More stories

  • in

    Phylogenetic relations and range history of jerboas of the Allactaginae subfamily (Dipodidae, Rodentia)

    Phylogenetic relations and systematics of AllactaginaeIntergeneric relationsOur data produced a robust phylogeny for Allactaginae above species level and thereby firmly proved that Allactaga s.l. (as recognised by Holden and Musser17) is paraphyletic to both Pygeretmus and Allactodipus. Both of the latter taxa are morphologically distinct from Allactaga by a number of unique apomorphies: a unique molar pattern and glans penis morphology in Allactodipus as well as high-crowned terraced molars, reduction of the premolar, and particular glans penis morphology in Pygeretmus. At the same time, the morphology of all other five-toed jerboas is relatively monotonous with variation only in terms of body size, relative molar crown height, size of auditory bullae, m1 morphotype frequency, and the rate of M3 reduction1,45. Such level of differences never allowed recognition of more than one genus.Thus, allactagines represent a case when descendant lineages with derived morphology are nested within a group with overall conserved morphology. This can be compared to paraphyly of white-toothed shrews Crocidura relative to Diplomesodon46, rorquals (Balaenoptera) relative to humpback whales (Megaptera)47, or tits (Parus s.l.) relative to morphologically aberrant ground tit (Pseudopodoces humilis)48. In such cases, the taxonomy should be changed in accordance with the monophyly principle, which is achieved by combining genera (as done in whales) or splitting the genus in question into new taxa (as done in tits). Unfortunately, any decision in this context is arbitrary as it is based on subjective weighting of morphological differences. For Allactaginae, the splitting approach was implemented18, which resulted in the elevation of Scarturus and Orientallactaga to the generic rank2, despite the fact that a synapomorphy-based morphological diagnosis of Scarturus can hardly be formulated.As an alternative to the morphology-based approach, temporal banding—a method which uses node age as a measure of rank49—was suggested as a standardised method for taxonomic ranking. In the present study, the age of divergence of major Allactaginae lineages was dated to the Pliocene. However, in other groups of Myodonta, Pliocene divergences were found both among genera (as in voles50 or hamsters51) and among congeneric species (as in Sicista52). Thus, the ambiguity remains unresolved; we see no better option than to retain the generic classification established by Michaux & Shenbrot2 (Table S10). However, it should be noted that the inferred age of divergence between S. tetradactylus + S. hotsoni and the VECE clades (3.9–4.1 Mya) is comparable or even larger than the divergence time of Allactodipus from Allactaga. If the temporal criterion (sensu Avise, Johns49) is accepted, one should consider elevating the VECE clade at least to subgeneric rank, with Scarturus proper including only two species. The diagnosis of the new taxon should be polythetic (medium to small jerboas with five-toes, bullae not enlarged, glans penis with longitudinal fold, molar low-to medium crowned, M3 not reduced). Although the name Paralactaga is traditionally used as a subgeneric for the S. euphraticus group and therefore may have been applied to the whole VECE clade, we believe that this is incorrect. The type species of Paralactaga—P. anderssoni Young, 1927—was described from the Late Miocene of China, which is inconsistent with the estimated time of origin of the VECE clade. Apparently all similarities between S. euphraticus group and Paralactaga proper are because of plesiomorphy. Therefore, we suggest that Paralactaga should be attributed to fossil taxa only.Species groups within ScarturusIn the present study, we analysed in detail the phylogenetic reconstructions and divergence times estimations for the species and species groups of the genus Scarturus. Our study is the first to examine the phylogenetic position of the enigmatic taxon described from Afghanistan and which is currently termed Scarturus williamsi caprimulga. The mitochondrial data provided clear evidence that this taxon is not closely related to any member of the S. euphraticus species group including S. williamsi. Instead, it belongs to a separate divergent lineage of Scarturus, which should be considered a separate species, Scarturus caprimulga. It also includes the jerboa from Kopet Dag provisionally classified by Hamidi et al25 as Paralactaga cf. williamsi. The mitochondrial difference between specimens from Afghanistan and those from Kopet Dag suggested a potential subspecies rank of the latter form, which is provisionally referred to as S. aff. caprimulga. More research on the distribution and genetic structure of this species is needed for further clarification. Our study has added more representative genetic data on the poorly known S. vinogradovi and confirmed it as a separate divergent branch within Scarturus s.l. and likely a distant sister group of S. caprimulga.Previous phylogenetic reconstructions of the S. euphraticus species group based on mtDNA data recovered a divergent branch within S. euphraticus53, which was subsequently classified as S. aulacotis2. With further addition of comprehensive nuclear data, the full species rank of this taxon is now completely supported. The relationships among the three species in the S. euphraticus group correspond to a hard trichotomy dated to the late Early Pleistocene.Nuclear data strongly support deep structuring within the S. elater species group, as previously demonstrated using mtDNA19,22,54, and confirmed the species status of S. indicus and S. heptneri. The divergence between S. elater and S. indicus estimated based on the nuclear loci was dated to approximately 1.5 Mya, which was slightly older than the 1.26 Mya inferred from mtDNA by Bannikova et al.22. Both S. indicus and S. elater included allopatric lineages that have separated 600–800 kya (i.e. dzungariae and strandi within elater, and aralychensis within indicus). Their formal taxonomic rank appears controversial: the level of divergence apparently conforms to species rank, whereas genetic data indicates potential gene flow between them. Thus, the mtDNA haplotypes of Scarturus specimens from the Zaisan depression (S. e. zaisanicus) form a subclade within S. elater s.str., whereas nuclear data suggest that S. e. zaisanicus is relatively close to S. e. dzungariae. This pattern suggests that the Zaisan population, while being a derivative of the Dzungar form, experienced mtDNA capture as a result of a past hybridisation event with S. elater. Gene flow between S. strandi and S. elater proper was indicated by the occurrence of elater mtDNA haplotypes in certain populations of strandi from north-western Kyzylkum22. All these taxa require additional research to produce a more accurate evaluation of gene flow intensity. Nevertheless, we suggest that dzungariae, strandi, and aralychensis should be considered semispecies or species in statu nascendi. Taxonomically, we regard them as parts of elater and indicus superspecies and refer to them as S. (elater) dzungariae, S. (elater) strandi, and S. (indicus) aralychensis, respectively.Phylogenetic relations within OrientallactagaWithin Orientallactaga, O. bullata and O. balikunica were supported as sister taxa based on nuclear data, which is consistent with their common morphology (enlarged bullae). However, mtDNA suggested that O. bullata is a sister taxon to O. sibirica, and the reason for this discrepancy is unclear, with ancient mtDNA introgression being the most obvious explanation. The crown age of Orientallactaga was dated to the early Early Pleistocene (Gelasian). Neither O. bullata nor O. balikunica show substantial intraspecific variation.In contrast, O. sibirica consists of several genetic lineages, which partly correspond to recognised subspecies. The mtDNA data tentatively supported subdivision of O. sibirica into western and eastern groups separated by the Tianshan–Altay zoogeographic boundary. The structure of variation in the eastern portion of the range (Mongolia, China) is well-studied23; however, the genetic data on the western portion are still fragmentary. Available mtDNA data provisionally support recognition of western subspecies such as O. s. ognevi (north-eastern to central Kazakhstan), O. s. dementjevi (Issyk-Kul region), and O. s. altorum (central Tianshan). The latter two forms are distributed in high-altitude areas of Tianshan, thus indicating that, in contrast to most other jerboa species, mountain areas might serve as foci of diversification in O. sibirica.The westernmost part of the range (western Kazakhstan, Qyzylkum) was assumed to be inhabited by a single O. s. suschkini subspecies after morphological revision1. However, three divergent mtDNA lineages were recovered based on the preliminary analysis of mtDNA data retrieved from museum specimens from the area, which suggests that the diversity of western populations is likely underestimated and in need of further examination.The crown age of O. sibirica was estimated at 500–600 kya, which was substantially younger than 2.2–3.2 Mya as inferred by Cheng et al.23; this discrepancy, however, can be explained by mtDNA saturation effects and usage of inaccurate secondary calibrations in their study.Variation within Allactaga and PygeretmusConsidering the phylogenetic position of Pygeretmus, our data firmly corroborated its separate phylogenetic position and rejected any affinity with Orientallactaga bullata as reconstructed by Wu et al.55. The latter result should be attributed to identification error. In our study, all three species of Pygeretmus were analysed to confirm phylogenetic proximity of P. shitkovi and P. platyurus relative to P. pumilio. Thus, the subgeneric status of Alactagulus containing the latter species was not contradicted; however, the split age between Pygeretmus s.str. and Alactagulus is relatively young, dated as Pliocene/Pleistocene boundary, indicating that morphological and life history traits of the former (e.g. slower locomotion) have evolved rather recently.A further taxon demonstrating a complex structure is Allactaga major. Our mtDNA data indicated that A. major consisted of several genetic lineages partly corresponding to morphological subspecies (A. m. spiculum, A. m. djetysuensis). A high level of divergence was observed between specimens from the northern Caucasus and Kazakhstan. A specimen of morphologically distinct A. m. spiculum (north-eastern Kazakhstan, western Siberia) was placed as a sister species to all other A. major with a divergence level compatible with species status.Several other species included unexpected genetic lineages that were apparently divergent at subspecies level (e.g. a southern Uzbekistan lineage of A. severtzovi and an Ili lineage of P. shitkovi). However, the resolving power of the employed set of 15 nuclear genes is insufficient for clarifying relationships within species. Therefore, these cases should be studied using larger samples and further nuclear loci.Divergence time estimates within AllactaginaeOur estimated divergence times were generally more recent than those produced by most previous studies. The root node of crown Allactaginae was dated to 7.7 (5.4–9.9) Mya by Wu et al.55, 8.1 (4.2–12.7) Mya by Zhang et al.56, or 8.87 (8.3–9.85) Mya by Pisano et al.4. The results by Wu et al.55 may be affected by a node density effect as their re-analysis with reduced taxon sampling of Allactaginae and Dipodinae produced younger dating at 5.8 (3.1–8.6) Mya. The latter two studies used only one to four nuclear loci and calibrated their analysis using non-Dipodidae calibration points. In both cases, the Early Miocene age of Sicista primus was used to calibrate crown Sicista, which lacks proper justification and may result in upward bias, as argued by Rusin et al.57.The earliest Allactaginae appeared in the Early Miocene and, in the Middle Miocene, the members of the primitive genus Protalactaga Young, 1927 became a common element of the Asian fauna3. During the Late Miocene, the diversity of allactagines persisted, and new genera emerged including Paralactaga Young, 1927 which is morphologically similar to Allactaga and is often considered its subgenus3,45. However, as can be derived from our results, all but one of the Middle and Late Miocene lineages went extinct without leaving any recent descendants, and all current diversity is a product of the Pliocene–Pleistocene evolution. This diversification pattern is unlike that observed in a different jerboa subfamily, Dipodinae, which includes lineages that had diverged in the Middle and early Late Miocene (Paradipus and Dipus, respectively)4,58.As estimated here, the onset of radiation among crown Allactaginae occurred in the latest Messinian and thus was nearly coincident with the Messinian crisis. However, it remains unclear how (or whether at all) climatic perturbations at the Miocene /Pliocene boundary affected the evolution of Allactaginae. The results of the diversification analysis suggested that, throughout the Pliocene and Pleistocene, the rate and mode of speciation in five-toed jerboas remained constant, indicating high tolerance of this group towards the climatic changes of this period.The minimum age of split observed between sympatric species was approximately 1 Mya as demonstrated by heptneri versus elater s.str. (and strandi). This was the estimate for the minimum time necessary for formation of effective reproductive barriers in allactagines (post- or pre-zygotic). Other phylogenetically close sympatric species pairs were S. elater/S. indicus (1.5 My), O. bullata/O. balikunica (1.5 My), and A. major/A. severtzovi (2.0 My).Geography of speciationOf 17 analysed episodes of speciation in Pliocene–Pleistocene, the patterns of range fragmentation in 10 episodes matched well to the classical vicariance scenario and those of six episodes matched to the founder-event speciation scenario; in one episode, both scenarios were equally probable. As the location of arising isolation barriers within the ancestor range seemed incidental, only in three cases the ancestors’ range was subdivided into two parts which were more or less equal in size: first, into East and West Central Asia; second, into Turan and Iran; third, into Anatolia with trans-Caucasus and northern Zagros and Levant with northern Mesopotamia and southern Zagros. In all other cases, the ancestors’ range was subdivided into the main part and relatively small peripheral isolates. As can be expected from the modern patterns of species diversity of Allactaginae, the discovered speciation events were unequally distributed: one episode in North Africa, one in the eastern part of Central Asia, three in the Middle East, four in the Iranian highland, four in Turan, and five in Kazakhstan. In most cases, range fragmentation coincided with extreme climate conditions within the analysed time periods: warmest and wettest (decrease of the area of arid lands: nodes 2–3, 5, 10, 12, and 14–15) or coldest and driest (closing narrow mountain passages due to mountain glaciation: nodes 4, 6–9, 13, and 16–18). In one case (node 11), fragmentation of the range coincided with moderate climate conditions.Successful modelling of fragmentation of geographic ranges as a base of speciation events seemed to agree with the hypothesis of Peterson et al.15, which states that ecological niches evolve little at or around the time of speciation events, whereas niche differences accumulate later. This hypothesis was supported by Peterson’s analysis59 of data published between 1999 and 2008 which demonstrated that niche conservatism was found in more than 70% of comparisons within species and between sister species, but in less than 50% of comparisons among closely-related (but not sister) species and across monophyletic lineages of species. Moreover, analysis of habitat niche evolution of arvicoline rodents16 demonstrated that closely related species with allopatric or parapatric distribution demonstrated small niche differences, whereas they were larger in species with sympatric distribution. This is a clear indication that interspecific competition forces natural selection to increase niche differences resulting in species co-occurrence. It was demonstrated that niche divergence/conservatism can be differently expressed between different niche/resource axes60. In voles, which have a highly specialised folivorous diet, habitat segregation seems to be the only type of niche differentiation. Closely related Allactaginae species are similar in diet and typically occur in allopatric or parapatric distribution patterns1, which may indicate their niche conservatism. The only exception to a pattern where species with similar diets show widely overlapping geographic distributions are Scatrurus elater and S. heptneri (these two species are similar in both, macro- and micro-habitat niches, and it is unclear which mechanisms allow them to co-occur22). Distantly related sympatric species typically show similarities regarding macro-habitat niches but marked differences in terms of micro-habitat niches (Allactaga major and Orientallactaga sibirica; O. sibirica and O. bullata; O. sibirica and O. balikunica; Pygerethmus pumilio and P. platyurus; P. pumilio and P. shitkovi; personal observations) and diet (Allactaga and Allactodipus; Allactaga and Scarturus; Allactaga and Pygeretmus; Orientallactaga and Pygeretmus; Scarturus and Pygeretmus1,61). Thus, macro-habitat niche conservatism may be expected even in sympatric species. More

