More stories

  • in

    Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region

    Study area and datasetThe study area covers all Estonia located between 57.5(^circ ) N, 21.5(^circ ) E and 59.8(^circ ) N, 28.2(^circ ) E. The study area is relatively flat with no steep slopes and altitudes ranging between 0 and 200m above the sea level. Data about events were collected directly from field books that contained information about the mowing activity’s start and end date and the covered area. Considering the main agricultural areas of the country, we consider 2000 fields in which events are geographically evenly distributed across all Estonia, as shown in Fig. 1. In total, data about 1800 mowing and 200 non-mown events were collected in 2018, based on manual labelling. During manual labelling, the specific mowing days were labelled based on the following: a) information recorded by farmers in field books regarding mowing days, b) domain experts knowledge about the most probable days for mowing based on the climate, weather, and field conditions, c) rapid decrease in the Normalized Difference Vegetation Index (NDVI) and rapid increase in the coherence compared to past measurements. The average field size is 6.0ha, and around 95% of the fields were mown during the year. 90% of the fields are in the range of (0.5-10)ha. The greatest density of the fields is located in Lääne-Viru, Tartu and Jõgeva countries. Grassland parcels vector layer is provided by Estonian Agricultural Registers and Information Board (ARIB)50. The satellite imagery used in the study is from Copernicus program that provides free open Earth observation data to help service providers, public authorities, and international organizations improve European citizens’ quality of life.Figure 1Geographic distribution of events used in this study (This map was created by QGIS version 3.16, which can be accessed on https://qgis.org/en/site/).Full size imageSentinel-1 and Sentinel-2 dataFor Sentinel-1 data, in total, 400 S1A/BSLCIW products acquired between 1st of May 20017 and 30th of October 2018, were processed. 87 products were from relative orbit number (RON)160, 62 from RON131, 84 from RON87, 93 from RON58, and 60 from RON29. These were organised into S1A/S1B 6-day pairs. Sentinel-2 provides high spatial resolution optical imagery to perform terrestrial observations with global coverage of the Earth’s land surface. Sentinel-2 data is provided by the European Space Agency (ESA) together with a cloud mask, which can filter clouds on the image with moderately good accuracy. 400 Sentinel-2A and -2B L2A products acquired between 1 May 2017 and 30 October 2018 were processed. Each Sentinel-2 image is a maximum of three days off from the closest Sentinel-1 image. Only the NDVI was derived from Sentinel-2. NDVI has been widely used in the classification of grassland24,51 and that is mainly due to its ability in limiting spectral noise. The spatial resolution of the derived Sentinel-2 NDVI feature is 10 m.MethodsThe goal of the analysis is to detect mowing events from Sentinel-1 (S-1) and Sentinel-2 (S-2) data. For this, coherence time series were calculated about every field in the database about the event. Average coherence of a field, imaging geometry parameters, imaging time and average NDVI were stored in a database. The database formation process involved preprocessing many satellite images where average coherence and NDVI value was calculated for every parcel for every available date (constrained by image availability and cloud cover). The overall scheme of the proposed methodology is illustrated in Fig. 2. First, the time-series data from S-1 and S-2 images are preprocessed. Then, the most important features are used in a deep neural network to predict mowing events. The model has a reject region option that enables the model to abstain from the prediction in case of uncertainty, which increases trust in the model.We used the Sentinel Application Platform (SNAP) toolbox for processing S-1 data. More specifically, we followed the same following pre-processing steps in16: apply orbit file, back-geocoding (using Shuttle Radar Topography Mission (SRTM) data), coherence calculation, deburst, terrain correction, and reprojection to the local projection (EPSG:3301). Lastly, we resampled the data to 4m resolution to preserve the maximum spatial resolution and square-shaped pixels. Because the study areas’ terrain is relatively flat, there are few topographic distortions in the SAR data. Each swath’s coherence was calculated independently. Only pixels totally inside the parcel boundaries (including the average window used for coherence computation) were utilized to calculate results, and any interference beyond the parcel limits was discarded. Pair-wise coherence was calculated with 6-day time step. The data was stored into a database using a forward-looking convention: coherence regarding date X refers to the coherence between S-1 images over the period between date X and X + 6 days. For preprocessing S-2 data, L1C and L2A Sentinel-2 products were obtained through Copernicus Open Access Hub6. Next, a rule-based cloud mask solution was applied52. Finally, the fourth and eighth bands were extracted to compute NDVI values.Figure 2Flowchart of the proposed approach to detect mowing events.Full size imageFeature extraction from Sentinel-1 dataCoherence is a normalized measure of similarity between two consecutive (same relative orbit) S-1 images. Interferometric 6 day repeat pass coherence in VV polarization (cohvv), and coherence in VH polarization (cohvh) are chosen features as they are shown to be sensitive to changes in vegetation and agricultural events25. The shorter the time interval after the mowing event and the first interferometric acquisition, the higher the coherence value. Generally, up to 24 to 36 days after a mowing event, coherence stays relatively high. Precipitation caused the coherence to drop, which disturbs the detection of a mowing event. The spatial resolution of the S-1 6-day repeat pass interferometric coherence is 70 m. Given two S-1 images (s_{1}) and (s_{2}), coherence is calculated as follows:$$begin{aligned} wp =frac{|langle s_{1}s*_{2}rangle |}{sqrt{langle s_{1}s*_{1}rangle | langle s_{2}s*_{2}rangle |}} end{aligned}$$
    (1)
    where (|langle s_{1}s*_{2}rangle |) is the absolute value of the spatial average of the complex conjugate product.Coherence between two S-1 images (s_1) and (s_2) reaches its maximum value of 1 when both images have the same position and physical characteristics of the scatters. In contrast, the coherence value declines when the position or properties of the scatters change.Feature extraction from Sentinel-2 dataNDVI is related to the amount of live green vegetation. Generally, NDVI increases and decreases over the season, indicating the natural growth decay of vegetation, while the significant drops in the NDVI indicate an agricultural event such as mowing. NDVI is derived from S2 images and is calculated as follows:$$begin{aligned} NDVI=frac{band8 – band4}{band8 + band4} end{aligned}$$
    (2)
