More stories

  • in

    Exploring how functional traits modulate species distributions along topographic gradients in Baxian Mountain, North China

    1.Díaz, S., Cabido, M. & Casanoves, F. Functional implications of trait-environment linkages in plant communities. Ecolog. Assem. Rules Perspect. Adv. Retreat. 26, 338–362 (1999).
    Google Scholar 
    2.Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18(2), 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x (2009).Article 

    Google Scholar 
    3.Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33(1), 125–159 (2002).
    Google Scholar 
    4.Brown, A. M. et al. The fourth-corner solution–using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5(4), 344–352. https://doi.org/10.1111/2041-210X.12163 (2014).Article 

    Google Scholar 
    5.Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24(6), 988–1000 (2013).
    Google Scholar 
    6.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35(8), 716–725 (2012).
    Google Scholar 
    7.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    8.Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T. & Svenning, J.-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31(2), 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x (2013).Article 

    Google Scholar 
    9.Burnett, B. N., Meyer, G. A. & McFadden, L. D. Aspect-related microclimatic influences on slope forms and processes, Northeastern Arizona. J. Geophys. Res. Earth Surf. 113(3), 129. https://doi.org/10.1029/2007JF000789 (2008).Article 

    Google Scholar 
    10.Hais, M., Chytrý, M. & Horsák, M. Exposure-related forest-steppe: a diverse landscape type determined by topography and climate. J. Arid Environ. 135, 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011 (2016).ADS 
    Article 

    Google Scholar 
    11.Holden, Z. A. & Jolly, W. M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest Ecol. Manag. 262(12), 2133–2141. https://doi.org/10.1016/j.foreco.2011.08.002 (2011).Article 

    Google Scholar 
    12.Dyer, J. M. Assessing topographic patterns in moisture use and stress using a water balance approach. Landscape Ecol. 24(3), 391–403. https://doi.org/10.1007/s10980-008-9316-6 (2009).Article 

    Google Scholar 
    13.Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecol. Manag. 262(8), 1507–1513. https://doi.org/10.1016/j.foreco.2011.06.052 (2011).Article 

    Google Scholar 
    14.Punchi-Manage, R. et al. Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J. Ecol. 101(1), 149–160. https://doi.org/10.1111/1365-2745.12017 (2013).Article 

    Google Scholar 
    15.Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. Forest Ecol. Manag. 183(1), 221–238. https://doi.org/10.1016/S0378-1127(03)00108-7 (2003).Article 

    Google Scholar 
    16.Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IForest-Biogeosciences and Forestry 9(4), 658 (2016).
    Google Scholar 
    17.Liu, J., Yunhong, T. & Slik, J. F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecol. Manag. 330, 75–81 (2014).
    Google Scholar 
    18.Díaz, S. et al. The global spectrum of plant form and function. Nature 529(7585), 167 (2016).ADS 
    PubMed 

    Google Scholar 
    19.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2), 213–227 (1998).CAS 

    Google Scholar 
    20.King, D. A. The adaptive significance of tree height. Am. Nat. 135(6), 809–828 (1990).
    Google Scholar 
    21.Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851–854 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    22.Mäkelä, A. Implications of the pipe model theory on dry matter partitioning and height growth in trees. J. Theor. Biol. 123(1), 103–120 (1986).ADS 

    Google Scholar 
    23.King, D. Tree dimensions: maximizing the rate of height growth in dense stands. Oecologia 51(3), 351–356 (1981).ADS 
    PubMed 

    Google Scholar 
    24.Hoch, G., Popp, M. & Körner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98(3), 361–374. https://doi.org/10.1034/j.1600-0706.2002.980301.x (2002).CAS 
    Article 

    Google Scholar 
    25.Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4), 445–459 (1998).ADS 
    PubMed 

    Google Scholar 
    26.Hoch, G. & Körner, C. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J. Ecol. 97(1), 57–66. https://doi.org/10.1111/j.1365-2745.2008.01447.x (2009).Article 

    Google Scholar 
    27.Hoch, G. & Körner, C. Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob. Ecol. Biogeogr. 21(8), 861–871. https://doi.org/10.1111/j.1466-8238.2011.00731.x (2012).Article 

    Google Scholar 
    28.Shi, P., Körner, C. & Hoch, G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct. Ecol. 22(2), 213–220. https://doi.org/10.1111/j.1365-2435.2007.01370.x (2008).Article 

    Google Scholar 
    29.Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants https://doi.org/10.1093/aobpla/plx054 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S. & Furbank, R. T. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell Environ. 27(7), 795–809. https://doi.org/10.1111/j.1365-3040.2004.01184.x (2004).CAS 
    Article 

    Google Scholar 
    31.Körner, C. & Hoch, G. A test of treeline theory on a montane permafrost island. Arct. Antarct. Alp. Res. 38(1), 113–119 (2006).
    Google Scholar 
    32.Muller-Landau, H. C. The tolerance–fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl. Acad. Sci. 107(9), 4242–4247 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lloret, F., Casanovas, C. & Peñuelas, J. Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13(2), 210–216. https://doi.org/10.1046/j.1365-2435.1999.00309.x (1999).Article 

    Google Scholar 
    34.Quero, J. L., Villar, R., Marañón, T., Zamora, R. & Poorter, L. Seed-mass effects in four Mediterranean Quercus species (Fagaceae) growing in contrasting light environments. Am. J. Bot. 94(11), 1795–1803. https://doi.org/10.3732/ajb.94.11.1795 (2007).Article 
    PubMed 

    Google Scholar 
    35.Hallett, L. M., Standish, R. J. & Hobbs, R. J. Seed mass and summer drought survival in a Mediterranean-climate ecosystem. Plant Ecol. 212(9), 1479. https://doi.org/10.1007/s11258-011-9922-2 (2011).Article 

    Google Scholar 
    36.McFadden, I. R. et al. Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology 100(3), e02591. https://doi.org/10.1002/ecy.2591 (2019).Article 
    PubMed 

    Google Scholar 
    37.Moles, A. T. & Westoby, M. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92(3), 372–383. https://doi.org/10.1111/j.0022-0477.2004.00884.x (2004).Article 

    Google Scholar 
    38.Shipley, B. et al. Predicting habitat affinities of plant species using commonly measured functional traits. J. Veg. Sci. 28(5), 1082–1095. https://doi.org/10.1111/jvs.12554 (2017).Article 

    Google Scholar 
    39.Willson, C. J. & Jackson, R. B. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol. Plant. 127(3), 374–382 (2006).CAS 

    Google Scholar 
    40.Peguero-Pina, J. J. et al. Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. and Abies pinsapo Boiss. Tree Physiol. 31(10), 1067–1075 (2011).PubMed 

    Google Scholar 
    41.Tyree, M. & Sperry, J. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Plant Biol 40, 19–36 (1989).
    Google Scholar 
    42.Wubbels, J. (2010). Tree Species Distribution in Relation to Stem Hydraulic Traits and Soil Moisture in a Mixed Hardwood Forest in Central Pennsylvania.43.Perez-Harguindeguy, N. et al. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64(8), 715–716 (2016).
    Google Scholar 
    44.Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221(3), 1457–1465 (2019).PubMed 

    Google Scholar 
    45.Ahrens, C. W., Rymer, P. D. & Tissue, D. T. Intra-specific trait variation remains hidden in the environment. New Phytol. 2, 1183–1185 (2021).
    Google Scholar 
    46.Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18(12), 1406–1419 (2015).PubMed 

    Google Scholar 
    47.Benito Garzón, M., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20(5), 766–778 (2011).
    Google Scholar 
    48.Henn, J. J. et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9, 1548 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Zhang, B. et al. Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Funct. Ecol. 34(12), 2622–2633 (2020).
    Google Scholar 
    50.Xu, H., Wang, H., Prentice, I. C., Harrison, S. P. & Wright, I. J. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytol. 2, 90387 (2021).
    Google Scholar 
    51.Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221(1), 155–168 (2019).CAS 
    PubMed 

    Google Scholar 
    52.Li, X., Lu, H., Yu, L. & Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over China: Direct validation and relative uncertainties. Remote Sens. 10(1), 148 (2018).ADS 

    Google Scholar 
    53.Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Sci. Rep. 3, 1069 (2007).
    Google Scholar 
    54.Gittleman, J. L. & Kot, M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39(3), 227–241 (1990).
    Google Scholar 
    55.Reich, P. B., Wright, I. J. & Lusk, C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17(7), 1982–1988 (2007).PubMed 

    Google Scholar 
    56.Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. Seeds Ecol. Regener. Plant Commun. 2, 31–57 (2000).
    Google Scholar 
    57.Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol. 26(1), 119–188 (2020).ADS 

    Google Scholar 
    58.Wang, H. et al. The China plant trait database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99(2), 1039 (2018).
    Google Scholar 
    59.Knapp, B. O., Wang, G. G., Clark, S. L., Pile, L. S. & Schlarbaum, S. E. Leaf physiology and morphology of Castanea dentata (Marsh.) Borkh., Castanea mollissima Blume, and three backcross breeding generations planted in the southern Appalachians, USA. New Forests 45(2), 283–293 (2014).
    Google Scholar 
    60.Chen, L. et al. Seed dispersal and seedling recruitment of trees at different successional stages in a temperate forest in northeastern China. J. Plant Ecol. 7(4), 337–346 (2014).
    Google Scholar 
    61.Marchi, S., Tognetti, R., Minnocci, A., Borghi, M. & Sebastiani, L. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen Sclerophyllous Mediterranean shrub (Olea europaea). Trees 22(4), 559 (2008).CAS 

    Google Scholar 
    62.Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15), 2865–2873 (2008).MathSciNet 
    PubMed 

    Google Scholar 
    63.Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10(3), 415–425. https://doi.org/10.1111/2041-210X.13119 (2019).Article 

    Google Scholar 
    64.Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78(4), 685–709 (2013).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    65.Boyd, K., Costa, V. S., Davis, J., & Page, C. D. (2012). Unachievable region in precision-recall space and its effect on empirical evaluation. in Proceedings of the International Conference on Machine Learning. International Conference on Machine Learning, 2012, 349. NIH Public Access.66.Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10(4), 565–577 (2019).
    Google Scholar 
    67.Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31(15), 2595–2597 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Keilwagen, J., Grosse, I. & Grau, J. Area under precision-recall curves for weighted and unweighted data. PloS One 9(3), e92209 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3), e0118432 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    70.R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.71.Schmitt, S. et al. Topography consistently drives intra-and inter-specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos 129(10), 1521–1530 (2020).
    Google Scholar  More

  • in

    Easy computation of the Bayes factor to fully quantify Occam’s razor in least-squares fitting and to guide actions