  • in

    Ecological niche divergence between extant and glacial land snail populations explained

    1.Nehring, A. Über Tundren und Steppen der Jetzt- und Vorzeit, mit besonderer Berücksichtigung ihrer Fauna (F. Dummler, 1890).2.Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra in southern Siberia. Boreas 48, 36–56 (2019).Article 

    Google Scholar 
    3.Graham, R. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2, 343–350 (1976).Article 

    Google Scholar 
    4.Webb, T. I. I. I. The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio 69, 177–187 (1987).Article 

    Google Scholar 
    5.Frest, T. J. & Dickson, J. R. Land snails (Pleistocene-recent) of the Loess Hills: A preliminary survey. Proc. Iowa Acad. Sci. 93, 130–157 (1986).
    Google Scholar 
    6.Nekola, J. C. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80, 2459–2473 (1999).Article 

    Google Scholar 
    7.Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 17, 199–221 (2006).Article 

    Google Scholar 
    8.Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S. & Soltis, P. S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293 (2006).Article 

    Google Scholar 
    9.Graham, R. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Papers 11, 141–158 (2005).Article 

    Google Scholar 
    10.Davis, M. B. Climatic instability, time lags, and community disequilibrium. In Community Ecology (eds Diamond, J. & Case, T. J.) 269–284 (Harper & Row, 1984).11.Baker, R. G. et al. A full-glacial biota from southeastern Iowa USA. J. Quat. Sci. 1, 91–107 (1986).Article 