    Figure 3Typical signature of NDVI and coherence in VV and VH polarisation for non mown field during the year.Full size imageFigure 4Field with single mowing event during the year.Full size imageFigure 5NDVI measurement for a field example with a single mowing event during the season.Full size imageFigures 3, 4 and 5 show different samples of mown and non mown fields. NDVI measurements are green, cohvh and cohvv are blue and black, respectively. For non mown field, the typical signature of NDVI during the year is shown in Fig. 3. For non mown field, the typical signature of NDVI during the season is a half-oval curve; coherence is not stable but remains at almost the same level without apparent trend changes, as shown in Fig. 3. An example of a field with a single mowing event during the season is shown in Fig. 4. A mowing event is characterized by a rapid increase in both cohvh and cohvv and a sharp decrease in NDVI, as observed at day 150 (See Fig. 4). Forty days later, a similar signature is probably not due to a mowing event but likely caused by drought during summer.Notably, NDVI measurements are irregular and relatively sparse. Around 75% of total NDVI measurements are invalid in Estonia, and the percentage is slightly lower in Southern Sweden and Denmark due to cloud cover. The Cloud mask indicates the percentage of cloud coverage and allows the cloudy and cloud-free pixels to be identified. Using the standard cloud mask technique by the European Space Agency (ESA) leads to outliers noticed in the sudden decrease in the NDVI. Figure 5 shows an extreme value of NDVI that is supposed to be an outlier due to high differences to the precedent and subsequent values. The outlier is marked with a yellow dot (NDVI=0.38), nearest previous (NDVI=0.75), and next (NDVI=0.78) measurements are marked with a blue colour.Sentinel-1 and Sentinel-2 data preprocessingTo detect NDVI outliers effectively, a good understanding of the data is needed. NDVI outliers due to cloud mask errors rarely co-occur together, and hence, they can be treated as independent events53. NDVI outliers are usually identified with a sudden drop to almost zero and do not form a sequence. It is enough to look at neighbouring measurements (one before and one after) to detect individual outliers. If the difference between the adjacent measurements is high, this is an outlier signature. Hence, outliers can be handled by iterating through every three consecutive NDVI measurements for a given field and checking the difference between the first and second values and between third and second values. Figure 6 shows the scatter plot of all three consecutive NDVI measurements. The Y-axis shows the difference between third and second NDVI values in a triplet, while X-axis represents the difference between second and first NDVI values in a triplet. Triplets with up to 7 days difference are shown in blue, and triplets from 7 to 14 days are shown in green. The points structure forms a rhombus shape with a small cloud of possible outliers in the upper left corner. To filter outliers from the list of actual mowing events, we only consider triplets within up to 10 days interval (as the mowing event signature can recover in 10 days). Knowing rhombus equation (the centre is approximately in (0, 0), and the side length is around 0.6), the filtering rule can be easily applied as follows:$$begin{aligned} ndvi_3 – 2 cdot ndvi_2 + ndvi_1 ge 0.6 end{aligned}$$
    (3)
    where ndvi_1, ndvi_2, and ndvi_3 are consecutive NDVI measurements within 10 days interval.All outliers are removed, which represent around 0.1% of NDVI measurements.Figure 6Scatter plot of NDVI triplets.Full size imageSmoothing is an essential pre-processing step for noisy features. In this work, cohvh and cohvv features are smoothed using different techniques, including exponential moving average (EMA), moving average54, and Kalman filter55. Smoothing using moving average is done by taking the averages of raw data sequences. The length of the sequence over which we take the average is called the filter width. Table 1 shows the performance of moving average smoothing technique using different values for the filter width. The results show that the best AUC-ROC of 0.9671 is achieved at a filter size of 7. The Kalman filter produces estimates of the current state variables and their uncertainties. Once the outcome of the subsequent measurement is observed, these estimates are updated using a weighted average, giving more weight to estimates with higher certainty. The AUC-ROC achieved using Kalman filter is 0.962. The EMA is done by taking averages of sequences of data, in addition to assigning weights to every data point. More specifically, as values get older, they are given exponentially decreasing weights. The smoothed cohvh and cohvv EMA for cohvh and cohvv are calculated using a recursive definition (i.e., from its previous value) as follows:$$begin{aligned}&cohvh_sm(cohvh_n, alpha ) = alpha cdot (cohvh_n) + (1 – alpha ) cdot cohvh_sm(cohvh_{n-1}, alpha ) end{aligned}$$
    (4)
    $$begin{aligned}&cohvv_sm(cohvv_n, alpha ) = alpha cdot (cohvv_n) + (1 – alpha ) cdot cohvv_sm(cohvv_{n-1}, alpha ) end{aligned}$$
    (5)
    where (cohvh_sm(cohvh_{n-1}, alpha )): exponential moving average for end of (cohvh_{n-1}). (cohvv_sm(cohvv_{n-1}, alpha )): exponential moving average for end of (cohvv_{n-1}). (alpha ): a smoothing parameter.The higher the smoothing parameter, the more it reacts to fluctuations in the original signal. The lower the smoothing parameter, the more the signal is smoothed. Experimentally, we found that the best value for (alpha ) to achieve the best AUC-ROC of 0.968 is (frac{1}{3}) as shown in Table 2. The different smoothing techniques achieve comparable performance. EMA technique was selected as it achieves slightly higher performance.Table 1 Performance of moving average smoothing using different filter width.Full size tableTable 2 Performance of EMA smoothing using different values of (alpha ).Full size tableDerived featuresNew derived features from S-1 and S-2 are extracted to improve the performance of the machine learning model. The features were derived based on the following knowledge about mowing events: coherence tends to increase. In contrast, ndvi tends to decrease after mowing events and, many farmers perform mowing during the same time of the year due to the good weather conditions. Such knowledge was elaborated with the derived features. In the following, we will go through the list of derived features considered in this study. Mixed coherence is derived from S-1 features to capture the overall coherence trend. Mixed coherence is a non-linear combination of cohvh and cohvv and is calculated as follows:$$begin{aligned} Mixed_coh = sqrt{cohvh cdot cohvv} end{aligned}$$
    (6)
    The date is an important feature for the model to adapt, as it is more likely to have mowing events in the summer rather than in early spring, especially in Estonia. The normalized day of the year is calculated as normalization improves the training process of the neural network. Some methods normalize features during the training process, such as Batch Normalization used in this study56. However, neighbouring batches could have entirely different normalization variables (batch mean and variance). At the same time, DOY is a feature susceptible to small changes, e.g., mowing prediction on day 108 or 109 could have drastically different meaning (weekend or working day, day with sunny weather or day with heavy rain). It implies that unified normalization of the DOY feature before training could help avoid the unwanted impact of Batch normalization and possible gradient computation issues. The normalized day of the year is calculated as follows:$$begin{aligned} t = frac{day_of_year}{365} end{aligned}$$
    (7)
    where (day_of_year) is the year’s day, which is a number between 1 and 365, January 1st is day 1.In addition, we use another time feature dt to capture the gaps in time series. dt is defined to be the normalized difference in days between the current measurement and the previous one. Normalization was performed with min-max scaling. dt is calculated as follows:$$begin{aligned} dt = frac{diff – min_diff}{max_diff – min_diff} end{aligned}$$
    (8)
    where (min_diff): the minimum difference in days between two previous consecutive measurements obtained from training data. (max_diff): the maximum difference in days between two previous consecutive measurements obtained from training data.Since mowing is characterized by an increase in the coherence and decline in the NDVI, it is important to capture the difference in the values of features and/or slopes of the features’ curves. In the following, we summarize the list of original and derived features extracted from Sentinel-1 and Sentinel-2 included in this study.

