Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region
1.Canadell, J. G. et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10, 370–384. https://doi.org/10.1016/j.envsci.2007.01.009 (2007).Article
Google Scholar
2.Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 22, 964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x (2008).Article
Google Scholar
3.He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau China. Catena 137, 679–685. https://doi.org/10.1016/j.catena.2015.01.027 (2016).CAS
Article
Google Scholar
4.Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116, 391–396. https://doi.org/10.1016/s0269-7491(01)00215-9 (2002).CAS
Article
Google Scholar
5.Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf. 156, 106–115. https://doi.org/10.1016/j.ecoenv.2018.03.015 (2018).CAS
Article
PubMed
Google Scholar
6.Yang, J. et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut. 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030 (2016).CAS
Article
PubMed
Google Scholar
7.Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).CAS
Article
Google Scholar
8.Wan, Z. & Song, C. Advance on response of soil enzyme activity to ecological environment. Chin. J. Soil Sci. 40(4), 951–956 (2009).CAS
Google Scholar
9.Liu, G. et al. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 237, 274–279 (2017).CAS
Article
Google Scholar
10.Li, Z., Chaonian, F., Mengjie, L. & Huanchao, Z. Nutrient and biological characteristics of different salinized soils in coastal areas of northern Jiangsu Province. J. Anhui Agric. Univ. 46, 86–92 (2019).
Google Scholar
11.Bueis, T., Turrion, M. B., Bravo, F., Pando, V. & Muscolo, A. Factors determining enzyme activities in soils under Pinus halepensis and Pinus sylvestris plantations in Spain: A basis for establishing sustainable forest management strategies. Ann. For. Sci. https://doi.org/10.1007/s13595-018-0720-z (2018).Article
Google Scholar
12.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).Article
PubMed
Google Scholar
13.Marx, M. C., Kandeler, E., Wood, M., Wermbter, N. & Jarvis, S. C. Exploring the enzymatic landscape: Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem. 37, 35–48. https://doi.org/10.1016/j.soilbio.2004.05.024 (2005).CAS
Article
Google Scholar
14.Bais, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 2006(57), 233–266 (2006).Article
Google Scholar
15.Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 12, 15. https://doi.org/10.3390/su122310095 (2020).CAS
Article
Google Scholar
16.Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152. https://doi.org/10.1016/s0167-1987(02)00022-3 (2002).Article
Google Scholar
17.Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 30, 11–20. https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).Article
Google Scholar
18.Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352. https://doi.org/10.1046/j.1365-2486.2003.00674.x (2003).ADS
Article
Google Scholar
19.Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 56(5), 589–599 (2005).CAS
Article
Google Scholar
20.Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Sci. Agric. Sinica 33, 78–84 (2000).
Google Scholar
21.Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River. China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).Article
Google Scholar
22.Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci. 154, 632–646. https://doi.org/10.1017/s002185961500057x (2015).Article
Google Scholar
23.Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain China. Environ. Earth Sci. 59, 837–845. https://doi.org/10.1007/s12665-009-0079-4 (2009).CAS
Article
Google Scholar
24.Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 487961. https://doi.org/10.1155/2014/487961 (2014).CAS
Article
Google Scholar
25.Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma 310, 65–76. https://doi.org/10.1016/j.geoderma.2017.08.041 (2018).ADS
CAS
Article
Google Scholar
26.Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J. Soil Sediment. 12, 1309–1315. https://doi.org/10.1007/s11368-012-0551-8 (2012).CAS
Article
Google Scholar
27.Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province China. J. Geochem. Explor. 112, 347–356. https://doi.org/10.1016/j.gexplo.2011.10.003 (2012).CAS
Article
Google Scholar
28.Zheng, B. Technical Guide for Soil Analysis (China Agriculture Press, 2013).
Google Scholar
29.Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126. https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).CAS
Article
Google Scholar
30.Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393, 273–282. https://doi.org/10.1007/s11104-015-2492-7 (2015).CAS
Article
Google Scholar
31.Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem. 125, 244–250. https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).CAS
Article
Google Scholar
32.Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA 105, 17842–17847. https://doi.org/10.1073/pnas.0808254105 (2008).ADS
Article
Google Scholar
33.Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 57, 979–994. https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).CAS
Article
Google Scholar
34.Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci. 25, 161–164 (2006).CAS
Google Scholar
35.Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll. 228, 9. https://doi.org/10.1007/s11270-016-3200-9 (2017).ADS
CAS
Article
Google Scholar
36.Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467 (2010).CAS
Article
PubMed
Google Scholar
37.Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem. 30, 695–702. https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).CAS
Article
Google Scholar
38.Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol. 57, 691–699 (2016).CAS
Google Scholar
39.Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley. Mexico. Appl. Environ. Microbiol. 80, 5282–5291 (2014).ADS
Article
PubMed
Google Scholar
40.Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol. 13, 991–1009 (2011).CAS
Article
Google Scholar
41.Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, 201–212 (2013).CAS
Article
Google Scholar
42.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS
Article
PubMed
Google Scholar
43.Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands 36, 361–371 (2016).Article
Google Scholar
44.Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: A review. Soil Use Manage. 26, 2–11 (2010).Article
Google Scholar More