    Google Scholar 
    12.Baker, R. G., Sullivan, A. E., Hallberg, G. R. & Horton, D. G. Vegetational changes in western Illinois during the onset of late Wisconsinan glaciation. Ecology 70, 1363–1376 (1989).Article 

    Google Scholar 
    13.Baker, R. G. et al. Mid-Wisconsinan environments on the eastern Great Plains. Quat. Sci. Rev. 28, 873–889 (2009).ADS 
    Article 

    Google Scholar 
    14.Scott, G. H. Uniformitarianism, the uniformity of nature, and paleoecology. N. Zeal. J. Geol. Geophys. 6, 510–527 (1963).Article 

    Google Scholar 
    15.Horsák, M. et al. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 76, 1–10 (2010).Article 

    Google Scholar 
    16.Ložek, V. Quartärmollusken der Tschechoslowakei (Nakladatelství Československé akademie věd, 1964).17.Horsák, M. et al. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas 44, 638–657 (2015).Article 

    Google Scholar 
    18.Moine, O. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quat. Int. 337, 90–113 (2014).Article 

    Google Scholar 
    19.Hošek, J. et al. Middle Pleniglacial pedogenesis on the northwestern edge of the Carpathian Basin: A multidisciplinary investigation of the Bíňa pedo-sedimentary section SW Slovakia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 321–339 (2017).Article 

    Google Scholar 
    20.Horsák, M., Škodová, J. & Cernohorsky, N. H. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. J. Molluscan Stud. 77, 248–254 (2011).Article 

    Google Scholar 
    21.Nekola, J. C., Coles, F. B. & Horsák, M. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): Integration of DNA-sequence data and conchology. J. Molluscan Stud. 81, 196–216 (2015).Article 

    Google Scholar 
    22.Horsák, M., Juřičková, L. & Picka, J. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics (Kabourek, 2013).23.Welter-Schultes, F. W. European non-marine molluscs, a guide for species identification (Planet Poster Editions, 2012).24.von Proschwitz, T. Three land-snail species new to the Norwegian fauna: Pupilla pratensis (Clessin, 1871), Vertigo ultimathule von Proschwitz, 2007 and Balea sarsii Philippi, 1847 [= B. heydeni von Maltzan, 1881]. Fauna Norv. 30, 13–19 (2010).25.Kerney, M. P., Cameron, R. A. D. & Jungbluth, J. H. Die Landschnecken Nord- und Mitteleuropas (Parey Verlag, 1983).26.Horsáková, V., Nekola, J. C. & Horsák, M. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Mol. Phylogenet. Evol. 132, 307–320 (2019).Article 

    Google Scholar 
    27.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    28.Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    29.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    30.Haase, M., Meng, S. & Horsák, M. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae). Zool. J. Linnean. Soc. 191, 720–747 (2021).Article 

    Google Scholar 
    31.Ložek, V. Molluscan fauna from the loess series of Bohemia and Moravia. Quat. Int. 76–77, 141–156 (2001).Article 

    Google Scholar 
    32.Fordham, D. A. et al. PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    33.Mysterud, A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biol. 12, 129–141 (2006).Article 

    Google Scholar 
    34.Arnalds, Ó. The soils of Iceland. World Soils Book Series (Springer, 2015).35.Horsák, M. et al. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol. Process. 35, e14293 (2021).36.Ložek, V. Zrcadlo minulosti. Česká a slovenská krajina v kvartéru (Dokořán, 2007).37.Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds. Quaternary Glaciations—Extent and Chronology, Volume 15 (Elsevier, 2011). More

  • in

    Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism

    1.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    2.IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).
    Google Scholar 
    3.IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).
    Google Scholar 
    4.Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 

    Google Scholar 
    6.Lowe, A. T., Bos, J. & Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 9, 963. https://doi.org/10.1038/s41598-018-37764-4 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    7.Justić, D., Rabalais, N. N. & Turner, R. E. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41, 992–1003 (1996).ADS 

    Google Scholar 
    8.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed 
    ADS 

    Google Scholar 
    10.Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coast. 36, 697–707 (2013).CAS 

    Google Scholar 
    11.Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).ADS 

    Google Scholar 
    12.Gaarder, T. & Gran, H. H. Investigations of the production of plankton in the Oslo Fjord. Rapports Procès-Verbaux Réunions 42, 3–48 (1927).
    Google Scholar 
    13.Bender, M. et al. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098 (1987).ADS 

    Google Scholar 
    14.Marra, J. Net and gross productivity: Weighing in with 14C. Aquat. Microb. Ecol. 56, 123–131 (2009).
    Google Scholar 
    15.Hitchcock, G. L., Kirkpatrick, G., Minnett, P. & Palubok, V. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA. Harmful Algae 9, 351–358 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Stephenson, T. A., Zoond, A. & Eyre, J. The liberation and utilisation of oxygen by the population of rock-pools. J. Exp. Biol. 11, 162–172 (1934).
    Google Scholar 
    17.Beyers, R. J. Relationship between temperature and the metabolism of experimental ecosystems. Science 136, 980–982 (1962).CAS 
    PubMed 
    ADS 

    Google Scholar 
    18.Duarte, C. M. & Regaudie-de-Gioux, A. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol. Oceanogr. 54, 1015–1022 (2009).CAS 
    ADS 

    Google Scholar 
    19.Noël, L.M.-L. et al. Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuar. Coast. Shelf Sci. 88, 153–159 (2010).ADS 

    Google Scholar 
    20.Hall, C. A. S. & Moll, R. Methods of assessing aquatic primary productivity. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 19–53 (Springer, 1975).
    Google Scholar 
    21.Platt, T. et al. Biological production of the oceans: The case for a consensus. Mar. Ecol. Prog. Ser. 52, 77–88 (1989).ADS 

    Google Scholar 
    22.Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).ADS 

    Google Scholar 
    23.Odum, H. T. & Hoskin, C. M. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. 5, 16–46 (1958).
    Google Scholar 
    24.Johnson, K. M., Burney, C. M. & Sieburth, J. M. Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65, 49–60 (1981).CAS 

    Google Scholar 
    25.Volaric, M. P., Berg, P. & Reidenbach, M. A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coast. 43, 2034–2045 (2020).CAS 

    Google Scholar 
    26.Collins, J. R. et al. An autonomous, in situ light-dark bottle device for determining community respiration and net community production. Limnol. Oceanogr. Method. 16, 323–338 (2018).
    Google Scholar 
    27.Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Google Scholar 
    28.Peterson, B. J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11, 359–385 (1980).
    Google Scholar 
    29.Jackson, D. F. & McFadden, J. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35, 2–4 (1954).
    Google Scholar 
    30.Van de Bogert, M. C., Carpenter, S. R. & Pace, M. L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 5, 145–155 (2007).
    Google Scholar 
    31.Barone, B., Nicholson, D., Ferrón, S., Firing, E. & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnol. Oceanogr. Methods 17, 650–664 (2019).CAS 

    Google Scholar 
    32.Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: State of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).CAS 

    Google Scholar 
    33.Nicholson, D. P., Wilson, S. T., Doney, S. C. & Karl, D. M. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42, 4032–4039 (2015).CAS 
    ADS 

    Google Scholar 
    34.Mantikci, M., Hansen, J. L. S. & Markager, S. Photosynthesis enhanced dark respiration in three marine phytoplankton species. J. Exp. Mar. Biol. Ecol. 497, 188–196 (2017).CAS 

    Google Scholar 
    35.Truchot, J.-P. & Duhamel-Jouve, A. Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. Resp. Physiol. 39, 241–254 (1980).CAS 

    Google Scholar 
    36.Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81, 114–122 (2009).ADS 

    Google Scholar 
    37.Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466. https://doi.org/10.1371/journal.pone.0152466 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Andersen, M. R., Kragh, T. & Sand-Jensen, K. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc. R. Soc. B 284, 20171427. https://doi.org/10.1098/rspb.2017.1427 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Nielsen, K. J. Bottom-up and top-down forces in tide pools: Test of a food chain model in an intertidal community. Ecol. Monogr. 71, 187–217 (2001).
    Google Scholar 
    40.Altieri, A. H., Trussell, G. C., Ewanchuk, P. J., Bernatchez, G. & Bracken, M. E. S. Consumers control diversity and functioning of a natural marine ecosystem. PLoS ONE 4, e5291. https://doi.org/10.1371/journal.pone.0005291 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    41.O’Connor, N. E., Bracken, M. E. S., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).
    Google Scholar 
    42.Rheuban, J. E., Berg, P. & McGlathery, K. J. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507, 1–13 (2014).ADS 