    ndvi Normalized difference vegetation index, obtained from Sentinel-2.

    cohvv Coherence in VV polarization, Sentinel-1 feature.

    cohvh Coherence in VH polarization, Sentinel-1 feature.

    t Normalized day of the year when the measurement is obtained.

    dt Normalized difference in days between current and previous measurement. The data was interpolated with a daily grid, this feature differentiated between interpolated data and real data by capturing the difference between valid (not interpolated) measurements.

    cohvv_sm Smoothed cohvv with exponential mowing average (with parameter (frac{1}{3})).

    cohvh_sm Smoothed cohvh with exponential moving average (with parameter (frac{1}{3})).

    mixed_coh Harmonic mean of cohvv and cohvh. The harmonic mean is chosen as one of the simplest options of non-linear combination.

    ndvi_diff Difference between current and previous NDVI measurements. This feature captures the decrease in the ndvi, which is highly related to mowing detection.

    cohvv_sm_diff difference between current and previous (cohvv_sm) measurements. This feature captures the increase in the (cohvv_sm), which is highly related to mowing detection.

    cohvh_sm_diff difference between current and previous (cohvh_sm) measurements. This feature captures the increase in the (cohvh_sm), which is highly related to mowing detection.

    ndvi_der The slope of the line between previous and current NDVI values.

    cohvh_sm_der The slope of the line between previous and current (cohvh_sm) values. This feature captures the change in the smoothed cohvh.

    cohvv_sm_der The slope of the line between previous and current (cohvv_sm) values. This feature captures the change in the smoothed cohvv.

    Feature selectionThe permutation feature importance measurement was introduced by Breiman57. The importance of a particular feature is measured by the increase in the model’s prediction error after we permuted the values of this feature, which breaks the relationship between the feature and the outcome. A feature is important if shuffling its values increases the model error and is less important otherwise. The importance of features considered in this study is ranked in Table 3. It is notable from Table 3 that the ordinal features are significantly more important than the derived ones. We used backwards elimination to select the optimal subset of features to be used by the machine learning model. More specifically, we start with all the features and then remove the least significant feature at each iteration, which improves the model’s overall performance. We repeat this until no improvement is observed on the removal of features. Figures 7 and 8 show that the end of season accuracy(EOS) and event accuracy, respectively, for training using a different subsets of the most important features. We refer to (F_{x}-F_{y}) to be the set of important features from feature x to feature y in Table 3. Figure 7 shows that using only ndvi and (mixed_{coh}) achieves EOS of 93%. Increasing the number of the most important features to 3 achieves a comparable performance to the best one, as shown in Fig. 7. The results show that using the ndvi and (mixed_{coh}) achieve around 73% event accuracy while increasing the number of features, the performance declines as shown in Fig. 8. As an outcome of the feature selection process, the developed machine learning model used all the 14 features, shown in Table 3, that achieve the highest combined performance.Table 3 Ranking features based on their performance.Full size tableFigure 7End of season accuracy for different number of features.Full size image
    Figure 8Event-based accuracy for different number of features.Full size image
    Machine learning modelEach record in our dataset represents specific features about a field during one season at a particular time, in addition to the target variable (mown or non mown). In this work, we use a neural network to predict mowing events. We are interested only in observations during the vegetative season, so winter measurements are not included. More specifically, we only include the data in the vegetative season, which is almost the same across all Estonia from April till October (215 days). The dataset is partitioned into 64% for training, 20% for testing and 16% for validation. All training and testing were performed using TensorFlow58 deep learning framework with default parameters. The architecture of the neural network used is shown in Fig. 9. To guarantee a fixed time interval of 1-day, all the missing values in S-1 and S-2 features are interpolated, as shown in Fig. 10. The data is processed in batches of size (64 times 215) (times )14, where 64 is the number of fields considered per patch, 215 is the number of days in the vegetation season in Estonia, 14 is the number of selected features.Figure 9Architecture of the proposed model.Full size imageThe network’s output is a vector of size 215, representing the probability of a mowing event on each day in the vegetation season. The network consists of three one dimension convolution layers. The first and second convolution layers are followed by the Softmax activation function and batch normalization layer, while the third convolution is followed by Sigmoid activation function. The NN hyperparameters required to achieve the model learning process can significantly affect model performance. These hyperparameters include the following56:

    Number of epochs represents how many times you want your algorithm to train on your whole dataset.

    Loss function represents the prediction error of Neural Network.

    Optimizer represents algorithm or method used to change the attributes of the neural network such as weights and learning rate to reduce the loss.

    Activation function is the function through which we pass our weighted suown to have a significant output, namely as a vector of probability or a 0–1 output.

    Learning rate refers to the step of backpropagation, when parameters are updated according to an optimization function.