    How many parameters best describe data in muon spectroscopy?Here we find that the Bayes factor demands the inclusion of more physically-meaningful parameters than the BIC or significance tests. Figure 1a presents some data that might reasonably be fitted with as few as three or as many as 22 physically-meaningful parameters. We find that the Bayes factor encourages the inclusion of all these parameters until the onset of over-fitting. Even though many of them have fitted values that fail significance tests (i.e. are consistent with zero), their omission distorts the fitting results severely.Figure 1Full size imageFigure 1a shows an anti-level-crossing spectrum observed in photo-excited muon-spin spectroscopy26 from an organic molecule27. The data are presented in Fig. 2a of Ref.27 and are given in the SI. These spectra are expected to be Lorentzian peaks. Theory permits optical excitation to affect the peak position, the width and the strength (photosensitivity). In the field region over which the measurements are carried out, there is a background from detection of positrons, which has been subtracted from the data presented27. Wang et al.27 did not attempt to fit the data rigorously; they did report a model-independent integration of the data, which demonstrated a change in area and position.The model that we fit hypothesises one or more Lorentzian peaks, with optional photosensitivity on each fitting parameter and with optional linear backgrounds y = a + bx underlying the peaks, described by the full equation given in the SI, equation (S3). To do a single LS fit to all the data, we extend the data to three dimensions, (x gauss, y asymmetry, z) where z = 0 for data in the dark and z = 1 for photoexcited data. Including all the data in a single LS fit in this way, rather than fitting the dark and photoexcited data separately, simplifies both setting up the fit and doing the subsequent analysis.Figure 1b shows the evolution of the SBIC and the lnBF as the number of fitting parameters in the model is increased. Starting with a single Lorentzian peak, three parameters are required, peak position P, width W and intensity A. Three photosensitivity parameters ΔLP, ΔLW and ΔLA are then introduced successively to the fit, (open and small data points for n = 3–6). The SBIC decreases and the lnMLI scarcely increases. It is only with the inclusion of one background term (n = 7) that any figure of merit shows any substantial increase. There is no evidence here for photosensitivity. The weak peak around 7050 G does not seem worth including in a fit, as it is evidenced by only two or three data points and is scarcely outside the error bars. However, a good fit with two peaks (P1 ~ 7210 G, P2 ~ 7150 G, the subscripts 1 and 2 in accordance with the site labelling of Fig. 2a of Ref.27) can be obtained with just five parameters (P1, P2, A1, A2, W). This gives substantial increases in the SBIC and lnMLI, further increased when W1 and W2 are distinguished and then when the single background term and the three photosensitivity parameters ΔLP2, ΔLW2 and ΔLA2 are successively included (solid or large data points for n = 5–10 in Fig. 1b). The SBIC reaches its maximum here, at n = 10, and then decreases substantially when the other three photosensitivity parameters and the other three background terms are included. These additional parameters fail significance tests as well as decreasing the SBIC (Fig. 1b). Conventionally, the n = 10 fit would be accepted as best. The outcome would be reported as two peaks, with significant photo-sensitivities ΔLP2, ΔLW2 and ΔLA2 for all three of the 7150 G peak parameters, but no photosensitivity for the 7210 G peak (Table 1).Table 1 Photosensitivity results of fitting the data of Fig. 1a with 10, 16 and 19 parameters. Parameter units as implied by Fig. 1a.Full size tableThe Bayes factor gives a very different outcome. From 10 to 16 parameters, the Bayes factor between any two of these seven models is close to unity (Fig. 1b). That is, they have approximately equal probability. The Bayes factor shows that what the conventional n = 10 analysis would report is false. Specifically, it is not the case that ΔLP2, reported as − 14 ± 4 G, has a roughly ({raise0.5exhbox{$scriptstyle 2$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 3$}}) probability of lying between − 10 and − 18 G. That is not consistent with the roughly equal probability that it lies in the n = 16 range (− 24 ± 8 G). Table 1 shows that at n = 16, ΔLP2 is the only photosensitivity parameter to pass significance tests. ΔLA2, which had the highest significance level at n = 10, is now the parameter most consistent with zero. The other four are suggestively (about 1({raise0.5exhbox{$scriptstyle 1$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}})σ) different from zero.Since the Bayes factor has already radically changed the outcome by encouraging more physically-meaningful parameters, it is appropriate to try the 7050 G peak parameters in the fit. With only 28 data-points, we should be alert to over-fitting. We can include P3 and A3 (n = 18), and ΔLP3 (n = 19), but W3 and ΔLA3 do cause overfitting. Figure 1b shows substantial increases of both the SBIC and the lnMLI for n = 18 to n = 20, where the twentieth parameter is in fact ΔLA3. The symptom of over-fitting that we observe here is an increase in the logarithm of the Occam Factor (lnMLI − lnL), the values of which decrease, − 26.9, − 33.5, − 34.8, and then increase, − 33.4, for n = 16, 18, 19 and 20 respectively. Just as lnL must increase with every additional parameter, so should the Occam factor decrease, as the prior parameter volume should increase more with a new parameter than the posterior parameter volume. So we stop at n = 19. The outcome, Table 1, is that the uncertainties on the n = 16 parameters have decreased markedly. This is due to the better fit, with a substantial increase in lnL corresponding to reduced residuals on all the data. The 7210 G peak 2 now has photosensitivities on all its parameters, significant to at least the 2σ or p value ~ 0.05 level. And the photosensitivities ΔLW2 and ΔLA2, both so significant at n = 10, and already dwindling in significance at n = 16, are both now taking values quite consistent with zero. In the light of Table 1, we see that stopping the fit at n = 10 results in completely incorrect results—misleading fitted values, with certainly false uncertainties.Discriminating between models for the pressure dependence of the GaAs bandgapThe main purpose of this example is to show how the Bayes factor can be used to decide between two models which have equal goodness of fit to the data (equal values of lnL and BIC, as well as p values, etc.). This illustrates the distinction it makes between physically-meaningful and physically meaningless parameters. This example also shows how ML fitting can be used together with the Bayes factor to obtain better results. For details, see SI §7.Figure 2 shows two datasets for the pressure dependence of the bandgap of GaAs (data given in the SI). The original authors published quadratic fits, ({E}_{g}(P)={E}_{0}+bP+c{P}^{2}), with b = 10.8 ± 0.3 meV kbar−1 (Goñi et al.28) and 11.6 ± 0.2 meV kbar−1 (Perlin et al.29). Other reported experimental and calculated values for b ranged from 10.02 to 12.3 meV kbar−130. These discrepancies of about ± 10% were attributed to experimental errors in high-pressure experimentation. However, from a comparison of six such datasets, Frogley et al.30 were able to show that the discrepancies arose from fitting the data with the quadratic formula. The different datasets were reconciled by using the Murnaghan equation of state and supposing the band-gap to vary linearly with the density (see SI, §7, equations (S4) and (S5)30. The curvature c of the quadratic is constant, while the curvature of the density, due to the pressure dependence Bʹ of the bulk modulus B0, decreases with pressure—and the six datasets were recorded over very different pressure ranges, as in Fig. 2. So the fitted values of c, c0, were very different, and the correlation between b and c resulted in the variations in b0.Here, using the Bayes factor, we obtain the same result from a single dataset, that of Goñi et al.28 The two fits are shown in Fig. 2. They are equally good, with values of lnL and SBIC the same to 0.01. The key curvature parameters, c and ({text{B}}^{prime }), are both returned as non-zero by 13.5σ (SI, §7, Table S1), consequently both with p-values less than 10−18. However, c is a physically-meaningless parameter. The tightest constraint we have for setting its range is the values previously reported, ranging from 0 to 60 μeV kbar−2, so we use Δc = 100 μeV kbar−2. In contrast, ({text{B}}^{prime }) is known for GaAs to be 4.4931. For many other materials and from theory the range 4–5 is expected, so we use (Delta {text{B}}^{prime } = 1). The other ranges are same for both models (see SI §7). This difference gives a lnBF of 3.8 in favour of the Murnaghan model against the quadratic, which is strong evidence for it. Moreover, the value of ({text{B}}^{prime }) returned is 4.47 ± 0.33, in excellent agreement with the literature value. Had it been far out of range, the model would have to be rejected. The quadratic model is under no such constraint; indeed, a poor fit might be handled by adding cubic and higher terms ad lib. This justifies adding about 5 to lnBF (see “Background in fitting a carbon nanotube Raman spectrum” section), giving a decisive preference to the Murnaghan model, and the value of b it returns, 11.6 ± 0.3. Note the good agreement with the value from Perlin et al.29 If additionally we fix ({mathrm{B}}^{prime}) at its literature value of 4.4931, lnBF is scarcely improved, because the Occam factor against this parameter is small, but the uncertainty on the pressure coefficient, Ξ/B0, is much improved.When we fit the Perlin data, the Murnaghan fit returns ({text{B}}^{prime }) = 6.6 ± 2.4. This is outside range, and indicates that this data cannot give a reliable value—attempting it is over-fitting. However, it is good to fit this data together with the Goñi data. The Perlin data, very precise but at low pressures only, complement the Goñi data with their lower precision but large pressure range. We notice also that the Perlin data has a proportion of outlier data points. Weighted or rescaled LS fitting can handle the different precisions, but it cannot handle the outliers satisfactorily. Maximum Likelihood fitting handles both issues. We construct lnL using different pdfs P(r) for the two datasets, and with a double-Gaussian pdf for the Perlin data (see equation (S6) in the SI §7). Fixing ({text{B}}^{prime }) at 4.49, fitting with the same Ξ/B0 returns 11.42 ± 0.04 meV kbar−1. Separate Ξ/B0 parameters for the two datasets give an increase of lnL of 4.6, with values 11.28 ± 0.06 and 11.60 ± 0.04 meV kbar−1—a difference in b of 0.32 ± 0.07 meV kbar−1, which is significant at 4½σ. This difference could be due to systematic error, e.g. in pressure calibration. Or it could be real. Goñi et al.28 used absorption spectroscopy to measure the band-gap; Perlin et al.29 used photoluminescence. The increase of the electron effective mass with pressure might give rise to the difference. In any case, it is clear that high-pressure experimentation is much more accurate than previously thought, and that ML fitting exploits the information in the data much better than LS fitting.Figure 2GaAs band-gap. Data for Eg(P) in GaAs from Goñi et al.28 (
    ) and from Perlin et al.29 (
    ) are shown after subtraction of the straight line E0 + 8.5P to make the curvature more visible. The Perlin data is expanded × 10 on both axes for clarity. Two least-squares fits to the Goñi data are shown, polynomial (dashed red line) and Murnaghan (solid blue line). (Figure prepared using Mathematica 12.0, www.wolfram.com/mathematica/).Full size imageBackground in fitting a carbon nanotube Raman spectrumThis example demonstrates how the Bayes Factor provides a quantitative answer to the problem, whether we should accept a lower quality of fit to the data if the parameter set is intuitively preferable. It also provides a simple example of a case where the MLI calculated by Eq. (1) is in error and can readily be corrected (see SI §8 Fig. S3).The dataset is a Raman spectrum of the radial breathing modes of a sample of carbon nanotubes under pressure32. The whole spectrum at several pressures is shown with fits in Fig. 1 of Ref.32. The traditional fitting procedure used there was to include Lorentzian peaks for the clear peaks in the spectra, and then to add broad peaks as required to get a good fit, but without quantitative figures of merit and without any attempt to explain the origin of the broad peaks, and therefore with no constraints on their position, widths or intensities. The key issue in the fitting was to get the intensities of the peaks as accurately as possible, to help understand their evolution with pressure. Here, we take a part of the spectrum recorded at 0.23 GPa (the data is given in the SI.) and we monitor the quality of fit and the Bayes factor while parameters are added in four models. This part of the spectrum has seven sharp pseudo-Voigt peaks (Fig. 3a; the two strong peaks are clearly doublets). With seven peak positions Pi, peak widths Wi and peak intensities Ai, and a factor describing the Gaussian content in the pseudo-Voigt peak shape, there are already 22 parameters (for details, see SI §8). This gives a visibly very poor fit, with lnL = − 440, SBIC = − 510 and lnMLI = − 546. The ranges chosen for these parameters for calculating the MLI (see SI §8) are not important because they are used in all the subsequent models, and so they cancel out in the Bayes factors between the models.Figure 3Carbon nanotube Raman spectrum. In (a), the carbon nanotube Raman spectrum is plotted (black datapoints) with a fit (cyan solid line) using the Fourier model. The residuals for four good fits are shown, × 10 and displaced successively downwards (Fourier, Polynomial, Peaks and Tails; all at lnL about − 60, see text). The backgrounds are shown, × 8 (long dashed, chain-dotted, short dashed and solid, respectively. In (b), the evolution of the MLIs is shown against the number of parameters for these four models. (Figure prepared using Mathematica 12.0, www.wolfram.com/mathematica/).Full size imageTo improve the fit, in the Fourier model we add a Fourier background (y=sum {c}_{i}mathrm{cos}ix+{s}_{i}mathrm{sin}ix) (i = 0,..) and in the Polynomial model, we add (y=sum {a}_{i}{x}^{i}) (i = 0,..) for the background. In both, the variable x is centred (x = 0) at the centre of the fitted spectrum and scaled to be ± π or ± 1 at the ends. In the Peaks model we add extra broad peaks as background, invoking extra parameter triplets (Pi, Wi, Ai). These three models all gave good fits; at the stage shown in Fig. 3a they gave lnL values of − 65, − 54 and − 51 and BIC values of − 156, − 153 and − 148 respectively. Thus there is not much to choose between the three models, but it is noteworthy that they give quite different values for the intensities of the weaker peaks, with the peak at 265 cm−1 at 20.5 ± 1.1, 25.5 ± 1.3 and 27 ± 1.7 respectively (this is related to the curvature of the background function under the peak). So it is important to choose wisely.A fourth model was motivated by the observation that the three backgrounds look as if they are related to the sharp peaks, rather like heavily broadened replicas (see Fig. 3a). Accordingly, in the fourth model, we use no background apart from the zeroth term c0 or a0 to account for dark current). Instead, the peak shape is modified, giving it stronger, fatter tails than the pseudo-Voigt peaks (Tails model). This was done by adding to the Lorentzian peak function a smooth function approximating to exponential tails on both sides of the peak position (for details, see SI §8) with widths and amplitudes as fitting parameters. What is added may be considered as background and is shown in Fig. 3a. This model, at the stage of Fig. 3a, returned lnL = − 62, BIC = − 146, and yet another, much smaller value of 15.5 ± 1.0 for the intensity of the 265 cm−1 peak.The Tails model is intuitively preferable to the other three because it does not span the data space—e.g. if there was really were broad peaks at the positions identified by the Peaks model, or elsewhere, the Tails model could not fit them well. That it does fit the data is intuitively strong evidence for its correctness. The Bayes factor confirms this intuition quantitatively. At the stage of Fig. 3a, the lnMLI values are − 251, − 237 and − 223 for the Fourier, Poly and Peaks models, and − 211 for the Tails model. This gives a lnBF value of 12 for the Tails model over the Peaks model—decisive—and still larger lnBF values for these models over the Fourier and Poly models.All models can be taken further, with more fitting parameters. More Fourier or polynomial terms or more peaks can be added, and for the Tails model more parameters distinguishing the tails attached to each of the seven Lorentizian peaks. In this way, the three background models can improve to a lnL ~ − 20; the Tails model does not improve above lnL ~ − 50. However, as seen in Fig. 3b, the MLIs get worse with too many parameters, except when over-fitting occurs, as seen for the Poly model at 35 parameters. The Tails model retains its positive lnBF  > 10 over the other models.The other models can have an indefinite number of additional parameters—more coefficients or more peaks, to fit any data set. It is in this sense that they span the data space. The actual number used is therefore itself a fitting parameter, with an uncertainty perhaps of the order of ± 1, and a range from 0 to perhaps a quarter or a half of the number of data points m. We may therefore penalise their lnMLIs by ~ ln 4 m−1 or about − 5 for a few hundred data points. This takes Tails to a lnBF  > 15 over the other models—overwhelmingly decisive. This quantifies the intuition that a model that is not guaranteed to fit the data, but which does, is preferable to a model that certainly can fit the data because it spans the data space. It quantifies the question, how much worse a quality of fit should we accept for a model that is intuitively more satisfying. Here we accept a loss of − 30 on lnL for a greater gain of + 45 in the Occam factor. It quantifies the argument that the Tails model is the most worthy of further investigation because the fat tails probably have a physical interpretation worth seeking. In this context, it is interesting that in Fig. 3a fat tails have been added only to the 250, 265 and 299 cm−1 peaks; adding fat tails to the others did not improve the fit; however, a full analysis and interpretation is outside the scope of this paper. In the Peaks model it is not probable (though possible) that the extra peaks would have physical meaning. In the other two models it is certainly not the case that their Fourier or polynomial coefficients will have physical meaning. More