    Google Scholar 
    43.Barrón, C. et al. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6, 144–153. https://doi.org/10.1007/s10021-002-0402-3 (2003).CAS 
    Article 

    Google Scholar 
    44.Kraufvelin, P., Lindholm, A., Pedersen, M. F., Kirkerud, L. A. & Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 157, 29–47 (2010).
    Google Scholar 
    45.Epping, E. H. G. & Jørgensen, B. B. Light-enhanced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser. 139, 193–203 (1996).ADS 

    Google Scholar 
    46.Graham, J. M., Kranzfelder, J. A. & Auer, M. T. Light and temperature as factors regulating seasonal growth and distribution of Ulothrix zonata (Ulvophyceae). J. Phycol. 21, 228–234. https://doi.org/10.1111/j.0022-3646.1985.00228.x (1985).Article 

    Google Scholar 
    47.Hotchkiss, E. R. & Hall, R. O. Jr. High rates of daytime respiration in three streams: Use of δ18OO2 and O2 to model diel ecosystem metabolism. Limnol. Oceanogr. 59, 798–810. https://doi.org/10.4319/lo.2014.59.3.0798 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).CAS 
    ADS 

    Google Scholar 
    49.Conley, D. J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C. M. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009).CAS 

    Google Scholar 
    50.Lefèvre, D., Bentley, T. L., Robinson, C., Blight, S. P. & Williams, P. J. L. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol. 184, 201–215 (1994).
    Google Scholar 
    51.López-Urrutia, Á., SanMartin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    52.Grant, J. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90, 299–306 (1986).
    Google Scholar 
    53.Jankowski, K., Schindler, D. E. & Lisi, P. J. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).
    Google Scholar 
    54.Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B. 365, 2117–2126 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    55.Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    56.Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coast. 32, 123–145 (2009).CAS 

    Google Scholar 
    57.Howard, E. M. et al. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coast. 43, 1908–1922 (2020).CAS 

    Google Scholar 
    58.Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Winslow, L. A. et al. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).CAS 

    Google Scholar 
    60.Sorte, C. J. B. & Bracken, M. E. S. Warming and elevated CO2 interact to drive rapid shifts in marine community production. PLoS ONE 10, e0145191. https://doi.org/10.1371/journal.pone.0145191 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Hinode, K. et al. The phenology of gross ecosystem production in a macroalga and seagrass canopy is driven by seasonal temperature. Phycol. Res. 68, 298–312 (2020).CAS 

    Google Scholar 
    62.Bracken, M., Miller, L., Mastroni, S., Lira, S. & Sorte, C. Data from: Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism. Dryad Dataset https://doi.org/10.7280/D1M39B (2021).Article 

    Google Scholar 
    63.Reiskind, J. B., Seamon, P. T. & Bowes, G. Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87, 686–692 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Invasion front dynamics of interactive populations in environments with barriers

    1.Williamson, M. & Griffiths, B. Biological invasions (Springer, New York, 1996).
    Google Scholar 
    2.Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evolut. 32, 464–474 (2017).
    Google Scholar 
    3.Van Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003).MATH 
    ADS 

    Google Scholar 
    4.OMalley, L., Korniss, G. & Caraco, T. Ecological invasion, roughened fronts, and a competitors extreme advance: integrating stochastic spatial-growth models. Bull. Math. Biol. 71, 1160–1188 (2009).MathSciNet 
    MATH 

    Google Scholar 
    5.Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The mathematics behind biological invasions Vol. 44 (Springer, New York, 2016).MATH 

    Google Scholar 
    6.Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937).MATH 

    Google Scholar 
    7.Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. 104, 3883–3888 (2007).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    8.Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).CAS 
    PubMed 

    Google Scholar 
    9.Wolf, K. et al. Physical limits of cell migration: control by ecm space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Persp. Biol. 3, a005058 (2011).
    Google Scholar 
    11.Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Spill, F., Reynolds, D. S., Kamm, R. D. & Zaman, M. H. Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 41–48 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).CAS 
    PubMed 

    Google Scholar 
    14.Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).CAS 

    Google Scholar 
    15.Azimzade, Y. & Saberi, A. A. Short-range migration can alter evolutionary dynamics in solid tumors. J. Stat. Mech. Theory Exp. 2019, 103502 (2019).MathSciNet 
    MATH 

    Google Scholar 
    16.West, J., Schenck, R., Gatenbee, C., Robertson-Tessi, M. & Anderson, A. R. Tissue structure accelerates evolution: premalignant sweeps precede neutral expansion. bioRxiv 542019 (2019).17.Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in wnt-driven mammary cancers. Nature 508, 113–117 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Shahriari, K. et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene (2016).20.Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).CAS 
    PubMed 

    Google Scholar 
    21.Martín-Pardillos, A. et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 19, 1–26 (2019).
    Google Scholar 
    22.Kim, T.-M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).CAS 
    PubMed 

    Google Scholar 
    23.Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    24.Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Capp, J.-P. et al. Group phenotypic composition in cancer. Elife 10, e63518 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Murray, J. D. Mathematical biology I: an introduction (2003).27.Mikhailov, A., Schimansky-Geier, L. & Ebeling, W. Stochastic motion of the propagating front in bistable media. Phys. Lett. A 96, 453–456 (1983).MathSciNet 
    ADS 

    Google Scholar 
    28.Hatzikirou, H., Brusch, L., Schaller, C., Simon, M. & Deutsch, A. Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339 (2010).MathSciNet 
    MATH 

    Google Scholar 
    29.Azimzade, Y., Sasar, M. & Maleki, I. Invasion front dynamics in disordered environments. Sci. Rep. 10, 1–10 (2020).
    Google Scholar 
    30.Azimzade, Y., Saberi, A. A. & Sahimi, M. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Phys. Rev. E 100, 062409 (2019).PubMed 
    ADS 

    Google Scholar 
    31.Rapin, G. et al. Roughness and dynamics of proliferating cell fronts as a probe of cell-cell interactions. Sci. Rep. 11, 1–9 (2021).ADS 

    Google Scholar 
    32.Pérez-Beteta, J. et al. Tumor surface regularity at mr imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 171051 (2018).33.Pérez-Beteta, J. et al. Morphological mri-based features provide pretreatment survival prediction in glioblastoma. Eur. Radiol. 1–10 (2018).34.Brú, A. et al. Super-rough dynamics on tumor growth. Phys. Rev. Lett. 81, 4008 (1998).ADS 

    Google Scholar 
    35.Brú, A., Albertos, S., Subiza, J. L., García-Asenjo, J. L. & Brú, I. The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    36.Huergo, M., Pasquale, M., González, P., Bolzán, A. & Arvia, A. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys. Rev. E 85, 011918 (2012).CAS 
    ADS 

    Google Scholar 
    37.Munn, L. L. Dynamics of tissue topology during cancer invasion and metastasis. Phys. Biol. 10, 065003 (2013).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    38.Dey, B., Sekhar, G. R. & Mukhopadhyay, S. K. In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. J. Biol. Phys. 1–40 (2018).39.Block, M., Schöll, E. & Drasdo, D. Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys. Rev. Lett. 99, 248101 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    40.Moglia, B., Guisoni, N. & Albano, E. V. Interfacial properties in a discrete model for tumor growth. Phys. Rev. E 87, 032713 (2013).ADS 

    Google Scholar 
    41.Moglia, B., Albano, E. V. & Guisoni, N. Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium. Phys. Rev. E 94, 052139 (2016).PubMed 
    ADS 

    Google Scholar 
    42.Scianna, M. & Preziosi, L. A hybrid model describing different morphologies of tumor invasion fronts. Math. Model. Nat. Phenom. 7, 78–104 (2012).MathSciNet 
    MATH 

    Google Scholar 
    43.Azimzade, Y., Saberi, A. A. & Sahimi, M. Role of the interplay between the internal and external conditions in invasive behavior of tumors. Sci. Rep. 8, 5968 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    44.Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Family, F. & Vicsek, T. Dynamics of fractal surfaces (World Scientific, Singapore, 1991).MATH 

    Google Scholar 
    46.Vicsek, T. Fractal growth phenomena (World scientific, Singapore, 1992).MATH 