    Figure 10Time series mowing events before and after linear interpolation.Full size imageA good model uses the optimal combination of these hyperparameters and achieves good generalization capability. The training was performed with the conjugate gradient descent method and the binary cross-entropy loss function. The neural network was trained during 300 epochs; an early stopping was used59. The optimizer used in our model is Nadam optimizer60 with the following parameters: (beta_1=0.9), (beta_2=0.999), (epsilon=None), (schedule_{decay}=0.004), and learning (rate=0.001). Different activation functions such as ReLU, Sigmoid, Linear, and Tanh have been experimentally evaluated on the testing dataset as shown in Fig. 11. The results show that the Softmax activation function achieves the highest combined performance (event accuracy of 72.6% and EOS of 94.5%), as shown in Fig. 11.Figure 11Performance of different activation functions.Full size imageUsing 1D convolution layer acts as a filter that slides on the time dimension allowing the model to predict future mowing events from past events. However, this approach is not suitable for real-time detection of mowing events, but we use it to predict mowing events within a fixed time frame (window). Such a time frame should be greater than half the (1-D) convolution window length.Model evaluationTo evaluate our model, we used two metrics, EOS accuracy and Event-based accuracy. EOS is the accuracy of detecting a mowing event at least once during the season. If the probability of detecting a mowing event at least once during the season is more than 50%, then the field is considered mown, otherwise not mown. Event-based accuracy is used to evaluate how well our model correctly predicts mowing events. The formula for quantifying the binary accuracy is defined as follows:$$begin{aligned} acc = frac{TP + TN}{TP + TN + FP + FN} end{aligned}$$
    (9)
    where TP is the number of times that the model correctly predicted mowing events, given that the start day of the predicted mowing event is not more than 3 days earlier and not more than 6 days later than the actual start day of the mowing event. Within these 9 days, several mowing events may be predicted. To handle this case, only the first predicted mowing event is considered TP, and every next one is considered an FP. TN is the number of times that the model correctly predicted the absence of mowing events. FP is the number of times that the model incorrectly predicted mowing events. It also includes the number of times that the model correctly predicted mowing events, but the start of the event does not fit into a 9-days time frame with the actual start of some mowing event. FN is the number of times where the model missed actual mowing events.Reject region
    Figure 12Calibration plot for proposed model.Full size image
    Sometimes the model is not confident enough to give a reliable decision about the state of the field. We cannot expect reliable and confident predictions from inaccurate, incomplete or uncertain data. So, it is better in the cases of uncertainty about the prediction to allow the model to abstain from prediction. In this way, the obtained predictions are more accurate, while human experts could check rejected fields. Given the true positive rate and the true negative rate on the validation set, the reject region technique outputs a probability interval ((t_{low}), (t_{upper})) in which the model abstain prediction, where (t_{low}) and (t_{upper}) are the minimum and maximum probabilities that the model is uncertain about its prediction. Out of this interval, the model is confident about its prediction and predicts afield as mowed if the probability is higher than (t_{upper}) and not mown if the probability is less than (t_{low}). We select (t_{upper}), such that the desired true positive rate is reached. To find (t_{upper}), we sort all positives descending by their predicted probabilities and select the top percentage equal to the true positive rate. We choose (t_{low}) such that the desired true negative rate on validation data is reached. To find (t_{low}), we sort all negatives ascending by their predicted probabilities and select the top percentage equal to the true negative rate.Figure 12 shows the calibration plot for our proposed model. Notably, the predicted probabilities are close to the diagonal, which implies that the model is well-calibrated. More

  • in

    Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti

    1.Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    2.W. H. O. Multisectoral approach to the prevention and control of vector-borne diseases (2020).3.Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).
    Google Scholar 
    4.Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).PubMed 

    Google Scholar 
    6.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, 1–67 (2020).
    Google Scholar 
    7.Couret, J., Dotson, E. & Benedict, M. Q. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9, 1–9 (2014).
    Google Scholar 
    8.Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.Huxley, P. J., Murray, K. A., Pawar, S. & Cator, L. J. The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.3217 (2021).10.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS 
    PubMed 

    Google Scholar 
    11.Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, rspb.2020.2817 (2021).12.Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).PubMed 

    Google Scholar 
    13.Dye, C. Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Animal Ecol. 53, 247 (1984).
    Google Scholar 
    14.Southwood, T. R., Murdie, G., Yasuno, M., Tonn, R. J. & Reader, P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 46, 211–226 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Arrivillaga, J. & Barrera, R. Food as a limiting factor for Aedes aegypti in water-storage containers. J. Vector Ecol. 29, 11–20 (2004).PubMed 

    Google Scholar 
    16.Barrera, R., Amador, M. & Clark, G. G. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J. Med. Entomol. 43, 484–492 (2006).PubMed 

    Google Scholar 
    17.Yee, D. A. & Juliano, S. A. Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169, 511–522 (2012).PubMed 

    Google Scholar 
    18.Subra, R. & Mouchet, J. The regulation of preimaginal populations of Aedes aegypti (L.) (Diptera: Culicidae) on the Kenya coast. Ann. Trop. Med. Parasitol. 78, 63–70 (1984).CAS 
    PubMed 

    Google Scholar 
    19.Amarasekare, P. & Savage, V. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178–191 (2012).PubMed 

    Google Scholar 
    20.Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, 6 (2019).21.García-Carreras, B. et al. Role of carbon allocation efficiency in the temperature dependence of autotroph growth rates. Proc. Natl Acad. Sci. USA 115, E7361–E7368 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).PubMed 

    Google Scholar 
    23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).
    Google Scholar 
    24.Amarasekare, P. Effects of climate warming on consumer-resource interactions: a latitudinal perspective. Front. Ecol. Evol. 7, 1–15 (2019).25.Amarasekare, P. & Simon, M. W. Latitudinal directionality in ectotherm invasion success. Proc. R. Soc. B: Biol. Sci. 287, 20191411 (2020).
    Google Scholar 
    26.Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).CAS 
    PubMed 

