937–45.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Small GE, Bullerjahn GS, Sterner RW, Beall BFN, Brovold S, Finlay JC, et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol Oceanogr. 2013;58:276–86.CAS 

    Google Scholar 
    26.Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol. 2020;22:212–28.CAS 
    PubMed 

    Google Scholar 
    27.Auguet J-C, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME J. 2012;6:1786–97.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Podowski JC, Paver SF, Newton RJ, Coleman ML. Genome streamlining, proteorhodopsin, and organic nitrogen metabolism in freshwater nitrifiers. bioRxiv. 2021;2021.2001.2019.427344.29.Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotech. 2016;34:942–9.CAS 

    Google Scholar 
    30.Restrepo-Ortiz CX, Auguet J-C, Casamayor EO. Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol. 2014;16:689–700.CAS 
    PubMed 

    Google Scholar 
    31.Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, et al. Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J. 2020;14:2488–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome. 2020;8:151.PubMed 
    PubMed Central 

    Google Scholar 
    33.Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 2022;16:272–83.CAS 
    PubMed 

    Google Scholar 
    34.Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damste JS, Jeon CO, et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol. 2014;80:3645–55.PubMed 
    PubMed Central 

    Google Scholar 
    36.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    37.Li Y, Ding K, Wen X, Zhang B, Shen B, Yang Y. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep. 2016;6:23747.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ Sci Technol. 2021;55:2662–73.CAS 
    PubMed 

    Google Scholar 
    40.Xing P, Tao Y, Luo J, Wang L, Li B, Li H, et al. Stratification of microbiomes during the holomictic period of Lake Fuxian, an alpine monomictic lake. Limnol Oceanogr. 2020;65:S134–S148.
    Google Scholar 
    41.Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2017;84:e02132–02117.PubMed 
    PubMed Central 

    Google Scholar 
    42.Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2020;65:1471–88.43.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2016;10:1051–63.CAS 
    PubMed 

    Google Scholar 
    45.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 2018;12:1084–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.CAS 
    PubMed 

    Google Scholar 
    48.Mayr MJ, Zimmermann M, Guggenheim C, Brand A, Bürgmann H. Niche partitioning of methane-oxidizing bacteria along the oxygen–methane counter gradient of stratified lakes. ISME J. 2020;14:274–87.CAS 
    PubMed 

    Google Scholar 
    49.Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol. 2020;22:738–51.CAS 
    PubMed 

    Google Scholar 
    50.Tran PQ, Bachand SC, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 2021;15:1971–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Sauder LA, Engel K, Lo C-C, Chain P, Neufeld JD. Candidatus Nitrosotenuis aquarius, an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Appl Environ Microbiol. 2018;84:e01430-18.52.Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH, Tringe SG, et al. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J. 2015;9:1846–56.PubMed 
    PubMed Central 

    Google Scholar 
    53.Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio. 2020;11:e02475–02419.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol. 2019;21:3927–52.CAS 
    PubMed 

    Google Scholar 
    55.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in plateau lakes. Front Microbiol. 2019;10:2560–2560.PubMed 
    PubMed Central 

    Google Scholar 
    57.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 

    Google Scholar 
    58.Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA. 2013;110:11463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Grzymski JJ, Dussaq AM. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 2012;6:71–80.CAS 
    PubMed 

    Google Scholar 
    60.Bragg JG, Hyder CL. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc R Soc Lond B Biol Sci. 2004;271:S374–7.CAS 

    Google Scholar 
    61.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 

    Google Scholar 
    62.Baudouin-Cornu P, Schuerer K, Marlière P, Thomas D. Intimate evolution of proteins: Proteome atomic content correlates with genome base composition. J Biol Chem. 2004;279:5421–8.CAS 
    PubMed 

    Google Scholar 
    63.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of Candidatus Nitrosopelagicus brevis: An ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.CAS 
    PubMed 

    Google Scholar 
    65.Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Depth distributions of nitrite reductase (nirK) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environ Microbiol. 2019;21:4032–45.CAS 
    PubMed 

    Google Scholar 
    66.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science. 2015;350:aac9323.PubMed 

    Google Scholar 
    68.Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    69.Paver SF, Muratore D, Newton RJ, Coleman ML, Flynn TM. Reevaluating the salty divide: Phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018;3:e00232–00218.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Luo H, Csűros M, Hughes AL, Moran MA, Azam F, Zehr J. Evolution of divergent life history strategies in marine Alphaproteobacteria. MBio. 2013;4:e00373–00313.PubMed 
    PubMed Central 

    Google Scholar 
    72.Zaremba-Niedzwiedzka K, Viklund J, Zhao W, Ast J, Sczyrba A, Woyke T, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:R130.PubMed 
    PubMed Central 

    Google Scholar 
    73.Fillol M, Auguet J-C, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed 

    Google Scholar 
    74.Siuda W, Kiersztyn B. Urea in lake ecosystem: The origin, concentration and distribution in relation to trophic state of the Great Mazurian Lakes (Poland). Pol J Ecol. 2015;63:110–23. 114
    Google Scholar 
    75.Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    76.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    77.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E7946.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Carini P, Dupont Christopher L, Santoro, Alyson E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol. 2018;20:2112–24.CAS 
    PubMed 

    Google Scholar 
    79.Bogard MJ, Donald DB, Finlay K, Leavitt PR. Distribution and regulation of urea in lakes of central North America. Freshw Biol. 2012;57:1277–92.CAS 

    Google Scholar 
    80.Glibert PM, Harrison J, Heil C, Seitzinger S. Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry. 2006;77:441–63.CAS 

    Google Scholar 
    81.Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.PubMed 
    PubMed Central 

    Google Scholar 
    82.Tolar BB, Wallsgrove NJ, Popp BN, Hollibaugh JT. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities. Environ Microbiol. 2017;19:4838–50.CAS 
    PubMed 

    Google Scholar 
    83.Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.CAS 
    PubMed 

    Google Scholar 
    84.Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev. 2011;35:87–123.CAS 
    PubMed 

    Google Scholar 
    85.Blount P, Iscla I. Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiol Mol Biol Rev. 2020;84:e00055–00019.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Martinac B, Bavi N, Ridone P, Nikolaev YA, Martinac AD, Nakayama Y, et al. Tuning ion channel mechanosensitivity by asymmetry of the transbilayer pressure profile. Biophys Rev. 2018;10:1377–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol. 2016;18:1227–48.CAS 
    PubMed 

    Google Scholar 
    88.Jung H, Hilger D, Raba M. The Na+/L-proline transporter PutP. Front Biosci-Landmark. 2012;17:745–59.CAS 

    Google Scholar 
    89.Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11:777–88.CAS 
    PubMed 

    Google Scholar 
    90.Li D-C, Yang F, Lu B, Chen D-F, Yang W-J. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones. 2012;17:103–8.PubMed 

    Google Scholar 
    91.Qin W, Amin SA, Lundeen RA, Heal KR, Martens-Habbena W, Turkarslan S, et al. Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME J. 2017a;12:508–19.PubMed 
    PubMed Central 

    Google Scholar 
    92.Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol. 2001;183:1205–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Albers S-V, Jarrell KF. The archaellum: An update on the unique archaeal motility structure. Trends Microbiol. 2018;26:351–62.CAS 
    PubMed 

    Google Scholar 
    94.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    95.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2017b;67:5067–79.PubMed 

    Google Scholar 
    96.Dupuis M-È, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087.PubMed 

    Google Scholar 
    97.Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, et al. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol. 2019;21:2056–78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More