    Google Scholar 
    47.Swanson, K. R., Bridge, C., Murray, J. & Alvord, E. C. Jr. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003).PubMed 

    Google Scholar 
    48.Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. 2, 1–13 (2019).
    Google Scholar 
    49.Azimzade, Y., Saberi, A. A. & Gatenby, R. A. Superlinear growth reveals the allee effect in tumors. Phys. Rev. E 103, 042405 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).CAS 
    PubMed 

    Google Scholar  More

  • in

    Obligate mutualistic cooperation limits evolvability

    Experimental designConsortia of auxotrophic E. coli genotypes, which previously evolved an obligate mutualistic cooperation26, were used to determine how this type of interaction affects the ability of the participating individuals to respond to environmental selection pressures. To this end, two main experimental treatment groups were established. First, each of the two cooperative auxotrophs was grown as amino acid-supplemented monoculture (i.e. tyrosine and tryptophan, 100 µM each). Second, both genotypes were cocultivated in the absence of amino acid supplementation. A treatment, in which monocultures were cultivated in the absence of amino acid supplementation was not included, because auxotrophic genotypes would not grow under these conditions. Also, an amino acid-supplemented coculture was not implemented in the experimental design, because competition between both auxotrophs was likely to result in a loss of one of the two genotypes (Supplementary Fig. 1). Moreover, previous experiments showed that amino acid supplementation does not completely abolish the mutualistic interaction. Hence, the experiment compared monocultures with externally provided amino acids (i.e. no mutualism) to cocultures, which could only grow when strains reciprocally exchanged amino acids (i.e. mutualism). Replicate populations of both treatment groups were serially propagated while being subject to a stepwise increasing concentration of one of four different antibiotics (i.e. ampicillin, kanamycin, chloramphenicol, and tetracycline) (Fig. 1). These four antibiotics differed in their mode of action. In this way, not just the effect of a single stressor was probed, but rather the ability of mutualistic consortia to adapt to environmental stress in general.Ancestral consortia differ in their growth levels and susceptibility to environmental stressBefore the actual evolution experiment was performed, both growth levels and susceptibility to environmental stress was determined in the ancestral consortia. Comparing the maximum growth rate and densities populations achieved after 72 h revealed that unsupplemented cocultures grew significantly slower (Benjamini–Hochberg correction: P  More

  • in

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection

    1.Jessup CM, Forde SE, Bohannan BJM. Microbial experimental systems in ecology. In: Desharnais RA, editor. Advances in ecological research, Vol. 37. Elsevier, USA: Academic Press; 2005. p. 273–307.2.Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature. 2006;439:462–5.CAS 
    Article 

    Google Scholar 
    3.Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME J. 2021;15:260–9.CAS 
    Article 

    Google Scholar 
    4.Thutupalli S, Uppaluri S, Constable GWA, Levin SA, Stone HA, Tarnita CE, et al. Farming and public goods production in Caenorhabditis elegans populations. Proc Natl Acad Sci USA. 2017;114:2289–94.CAS 
    Article 

    Google Scholar 
    5.Otto G. Arresting predators. Nat Rev Microbiol. 2020;18:675.PubMed 

    Google Scholar 
    6.Worthy SE, Haynes L, Chambers M, Bethune D, Kan E, Chung K, et al. Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PLoS ONE. 2018;13:e0201158.Article 

    Google Scholar 
    7.Choi JI, Yoon K-H, Subbammal Kalichamy S, Yoon S-S, Il Lee J. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME J. 2016;10:558–67.CAS 
    Article 

    Google Scholar 
    8.Reilly DK, Srinivasan J. Caenorhabditis elegans olfaction. Oxford Research Encyclopedia of Neuroscience: Oxford University Press; 2017.9.Beale E, Li G, Tan M-W, Rumbaugh KP. Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol. 2006;72:5135–7.CAS 
    Article 

    Google Scholar 
    10.Werner KM, Perez LJ, Ghosh R, Semmelhack MF, Bassler BL. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. J Biol Chem. 2014;289:26566–73.CAS 
    Article 

    Google Scholar 
    11.Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14:20983–1005.Article 

    Google Scholar 
    12.Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol. 1998;180:4416–25.CAS 
    Article 

    Google Scholar 
    13.Chua SL, Liu Y, Li Y, Jun Ting H, Kohli GS, Cai Z, et al. Reduced Intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2017;7:451.Article 

    Google Scholar 
    14.Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.CAS 
    Article 

    Google Scholar 
    15.Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA. 2005;102:14422–7.CAS 
    Article 

    Google Scholar 
    16.Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA. 2006;103:8487–92.CAS 
    Article 

    Google Scholar 
    17.Chua SL, Ding Y, Liu Y, Cai Z, Zhou J, Swarup S, et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016;6:160162.Article 

    Google Scholar 
    18.Seviour T, Hansen SH, Yang L, Yau YH, Wang VB, Stenvang MR, et al. Functional amyloids keep quorum-sensing molecules in check. J Biol Chem. 2015;290:6457–69.CAS 
    Article 

    Google Scholar 
    19.Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.Article 

    Google Scholar 
    20.Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25:365–404.CAS 
    Article 

    Google Scholar 
    21.Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K. The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci USA. 1997;94:12162–7.CAS 
    Article 

    Google Scholar 
    22.Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell. 1996;84:899–909.CAS 
    Article 

    Google Scholar 
    23.Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 2013;9:e1003101.CAS 
    Article 

    Google Scholar 
    24.Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.CAS 
    Article 

    Google Scholar 
    25.Lewenza S, Charron-Mazenod L, Giroux L, Zamponi AD. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence. PeerJ. 2014;2:e521–e.Article 

    Google Scholar 
    26.Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA. 1999;96:715–20.CAS 
    Article 

    Google Scholar 
    27.Tehseen M, Liao C, Dacres H, Dumancic M, Trowell S, Anderson A. Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast. PLoS ONE. 2014;9:e108680.Article 

    Google Scholar 
    28.Sooknanan J, Bhatt B, Comissiong DMG. A modified predator-prey model for the interaction of police and gangs. R Soc Open Sci. 2016;3:160083.CAS 
    Article 

    Google Scholar 
    29.Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409.CAS 
    Article 

    Google Scholar 
    30.Deng Y, Liu SY, Chua SL, Khoo BL. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens Bioelectron. 2021;180:113113.CAS 
    Article 

    Google Scholar 
    31.Kwok T-Y, Ma Y, Chua SL. Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination. Food Microbiol. 2022;102:103914.Article 

    Google Scholar 
    32.Yu M, Chua SL. Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse? Medicinal Res Rev. 2020;40:1103–16.CAS 
    Article 

    Google Scholar 
    33.Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5:4462.CAS 
    Article 

    Google Scholar 
    34.Liu SY, Leung MM-L, Fang JK-H, Chua SL. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem Eng J. 2021;404:127079.CAS 
    Article 

    Google Scholar  More

  • in

    Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage

    1.Rogers, L. J. & Andrew, R. J. Comparative Vertebrate Lateralization (Cambridge University Press, 2002).
    Google Scholar 
    2.Bisazza, A. & Brown, C. Lateralization of cognitive functions in fish. In Fish Cognition and Behavior 2nd edn (eds Brown, C. et al.) 298–324 (Wiley-Blackwell, 2011).
    Google Scholar 
    3.Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behaviour of Brain Asymmetries (Cambridge University Press, 2013).
    Google Scholar 
    4.Versace, E. & Vallortigara, G. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front. Psychol. 6, 233 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    5.Vallortigara, G. & Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior (eds. Call, J., Burghardt, G.M., Pepperberg, I.M., Snowdon, C.T. & Zentall, T.) 557–577 (2017).6.Frasnellis, E., Vallortigara, G. & Rogers, L. J. Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 36, 1273–1291 (2012).
    Google Scholar 
    7.Byrne, R. A., Kuba, M. J. & Meisel, D. V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 68, 1107–1114 (2004).
    Google Scholar 
    8.Byrne, R. A., Kuba, M. J., Meisel, D. V., Griebel, U. & Mather, J. A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 172, 195–201 (2006).PubMed 

    Google Scholar 
    9.Lucky, N. S., Ihara, R., Yamaoka, K. & Hori, M. Behavioral laterality and morphological asymmetry in the Cuttlefish, Sepia lycidas. Zoolog. Sci. 29, 286–292 (2012).PubMed 