    Google Scholar 
    27.Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).
    Google Scholar 
    28.Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Thomas, M. K. et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
    Google Scholar 
    30.Siegel, P., Baker, K. G., Low‐Décarie, E. & Geider, R. J. High predictability of direct competition between marine diatoms under different temperatures and nutrient states. Ecol. Evol. 10, 7276–7290 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    31.Bestion, E., García-Carreras, B., Schaum, C.-E., Pawar, S. & Yvon-Durocher, G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol. Lett. 21, 655–664 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    32.Jackson, C. flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 70, 1–33 (2016).
    Google Scholar 
    33.Bellows, T. S. The descriptive properties of some models for density dependence. J. Animal Ecol. 50, 139–156 (1981).
    Google Scholar 
    34.Orcutt, J. D. & Porter, K. G. The synergistic effects of temperature and food concentration of life history parameters of Daphnia. Oecologia 63, 300–306 (1984).PubMed 

    Google Scholar 
    35.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS 
    PubMed 

    Google Scholar 
    36.Caswell, H. A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor. Popul. Biol. 14, 215–230 (1978).CAS 
    PubMed 

    Google Scholar 
    37.Kammenga, J. E., Busschers, M., Straalen, N. M., Van, Jepson, P. C. & Bakker, J. Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct. Ecol. 10, 106 (1996).
    Google Scholar 
    38.Cator, L. J. et al. The role of vector trait variation in vector-borne disease dynamics. Front. Ecol. Evol. 8, 1–25 (2020).
    Google Scholar 
    39.Juliano, S. A. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79, 255 (1998).
    Google Scholar 
    40.Shapiro, L. L. M., Murdock, C. C., Jacobs, G. R., Thomas, R. J. & Thomas, M. B. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proc. R. Soc. B: Biol. Sci. 283, 20160298 (2016).
    Google Scholar 
    41.Carvajal-Lago, L., Ruiz-López, M. J., Figuerola, J. & Martínez-de la Puente, J. Implications of diet on mosquito life history traits and pathogen transmission. Environ. Res. 195, 110893 (2021).CAS 
    PubMed 

    Google Scholar 
    42.Reiner, R. C. et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J. R. Soc. Interface 10, 20120921–20120921 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    43.Farjana, T., Tuno, N. & Higa, Y. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med.Vet. Entomol. 26, 210–217 (2012).CAS 
    PubMed 

    Google Scholar 
    44.Kooijman, S. A. L. M. Dynamic energy and mass budgets in biological systems. (Cambridge University Press, 2000).45.Merritt, R. W., Dadd, R. H. & Walker, E. D. Feeding behaviour, natural food, and nutritional relationships and larval mosquitoes. Annu. Rev. Entomol. 37, 349–376 (1992).46.Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).CAS 

    Google Scholar 
    47.Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    48.Yee, D. A., Kaufman, M. G. & Juliano, S. A. The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J. Animal Ecol. 76, 1105–1115 (2007).
    Google Scholar 
    49.Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Souza, R. S. et al. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front. Physiol. 10, 1–24 (2019).
    Google Scholar 
    51.Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    52.Hery, L. et al. Natural variation in physicochemical profiles and bacterial communities associated with Aedes aegypti breeding sites and larvae on Guadeloupe and French Guiana. Microbial Ecol. 81, 93–109 (2021).CAS 

    Google Scholar 
    53.Liikanen, A., Murtoniemi, T., Tanskanen, H., Väisänen, T. & Martikainen, P. J. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59, 269–286 (2002).CAS 

    Google Scholar 
    54.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 

    Google Scholar 
    56.Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 36, 165–172 (1990).
    Google Scholar 
    57.Steinwascher, K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ. Entomol. 11, 150–153 (1982).
    Google Scholar 
    58.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    PubMed 

    Google Scholar 
    59.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol., Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    60.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    61.Bargielowski, I. E., Lounibos, L. P. & Carrasquilla, M. C. Evolution of resistance to satyrization through reproductive character displacement in populations of invasive dengue vectors. Proc. Natl Acad. Sci. USA 110, 2888–2892 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Arguez, A. et al. NOAA’s 1981–2010 U.S. climate normals: an overview. Bull. Am. Meteorol. Soc. 93, 1687–1697 (2012).
    Google Scholar 
    63.Caswell, H. Matrix population models construction, analysis, and interpretation. Nat. Resource Model. (Sinauer Associates, 1989).64.Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Animal Ecol. 17, 15 (1948).
    Google Scholar 
    65.Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).CAS 
    PubMed 

    Google Scholar 
    66.R. Core Team. R: A language and environment for statistical computing. (2018).67.Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio Package in R. J. Stat. Softw. 22, 1–23 (2007).
    Google Scholar 
    68.Therneau, T. A Package for Survival Analysis in R. (2021).69.Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).
    Google Scholar 
    70.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483 (1993).
    Google Scholar 
    71.Livdahl, T. P. & Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Animal Ecol. 53, 573 (1984).
    Google Scholar 
    72.Juliano, S. A. & Lounibos, L. P. Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol. Lett. 8, 558–574 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    73.van den Heuvel, M. J. The effect of rearing temperature on the wing length, thorax length, leg length and ovariole number of the adult mosquito, Aedes aegypti (L.). Trans. R. Entomol. Soc. Lond. 115, 197–216 (1963).
    Google Scholar 
    74.Farjana, T. & Tuno, N. Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). Med. Entomol. Zool. 63, 123–131 (2012).
    Google Scholar 
    75.Skalski, J. R., Millspaugh, J. J., Dillingham, P. & Buchanan, R. A. Calculating the variance of the finite rate of population change from a matrix model in Mathematica. Environ. Model. Softw. 22, 359–364 (2007).
    Google Scholar 
    76.Hope, R. M. Rmisc: Rmisc: Ryan Miscellaneous. (2013).77.Caswell, H., Naiman, R. J. & Morin, R. Evaluating the consequences of reproduction in complex salmonid life cycles. Aquaculture 43, 123–134 (1984).
    Google Scholar 
    78.de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67, 1427–1431 (1986).
    Google Scholar 
    79.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, (2015).80.Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).
    Google Scholar 
    81.Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68–75 (1995).
    Google Scholar 
    82.Kamykowski, D. & McCollum, S. A. The temperature acclimatized swimming speed of selected marine dinoflagellates. J. Plankton Res. 8, 275–287 (1986).
    Google Scholar  More

  • in

    Insect visual sensitivity to long wavelengths enhances colour contrast of insects against vegetation