  • in

    Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region

    Study area and datasetThe study area covers all Estonia located between 57.5(^circ ) N, 21.5(^circ ) E and 59.8(^circ ) N, 28.2(^circ ) E. The study area is relatively flat with no steep slopes and altitudes ranging between 0 and 200m above the sea level. Data about events were collected directly from field books that contained information about the mowing activity’s start and end date and the covered area. Considering the main agricultural areas of the country, we consider 2000 fields in which events are geographically evenly distributed across all Estonia, as shown in Fig. 1. In total, data about 1800 mowing and 200 non-mown events were collected in 2018, based on manual labelling. During manual labelling, the specific mowing days were labelled based on the following: a) information recorded by farmers in field books regarding mowing days, b) domain experts knowledge about the most probable days for mowing based on the climate, weather, and field conditions, c) rapid decrease in the Normalized Difference Vegetation Index (NDVI) and rapid increase in the coherence compared to past measurements. The average field size is 6.0ha, and around 95% of the fields were mown during the year. 90% of the fields are in the range of (0.5-10)ha. The greatest density of the fields is located in Lääne-Viru, Tartu and Jõgeva countries. Grassland parcels vector layer is provided by Estonian Agricultural Registers and Information Board (ARIB)50. The satellite imagery used in the study is from Copernicus program that provides free open Earth observation data to help service providers, public authorities, and international organizations improve European citizens’ quality of life.Figure 1Geographic distribution of events used in this study (This map was created by QGIS version 3.16, which can be accessed on https://qgis.org/en/site/).Full size imageSentinel-1 and Sentinel-2 dataFor Sentinel-1 data, in total, 400 S1A/BSLCIW products acquired between 1st of May 20017 and 30th of October 2018, were processed. 87 products were from relative orbit number (RON)160, 62 from RON131, 84 from RON87, 93 from RON58, and 60 from RON29. These were organised into S1A/S1B 6-day pairs. Sentinel-2 provides high spatial resolution optical imagery to perform terrestrial observations with global coverage of the Earth’s land surface. Sentinel-2 data is provided by the European Space Agency (ESA) together with a cloud mask, which can filter clouds on the image with moderately good accuracy. 400 Sentinel-2A and -2B L2A products acquired between 1 May 2017 and 30 October 2018 were processed. Each Sentinel-2 image is a maximum of three days off from the closest Sentinel-1 image. Only the NDVI was derived from Sentinel-2. NDVI has been widely used in the classification of grassland24,51 and that is mainly due to its ability in limiting spectral noise. The spatial resolution of the derived Sentinel-2 NDVI feature is 10 m.MethodsThe goal of the analysis is to detect mowing events from Sentinel-1 (S-1) and Sentinel-2 (S-2) data. For this, coherence time series were calculated about every field in the database about the event. Average coherence of a field, imaging geometry parameters, imaging time and average NDVI were stored in a database. The database formation process involved preprocessing many satellite images where average coherence and NDVI value was calculated for every parcel for every available date (constrained by image availability and cloud cover). The overall scheme of the proposed methodology is illustrated in Fig. 2. First, the time-series data from S-1 and S-2 images are preprocessed. Then, the most important features are used in a deep neural network to predict mowing events. The model has a reject region option that enables the model to abstain from the prediction in case of uncertainty, which increases trust in the model.We used the Sentinel Application Platform (SNAP) toolbox for processing S-1 data. More specifically, we followed the same following pre-processing steps in16: apply orbit file, back-geocoding (using Shuttle Radar Topography Mission (SRTM) data), coherence calculation, deburst, terrain correction, and reprojection to the local projection (EPSG:3301). Lastly, we resampled the data to 4m resolution to preserve the maximum spatial resolution and square-shaped pixels. Because the study areas’ terrain is relatively flat, there are few topographic distortions in the SAR data. Each swath’s coherence was calculated independently. Only pixels totally inside the parcel boundaries (including the average window used for coherence computation) were utilized to calculate results, and any interference beyond the parcel limits was discarded. Pair-wise coherence was calculated with 6-day time step. The data was stored into a database using a forward-looking convention: coherence regarding date X refers to the coherence between S-1 images over the period between date X and X + 6 days. For preprocessing S-2 data, L1C and L2A Sentinel-2 products were obtained through Copernicus Open Access Hub6. Next, a rule-based cloud mask solution was applied52. Finally, the fourth and eighth bands were extracted to compute NDVI values.Figure 2Flowchart of the proposed approach to detect mowing events.Full size imageFeature extraction from Sentinel-1 dataCoherence is a normalized measure of similarity between two consecutive (same relative orbit) S-1 images. Interferometric 6 day repeat pass coherence in VV polarization (cohvv), and coherence in VH polarization (cohvh) are chosen features as they are shown to be sensitive to changes in vegetation and agricultural events25. The shorter the time interval after the mowing event and the first interferometric acquisition, the higher the coherence value. Generally, up to 24 to 36 days after a mowing event, coherence stays relatively high. Precipitation caused the coherence to drop, which disturbs the detection of a mowing event. The spatial resolution of the S-1 6-day repeat pass interferometric coherence is 70 m. Given two S-1 images (s_{1}) and (s_{2}), coherence is calculated as follows:$$begin{aligned} wp =frac{|langle s_{1}s*_{2}rangle |}{sqrt{langle s_{1}s*_{1}rangle | langle s_{2}s*_{2}rangle |}} end{aligned}$$
    (1)
    where (|langle s_{1}s*_{2}rangle |) is the absolute value of the spatial average of the complex conjugate product.Coherence between two S-1 images (s_1) and (s_2) reaches its maximum value of 1 when both images have the same position and physical characteristics of the scatters. In contrast, the coherence value declines when the position or properties of the scatters change.Feature extraction from Sentinel-2 dataNDVI is related to the amount of live green vegetation. Generally, NDVI increases and decreases over the season, indicating the natural growth decay of vegetation, while the significant drops in the NDVI indicate an agricultural event such as mowing. NDVI is derived from S2 images and is calculated as follows:$$begin{aligned} NDVI=frac{band8 – band4}{band8 + band4} end{aligned}$$
    (2)
    Figure 3Typical signature of NDVI and coherence in VV and VH polarisation for non mown field during the year.Full size imageFigure 4Field with single mowing event during the year.Full size imageFigure 5NDVI measurement for a field example with a single mowing event during the season.Full size imageFigures 3, 4 and 5 show different samples of mown and non mown fields. NDVI measurements are green, cohvh and cohvv are blue and black, respectively. For non mown field, the typical signature of NDVI during the year is shown in Fig. 3. For non mown field, the typical signature of NDVI during the season is a half-oval curve; coherence is not stable but remains at almost the same level without apparent trend changes, as shown in Fig. 3. An example of a field with a single mowing event during the season is shown in Fig. 4. A mowing event is characterized by a rapid increase in both cohvh and cohvv and a sharp decrease in NDVI, as observed at day 150 (See Fig. 4). Forty days later, a similar signature is probably not due to a mowing event but likely caused by drought during summer.Notably, NDVI measurements are irregular and relatively sparse. Around 75% of total NDVI measurements are invalid in Estonia, and the percentage is slightly lower in Southern Sweden and Denmark due to cloud cover. The Cloud mask indicates the percentage of cloud coverage and allows the cloudy and cloud-free pixels to be identified. Using the standard cloud mask technique by the European Space Agency (ESA) leads to outliers noticed in the sudden decrease in the NDVI. Figure 5 shows an extreme value of NDVI that is supposed to be an outlier due to high differences to the precedent and subsequent values. The outlier is marked with a yellow dot (NDVI=0.38), nearest previous (NDVI=0.75), and next (NDVI=0.78) measurements are marked with a blue colour.Sentinel-1 and Sentinel-2 data preprocessingTo detect NDVI outliers effectively, a good understanding of the data is needed. NDVI outliers due to cloud mask errors rarely co-occur together, and hence, they can be treated as independent events53. NDVI outliers are usually identified with a sudden drop to almost zero and do not form a sequence. It is enough to look at neighbouring measurements (one before and one after) to detect individual outliers. If the difference between the adjacent measurements is high, this is an outlier signature. Hence, outliers can be handled by iterating through every three consecutive NDVI measurements for a given field and checking the difference between the first and second values and between third and second values. Figure 6 shows the scatter plot of all three consecutive NDVI measurements. The Y-axis shows the difference between third and second NDVI values in a triplet, while X-axis represents the difference between second and first NDVI values in a triplet. Triplets with up to 7 days difference are shown in blue, and triplets from 7 to 14 days are shown in green. The points structure forms a rhombus shape with a small cloud of possible outliers in the upper left corner. To filter outliers from the list of actual mowing events, we only consider triplets within up to 10 days interval (as the mowing event signature can recover in 10 days). Knowing rhombus equation (the centre is approximately in (0, 0), and the side length is around 0.6), the filtering rule can be easily applied as follows:$$begin{aligned} ndvi_3 – 2 cdot ndvi_2 + ndvi_1 ge 0.6 end{aligned}$$
    (3)
    where ndvi_1, ndvi_2, and ndvi_3 are consecutive NDVI measurements within 10 days interval.All outliers are removed, which represent around 0.1% of NDVI measurements.Figure 6Scatter plot of NDVI triplets.Full size imageSmoothing is an essential pre-processing step for noisy features. In this work, cohvh and cohvv features are smoothed using different techniques, including exponential moving average (EMA), moving average54, and Kalman filter55. Smoothing using moving average is done by taking the averages of raw data sequences. The length of the sequence over which we take the average is called the filter width. Table 1 shows the performance of moving average smoothing technique using different values for the filter width. The results show that the best AUC-ROC of 0.9671 is achieved at a filter size of 7. The Kalman filter produces estimates of the current state variables and their uncertainties. Once the outcome of the subsequent measurement is observed, these estimates are updated using a weighted average, giving more weight to estimates with higher certainty. The AUC-ROC achieved using Kalman filter is 0.962. The EMA is done by taking averages of sequences of data, in addition to assigning weights to every data point. More specifically, as values get older, they are given exponentially decreasing weights. The smoothed cohvh and cohvv EMA for cohvh and cohvv are calculated using a recursive definition (i.e., from its previous value) as follows:$$begin{aligned}&cohvh_sm(cohvh_n, alpha ) = alpha cdot (cohvh_n) + (1 – alpha ) cdot cohvh_sm(cohvh_{n-1}, alpha ) end{aligned}$$
    (4)
    $$begin{aligned}&cohvv_sm(cohvv_n, alpha ) = alpha cdot (cohvv_n) + (1 – alpha ) cdot cohvv_sm(cohvv_{n-1}, alpha ) end{aligned}$$
    (5)
    where (cohvh_sm(cohvh_{n-1}, alpha )): exponential moving average for end of (cohvh_{n-1}). (cohvv_sm(cohvv_{n-1}, alpha )): exponential moving average for end of (cohvv_{n-1}). (alpha ): a smoothing parameter.The higher the smoothing parameter, the more it reacts to fluctuations in the original signal. The lower the smoothing parameter, the more the signal is smoothed. Experimentally, we found that the best value for (alpha ) to achieve the best AUC-ROC of 0.968 is (frac{1}{3}) as shown in Table 2. The different smoothing techniques achieve comparable performance. EMA technique was selected as it achieves slightly higher performance.Table 1 Performance of moving average smoothing using different filter width.Full size tableTable 2 Performance of EMA smoothing using different values of (alpha ).Full size tableDerived featuresNew derived features from S-1 and S-2 are extracted to improve the performance of the machine learning model. The features were derived based on the following knowledge about mowing events: coherence tends to increase. In contrast, ndvi tends to decrease after mowing events and, many farmers perform mowing during the same time of the year due to the good weather conditions. Such knowledge was elaborated with the derived features. In the following, we will go through the list of derived features considered in this study. Mixed coherence is derived from S-1 features to capture the overall coherence trend. Mixed coherence is a non-linear combination of cohvh and cohvv and is calculated as follows:$$begin{aligned} Mixed_coh = sqrt{cohvh cdot cohvv} end{aligned}$$
    (6)
    The date is an important feature for the model to adapt, as it is more likely to have mowing events in the summer rather than in early spring, especially in Estonia. The normalized day of the year is calculated as normalization improves the training process of the neural network. Some methods normalize features during the training process, such as Batch Normalization used in this study56. However, neighbouring batches could have entirely different normalization variables (batch mean and variance). At the same time, DOY is a feature susceptible to small changes, e.g., mowing prediction on day 108 or 109 could have drastically different meaning (weekend or working day, day with sunny weather or day with heavy rain). It implies that unified normalization of the DOY feature before training could help avoid the unwanted impact of Batch normalization and possible gradient computation issues. The normalized day of the year is calculated as follows:$$begin{aligned} t = frac{day_of_year}{365} end{aligned}$$
    (7)
    where (day_of_year) is the year’s day, which is a number between 1 and 365, January 1st is day 1.In addition, we use another time feature dt to capture the gaps in time series. dt is defined to be the normalized difference in days between the current measurement and the previous one. Normalization was performed with min-max scaling. dt is calculated as follows:$$begin{aligned} dt = frac{diff – min_diff}{max_diff – min_diff} end{aligned}$$
    (8)
    where (min_diff): the minimum difference in days between two previous consecutive measurements obtained from training data. (max_diff): the maximum difference in days between two previous consecutive measurements obtained from training data.Since mowing is characterized by an increase in the coherence and decline in the NDVI, it is important to capture the difference in the values of features and/or slopes of the features’ curves. In the following, we summarize the list of original and derived features extracted from Sentinel-1 and Sentinel-2 included in this study.

