Response of litter decomposition and the soil environment to one-year nitrogen addition in a Schrenk spruce forest in the Tianshan Mountains, China
1.Berg, B. et al. Factors influencing limit values for pine needle litter decomposition: A synthesis for boreal and temperate pine forest systems. Biogeochemistry 100, 57–73. https://doi.org/10.1007/s10533-009-9404-y (2010).Article
CAS
Google Scholar
2.Hobbie, S. E. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).
Google Scholar
3.Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).PubMed
ADS
CAS
Google Scholar
4.Talbot, J. M., Yelle, D. J., Nowick, J. S. & Treseder, K. K. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108, 279–295 (2012).CAS
Google Scholar
5.Pei, G. et al. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. For. Ecol. Manage. 440, 61–69 (2019).
Google Scholar
6.Couˆteaux, M., Bottner, P. & Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66 (1995).
Google Scholar
7.Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889. https://doi.org/10.1126/science.1136674 (2008).Article
PubMed
ADS
CAS
Google Scholar
8.Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047. https://doi.org/10.1175/JAS-D-15-0278.1 (2016).Article
PubMed
PubMed Central
ADS
CAS
Google Scholar
9.Zhu, J. et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci. Total Environ. 511, 777–785 (2015).PubMed
ADS
CAS
Google Scholar
10.Liu, X. et al. Nitrogen deposition and its ecological impact in China: An overview. Environ. Pollut. 159, 2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002 (2011).Article
PubMed
CAS
Google Scholar
11.Chen, H. Y. H. & Zhang, T. Data for: Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems. Appl. Soil. Ecol. 1, 35–42 (2018).
Google Scholar
12.Knorr, M., Frey, S. & Curtis, P. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 86, 3252–3257. https://doi.org/10.1890/05-0150 (2005).Article
Google Scholar
13.Hobbie, S. E. & Vitousek, P. M. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81, 1867–1877 (2000).
Google Scholar
14.Zhou, S. X. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Plant Soil 420(1–2), 135–145 (2017).CAS
Google Scholar
15.Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).PubMed
CAS
Google Scholar
16.Magill, A. H. & Aber, J. D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203, 301–311 (1998).CAS
Google Scholar
17.Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).ADS
CAS
Google Scholar
18.Zhang, W. et al. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97, 2834–2843 (2016).PubMed
Google Scholar
19.Wang, M. et al. Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release. Hydrobiologia 787, 205–215. https://doi.org/10.1007/s10750-016-2961-x (2017).Article
CAS
Google Scholar
20.Talbot, J. M. & Treseder, K. K. Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93, 345–354 (2012).PubMed
Google Scholar
21.Zhang, T. A., Luo, Y. & Ruan, H. Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems. Appl. Soil Ecol. 128, 35–42. https://doi.org/10.1016/j.apsoil.2018.04.004 (2018).Article
ADS
Google Scholar
22.Kuperman, R. G. Litter decomposition and nutrient dynamics in oak–hickory forests along a historic gradient of nitrogen and sulfur deposition. Soil Biol. Biochem. 31, 237–244 (1999).CAS
Google Scholar
23.Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. U.S.A. 103, 10316–10321 (2006).PubMed
PubMed Central
ADS
CAS
Google Scholar
24.Chen, J. et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Change Biol. 23, 1328–1337 (2017).ADS
Google Scholar
25.Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).ADS
Google Scholar
26.Yang, D., Song, L. & Jin, G. The soil C:N: P stoichiometry is more sensitive than the leaf C:N: P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 442, 183–198. https://doi.org/10.1007/s11104-019-04165-z (2019).Article
CAS
Google Scholar
27.Penuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).PubMed
ADS
Google Scholar
28.Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462. https://doi.org/10.1038/nature11917 (2013).Article
PubMed
ADS
CAS
Google Scholar
29.Kang, Y. et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 2043–2058 (2015).ADS
Google Scholar
30.Huo, Y. et al. Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains. northwest China. Trees 31, 429–439 (2017).
Google Scholar
31.Zhonglin, X. et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains. PLoS ONE 13(11), e0204130 (2018).
Google Scholar
32.Zhang, T. et al. The impacts of climatic factors on radial growth patterns at different stem heights in Schrenk spruce (Picea schrenkiana). Trees 34(1), 163–175 (2020).
Google Scholar
33.Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere 9(11), e02520 (2018).
Google Scholar
34.Gong, L. & Zhao, J. The response of fine root morphological and physiological traits to added nitrogen in Schrenk’s spruce (Picea schrenkiana) of the Tianshan mountains, China. PeerJ 7, e8194 (2019).PubMed
PubMed Central
Google Scholar
35.Zhu, H., Zhao, J. & Gong, L. The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest. Sci. Rep. 11(1), 3839. https://doi.org/10.1038/s41598-021-83151-x (2021).Article
PubMed
PubMed Central
ADS
CAS
Google Scholar
36.Mo, J. et al. Decomposition responses of pine (Pinus massoniana) needles with two different nutrient-status to N deposition in a tropical pine plantation in southern China. Ann. For. Sci. 65, 405–405 (2008).