    1.Cummings, M. E., Rosenthal, G. G. & Ryan, M. J. A private ultraviolet channel in visual communication. Proc. R. Soc. B-Biol. Sci. 270, 897–904. https://doi.org/10.1098/rspb.2003.2334 (2003).Article 

    Google Scholar 
    2.Tedore, C. & Nilsson, D. E. Avian UV vision enhances leaf surface contrasts in forest environments. Nat. Commun. https://doi.org/10.1038/s41467-018-08142-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Qi, Y. D., Bai, S. J. & Heisler, G. M. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season. Agric. For. Meteorol. 120, 229–240. https://doi.org/10.1016/j.agrformet.2003.08.018 (2003).ADS 
    Article 

    Google Scholar 
    4.Mollon, J. D. “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38. https://doi.org/10.1242/jeb.146.1.21 (1989).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Osorio, D. & Vorobyev, M. Photoreceptor sectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752. https://doi.org/10.1098/rspb.2005.3156 (2005).CAS 
    Article 

    Google Scholar 
    6.Osorio, D. & Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 48, 2042–2051. https://doi.org/10.1016/j.visres.2008.06.018 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Bowmaker, J. K. & Dartnall, H. J. A. Visual pigments of rods and cones in a human retina. J. Physiol. Lond. 298, 501–511. https://doi.org/10.1113/jphysiol.1980.sp013097 (1980).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bowmaker, J. K. & Hunt, D. M. Evolution of vertebrate visual pigments. Curr. Biol. 16, R484–R489. https://doi.org/10.1016/j.cub.2006.06.016 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).Article 

    Google Scholar 
    10.Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510. https://doi.org/10.1146/annurev.ento.46.1.471 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Ogawa, Y., Kinoshita, M., Stavenga, D. G. & Arikawa, K. Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate. J. Exp. Biol. 216, 1916–1923. https://doi.org/10.1242/jeb.083485 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Kelber, A. Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630 (1999).Article 

    Google Scholar 
    13.Osorio, D. & Vorobyev, M. Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. B Biol. Sci. 263, 593–599. https://doi.org/10.1098/rspb.1996.0089 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955. https://doi.org/10.1242/jeb.02207 (2006).Article 
    PubMed 

    Google Scholar 
    15.Wakakuwa, M., Stavenga, D. G., Kurasawa, M. & Arikawa, K. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol. 207, 2803–2810. https://doi.org/10.1242/jeb.01078 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Satoh, A. et al. Red-shift of spectral sensitivity due to screening pigment migration in the eyes of a moth, Adoxophyes orana. Zool. Lett. https://doi.org/10.1186/s40851-017-0075-6 (2017).Article 

    Google Scholar 
    17.Pirih, P. et al. The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 639–651. https://doi.org/10.1007/s00359-018-1267-z (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cronin, T. W., Jarvilehto, M., Weckstrom, M. & Lall, A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A Sens. Neural Behav. Physiol. 186, 1–12. https://doi.org/10.1007/s003590050001 (2000).CAS 
    Article 

    Google Scholar 
    19.Lall, A. B. et al. Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 629–638. https://doi.org/10.1007/s00359-010-0549-x (2010).Article 
    PubMed 

    Google Scholar 
    20.Frentiu, F. D. et al. Adaptive evolution of color vision as seen through the eyes of butterflies. Proc. Natl. Acad. Sci. U.S.A. 104, 8634–8640. https://doi.org/10.1073/pnas.0701447104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Liénard, M. A. et al. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2008986118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Saito, T. et al. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zool. Lett. https://doi.org/10.1186/s40851-019-0150-2 (2019).Article 

    Google Scholar 
    23.Enright, J. M. et al. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr. Biol. 25, 3048–3057. https://doi.org/10.1016/j.cub.2015.10.018 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Martin, M., Le Galliard, J. F., Meylan, S. & Loew, E. R. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J. Exp. Biol. 218, 458–465. https://doi.org/10.1242/jeb.115923 (2015).Article 
    PubMed 

    Google Scholar 
    25.Ala-Laurila, P., Donner, K. & Koskelainen, A. Thermal activation and photoactivation of visual pigments. Biophys. J. 86, 3653–3662. https://doi.org/10.1529/biophysj.103.035626 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Ala-Laurila, P., Pahlberg, J., Koskelainen, A. & Donner, K. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vis. Res. 44, 2153–2158. https://doi.org/10.1016/j.visres.2004.03.031 (2004).Article 
    PubMed 

    Google Scholar 
    27.Barlow, H. B. Purkinje shift and retinal noise. Nature 179, 255–256. https://doi.org/10.1038/179255b0 (1957).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Koskelainen, A., Ala-Laurila, P., Fyhrquist, N. & Donner, K. Measurement of thermal contribution to photoreceptor sensitivity. Nature 403, 220–223. https://doi.org/10.1038/35003242 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Luo, D. G., Yue, W. W. S., Ala-Laurila, P. & Yau, K. W. Activation of visual pigments by light and heat. Science 332, 1307–1312. https://doi.org/10.1126/science.1200172 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rieke, F. & Baylor, D. A. Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186. https://doi.org/10.1016/s0896-6273(00)81148-4 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual pigments and photoreceptors. In Visual Ecology, pp. 37–65: Princeton University Press.32.Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rstb.2016.0065 (2017).Article 

    Google Scholar 
    33.Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724. https://doi.org/10.1086/681021 (2015).Article 
    PubMed 

    Google Scholar 
    34.Hawkeswood, T. Observations on some Buprestidae (Coleoptera) from the Blue Mountains, N.S.W.. Aust. Zool. 19, 257–275 (1978).
    Google Scholar 
    35.Hawkeswood, T. Observations on two sympatric species of Buprestidae (Coleoptera) from sand dunes on the north coast of New South Wales. Victorian Naturalist 98, 146–151 (1981).
    Google Scholar 
    36.Hawkeswood, T. Observations on some jewel beetles (Coleoptera Buprestidae) from the Armidale district, North-eastern New South Wales. Vic. Nat. 98, 152–155 (1981).
    Google Scholar 
    37.Poland, T. M., Chen, Y. G., Koch, J. & Pureswaran, D. Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance. Can. Entomol. 147, 252–262. https://doi.org/10.4039/tce.2015.4 (2015).Article 