    ndvi Normalized difference vegetation index, obtained from Sentinel-2.

    cohvv Coherence in VV polarization, Sentinel-1 feature.

    cohvh Coherence in VH polarization, Sentinel-1 feature.

    t Normalized day of the year when the measurement is obtained.

    dt Normalized difference in days between current and previous measurement. The data was interpolated with a daily grid, this feature differentiated between interpolated data and real data by capturing the difference between valid (not interpolated) measurements.

    cohvv_sm Smoothed cohvv with exponential mowing average (with parameter (frac{1}{3})).

    cohvh_sm Smoothed cohvh with exponential moving average (with parameter (frac{1}{3})).

    mixed_coh Harmonic mean of cohvv and cohvh. The harmonic mean is chosen as one of the simplest options of non-linear combination.

    ndvi_diff Difference between current and previous NDVI measurements. This feature captures the decrease in the ndvi, which is highly related to mowing detection.

    cohvv_sm_diff difference between current and previous (cohvv_sm) measurements. This feature captures the increase in the (cohvv_sm), which is highly related to mowing detection.

    cohvh_sm_diff difference between current and previous (cohvh_sm) measurements. This feature captures the increase in the (cohvh_sm), which is highly related to mowing detection.

    ndvi_der The slope of the line between previous and current NDVI values.

    cohvh_sm_der The slope of the line between previous and current (cohvh_sm) values. This feature captures the change in the smoothed cohvh.

    cohvv_sm_der The slope of the line between previous and current (cohvv_sm) values. This feature captures the change in the smoothed cohvv.

    Feature selectionThe permutation feature importance measurement was introduced by Breiman57. The importance of a particular feature is measured by the increase in the model’s prediction error after we permuted the values of this feature, which breaks the relationship between the feature and the outcome. A feature is important if shuffling its values increases the model error and is less important otherwise. The importance of features considered in this study is ranked in Table 3. It is notable from Table 3 that the ordinal features are significantly more important than the derived ones. We used backwards elimination to select the optimal subset of features to be used by the machine learning model. More specifically, we start with all the features and then remove the least significant feature at each iteration, which improves the model’s overall performance. We repeat this until no improvement is observed on the removal of features. Figures 7 and 8 show that the end of season accuracy(EOS) and event accuracy, respectively, for training using a different subsets of the most important features. We refer to (F_{x}-F_{y}) to be the set of important features from feature x to feature y in Table 3. Figure 7 shows that using only ndvi and (mixed_{coh}) achieves EOS of 93%. Increasing the number of the most important features to 3 achieves a comparable performance to the best one, as shown in Fig. 7. The results show that using the ndvi and (mixed_{coh}) achieve around 73% event accuracy while increasing the number of features, the performance declines as shown in Fig. 8. As an outcome of the feature selection process, the developed machine learning model used all the 14 features, shown in Table 3, that achieve the highest combined performance.Table 3 Ranking features based on their performance.Full size tableFigure 7End of season accuracy for different number of features.Full size image
    Figure 8Event-based accuracy for different number of features.Full size image
    Machine learning modelEach record in our dataset represents specific features about a field during one season at a particular time, in addition to the target variable (mown or non mown). In this work, we use a neural network to predict mowing events. We are interested only in observations during the vegetative season, so winter measurements are not included. More specifically, we only include the data in the vegetative season, which is almost the same across all Estonia from April till October (215 days). The dataset is partitioned into 64% for training, 20% for testing and 16% for validation. All training and testing were performed using TensorFlow58 deep learning framework with default parameters. The architecture of the neural network used is shown in Fig. 9. To guarantee a fixed time interval of 1-day, all the missing values in S-1 and S-2 features are interpolated, as shown in Fig. 10. The data is processed in batches of size (64 times 215) (times )14, where 64 is the number of fields considered per patch, 215 is the number of days in the vegetation season in Estonia, 14 is the number of selected features.Figure 9Architecture of the proposed model.Full size imageThe network’s output is a vector of size 215, representing the probability of a mowing event on each day in the vegetation season. The network consists of three one dimension convolution layers. The first and second convolution layers are followed by the Softmax activation function and batch normalization layer, while the third convolution is followed by Sigmoid activation function. The NN hyperparameters required to achieve the model learning process can significantly affect model performance. These hyperparameters include the following56:

    Number of epochs represents how many times you want your algorithm to train on your whole dataset.

    Loss function represents the prediction error of Neural Network.

    Optimizer represents algorithm or method used to change the attributes of the neural network such as weights and learning rate to reduce the loss.

    Activation function is the function through which we pass our weighted suown to have a significant output, namely as a vector of probability or a 0–1 output.

    Learning rate refers to the step of backpropagation, when parameters are updated according to an optimization function.

    Figure 10Time series mowing events before and after linear interpolation.Full size imageA good model uses the optimal combination of these hyperparameters and achieves good generalization capability. The training was performed with the conjugate gradient descent method and the binary cross-entropy loss function. The neural network was trained during 300 epochs; an early stopping was used59. The optimizer used in our model is Nadam optimizer60 with the following parameters: (beta_1=0.9), (beta_2=0.999), (epsilon=None), (schedule_{decay}=0.004), and learning (rate=0.001). Different activation functions such as ReLU, Sigmoid, Linear, and Tanh have been experimentally evaluated on the testing dataset as shown in Fig. 11. The results show that the Softmax activation function achieves the highest combined performance (event accuracy of 72.6% and EOS of 94.5%), as shown in Fig. 11.Figure 11Performance of different activation functions.Full size imageUsing 1D convolution layer acts as a filter that slides on the time dimension allowing the model to predict future mowing events from past events. However, this approach is not suitable for real-time detection of mowing events, but we use it to predict mowing events within a fixed time frame (window). Such a time frame should be greater than half the (1-D) convolution window length.Model evaluationTo evaluate our model, we used two metrics, EOS accuracy and Event-based accuracy. EOS is the accuracy of detecting a mowing event at least once during the season. If the probability of detecting a mowing event at least once during the season is more than 50%, then the field is considered mown, otherwise not mown. Event-based accuracy is used to evaluate how well our model correctly predicts mowing events. The formula for quantifying the binary accuracy is defined as follows:$$begin{aligned} acc = frac{TP + TN}{TP + TN + FP + FN} end{aligned}$$
    (9)
    where TP is the number of times that the model correctly predicted mowing events, given that the start day of the predicted mowing event is not more than 3 days earlier and not more than 6 days later than the actual start day of the mowing event. Within these 9 days, several mowing events may be predicted. To handle this case, only the first predicted mowing event is considered TP, and every next one is considered an FP. TN is the number of times that the model correctly predicted the absence of mowing events. FP is the number of times that the model incorrectly predicted mowing events. It also includes the number of times that the model correctly predicted mowing events, but the start of the event does not fit into a 9-days time frame with the actual start of some mowing event. FN is the number of times where the model missed actual mowing events.Reject region
    Figure 12Calibration plot for proposed model.Full size image
    Sometimes the model is not confident enough to give a reliable decision about the state of the field. We cannot expect reliable and confident predictions from inaccurate, incomplete or uncertain data. So, it is better in the cases of uncertainty about the prediction to allow the model to abstain from prediction. In this way, the obtained predictions are more accurate, while human experts could check rejected fields. Given the true positive rate and the true negative rate on the validation set, the reject region technique outputs a probability interval ((t_{low}), (t_{upper})) in which the model abstain prediction, where (t_{low}) and (t_{upper}) are the minimum and maximum probabilities that the model is uncertain about its prediction. Out of this interval, the model is confident about its prediction and predicts afield as mowed if the probability is higher than (t_{upper}) and not mown if the probability is less than (t_{low}). We select (t_{upper}), such that the desired true positive rate is reached. To find (t_{upper}), we sort all positives descending by their predicted probabilities and select the top percentage equal to the true positive rate. We choose (t_{low}) such that the desired true negative rate on validation data is reached. To find (t_{low}), we sort all negatives ascending by their predicted probabilities and select the top percentage equal to the true negative rate.Figure 12 shows the calibration plot for our proposed model. Notably, the predicted probabilities are close to the diagonal, which implies that the model is well-calibrated. More

  • in

    Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti

    1.Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    2.W. H. O. Multisectoral approach to the prevention and control of vector-borne diseases (2020).3.Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).
    Google Scholar 
    4.Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).PubMed 