    Google Scholar 
    10.Stancher, G., Sovrano, V. A. & Vallortigara, G. Chapter 2-Motor asymmetries in fishes, amphibians, and reptiles. In Progress in Brain Research (eds Forrester, G. S. et al.) 33–56 (Elsevier, 2018).
    Google Scholar 
    11.Miletto Petrazzini, M. E., Sovrano, V. A., Vallortigara, G. & Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 14, 11 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    12.Roy, E. A., Bryden, P. & Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 53, 315–317 (2003).PubMed 

    Google Scholar 
    13.Michel, G. F., Tyler, A. N., Ferre, C. & Sheu, C. F. The manifestation of infant hand-use preferences when reaching for objects during the seven- to thirteen-month age period. Dev. Psychobiol. 48, 436–443 (2006).PubMed 

    Google Scholar 
    14.Porac, C. & Searleman, A. The effects of hand preference side and hand preference switch history on measures of psychological and physical well-being and cognitive performance in a sample of older adult right-and left-handers. Neuropsychologia 40, 2074–2083 (2002).PubMed 

    Google Scholar 
    15.Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223–225 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Rogers, L. J. Development and function of lateralization in the avian brain. Brain Res. Bull. 76, 235–244 (2008).ADS 
    PubMed 

    Google Scholar 
    17.Rogers, L. J. Asymmetry of motor behavior and sensory perception: Which comes first?. Symmetry 12, 690 (2020).
    Google Scholar 
    18.Tang, A. C. & Verstynen, T. Early life environment modulates ‘handedness’ in rats. Behav. Brain Res. 131, 1–7 (2002).PubMed 

    Google Scholar 
    19.Bisazza, A., Cantalupo, C. & Vallortigara, G. Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiol. Behav. 61, 31–35 (1997).CAS 
    PubMed 

    Google Scholar 
    20.Bisazza, A., Dadda, M. & Cantalupo, C. Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model. Behav. Brain Res. 156, 165–171 (2005).PubMed 

    Google Scholar 
    21.Izvekov, E. I. & Nepomnyashchikh, V. A. Laterality of the initial stage of escape response in roach (Rutilus rutilus) upon impact of alternating electric current. Biol. Bull. 35, 30–36 (2008).
    Google Scholar 
    22.Hata, H. & Hori, M. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio. Laterality 17, 741–754 (2012).PubMed 

    Google Scholar 
    23.Lee, H. J., Kusche, H. & Meyer, A. Handed foraging behavior in scale-eating Cichlid Fish: Its potential role in shaping morphological asymmetry. PLoS ONE 7, e44670 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Yasugi, M. & Hori, M. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry. J. Exp. Biol. 215, 2390–2398 (2012).PubMed 

    Google Scholar 
    25.Matsui, S., Takeuchi, Y. & Hori, M. Relation between morphological antisymmetry and behavioral laterality in a Poeciliid Fish. Zoolog. Sci. 30, 613–618 (2013).PubMed 

    Google Scholar 
    26.Takeuchi, Y. et al. Specialized movement and laterality of fin-biting behaviour in Genyochromis mento in Lake Malawi. J. Exp. Biol. 222, 191676 (2019).
    Google Scholar 
    27.Sorvano, V. A., Rainoldi, C., Bisazza, A. & Vallortigara, G. Roots of brain specializations: Preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav. Brain Res. 106, 175–180 (1999).CAS 
    PubMed 

    Google Scholar 
    28.Sovrano, V. A., Bisazza, A. & Vallortigara, G. Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiol. Behav. 74, 237–244 (2001).CAS 
    PubMed 

    Google Scholar 
    29.Raffini, F. & Meyer, A. A comprehensive overview of the developmental basis and adaptive significance of a textbook polymorphism: head asymmetry in the cichlid fish Perissodus microlepis. Hydrobiologia 832, 65–84 (2019).
    Google Scholar 
    30.Berlinghieri, F., Panizzon, P., Penry-Williams, I. L. & Brown, C. Laterality and fish welfare-a review. Appl. Anim. Behav. Sci. 236, 105239 (2021).
    Google Scholar 
    31.Koblmüller, S., Egger, B., Sturmbauer, C. & Sefc, K. M. Evolutionary history of Lake Tanganyika’s scale-eating cichlid fishes. Mol. Phylogenet. Evol. 44, 1295–1305 (2007).PubMed 

    Google Scholar 
    32.Takeuchi, Y., Ochi, H., Kohda, M., Sinyinza, D. & Hori, M. A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol. Freshw. Fish 19, 239–248 (2010).
    Google Scholar 
    33.Poll, M. Poissons Cichlidae. Resultats scientifiques, Exploration hydrobiologique du Lac Tanganyika. Inst. R. Sci. Nat. Belg. 3, 1–619 (1956).
    Google Scholar 
    34.Liem, K. & Stewart, D. Evolution of scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull. Mus. Comp. Zool. 147, 319–350 (1976).
    Google Scholar 
    35.Hori, M. Frequency-dependent natural-selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Takeuchi, Y., Hori, M. & Oda, Y. Lateralized kinematics of predation behavior in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 7, e29272 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hori, M., Ochi, H. & Kohda, M. Inheritance pattern of lateral dimorphism in two cichlids (a scale eater, Perissodus microlepis, and an herbivore, Neolamprologus moorii) in Lake Tanganyika. Zoolog. Sci. 24, 486–492 (2007).PubMed 

    Google Scholar 
    38.Raffini, F., Fruciano, C., Franchini, P. & Meyer, A. Towards understanding the genetic basis of mouth asymmetry in the scale-eating cichlid Perissodus microlepis. Mol. Ecol. 26, 77–91 (2017).CAS 
    PubMed 

    Google Scholar 
    39.Takeuchi, Y., Hori, M., Tada, S. & Oda, Y. Acquisition of lateralized predation behavior associated with development of mouth asymmetry in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 11, e0147476 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    40.Takeuchi, Y. & Oda, Y. Lateralized scale-eating behaviour of cichlid is acquired by learning to use the naturally stronger side. Sci. Rep. 7, 8984 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. Nature 417, 351–358 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Nelson, D. A., Marler, P. & Palleroni, A. A comparative approach to vocal learning: Intraspecific variation in the learning process. Anim. Behav. 50, 83–97 (1995).
    Google Scholar 
    43.Chaiken, M., Böhner, J. & Marler, P. Song acquisition in European starlings, Sturnus vulgaris: a comparison of the songs of live-tutored, tape-tutored, untutored, and wild-caught males. Anim. Behav. 46, 1079–1090 (1993).
    Google Scholar 
    44.Todt, D. & Böhner, J. Former experience can modify social selectivity during song learning in the nightingale (Luscinia megarhynchos). Ethology 97, 169–176 (1994).
    Google Scholar 
    45.Schneirla, T.C. The concept of development in comparative psychology. Concept Dev. 78–108 (1957).46.Alcock, J. Animal Behavior: An Evolutionary Approach (Sinauer Associates, 2001).
    Google Scholar 
    47.Nshombo, M., Yanagisawa, Y. & Nagoshi, M. Scale-eating in Perissodus microlepis (Cichlidae) and change of its food-habits with growth. Jpn. J. Ichthyol. 32, 66–73 (1985).
    Google Scholar 
    48.Zar, J. H. Biostatistical Analysis (Pearson Education, 1999).
    Google Scholar 
    49.Morishita, H. & Hensch, T. K. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18, 101–107 (2008).CAS 
    PubMed 

    Google Scholar 
    50.Hess, E. H. Imprinting: Early Experience and the Developmental Psychobiology of Attachment (Van Norstrand, 1973).
    Google Scholar 
    51.Scott, J. P. Critical periods (Dowden, Hutchinson & Ross, 1978).
    Google Scholar 
    52.Kroodsma, D. Ontogeny of bird song. In Behavioral Development, 518–532 (Cambridge University Press, 1981).53.Rosa-Salva, O. et al. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 213, 104552 (2021).PubMed 

    Google Scholar 
    54.Vallortigara, G. Born Knowing: Imprinting and the Origins of Knowledge (MIT Press, 2021).
    Google Scholar 
    55.Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).CAS 
    PubMed 