Google Scholar
37.Wen, Z. et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 144, 106022. https://doi.org/10.1016/j.envint.2020.106022 (2020).Article
PubMed
CAS
Google Scholar
38.Liu, W. et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 101, e03053. https://doi.org/10.1002/ecy.3053 (2020).Article
PubMed
Google Scholar
39.Yao, M. et al. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biol. Biochem. 79, 81–90 (2014).CAS
Google Scholar
40.Berg, B. & Matzner, E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 5, 1–25. https://doi.org/10.1139/a96-017 (1997).Article
CAS
Google Scholar
41.Liu, W. et al. Nonlinear responses of the Vmax and Km of hydrolytic and polyphenol oxidative enzymes to nitrogen enrichment. Soil Biol. Biochem. 141, 107656. https://doi.org/10.1016/j.soilbio.2019.107656 (2020).Article
CAS
Google Scholar
42.Vestgarden, L. S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: Effects of internal and external nitrogen. Soil Biol. Biochem. 33, 465–474 (2001).CAS
Google Scholar
43.Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).PubMed
CAS
Google Scholar
44.Sun, T., Dong, L., Wang, Z., Lu, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).CAS
Google Scholar
45.Sjoberg, G., Nilsson, S. I., Persson, T. & Karlsson, P. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biol. Biochem. 36, 1761–1768 (2004).CAS
Google Scholar
46.Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).CAS
Google Scholar
47.Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A. & Parkhurst, D. F. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359–2365. https://doi.org/10.1890/0012-9658(2000)081[2359:meseld]2.0.co;2 (2000).Article
Google Scholar
48.Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).PubMed
Google Scholar
49.Mo, J., Brown, S., Xue, J., Fang, Y. & Li, Z. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 282, 135–151 (2006).CAS
Google Scholar
50.Ajwa, H. A., Dell, C. J. & Rice, C. W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol. Biochem. 31, 769–777. https://doi.org/10.1016/S0038-0717(98)00177-1 (1999).Article
CAS
Google Scholar
51.Li, Q. et al. Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. For. Ecol. Manage. 457, 117717 (2020).
Google Scholar
52.Chen, J. et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086. https://doi.org/10.1111/gcb.15218 (2020).Article
ADS
Google Scholar
53.Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).PubMed
CAS
Google Scholar
54.Corrales, A., Turner, B. L., Tedersoo, L., Anslan, S. & Dalling, J. W. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecol. 27, 14–23 (2017).
Google Scholar
55.Cusack, D. F. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol. Biochem. 57, 192–203 (2013).CAS
Google Scholar
56.Xiao, S. et al. Effects of one-year simulated nitrogen and acid deposition on soil respiration in a subtropical plantation in China. Forests 11, 235 (2020).
Google Scholar
57.Liang, X. et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Change Biol. 26, 3585–3600. https://doi.org/10.1111/gcb.15071 (2020).Article
ADS
Google Scholar
58.Peng, Y. et al. Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem. Sci. Rep. 7, 2783–2783. https://doi.org/10.1038/s41598-017-03044-w (2017).Article
PubMed
PubMed Central
ADS
CAS
Google Scholar
59.Tian, D. et al. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 024019 (2015).ADS
Google Scholar
60.Gill, A. L. et al. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter. Ecol. Lett. 24, 802–811 (2021).PubMed
Google Scholar
61.Cotrufo, M. F. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8, 776–779 (2015).ADS
CAS
Google Scholar
62.Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl. Acad. Sci. USA 118, e2020790118 (2021).PubMed
PubMed Central
CAS
Google Scholar
63.Kallenbach, C. M. et al. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 1–10 (2016).
Google Scholar
64.Sun, S. et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau. Geoderma 353, 283–292 (2019).ADS
CAS
Google Scholar
65.Liu, G. Soil Physical and Chemical Analysis and Description of Soil Profiles (Elsevier, 1996).
Google Scholar
66.Lotse, E. G. Chemical analysis of ecological materials. Soil Sci. 121, 373 (1976).ADS
Google Scholar
67.Anderson, J. M. & Ingram, J. Tropical soil biology and fertility: A handbook of methods. Soil Sci. 157, 265 (1994).ADS
Google Scholar
68.Roberts, J. D. & Rowland, A. P. Cellulose fractionation in decomposition studies using detergent fibre pre-treatment methods. Commun. Soil Plant Anal. 29, 11–14 (1998).
Google Scholar
69.Kotroczó, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243 (2014).
Google Scholar
70.Paolo, N., Brunello, C., Stefano, C. & Emilio, M. Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. Soil Sci. Soc. Am. J. https://doi.org/10.2136/SSSAJ1980.03615995004400050028X (1981).Article
Google Scholar
71.Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515 (1990).CAS
Google Scholar More