    Google Scholar 
    6.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, 1–67 (2020).
    Google Scholar 
    7.Couret, J., Dotson, E. & Benedict, M. Q. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9, 1–9 (2014).
    Google Scholar 
    8.Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.Huxley, P. J., Murray, K. A., Pawar, S. & Cator, L. J. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.3217 (2021).10.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS 
    PubMed 

    Google Scholar 
    11.Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.2817 (2021).12.Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).PubMed 

    Google Scholar 
    13.Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Animal Ecol. 53, 247 (1984).
    Google Scholar 
    14.Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Arrivillaga, J. & Barrera, R. Food as a limiting factor for Aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–20 (2004).PubMed 

    Google Scholar 
    16.Barrera, R., Amador, M. & Clark, G. G. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J. Med. Entomol. 43, 484–492 (2006).PubMed 

    Google Scholar 
    17.Yee, D. A. & Juliano, S. A. Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169, 511–522 (2012).PubMed 

    Google Scholar 
    18.Subra, R. & Mouchet, J. The regulation of preimaginal populations of Aedes aegypti (L.) (Diptera: Culicidae) on the Kenya coast. Ann. Trop. Med. Parasitol. 78, 63–70 (1984).CAS 
    PubMed 

    Google Scholar 
    19.Amarasekare, P. & Savage, V. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178–191 (2012).PubMed 

    Google Scholar 
    20.Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, 6 (2019).21.García-Carreras, B. et al. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc. Natl Acad. Sci. USA 115, E7361–E7368 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).PubMed 

    Google Scholar 
    23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).
    Google Scholar 
    24.Amarasekare, P. Effects of climate warming on consumer-resource interactions: a latitudinal perspective. Front. Ecol. Evol. 7, 1–15 (2019).25.Amarasekare, P. & Simon, M. W. Latitudinal directionality in ectotherm invasion success. Proc. R. Soc. B: Biol. Sci. 287, 20191411 (2020).
    Google Scholar 
    26.Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).CAS 
    PubMed 

    Google Scholar 
    27.Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).
    Google Scholar 
    28.Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Thomas, M. K. et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
    Google Scholar 
    30.Siegel, P., Baker, K. G., Low‐Décarie, E. & Geider, R. J. High predictability of direct competition between marine diatoms under different temperatures and nutrient states. Ecol. Evol. 10, 7276–7290 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    31.Bestion, E., García-Carreras, B., Schaum, C.-E., Pawar, S. & Yvon-Durocher, G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol. Lett. 21, 655–664 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    32.Jackson, C. flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 70, 1–33 (2016).
    Google Scholar 
    33.Bellows, T. S. The descriptive properties of some models for density dependence. J. Animal Ecol. 50, 139–156 (1981).
    Google Scholar 
    34.Orcutt, J. D. & Porter, K. G. The synergistic effects of temperature and food concentration of life history parameters of Daphnia. Oecologia 63, 300–306 (1984).PubMed 

    Google Scholar 
    35.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS 
    PubMed 

    Google Scholar 
    36.Caswell, H. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Popul. Biol. 14, 215–230 (1978).CAS 
    PubMed 

    Google Scholar 
    37.Kammenga, J. E., Busschers, M., Straalen, N. M., Van, Jepson, P. C. & Bakker, J. Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct. Ecol. 10, 106 (1996).
    Google Scholar 
    38.Cator, L. J. et al. The role of vector trait variation in vector-borne disease dynamics. Front. Ecol. Evol. 8, 1–25 (2020).
    Google Scholar 
    39.Juliano, S. A. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79, 255 (1998).
    Google Scholar 
    40.Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J. & Thomas, M. B. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc. R. Soc. B: Biol. Sci. 283, 20160298 (2016).
    Google Scholar 
    41.Carvajal-Lago, L., Ruiz-López, M. J., Figuerola, J. & Martínez-de la Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).CAS 
    PubMed 

    Google Scholar 
    42.Reiner, R. C. et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J. R. Soc. Interface 10, 20120921–20120921 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    43.Farjana, T., Tuno, N. & Higa, Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med.Vet. Entomol. 26, 210–217 (2012).CAS 
    PubMed 

    Google Scholar 
    44.Kooijman, S. A. L. M. Dynamic energy and mass budgets in biological systems. (Cambridge University Press, 2000).45.Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behaviour, natural food, and nutritional relationships and larval mosquitoes. Annu. Rev. Entomol. 37, 349–376 (1992).46.Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).CAS 

    Google Scholar 
    47.Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    48.Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J. Animal Ecol. 76, 1105–1115 (2007).
    Google Scholar 
    49.Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Souza, R. S. et al. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front. Physiol. 10, 1–24 (2019).
    Google Scholar 
    51.Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    52.Hery, L. et al. Natural variation in physicochemical profiles and bacterial communities associated with Aedes aegypti breeding sites and larvae on Guadeloupe and French Guiana. Microbial Ecol. 81, 93–109 (2021).CAS 

    Google Scholar 
    53.Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T. & Martikainen, P. J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59, 269–286 (2002).CAS 

    Google Scholar 
    54.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 

    Google Scholar 
    56.Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).
    Google Scholar 
    57.Steinwascher, K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ. Entomol. 11, 150–153 (1982).
    Google Scholar 
    58.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    PubMed 

    Google Scholar 
    59.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol., Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    60.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    61.Bargielowski, I. E., Lounibos, L. P. & Carrasquilla, M. C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl Acad. Sci. USA 110, 2888–2892 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Arguez, A. et al. NOAA’s 1981–2010 U.S. climate normals: an overview. Bull. Am. Meteorol. Soc. 93, 1687–1697 (2012).
    Google Scholar 
    63.Caswell, H. Matrix population models construction, analysis, and interpretation. Nat. Resource Model. (Sinauer Associates, 1989).64.Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Animal Ecol. 17, 15 (1948).
    Google Scholar 
    65.Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).CAS 
    PubMed 

    Google Scholar 
    66.R. Core Team. R: A language and environment for statistical computing. (2018).67.Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio Package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    68.Therneau, T. A Package for Survival Analysis in R. (2021).69.Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).
    Google Scholar 
    70.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483 (1993).
    Google Scholar 
    71.Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Animal Ecol. 53, 573 (1984).
    Google Scholar 
    72.Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    73.van den Heuvel, M. J. The effect of rearing temperature on the wing length, thorax length, leg length and ovariole number of the adult mosquito, Aedes aegypti (L.). Trans. R. Entomol. Soc. Lond. 115, 197–216 (1963).
    Google Scholar 
    74.Farjana, T. & Tuno, N. Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). Med. Entomol. Zool. 63, 123–131 (2012).
    Google Scholar 
    75.Skalski, J. R., Millspaugh, J. J., Dillingham, P. & Buchanan, R. A. Calculating the variance of the finite rate of population change from a matrix model in Mathematica. Environ. Model. Softw. 22, 359–364 (2007).
    Google Scholar 
    76.Hope, R. M. Rmisc: Rmisc: Ryan Miscellaneous. (2013).77.Caswell, H., Naiman, R. J. & Morin, R. Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43, 123–134 (1984).
    Google Scholar 
    78.de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67, 1427–1431 (1986).
    Google Scholar 
    79.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, (2015).80.Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).
    Google Scholar 
    81.Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).
    Google Scholar 
    82.Kamykowski, D. & McCollum, S. A. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8, 275–287 (1986).
    Google Scholar  More

  • in

    Insect visual sensitivity to long wavelengths enhances colour contrast of insects against vegetation

    1.Cummings, M. E., Rosenthal, G. G. & Ryan, M. J. A private ultraviolet channel in visual communication. Proc. R. Soc. B-Biol. Sci. 270, 897–904. https://doi.org/10.1098/rspb.2003.2334 (2003).Article 

    Google Scholar 
    2.Tedore, C. & Nilsson, D. E. Avian UV vision enhances leaf surface contrasts in forest environments. Nat. Commun. https://doi.org/10.1038/s41467-018-08142-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Qi, Y. D., Bai, S. J. & Heisler, G. M. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season. Agric. For. Meteorol. 120, 229–240. https://doi.org/10.1016/j.agrformet.2003.08.018 (2003).ADS 
    Article 

    Google Scholar 
    4.Mollon, J. D. “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38. https://doi.org/10.1242/jeb.146.1.21 (1989).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Osorio, D. & Vorobyev, M. Photoreceptor sectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752. https://doi.org/10.1098/rspb.2005.3156 (2005).CAS 
    Article 

    Google Scholar 
    6.Osorio, D. & Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 48, 2042–2051. https://doi.org/10.1016/j.visres.2008.06.018 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Bowmaker, J. K. & Dartnall, H. J. A. Visual pigments of rods and cones in a human retina. J. Physiol. Lond. 298, 501–511. https://doi.org/10.1113/jphysiol.1980.sp013097 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bowmaker, J. K. & Hunt, D. M. Evolution of vertebrate visual pigments. Curr. Biol. 16, R484–R489. https://doi.org/10.1016/j.cub.2006.06.016 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).Article 

    Google Scholar 
    10.Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510. https://doi.org/10.1146/annurev.ento.46.1.471 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Ogawa, Y., Kinoshita, M., Stavenga, D. G. & Arikawa, K. Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate. J. Exp. Biol. 216, 1916–1923. https://doi.org/10.1242/jeb.083485 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Kelber, A. Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630 (1999).Article 

    Google Scholar 
    13.Osorio, D. & Vorobyev, M. Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. B Biol. Sci. 263, 593–599. https://doi.org/10.1098/rspb.1996.0089 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955. https://doi.org/10.1242/jeb.02207 (2006).Article 
    PubMed 

    Google Scholar 
    15.Wakakuwa, M., Stavenga, D. G., Kurasawa, M. & Arikawa, K. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol. 207, 2803–2810. https://doi.org/10.1242/jeb.01078 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Satoh, A. et al. Red-shift of spectral sensitivity due to screening pigment migration in the eyes of a moth, Adoxophyes orana. Zool. Lett. https://doi.org/10.1186/s40851-017-0075-6 (2017).Article 

    Google Scholar 
    17.Pirih, P. et al. The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 639–651. https://doi.org/10.1007/s00359-018-1267-z (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cronin, T. W., Jarvilehto, M., Weckstrom, M. & Lall, A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A Sens. Neural Behav. Physiol. 186, 1–12. https://doi.org/10.1007/s003590050001 (2000).CAS 
    Article 

    Google Scholar 
    19.Lall, A. B. et al. Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 629–638. https://doi.org/10.1007/s00359-010-0549-x (2010).Article 
    PubMed 

    Google Scholar 
    20.Frentiu, F. D. et al. Adaptive evolution of color vision as seen through the eyes of butterflies. Proc. Natl. Acad. Sci. U.S.A. 104, 8634–8640. https://doi.org/10.1073/pnas.0701447104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Liénard, M. A. et al. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2008986118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Saito, T. et al. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zool. Lett. https://doi.org/10.1186/s40851-019-0150-2 (2019).Article 

    Google Scholar 
    23.Enright, J. M. et al. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr. Biol. 25, 3048–3057. https://doi.org/10.1016/j.cub.2015.10.018 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Martin, M., Le Galliard, J. F., Meylan, S. & Loew, E. R. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J. Exp. Biol. 218, 458–465. https://doi.org/10.1242/jeb.115923 (2015).Article 
    PubMed 

    Google Scholar 
    25.Ala-Laurila, P., Donner, K. & Koskelainen, A. Thermal activation and photoactivation of visual pigments. Biophys. J. 86, 3653–3662. https://doi.org/10.1529/biophysj.103.035626 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Ala-Laurila, P., Pahlberg, J., Koskelainen, A. & Donner, K. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vis. Res. 44, 2153–2158. https://doi.org/10.1016/j.visres.2004.03.031 (2004).Article 
    PubMed 

    Google Scholar 
    27.Barlow, H. B. Purkinje shift and retinal noise. Nature 179, 255–256. https://doi.org/10.1038/179255b0 (1957).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Koskelainen, A., Ala-Laurila, P., Fyhrquist, N. & Donner, K. Measurement of thermal contribution to photoreceptor sensitivity. Nature 403, 220–223. https://doi.org/10.1038/35003242 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Luo, D. G., Yue, W. W. S., Ala-Laurila, P. & Yau, K. W. Activation of visual pigments by light and heat. Science 332, 1307–1312. https://doi.org/10.1126/science.1200172 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rieke, F. & Baylor, D. A. Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186. https://doi.org/10.1016/s0896-6273(00)81148-4 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual pigments and photoreceptors. In Visual Ecology, pp. 37–65: Princeton University Press.32.Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rstb.2016.0065 (2017).Article 