    Google Scholar 
    56.Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton University Press, 2014).
    Google Scholar 
    57.Rauschecker, J. P. & Singer, W. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. 310, 215–239 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Pasternak, T. & Leinen, L. Pattern and motion vision in cats with selective loss of cortical directional selectivity. J. Neurosci. 6, 938–945 (1986).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Rauschecker, J. P. & Schrader, W. Effects of monocular strobe rearing on kitten striate cortex. Exp. Brain Res. 68, 525–532 (1987).CAS 
    PubMed 

    Google Scholar 
    60.Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).CAS 
    PubMed 

    Google Scholar 
    61.Marler, P. R. & Slabbekoorn, H. Nature’s Music: The Science of Birdsong (Elsevier, 2004).
    Google Scholar 
    62.Zann, R. Vocal learning in wild and domesticated zebra finches: signature cues for kin recognition or epiphenomena? In Social Influences on Vocal Development (eds Snowdon, C. T. & Hausberger, M.) 85–97 (Cambridge University Press, 1997).
    Google Scholar 
    63.Curtiss, S. The Case of Genie, A Modern Day ‘Wild Child’ (Academic Press, 1977).
    Google Scholar 
    64.Pinker, S. The Language Instinct: The New Science of Language and Mind Vol. 7529 (Penguin, 1995).
    Google Scholar 
    65.Lenneberg, E. H. The biological foundations of language. Hosp. Pract. 2, 59–67 (1967).
    Google Scholar 
    66.Patkowski, M. S. The sensitive period for the acquisition of syntax in a second language 1. Lang Learn. 30, 449–468 (1980).
    Google Scholar 
    67.Johnson, J. S. & Newport, E. L. Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21, 60–99 (1989).CAS 
    PubMed 

    Google Scholar 
    68.Carroll, S. B., Greinier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, 2001).
    Google Scholar 
    69.Evidence from genes to behavior. Wullimann, MF. & Mueller T. Teleostean and mammalian forebrains contrasted. J. Comp. Neurol. 475, 143–162 (2004).
    Google Scholar 
    70.Salas, C. et al. Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171 (2006).PubMed 

    Google Scholar 
    71.Mills, E. L., Widzowski, D. V. & Jones, S. R. Food conditioning and prey selection by young yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 44, 549–555 (1987).
    Google Scholar 
    72.Warburton, K. Learning of foraging skills by fish. Fish Fish. 4, 203–215 (2003).
    Google Scholar 
    73.Lee, H. J. et al. Lateralized feeding behavior is associated with asymmetrical neuroanatomy and lateralized gene expressions in the brain in scale-eating cichlid fish. Genome Biol. Evol. 9, 3122–3136 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Takeuchi, Y., Ishikawa, A., Oda, Y. & Kitano, J. Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. Comp. Biochem. Physiol. D 28, 99–106 (2018).CAS 

    Google Scholar 
    75.Raffini, F., Fruciano, C. & Meyer, A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol. J. Linn. Soc. 124, 67–84 (2018).
    Google Scholar 
    76.Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Cartner, S. C. et al. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (Academic Press, 2020).
    Google Scholar 
    78.Takahashi, R., Moriwaki, T. & Hori, M. Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J. Fish Biol. 70, 1458–1469 (2007).
    Google Scholar 
    79.Sazima, I. Scale-eating in characoids and other fishes. Environ. Biol. Fish. 9, 87–101 (1983).
    Google Scholar 
    80.Webb, P. W. Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465 (1975).
    Google Scholar 
    81.Wöhl, S. & Schuster, S. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007).PubMed 

    Google Scholar 
    82.Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005) (discussion 589-633).PubMed 

    Google Scholar  More

  • in

    Desertification risk fuels spatial polarization in ‘affected’ and ‘unaffected’ landscapes in Italy

    1.Fernandez, R. J. Do humans create deserts?. Trends Ecol. Evol. 17, 6–7 (2002).
    Google Scholar 
    2.Geist, H. J. & Lambin, E. F. Dynamic causal patterns of desertification. Bioscience 54(9), 817–829 (2004).
    Google Scholar 
    3.Imeson, A. Desertification, Land Degradation and Sustainability (Routledge, 2012).
    Google Scholar 
    4.Romm, J. Desertification: The next dust bowl. Nature 478, 450–451 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Portnov, B. A. & Safriel, U. N. Combating desertification in the Negev: Dryland agriculture vs. dryland urbanization. J. Arid Environ. 56, 659–680 (2004).ADS 

    Google Scholar 
    6.Salvati, L., Bajocco, S., Ceccarelli, T., Zitti, M. & Perini, L. Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecol. Ind. 11(5), 1216–1227 (2011).CAS 

    Google Scholar 
    7.Santini, M., Caccamo, G., Laurenti, A., Noce, S. & Valentini, R. A multi-model GIS framework for desertification risk assessment. Appl. Geogr. 30(3), 394–415 (2010).
    Google Scholar 
    8.Bajocco, S., Salvati, L. & Ricotta, C. Land degradation vs. Fire: A spiral process?. Prog. Phys. Geogr. 35(1), 3–18 (2011).
    Google Scholar 
    9.Incerti, G., Feoli, E., Salvati, L., Brunetti, A. & Giovacchini, A. Analysis of bioclimatic time series and their neural network-based classification to characterise drought risk patterns in South Italy. Int. J. Biometeorol. 51(4), 253–263 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    10.Salvati, L., Perini, L., Sabbi, A. & Bajocco, S. Climate Aridity and land use changes: A regional-scale analysis. Geogr. Res. 50(2), 193–203 (2012).
    Google Scholar 
    11.Coluzzi, R. et al. Investigating climate variability and long-term vegetation activity across heterogeneous Basilicata agroecosystems. Geomat. Nat. Haz. Risk 10(1), 168–180 (2019).
    Google Scholar 
    12.Imbrenda, V. et al. Analysis of landscape evolution in a vulnerable coastal area under natural and human pressure. Geomat. Nat. Haz. Risk 9(1), 1249–1279 (2018).
    Google Scholar 
    13.Imbrenda, V. et al. Land degradation and metropolitan expansion in a peri-urban environment. Geomat. Nat. Haz. Risk 12(1), 1797–1818 (2021).
    Google Scholar 
    14.Kairis, O., Karavitis, C., Kounalaki, A., Salvati, L. & Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 29(4), 597–606 (2013).
    Google Scholar 
    15.Kairis, O., Karavitis, C., Salvati, L., Kounalaki, A. & Kosmas, K. Exploring the impact of overgrazing on soil erosion and land degradation in a dry Mediterranean agro-forest landscape (Crete, Greece). Arid Land Res. Manag. 29(3), 360–374 (2015).
    Google Scholar 
    16.Karamesouti, M. et al. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). CATENA 132, 45–55 (2015).
    Google Scholar 
    17.Kosmas, C. et al. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia-Crete (Greece). CATENA 147, 196–204 (2016).
    Google Scholar 
    18.Jongman, R. H. G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 58(2), 211–221 (2002).
    Google Scholar 
    19.Lavado Contador, J. F., Schnabel, S., Gomez Gutierrez, A. & Pulido Fernandez, M. Mapping sensitivity to land degradation in Extremadura, SW Spain. Land Degrad. Dev. 20(2), 129–144 (2009).
    Google Scholar 
    20.Otto, R., Krusi, B. O. & Kienast, F. Degradation of an arid coastal landscape in relation to land use changes in southern Tenerife (Canary Islands). J. Arid Environ. 70, 527–539 (2007).ADS 