    Google Scholar 
    38.Bellamy, C. L., Williams, G., Hasenpusch, J. & Sundholm, A. A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae), with additional new records. Insecta Mundi, 1–172 (2013).39.Domingue, M. J. et al. Field observations of visual attraction of three European oak buprestid beetles toward conspecific and heterospecific models. Entomol. Exp. Appl. 140, 112–121. https://doi.org/10.1111/j.1570-7458.2011.01139.x (2011).Article 

    Google Scholar 
    40.Domingue, M. J. et al. Differences in spectral selectivity between stages of visually guided mating approaches in a buprestid beetle. J. Exp. Biol. 219, 2837–2843 (2016).PubMed 

    Google Scholar 
    41.Pureswaran, D. S. & Poland, T. M. Effects of visual silhouette, leaf size and host species on feeding preference by adult emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Great Lakes Entomol. 42, 4 (2018).
    Google Scholar 
    42.Crook, D. J. et al. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum. J. Econ. Entomol. 102, 2160–2169 (2009).Article 

    Google Scholar 
    43.Lord, N. P. et al. A cure for the blues: Opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 16, 107 (2016).Article 

    Google Scholar 
    44.Meglič, A., Ilić, M., Quero, C., Arikawa, K. & Belušič, G. Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer Coraebus undatus (Coleoptera: Buprestidae). J. Exp. Biol. 223, jeb225920. https://doi.org/10.1242/jeb.225920 (2020).Article 
    PubMed 

    Google Scholar 
    45.Chen, Y. G. & Poland, T. M. Biotic and abiotic factors affect green ash volatile production and emerald Ash borer adult feeding preference. Environ. Entomol. 38, 1756–1764. https://doi.org/10.1603/022.038.0629 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Dartnall, H. J. A. Visual pigment. Trans. Zool. Soc. Lond. 33, 147–152. https://doi.org/10.1111/j.1096-3642.1976.tb00047.x (1976).Article 

    Google Scholar 
    48.Arikawa, K., Scholten, D. G. W., Kinoshita, M. & Stavenga, D. G. Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zool. Sci. 16, 17–24. https://doi.org/10.2108/zsj.16.17 (1999).Article 

    Google Scholar 
    49.Das, D., Wilkie, S. E., Hunt, D. M. & Bowmaker, J. K. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision. Res. 39, 2801–2815. https://doi.org/10.1016/s0042-6989(99)00023-1 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sison-Mangus, M. P., Bernard, G. D., Lampel, J. & Briscoe, A. D. Beauty in the eye of the beholder: The two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J. Exp. Biol. 209, 3079–3090. https://doi.org/10.1242/jeb.02360 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Bernard, G. D. Red-absorbing visual pigment of butterflies. Science 203, 1125. https://doi.org/10.1126/science.203.4385.1125 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Martínez-Harms, J. et al. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 451–463. https://doi.org/10.1007/s00359-012-0722-5 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Stavenga, D. G. & Arikawa, K. Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197, 373–385. https://doi.org/10.1007/s00359-010-0622-5 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J. & Cuthill, I. C. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 183, 621–633. https://doi.org/10.1007/s003590050286 (1998).CAS 
    Article 

    Google Scholar 
    55.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 351–358. https://doi.org/10.1098/rspb.1998.0302 (1998).CAS 
    Article 

    Google Scholar 
    56.Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: Behaviour and physiology compared. Vis. Res. 41, 639–653. https://doi.org/10.1016/s0042-6989(00)00288-1 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods in Ecology and Evolution 10, 1097–1107 (2019).58.Matsushita, A., Awata, H., Wakakuwa, M., Takemura, S. Y. & Arikawa, K. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis. Proc. R. Soc. B Biol. Sci. 279, 3482–3490. https://doi.org/10.1098/rspb.2012.0475 (2012).Article 

    Google Scholar 
    59.McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284. https://doi.org/10.1093/molbev/msx163 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    61.R: A Language and environment for statistical computing (R Foundation for Statistical Computing, 2018).62.van der Kooi, C. J., Elzenga, J. T. M., Staal, M. & Stavenga, D. G. How to colour a flower: On the optical principles of flower coloration. Proc. R. Soc. B Biol. Sci. 283, 20160429. https://doi.org/10.1098/rspb.2016.0429 (2016).CAS 
    Article 

    Google Scholar 
    63.Horler, D. N. H., Dockray, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288. https://doi.org/10.1080/01431168308948546 (1983).Article 

    Google Scholar 
    64.Silberglied, R. E. Communication in the Ultraviolet. Annu. Rev. Ecol. Syst. 10, 373–398. https://doi.org/10.1146/annurev.es.10.110179.002105 (1979).Article 

    Google Scholar 
    65.Lind, O. Colour vision and background adaptation in a passerine bird, the zebra finch (Taeniopygia guttata). R. Soc. Open Sci. 3, 160383. https://doi.org/10.1098/rsos.160383 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Santiago, C. et al. Does conspicuousness scale linearly with colour distance? A test using reef fish. Proc. R. Soc. B Biol. Sci. 287, 20201456. https://doi.org/10.1098/rspb.2020.1456 (2020).Article 

    Google Scholar 
    67.Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. & Menzel, R. Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J. Comp. Physiol. A. 180, 235–243. https://doi.org/10.1007/s003590050044 (1997).Article 

    Google Scholar 
    68.Garcia, J. E., Spaethe, J. & Dyer, A. G. The path to colour discrimination is S-shaped: Behaviour determines the interpretation of colour models. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 983–997. https://doi.org/10.1007/s00359-017-1208-2 (2017).Article 
    PubMed 

    Google Scholar 
    69.Hart, N. S., Bailes, H. J., Vorobyev, M., Marshall, N. J. & Collin, S. P. Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecol. 8, 21. https://doi.org/10.1186/1472-6785-8-21 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Vorobyev, M. Coloured oil droplets enhance colour discrimination. Proc. R. Soc. B Biol. Sci. 270, 1255–1261. https://doi.org/10.1098/rspb.2003.2381 (2003).Article 

    Google Scholar 
    71.Carleton, K. L. et al. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. Bmc Biol. https://doi.org/10.1186/1741-7007-6-22 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Seki, T. & Vogt, K. Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 119, 53–64. https://doi.org/10.1016/s0305-0491(97)00322-2 (1998).Article 