    Google Scholar 
    33.Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724. https://doi.org/10.1086/681021 (2015).Article 
    PubMed 

    Google Scholar 
    34.Hawkeswood, T. Observations on some Buprestidae (Coleoptera) from the Blue Mountains, N.S.W.. Aust. Zool. 19, 257–275 (1978).
    Google Scholar 
    35.Hawkeswood, T. Observations on two sympatric species of Buprestidae (Coleoptera) from sand dunes on the north coast of New South Wales. Victorian Naturalist 98, 146–151 (1981).
    Google Scholar 
    36.Hawkeswood, T. Observations on some jewel beetles (Coleoptera Buprestidae) from the Armidale district, North-eastern New South Wales. Vic. Nat. 98, 152–155 (1981).
    Google Scholar 
    37.Poland, T. M., Chen, Y. G., Koch, J. & Pureswaran, D. Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance. Can. Entomol. 147, 252–262. https://doi.org/10.4039/tce.2015.4 (2015).Article 

    Google Scholar 
    38.Bellamy, C. L., Williams, G., Hasenpusch, J. & Sundholm, A. A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae), with additional new records. Insecta Mundi, 1–172 (2013).39.Domingue, M. J. et al. Field observations of visual attraction of three European oak buprestid beetles toward conspecific and heterospecific models. Entomol. Exp. Appl. 140, 112–121. https://doi.org/10.1111/j.1570-7458.2011.01139.x (2011).Article 

    Google Scholar 
    40.Domingue, M. J. et al. Differences in spectral selectivity between stages of visually guided mating approaches in a buprestid beetle. J. Exp. Biol. 219, 2837–2843 (2016).PubMed 

    Google Scholar 
    41.Pureswaran, D. S. & Poland, T. M. Effects of visual silhouette, leaf size and host species on feeding preference by adult emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Great Lakes Entomol. 42, 4 (2018).
    Google Scholar 
    42.Crook, D. J. et al. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum. J. Econ. Entomol. 102, 2160–2169 (2009).Article 

    Google Scholar 
    43.Lord, N. P. et al. A cure for the blues: Opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 16, 107 (2016).Article 

    Google Scholar 
    44.Meglič, A., Ilić, M., Quero, C., Arikawa, K. & Belušič, G. Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer Coraebus undatus (Coleoptera: Buprestidae). J. Exp. Biol. 223, jeb225920. https://doi.org/10.1242/jeb.225920 (2020).Article 
    PubMed 

    Google Scholar 
    45.Chen, Y. G. & Poland, T. M. Biotic and abiotic factors affect green ash volatile production and emerald Ash borer adult feeding preference. Environ. Entomol. 38, 1756–1764. https://doi.org/10.1603/022.038.0629 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Dartnall, H. J. A. Visual pigment. Trans. Zool. Soc. Lond. 33, 147–152. https://doi.org/10.1111/j.1096-3642.1976.tb00047.x (1976).Article 

    Google Scholar 
    48.Arikawa, K., Scholten, D. G. W., Kinoshita, M. & Stavenga, D. G. Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zool. Sci. 16, 17–24. https://doi.org/10.2108/zsj.16.17 (1999).Article 

    Google Scholar 
    49.Das, D., Wilkie, S. E., Hunt, D. M. & Bowmaker, J. K. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision. Res. 39, 2801–2815. https://doi.org/10.1016/s0042-6989(99)00023-1 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sison-Mangus, M. P., Bernard, G. D., Lampel, J. & Briscoe, A. D. Beauty in the eye of the beholder: The two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J. Exp. Biol. 209, 3079–3090. https://doi.org/10.1242/jeb.02360 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Bernard, G. D. Red-absorbing visual pigment of butterflies. Science 203, 1125. https://doi.org/10.1126/science.203.4385.1125 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Martínez-Harms, J. et al. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 451–463. https://doi.org/10.1007/s00359-012-0722-5 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Stavenga, D. G. & Arikawa, K. Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197, 373–385. https://doi.org/10.1007/s00359-010-0622-5 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J. & Cuthill, I. C. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 183, 621–633. https://doi.org/10.1007/s003590050286 (1998).CAS 
    Article 

    Google Scholar 
    55.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 351–358. https://doi.org/10.1098/rspb.1998.0302 (1998).CAS 
    Article 

    Google Scholar 
    56.Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: Behaviour and physiology compared. Vis. Res. 41, 639–653. https://doi.org/10.1016/s0042-6989(00)00288-1 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods in Ecology and Evolution 10, 1097–1107 (2019).58.Matsushita, A., Awata, H., Wakakuwa, M., Takemura, S. Y. & Arikawa, K. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis. Proc. R. Soc. B Biol. Sci. 279, 3482–3490. https://doi.org/10.1098/rspb.2012.0475 (2012).Article 

    Google Scholar 
    59.McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284. https://doi.org/10.1093/molbev/msx163 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    61.R: A Language and environment for statistical computing (R Foundation for Statistical Computing, 2018).62.van der Kooi, C. J., Elzenga, J. T. M., Staal, M. & Stavenga, D. G. How to colour a flower: On the optical principles of flower coloration. Proc. R. Soc. B Biol. Sci. 283, 20160429. https://doi.org/10.1098/rspb.2016.0429 (2016).CAS 
    Article 

    Google Scholar 
    63.Horler, D. N. H., Dockray, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288. https://doi.org/10.1080/01431168308948546 (1983).Article 

    Google Scholar 
    64.Silberglied, R. E. Communication in the Ultraviolet. Annu. Rev. Ecol. Syst. 10, 373–398. https://doi.org/10.1146/annurev.es.10.110179.002105 (1979).Article 

    Google Scholar 
    65.Lind, O. Colour vision and background adaptation in a passerine bird, the zebra finch (Taeniopygia guttata). R. Soc. Open Sci. 3, 160383. https://doi.org/10.1098/rsos.160383 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Santiago, C. et al. Does conspicuousness scale linearly with colour distance? A test using reef fish. Proc. R. Soc. B Biol. Sci. 287, 20201456. https://doi.org/10.1098/rspb.2020.1456 (2020).Article 

    Google Scholar 
    67.Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. & Menzel, R. Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J. Comp. Physiol. A. 180, 235–243. https://doi.org/10.1007/s003590050044 (1997).Article 

    Google Scholar 
    68.Garcia, J. E., Spaethe, J. & Dyer, A. G. The path to colour discrimination is S-shaped: Behaviour determines the interpretation of colour models. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 983–997. https://doi.org/10.1007/s00359-017-1208-2 (2017).Article 
    PubMed 

    Google Scholar 
    69.Hart, N. S., Bailes, H. J., Vorobyev, M., Marshall, N. J. & Collin, S. P. Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecol. 8, 21. https://doi.org/10.1186/1472-6785-8-21 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Vorobyev, M. Coloured oil droplets enhance colour discrimination. Proc. R. Soc. B Biol. Sci. 270, 1255–1261. https://doi.org/10.1098/rspb.2003.2381 (2003).Article 

    Google Scholar 
    71.Carleton, K. L. et al. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. Bmc Biol. https://doi.org/10.1186/1741-7007-6-22 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Seki, T. & Vogt, K. Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 119, 53–64. https://doi.org/10.1016/s0305-0491(97)00322-2 (1998).Article 

    Google Scholar 
    73.Stavenga, D. G., Smits, R. P. & Hoenders, B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis. Res. 33, 1011–1017. https://doi.org/10.1016/0042-6989(93)90237-q (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Kinoshita, M. & Arikawa, K. Color and polarization vision in foraging Papilio. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 200, 513–526. https://doi.org/10.1007/s00359-014-0903-5 (2014).Article 
    PubMed 

    Google Scholar 
    75.Vorobyev, M. & Menzel, R. Flower advertisement for insects: Bees, a case study. In Adaptive Mechanisms in the Ecology of Vision (eds S. N. Archer et al.) 537–553 (Springer Netherlands, 1999).76.Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. U.S.A. 88, 2783–2787. https://doi.org/10.1073/pnas.88.7.2783 (1991).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.McCulloch, K. J., Osorio, D. & Briscoe, A. D. Sexual dimorphism in the compound eye of Heliconius erato: A nymphalid butterfly with at least five spectral classes of photoreceptor. J. Exp. Biol. 219, 2377–2387. https://doi.org/10.1242/jeb.136523 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Thermal stress triggers productive viral infection of a key coral reef symbiont

    1.Hughes TP, Kerry J, Álvarez-Noriega M, Álvarez-Romero J, Anderson K, Baird A, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543:373–7.CAS 

    Google Scholar 
    2.Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
    Google Scholar 
    3.Patten NL, Harrison PL, Mitchell JG. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs. 2008;27:569–80.
    Google Scholar 
    4.Leruste A, Bouvier T, Bettarel Y. Enumerating viruses in coral mucus. Appl Environ Microbiol. 2012;78:6377–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Nguyen-kim H, Bouvier T, Bouvier C, Bui VN, Le-lan H, Bettarel Y. Viral and bacterial epibionts in thermally-stressed corals. J Mar Sci Eng. 2015;3:1272–86.
    Google Scholar 
    6.Vega Thurber R, Payet JP, Thurber AR, Correa AMS. Virus–host interactions and their roles in coral reef health and disease. Nat Rev Microbiol. 2017;15:205–16.
    Google Scholar 
    7.Sweet M, Bythell J. The role of viruses in coral health and disease. J Invertebr Pathol. 2017;147:136–44.PubMed 

    Google Scholar 
    8.Wilson WH, Francis I, Ryan K, Davy SK. Temperature induction of viruses in symbiotic dinoflagellates. Aquat Micro Ecol. 2001;25:99–102.
    Google Scholar 
    9.Lohr J, Munn CB, Wilson WH. Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl Environ Microbiol. 2007;73:2976–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lawrence SA, Wilson WH, Davy JE, Davy SK. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J Phycol. 2014;50:984–97.PubMed 

    Google Scholar 
    11.Messyasz A, Rosales SM, Mueller RS, Sawyer T, Correa AMS, Thurber AR, et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front Mar Sci. 2020;7:555474.
    Google Scholar 
    12.Marhaver KL, Edwards RA, Rohwer F. Viral communities associated with healthy and bleaching corals. Environ Microbiol. 2008;10:2277–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol. 2016;7:127.PubMed 
    PubMed Central 

    Google Scholar 
    14.Bettarel Y, Thuy NT, Huy TQ, Hoang PK, Bouvier T. Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J Mar Biol Assoc U K. 2013;93:909–12.
    Google Scholar 
    15.Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol. 2007;346:36–44.
    Google Scholar 
    16.Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV. Potential role of viruses in white plague coral disease. ISME J. 2014;8:271–83.CAS 
    PubMed 

    Google Scholar 
    17.Lawrence SA, Davy JE, Aeby GS, Wilson WH, Davy SK. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs. 2014;33:687–91.
    Google Scholar 
    18.Lawrence SA, Davy JE, Wilson WH, Hoegh-Guldberg O, Davy SK. Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs. 2015;34:249–57.
    Google Scholar 
    19.Pollock FJ, M. Wood-Charlson E, Van Oppen MJH, Bourne DG, Willis BL, Weynberg KD. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar Ecol Prog Ser. 2014;510:39–43.
    Google Scholar 
    20.Vega Thurber RL, Correa AMS. Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol. 2011;408:102–13.
    Google Scholar 
    21.Weynberg KD, Voolstra CR, Neave MJ, Buerger P, Van Oppen MJH. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep. 2015;5:17889.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Quistad SD, Grasis JA, Barr JJ, Rohwer FL. Viruses and the origin of microbiome selection and immunity. ISME J. 2017;11:835–40.CAS 
    PubMed 

    Google Scholar 
    23.Oppen MJHV, Leong J, Gates RD. Coral-virus interactions: a double-edged sword? SYMBIOSIS. 2009;47:1–8.
    Google Scholar 
    24.Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullvian MB, Weitz JS. The virus-microbe infection continuum: revisiting the viral rules of life. Nat Rev Microbiol. 2021;19:501–13.CAS 
    PubMed 