    Google Scholar 
    21.Braje, T. J., Leppard, T. P., Fitzpatrick, S. M. & Erlandson, J. M. Archaeology, historical ecology and anthropogenic island ecosystems. Environ. Conserv. 44(3), 286–297 (2017).
    Google Scholar 
    22.Rick, T., Ontiveros, M. Á. C., Jerardino, A., Mariotti, A., Méndez, C. & Williams, A. N. Human-environmental interactions in Mediterranean climate regions from the Pleistocene to the Anthropocene. Anthropocene, 100253 (2020).23.Bajocco, S., Ceccarelli, T., Smiraglia, D., Salvati, L. & Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Ind. 60, 231–236 (2016).
    Google Scholar 
    24.Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 67(1), 9–26 (2004).
    Google Scholar 
    25.Bakra, N., Weindorf, D. C., Bahnassy, M. H. & El-Badawi, M. M. Multi-temporal assessment of land sensitivity to desertification in a fragile agro-ecosystem: Environmental indicators. Ecol. Ind. 15(1), 271–280 (2012).
    Google Scholar 
    26.Pacheco, F. A. L., Fernandes, L. F. S., Junior, R. F. V., Valera, C. A. & Pissarra, T. C. T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 5, 79–86 (2018).
    Google Scholar 
    27.Gomes, E. et al. Agricultural land fragmentation analysis in a peri-urban context: From the past into the future. Ecol. Ind. 97, 380–388 (2019).
    Google Scholar 
    28.Gulcin, D. & Yilmaz, K. T. The assessment of landscape fragmentation in an agricultural environment: Degradation or contribution to ecosystem services?. Fresenius Environ. Bull. 25(12), 7941–7950 (2017).
    Google Scholar 
    29.Pili, S., Grigoriadis, E., Carlucci, M., Clemente, M. & Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Ind. 76, 71–80 (2017).
    Google Scholar 
    30.Haddad, N. M., Brudvig, L. A. & Clobert, J. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1(2), 1–9 (2015).
    Google Scholar 
    31.Kouba, Y., Gartzia, M., El Aich, A. & Alados, C. L. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. J. Arid Environ. 158, 1–8 (2018).ADS 

    Google Scholar 
    32.Nagendra, H., Munroe, D. K. & Southworth, J. From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 101(2), 111–115 (2004).
    Google Scholar 
    33.Lin, Y., Han, G., Zhao, M. & Chang, S. X. Spatial vegetation patterns as early signs of desertification: A case study of a desert steppe in Inner Mongolia, China. Landsc. Ecol. 25(10), 1519–1527 (2010).
    Google Scholar 
    34.Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007).ADS 
    PubMed 

    Google Scholar 
    35.Girvetz, E. H., Thorne, J. H., Berry, A. M. & Jaeger, J. A. Integration of landscape fragmentation analysis into regional planning: A statewide multi-scale case study from California, USA. Landsc. Urban Plan. 86(3), 205–218 (2008).
    Google Scholar 
    36.Hargis, C. D., Bissonette, J. A. & David, J. L. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc. Ecol. 13(3), 167–186 (1998).
    Google Scholar 
    37.Llausàs, A. & Nogué, J. Indicators of landscape fragmentation: The case for combining ecological indices and the perceptive approach. Ecol. Ind. 15(1), 85–91 (2012).
    Google Scholar 
    38.Salvati, L. & Zitti, M. The environmental “risky” region: Identifying land degradation processes through integration of socio-economic and ecological indicators in a multivariate regionalization model. Environ. Manage. 44(5), 888 (2009).ADS 
    PubMed 

    Google Scholar 
    39.Ferrara, A. et al. Updating the MEDALUS-ESA framework for worldwide land degradation and desertification assessment. Land Degrad. Dev. 31(12), 1593–1607 (2020).
    Google Scholar 
    40.Delfanti, L. et al. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 61, 88–93 (2016).
    Google Scholar 
    41.Cowie, A. L. et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 79, 25–35 (2018).
    Google Scholar 
    42.Lanfredi, M. et al. A geostatistics-assisted approach to the deterministic approximation of climate data. Environ. Model. Softw. 66, 69–77 (2015).
    Google Scholar 
    43.Coluzzi, R. et al. Density matters? Settlement expansion and land degradation in Peri-urban and rural districts of Italy. Environ. Impact Assess. Rev. 92, 106703 (2022).
    Google Scholar 
    44.Xie, H., Zhang, Y., Wu, Z. & Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 9(1), 28 (2020).
    Google Scholar 
    45.Ferrara, A., Salvati, L., Sateriano, A. & Nolè, A. Performance evaluation and costs assessment of a key indicator system to monitor desertification vulnerability. Ecol. Ind. 23, 123–129 (2012).
    Google Scholar 
    46.Salvati, L. From simplicity to complexity: The changing geography of land vulnerability to degradation in Italy. Geogr. Res. 51(3), 318–328 (2013).
    Google Scholar 
    47.Salvati, L. et al. Italy’s renewable water resources as estimated on the basis of the monthly water balance. Irrig. Drain. J. Int. Commiss. Irrig. Drain. 57(5), 507–515 (2008).
    Google Scholar 
    48.Salvati, L. et al. Assessing the effectiveness of sustainable land management policies for combating desertification: A data mining approach. J. Environ. Manage. 183, 754–762 (2016).CAS 
    PubMed 

    Google Scholar 
    49.Recanatesi, F. et al. A fifty-year sustainability assessment of Italian agro-forest districts. Sustainability 8(1), 32 (2016).
    Google Scholar 
    50.Bajocco, S., De Angelis, A. & Salvati, L. A satellite-based green index as a proxy for vegetation cover quality in a Mediterranean region. Ecol. Ind. 23, 578–587 (2012).
    Google Scholar 
    51.Smiraglia, D. et al. The latent relationship between soil vulnerability to degradation and land fragmentation: A statistical analysis of landscape metrics in Italy, 1960–2010. Environ. Manage. 64(2), 154–165 (2019).ADS 
    PubMed 

    Google Scholar 
    52.Smiraglia, D., Ceccarelli, T., Bajocco, S., Salvati, L. & Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 147, 590–600 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Zambon, I., Benedetti, A., Ferrara, C. & Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 146, 173–183 (2018).
    Google Scholar 
    54.Zambon, I. et al. Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environ. Impact Assess. Rev. 64, 37–46 (2017).
    Google Scholar 
    55.Basso, B. et al. Evaluating responses to land degradation mitigation measures in Southern Italy. Int. J. Environ. Res. 6(2), 367–380 (2012).
    Google Scholar 
    56.Salvati, L. & Zitti, M. Land degradation in the Mediterranean Basin: Linking bio-physical and economic factors into an ecological perspective. Biota 6, 67–77 (2005).
    Google Scholar 
    57.Qi, Y. et al. Temporal-spatial variability of desertification in an agro-pastoral transitional zone of northern Shaanxi Province, China. CATENA 88(1), 37–45 (2012).
    Google Scholar 
    58.Sklenicka, P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 57, 694–701 (2016).
    Google Scholar 
    59.Vos, W. & Meekes, H. Trends in European cultural landscape development: Perspectives for a sustainable future. Landsc. Urban Plan. 46(1), 3–14 (1999).
    Google Scholar 
    60.Mao, D. et al. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 29(11), 3841–3851 (2018).
    Google Scholar 
    61.Symeonakis, E., Calvo-Cases, A. & Arnau-Rosalen, E. Land use change and land degradation in southeastern Mediterranean Spain. Environ. Manage. 40(1), 80–94 (2007).ADS 
    PubMed 

    Google Scholar 
    62.Ibanez, J., Martinez Valderrama, J. & Puigdefabregas, J. Assessing desertification risk using system stability condition analysis. Ecol. Model. 213, 180–190 (2008).
    Google Scholar 
    63.Hill, J., Stellmes, M., Udelhoven, T., Röder, A. & Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Global Planet. Change 64(3), 146–157 (2008).ADS 

    Google Scholar 
    64.Sommer, S. et al. Application of indicator systems for monitoring and assessment of desertification from national to global scales. Land Degrad. Dev. 22(2), 184–197 (2011).
    Google Scholar 
    65.Vogt, J. V. et al. Monitoring and Assessment of Land Degradation and Desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 22(2), 150–165 (2011).
    Google Scholar 
    66.Scarascia, M. V., Battista, F. D. & Salvati, L. Water resources in Italy: Availability and agricultural uses. Irrig. Drain. J. Int. Commiss. Irrig. Drain. 55(2), 115–127 (2006).
    Google Scholar 
    67.Wang, H., Yuan, H., Xu, X. & Liu, S. Landscape structure of desertification grassland in source region of Yellow River. J. Appl. Ecol. 17(9), 1665–1670 (2006).
    Google Scholar 
    68.Wang, J. et al. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environ. Dev. 34, 100497 (2020).
    Google Scholar 
    69.Briassoulis, H. Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degrad. Dev. 22(3), 313–325 (2011).
    Google Scholar 
    70.Juntti, M. & Wilson, G. A. Conceptualising desertification in Southern Europe: Stakeholder interpretations and multiple policy agendas. Eur. Environ. 15, 228–249 (2005).
    Google Scholar 
    71.Gisladottir, G. & Stocking, M. Land degradation control and its global environmental benefits. Land Degrad. Dev. 16, 99–112 (2005).
    Google Scholar  More