    Google Scholar 
    25.Correa AMS, Welsh RM, Vega Thurber RL. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J. 2013;7:13–27.CAS 
    PubMed 

    Google Scholar 
    26.Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ Microbiol. 2017;19:3909–19.CAS 
    PubMed 

    Google Scholar 
    27.Levin RA, Voolstra CR, Weynberg KD, Van Oppen M. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 2017;11:808–12.CAS 
    PubMed 

    Google Scholar 
    28.Knowles B, Bonachela JA, Behrenfeld MJ, Bondoc KG, Cael BB, Carlson CA, et al. Temperate infection in a virus–host system previously known for virulent dynamics. Nat Commun. 2020;11:1–13.
    Google Scholar 
    29.Montalvo-Proaño J, Buerger P, Weynberg KD, Van Oppen MJH. A PCR-based assay targeting the major capsid protein gene of a dinorna-like ssRNA virus that infects coral photosymbionts. Front Microbiol. 2017;8:1665.PubMed 
    PubMed Central 

    Google Scholar 
    30.Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, Yamaguchi M, et al. Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat Micro Ecol. 2004;34:207–18.
    Google Scholar 
    31.Miller JL, Chen S, Nagasaki K, Roseman A, Wepf R, Sewell T, et al. Three-dimensional reconstruction of Heterocapsa circularisquama RNA virus by electron cryo-microscopy. J Gen Virol. 2011;92:1960–70.CAS 
    PubMed 

    Google Scholar 
    32.Shi M, Lin XD, Tian J-H, Chen L-J, Chen X, Li C-IU, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–43.CAS 
    PubMed 

    Google Scholar 
    33.Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73:4433–48.PubMed 
    PubMed Central 

    Google Scholar 
    35.Vlok M, Lang AS, Suttle CA. Marine RNA virus quasispecies are distributed throughout the oceans. mSphere. 2019;4:1–18.
    Google Scholar 
    36.Domingo E, Martinez-salas E, Sobrino F, de la Torre JC, Portela A, Ortin J, et al. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene. 1985;40:1–8.CAS 
    PubMed 

    Google Scholar 
    37.Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–8.CAS 
    PubMed 

    Google Scholar 
    38.Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–85.CAS 
    PubMed 

    Google Scholar 
    39.Gélin P, Postaire B, Fauvelot C, Magalon H. Molecular phylogenetics and evolution reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol Phylogenet Evol. 2017;109:430–46.PubMed 

    Google Scholar 
    40.Pratchett MS, McCowan D, Maynard JA, Heron SF. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS ONE. 2013;8:1–10.
    Google Scholar 
    41.Donovan MK, Adam TC, Shantz AA, Speare KE, Munsterman KS, Rice MM, et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc Natl Acad Sci USA. 2020;117:5351–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Siebeck UE, Marshall NJ, Kluter A, Hoegh-Guldberg O. Monitoring coral bleaching using a colour reference card. Coral Reefs. 2006;25:453–60.
    Google Scholar 
    43.Winters G, Holzman R, Blekhman A, Beer S, Loya Y. Photographic assessment of coral chlorophyll contents: Implications for ecophysiological studies and coral monitoring. J Exp Mar Biol Ecol. 2009;380:25–35.CAS 

    Google Scholar 
    44.Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. 2021;15:3271–85.PubMed 

    Google Scholar 
    45.Pinzón JH, Lajeunesse TC. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol. 2011;20:311–25.PubMed 

    Google Scholar 
    46.Flot JF, Tillier S. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene. 2007;401:80–87.CAS 
    PubMed 

    Google Scholar 
    47.Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr. 2013;40:1595–608.
    Google Scholar 
    48.Johnston EC, Forsman ZH, Flot JF, Schmidt-Roach S, Pinzón JH, Knapp ISS, et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci Rep. 2017;7:5991.PubMed 
    PubMed Central 

    Google Scholar 
    49.Wham DC, Carmichael M, LaJeunesse TC. Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium. Coservation Genet Resour. 2014;6:127–9.
    Google Scholar 
    50.Bay LK, Ulstrup KE, Nielsen HB, Jarmer H, Goffard N, Willis BL, et al. Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol. 2009;18:3062–75.CAS 
    PubMed 

    Google Scholar 
    51.Veglia AJ, Vicéns RER, Grupstra CGB, Howe-Kerr LI, Correa AMS. vAMPirus: an automated, comprehensive virus amplicon sequencing analysis program. 2021: available at https://zenodo.org/record/4549851 (accessed February 17, 2021).52.Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016;81257: available at https://doi.org/10.1101/081257.53.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;2016:1–22.
    Google Scholar 
    54.Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:1–19.
    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 

    Google Scholar 
    56.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.CAS 
    PubMed 

    Google Scholar 
    57.Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.4-6. R Package Version 25-6 2019.58.Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.
    Google Scholar 
    59.Bates DM, Maechler M, Bolker B, Walker S. lme4: Mixed-effects modeling with R. R Package Version 11-7 HttpCRANR-Proj 2014.60.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550.PubMed 
    PubMed Central 

    Google Scholar 
    61.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere. 2018;3:e00069–18.PubMed 
    PubMed Central 

    Google Scholar 
    63.Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    64.Biebricher CK, Eigen M. What Is a Quasispecies? In: Domingo E (ed). Quasispecies: concept and implications for virology. 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–31.65.Gelbart M, Harari S, Ben-ari Y, Kustin T, Wolf D, Mandelboim M, et al. Drivers of within-host genetic diversity in acute infections of viruses. PLoS Pathog. 2020;16:e1009029.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    67.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature. 2003;424:741.CAS 
    PubMed 

    Google Scholar 
    68.Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science. 2007;315:513–5.CAS 
    PubMed 

    Google Scholar 
    69.Holmes EC. The RNA virus quasispecies: fact or fiction? J Mol Biol. 2010;400:271–3.CAS 
    PubMed 

    Google Scholar 
    70.Pybus OG, Rambaut A, Belshaw R, Freckleton RP, Drummond AJ, Holmes EC. Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol. 2007;24:845–52.CAS 
    PubMed 

    Google Scholar 
    71.Holmes EC. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol. 2003;77:11296–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Edwards CTT, Holmes EC, Pybus OG, Wilson DJ, Viscidi RP, Abrams EJ, et al. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection. Genetics. 2006;174:1441–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLIFE. 2014;3:e03125.PubMed 
    PubMed Central 

    Google Scholar 
    74.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    75.Munson-mcgee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, et al. A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments. ISME J. 2018;12:1706–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2017;3:1–14.
    Google Scholar 
    77.Wang L, Wu S, Liu T, Sun J, Chi S, Liu C, et al. Endogenous viral elements in algal genomes. Acta Oceano Sin. 2014;33:102–7.CAS 

    Google Scholar 
    78.Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature. 2020;588:141–5.CAS 
    PubMed 

    Google Scholar 
    79.Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Holmes EC. The evolution of endogenous viral elements. Cell Host Microbe. 2011;10:368–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Ripp S, Miller RV. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology. 1997;143:2065–70.CAS 
    PubMed 

    Google Scholar 
    82.Onodera S, Olkkonen VM, Gottlieb P, Strassman J, Qiao XY, Bamford DH, et al. Construction of a transducing virus from double-stranded RNA bacteriophage phi6: establishment of carrier states in host cells. J Virol. 1992;66:190–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.de la Higuera I, Kasun GW, Torrance EL, Pratt AA, Maluenda A, Colombet J, et al. Unveiling crucivirus diversity by mining metagenomic data. mBio. 2020;11:e01410–20.PubMed 
    PubMed Central 

    Google Scholar 
    84.Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv. 2020;6:eaba4137.85.Deng L, Ignacio-espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–6.CAS 

    Google Scholar 
    86.Jonge PAD, Costa AR, Franklin L, Brouns SJJ, Jonge PAD, Meijenfeldt FABV, et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. ISCIENCE. 2020;23:101439.PubMed 
    PubMed Central 

    Google Scholar 
    87.Jiang SC, Paul JH. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser. 1994;104:163–72.
    Google Scholar 
    88.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 

    Google Scholar 
    89.Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev. 2010;74:42–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Thingstad TF, Våge S, Storesund JE, Sandaa R, Giske J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS. 2014;111:7813–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.
    Google Scholar 
    92.Tomaru Y, Hata N, Masuda T, Tsuji M, Igata K, Masuda Y, et al. Ecological dynamics of the bivalve-killing dinoflagellate Heterocapsa circularisquama and its infectious viruses in different locations of western Japan. Environ Microbiol. 2007;9:1376–83.PubMed 

    Google Scholar 
    93.Sadeghi M, Tomaru Y, Ahola T. RNA viruses in aquatic unicellular eukaryotes. Viruses 2021.94.Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol. 2017;23:35–42.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Roossinck MJ. Lifestyles of plant viruses. Philos Trans R Soc B Biol Sci. 2010;365:1899–905.
    Google Scholar 
    96.Honjo MN, Emura N, Kawagoe T, Sugisaka J, Kamitani M, Nagano AJ, et al. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J. 2020;14:506–18.CAS 
    PubMed 

    Google Scholar 
    97.Kim Y, Kim YJ, Paek K-H. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. J Exp Bot. 2020;72:1432–48.
    Google Scholar 
    98.Jones RAC. Chapter three – future scenarios for plant virus pathogens as climate change progresses. In: Kielian M, Maramorosch K, Mettenleiter TC (eds).2016. Academic Press, pp 87–147.99.Brüwer JD, Agrawal S, Liew YJ, Aranda M, Voolstra CR. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 2017;17:1–11.
    Google Scholar 
    100.Cevallos RC, Sarnow P. Temperature protects insect cells from infection by cricket paralysis virus. J Virol. 2010;84:1652–5.CAS 
    PubMed 

    Google Scholar 
    101.Edgar RS, Lielausis I. Temperature-sensitive mutants of bacteriophage T4D: their isolation and genetic characterization. Genetics. 1964;49:649–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci USA. 2008;105:18413–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Seifert M, van Nies P, Papini FS, Arnold JJ, Poranen MM, Cameron CE, et al. Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2020;48:5591–602.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Wooldridge SA. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs. 2014;33:15–27.
    Google Scholar 
    105.Hédouin L, Rouzé H, Berthe C, Perez-Rosales G, Martinez E, Chancerelle Y, et al. Contrasting patterns of mortality in Polynesian coral reefs following the third global coral bleaching event in 2016. Coral Reefs. 2020;39:939–52.
    Google Scholar 
    106.Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O. Host-Specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS ONE. 2013;8:e68533–e68533.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol. 2014;23:4226–40.CAS 
    PubMed 

    Google Scholar  More

  • in

    Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs

    1.McKenney EA, Koelle K, Dunn RR, Yoder AD. The ecosystem services of animal microbiomes. Mol Ecol. 2018;27:2164–72.CAS 
    PubMed 

    Google Scholar 
    2.Miller ET, Svanbäck R, Bohannan BJM. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol Evol. 2018;33:926–35.PubMed 

    Google Scholar 
    3.Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25:789–802.CAS 
    PubMed 

    Google Scholar 
    4.Björk JR, Dasari M, Grieneisen L, Archie EA. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. Am J Primatol. 2019;81:1–23.
    Google Scholar 
    5.Sun B, Wang X, Bernstein S, Huffman MA, Xia DP, Gu Z, et al. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci Rep. 2016;6:1–8.
    Google Scholar 
    6.Wu Q, Wang X, Ding Y, Hu Y, Nie Y, Wei W, et al. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc R Soc B Biol Sci. 2017;284:20170955.7.Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 2014;69:434–43.PubMed 

    Google Scholar 
    9.Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A, Melin AD. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 2019;13:183–96. 22.CAS 
    PubMed 

    Google Scholar 
    10.Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.PubMed 
    PubMed Central 

    Google Scholar 
    11.Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH, Buchholz TA, et al. Seasonal cycling in the gut microbiome of the Hadza Hunter-Gatherers of Tanzania. Science. 2017;357:802–6.
    Google Scholar 
    12.Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1786.PubMed 
    PubMed Central 

    Google Scholar 
    13.Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9:1–20.
    Google Scholar 
    14.Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ Microbiol. 2016;18:1312–25.PubMed 

    Google Scholar 
    15.Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923.PubMed 
    PubMed Central 

    Google Scholar 
    16.De Vrieze J, Pinto AJ, Sloan WT, Ijaz UZ. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome. 2018;6:63.PubMed 
    PubMed Central 

    Google Scholar 
    17.Kappeler PM, Fichtel C. A 15-year perspective on the social organization and life history of sifaka in Kirindy Forest. In: Long-term field studies of primates. Springer Berlin Heidelberg; 2012. p. 101–21.18.Peckre LR, Defolie C, Kappeler PM, Fichtel C. Potential self-medication using millipede secretions in red-fronted lemurs: combining anointment and ingestion for a joint action against gastrointestinal parasites? Primates. 2018;59:483–94.PubMed 

    Google Scholar 
    19.Ostner J. Social thermoregulation in redfronted lemurs (Eulemur fulvus rufus). Folia Primatol. 2002;73:175–80.
    Google Scholar 
    20.Amoroso CR, Kappeler PM, Fichtel C, Nunn CL. Water availability impacts habitat use by red-fronted lemurs (Eulemur rufifrons): An experimental and observational study. Int J Primatol. 2020;41:61–80.
    Google Scholar 
    21.Koch F, Ganzhorn JU, Rothman JM, Chapman CA, Fichtel C. Sex and seasonal differences in diet and nutrient intake in Verreaux’s sifakas (Propithecus verreauxi). Am J Primatol. 2017;79:1–10.CAS 
    PubMed 

    Google Scholar 
    22.Clough D. Gastro-intestinal parasites of red-fronted lemurs in Kirindy Forest, western Madagascar. J Parasitol. 2010;96:245–51.PubMed 

    Google Scholar 
    23.Gogarten JF, Calvignac-Spencer S, Nunn CL, Ulrich M, Saiepour N, Nielsen HV, et al. Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny. Mol Ecol Resour. 2020;20:204–15.PubMed 

    Google Scholar 
    24.Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. Wiley Interdiscip Rev Syst Biol Med. 2019;11:e1438.PubMed 

    Google Scholar 
    25.Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2020;14:609–22.CAS 
    PubMed 

    Google Scholar 
    26.Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr Comp Biol. 2017;57:770–85.PubMed 
    PubMed Central 

    Google Scholar 
    27.Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.
    Google Scholar 
    28.Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 2012;7:e40863.29.Porat I, Vishnivetskaya TA, Mosher JJ, Brandt CC, Yang ZK, Brooks SC, et al. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb Ecol. 2010;60:784–95.PubMed 
    PubMed Central 

    Google Scholar 
    30.Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods. 2011;84:12–8.CAS 
    PubMed 

    Google Scholar 
    31.Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 

    Google Scholar 
    32.Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ Microbiol Rep. 2019;11:487–94.PubMed 

    Google Scholar 
    33.Berkelmann D, Schneider D, Hennings N, Meryandini A, Daniel R. Soil bacterial community structures in relation to different oil palm management practices. Sci Data. 2020;7:1–7.
    Google Scholar 
    34.Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.PubMed 
    PubMed Central 

    Google Scholar 
    35.Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina paired-end read mergeR. Bioinformatics. 2014;30:614–20.CAS 
    PubMed 

    Google Scholar 
    36.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    37.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;2016:1–22.
    Google Scholar 
    38.Edgar RC UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016;081257.39.Edgar RC UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. 2016;074252.40.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    42.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    43.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64.CAS 

    Google Scholar 
    44.Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.CAS 
    PubMed 

    Google Scholar 
    45.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 

    Google Scholar 
    46.Team Rc. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.r-project.org.47.Team Rs. RStudio: Integrated Development for R. Boston, MA: RStudio; 2019.48.Andersen KS, Kirkegaard RH, Albertsen M ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018;10–1.49.Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.CAS 
    PubMed 

    Google Scholar 
    50.Wickham H, Rstudio. stringr: Simple, consistent wrappers for common string operations. 2019. Available from: https://cran.r-project.org/package=stringr.51.Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20.
    Google Scholar 
    52.Dowle M, Srinivasan A, Gorecki J, Chirico M, Stetsenko P, Short T, et al. data.table: Extension of “data.frame”. 2019. Available from: https://cran.r-project.org/package=data.table.53.Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
    Google Scholar 
    54.Wickham H ggplot2: Elegant graphics for data analysis. New York: Spinger-Verlag New York; 2016.55.Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ. 2018;2018:1–20.
    Google Scholar 
    56.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Price MN, Dehal PS, Arkin AP. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.58.Rambaut A. FigTree—tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburg; 2020. Available from: http://tree.bio.ed.ac.uk/software/figtree.59.Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.CAS 
    PubMed 

    Google Scholar 
    60.Marzano V, Mancinelli L, Bracaglia G, Del Chierico F, Vernocchi P, Di Girolamo F, et al. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome.”. PLoS Negl Trop Dis. 2017;11:e0005916.PubMed 
    PubMed Central 

    Google Scholar 
    61.Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Heal Dis. 2015;26:27663.62.Hothorn T, Hornik K exactRankTests: exact distributions for rank and permutation tests. 2019. Available from: https://cran.r-project.org/package=exactRankTests.63.Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R nlme: Linear and nonlinear mixed effects models. 2020. Available from: https://cran.r-project.org/package=nlme.64.van den Boogaart G, Tolosana R compositions: an R package for compositional data analysis. 2020. Available from: http://www.stat.boogaart.de/compositions/.65.Wickham H, Francois R, Core Team R, Rstudio, Jylänki J, Jorgensen M readr: Read rectangular text data. 2018. Available from: http://readr.tidyverse.org.66.Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2019. Available from: https://cran.r-project.org/package=vegan.67.Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.PubMed 

    Google Scholar 
    68.Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    69.Reitmeier S, Hitch TCA, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE, et al. Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME COMMUN. 2021;1:31.
    Google Scholar 
    70.Sweeny AR, Lemon H, Ibrahim A, Nussey DH, Free A, McNally L. A mixed model approach for estimating drivers of microbiota community composition and differential taxonomic abundance (preprint). bioRxiv. 2020; https://doi.org/10.1101/2020.11.24.395715.71.Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J Mem Lang. 2013;68:255–78.
    Google Scholar 
    72.Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing type I error and power in linear mixed models. J Mem Lang. 2017;94:305–15.
    Google Scholar 
    73.Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, California: Sage Publishing; 2019.74.Bolker BM. Ecological models and data in R. New Jersey, USA: Princeton University Press; 2008.75.Adams DC, Anthony CD. Using randomization techniques to analyse behavioural data. Anim Behav. 1996;51:733–8.
    Google Scholar 
    76.Baayen RH. Analyzing linguistic data. Cambridge: Cambridge University Press; 2008.77.Bartón K MuMIn: Multi-Model Inference. 2020. Available from: https://cran.r-project.org/package=MuMIn.78.Lüdecke D. sjPlot: Data Visualization for Statistics in Social Science. 2021. Available from: https://cran.r-project.org/package=sjPlot.79.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.
    Google Scholar 
    82.Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109. 15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. MBio. 2017;8:1–17.
    Google Scholar 
    84.Raymann K, Moeller AH, Goodman AL, Ochman H. Unexplored archaeal diversity in the great ape gut microbiome. mSphere. 2017;2:1–12.
    Google Scholar 
    85.Ley RE. Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016;13:69–70.CAS 
    PubMed 

    Google Scholar 
    86.Manara S, Asnicar F, Beghini F, Bazzani D, Cumbo F, Zolfo M, et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol. 2019;20:299.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Umanets A, de Winter I, IJdema F, Ramiro-Garcia J, van Hooft P, Heitkönig IMA, et al. Occupancy strongly influences faecal microbial composition of wild lemurs. FEMS Microbiol Ecol. 2018;94:1–13.
    Google Scholar 
    88.Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, et al. Local habitat, not phylogenetic relatedness, predicts gut microbiota better within folivorous than frugivorous lemur lineages. Biol Lett. 2019;15:5–11.
    Google Scholar 
    89.Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8:295–308.CAS 
    PubMed 

    Google Scholar 
    90.Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol. 2016;7:1–13.
    Google Scholar 
    91.Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018;26:563–74.CAS 
    PubMed 

    Google Scholar 
    92.Ricaboni D, Mailhe M, Cadoret F, Vitton V, Fournier PE, Raoult D. ‘Colidextribacter massiliensis’ gen. nov., sp. nov., isolated from human right colon. New Microbes New Infect. 2017;17:27–9.CAS 
    PubMed 

    Google Scholar 
    93.Qin P, Zou Y, Dai Y, Luo G, Zhang X, Xiao L. Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. shenzhenensis subsp. nov. Microorganisms. 2019;7:78.94.Sizova MV, Muller PA, Stancyk D, Panikov NS, Mandalakis M, Hazen A, et al. Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium. Int J Syst Evol Microbiol. 2014;64:2642–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Amato KR, Garber PA. Nutrition and foraging strategies of the black howler monkey (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol. 2014;76:774–87.CAS 
    PubMed 

    Google Scholar 
    96.White TCR. The significance of unripe seeds and animal tissues in the protein nutrition of herbivores. Biol Rev. 2011;86:217–24.PubMed 

    Google Scholar 
    97.Ortmann S, Bradley BJ, Stolter C, Ganzhorn JU. Estimating the quality and composition of wild animal diets—a critical survey of methods. In: Hohmann G, Robbins M, Boesch C, editors. Feeding ecology in apes and other primates ecological, physical, and behavioral aspects. Cambridge: Cambridge University Press; 2006. p. 395–418.98.Hippe H, Hagelstein A, Kramer I, Swiderski J, Stackebrandt E. Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinirnonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Evol Microbiol. 1999;49:779–82.
    Google Scholar 
    99.Privé F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, et al. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One. 2013;8:e69076.100.Flaiz M, Baur T, Brahner S, Poehlein A, Daniel R, Bengelsdorf FR. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens. Int J Syst Evol Microbiol. 2020;70:4269–79.CAS 
    PubMed 

    Google Scholar 
    101.Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. Nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol. 2012;78:511–8.PubMed 
    PubMed Central 

    Google Scholar 
    102.Clough D, Heistermann M, Kappeler PM. Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus). Am J Phys Anthropol. 2010;142:441–52.PubMed 

    Google Scholar 
    103.Sarkar A, Harty S, Johnson KVA, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4:1020–35.PubMed 

    Google Scholar 
    104.van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, et al. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., two marine anaerobes of the Pontiellaceae fam. nov. producing sulfated glycosaminoglycan-like exopolymers. Microorganisms. 2020;8:920. 18.PubMed Central 

    Google Scholar  More

  • in

    Tiny feather wing beetle reveals new way to fly

    Nature Video
    19 January 2022

    Tiny feather wing beetle reveals new way to fly

    How a novel flying technique copes with the weird physics of miniature flight

    Adam Levy

    Adam Levy

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Flying is a tricky business, but when you are less than a millimetre long, things get even tougher. At such tiny scales the physics of flight changes, and yet insects have evolved strategies to fly in miniature. In this Nature video, we zoom in on new research which is revealing the never-before-seen flight tactics of a species of feather wing beetle.Research Article: Novel flight style and light wings boost flight performance of tiny beetles

    doi: https://doi.org/10.1038/d41586-022-00144-0

    Related Articles

    The mystery of mosquito flight

    Birds gliding through bubbles reveal aerodynamic trick

    High-jumping beetle inspires agile robots

    Subjects

    Ecology

    Evolution

    Engineering

    Latest on:

    Ecology

    Biodiversity faces its make-or-break year, and research will be key
    Editorial 19 JAN 22

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Evolution

    Novel flight style and light wings boost flight performance of tiny beetles
    Article 19 JAN 22

    Thwarted vaccines, strange metals — the week in infographics
    News 18 JAN 22

    How rich countries skew the fossil record
    News 13 JAN 22

    Engineering

    Robots rise to meet the challenge of caring for old people
    Outlook 19 JAN 22

    Novel flight style and light wings boost flight performance of tiny beetles
    Article 19 JAN 22

    A crossbar array of magnetoresistive memory devices for in-memory computing
    Article 12 JAN 22

    Jobs

    Enrollment is open for the International PhD Program in Biology, Shenzhen University School of Medicine

    Shenzhen University Health Science Center
    Shenzhen, China

    Research Associate (Postdoc) on software testing

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Research Associate (PostDoc) in Software Engineering On Software Testing and Automated Debugging

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) student position in mitochondrial metabolism

    Karolinska Institutet, doctoral positions
    Solna, Sweden More