    Google Scholar 
    73.Stavenga, D. G., Smits, R. P. & Hoenders, B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis. Res. 33, 1011–1017. https://doi.org/10.1016/0042-6989(93)90237-q (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Kinoshita, M. & Arikawa, K. Color and polarization vision in foraging Papilio. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 200, 513–526. https://doi.org/10.1007/s00359-014-0903-5 (2014).Article 
    PubMed 

    Google Scholar 
    75.Vorobyev, M. & Menzel, R. Flower advertisement for insects: Bees, a case study. In Adaptive Mechanisms in the Ecology of Vision (eds S. N. Archer et al.) 537–553 (Springer Netherlands, 1999).76.Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. U.S.A. 88, 2783–2787. https://doi.org/10.1073/pnas.88.7.2783 (1991).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.McCulloch, K. J., Osorio, D. & Briscoe, A. D. Sexual dimorphism in the compound eye of Heliconius erato: A nymphalid butterfly with at least five spectral classes of photoreceptor. J. Exp. Biol. 219, 2377–2387. https://doi.org/10.1242/jeb.136523 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Thermal stress triggers productive viral infection of a key coral reef symbiont

    1.Hughes TP, Kerry J, Álvarez-Noriega M, Álvarez-Romero J, Anderson K, Baird A, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543:373–7.CAS 

    Google Scholar 
    2.Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
    Google Scholar 
    3.Patten NL, Harrison PL, Mitchell JG. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs. 2008;27:569–80.
    Google Scholar 
    4.Leruste A, Bouvier T, Bettarel Y. Enumerating viruses in coral mucus. Appl Environ Microbiol. 2012;78:6377–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Nguyen-kim H, Bouvier T, Bouvier C, Bui VN, Le-lan H, Bettarel Y. Viral and bacterial epibionts in thermally-stressed corals. J Mar Sci Eng. 2015;3:1272–86.
    Google Scholar 
    6.Vega Thurber R, Payet JP, Thurber AR, Correa AMS. Virus–host interactions and their roles in coral reef health and disease. Nat Rev Microbiol. 2017;15:205–16.
    Google Scholar 
    7.Sweet M, Bythell J. The role of viruses in coral health and disease. J Invertebr Pathol. 2017;147:136–44.PubMed 

    Google Scholar 
    8.Wilson WH, Francis I, Ryan K, Davy SK. Temperature induction of viruses in symbiotic dinoflagellates. Aquat Micro Ecol. 2001;25:99–102.
    Google Scholar 
    9.Lohr J, Munn CB, Wilson WH. Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl Environ Microbiol. 2007;73:2976–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lawrence SA, Wilson WH, Davy JE, Davy SK. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J Phycol. 2014;50:984–97.PubMed 

    Google Scholar 
    11.Messyasz A, Rosales SM, Mueller RS, Sawyer T, Correa AMS, Thurber AR, et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front Mar Sci. 2020;7:555474.
    Google Scholar 
    12.Marhaver KL, Edwards RA, Rohwer F. Viral communities associated with healthy and bleaching corals. Environ Microbiol. 2008;10:2277–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol. 2016;7:127.PubMed 
    PubMed Central 

    Google Scholar 
    14.Bettarel Y, Thuy NT, Huy TQ, Hoang PK, Bouvier T. Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J Mar Biol Assoc U K. 2013;93:909–12.
    Google Scholar 
    15.Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol. 2007;346:36–44.
    Google Scholar 
    16.Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV. Potential role of viruses in white plague coral disease. ISME J. 2014;8:271–83.CAS 
    PubMed 

    Google Scholar 
    17.Lawrence SA, Davy JE, Aeby GS, Wilson WH, Davy SK. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs. 2014;33:687–91.
    Google Scholar 
    18.Lawrence SA, Davy JE, Wilson WH, Hoegh-Guldberg O, Davy SK. Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs. 2015;34:249–57.
    Google Scholar 
    19.Pollock FJ, M. Wood-Charlson E, Van Oppen MJH, Bourne DG, Willis BL, Weynberg KD. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar Ecol Prog Ser. 2014;510:39–43.
    Google Scholar 
    20.Vega Thurber RL, Correa AMS. Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol. 2011;408:102–13.
    Google Scholar 
    21.Weynberg KD, Voolstra CR, Neave MJ, Buerger P, Van Oppen MJH. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep. 2015;5:17889.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Quistad SD, Grasis JA, Barr JJ, Rohwer FL. Viruses and the origin of microbiome selection and immunity. ISME J. 2017;11:835–40.CAS 
    PubMed 

    Google Scholar 
    23.Oppen MJHV, Leong J, Gates RD. Coral-virus interactions: a double-edged sword? SYMBIOSIS. 2009;47:1–8.
    Google Scholar 
    24.Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullvian MB, Weitz JS. The virus-microbe infection continuum: revisiting the viral rules of life. Nat Rev Microbiol. 2021;19:501–13.CAS 
    PubMed 

    Google Scholar 
    25.Correa AMS, Welsh RM, Vega Thurber RL. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J. 2013;7:13–27.CAS 
    PubMed 

    Google Scholar 
    26.Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ Microbiol. 2017;19:3909–19.CAS 
    PubMed 

    Google Scholar 
    27.Levin RA, Voolstra CR, Weynberg KD, Van Oppen M. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 2017;11:808–12.CAS 
    PubMed 

    Google Scholar 
    28.Knowles B, Bonachela JA, Behrenfeld MJ, Bondoc KG, Cael BB, Carlson CA, et al. Temperate infection in a virus–host system previously known for virulent dynamics. Nat Commun. 2020;11:1–13.
    Google Scholar 
    29.Montalvo-Proaño J, Buerger P, Weynberg KD, Van Oppen MJH. A PCR-based assay targeting the major capsid protein gene of a dinorna-like ssRNA virus that infects coral photosymbionts. Front Microbiol. 2017;8:1665.PubMed 
    PubMed Central 

    Google Scholar 
    30.Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, Yamaguchi M, et al. Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat Micro Ecol. 2004;34:207–18.
    Google Scholar 
    31.Miller JL, Chen S, Nagasaki K, Roseman A, Wepf R, Sewell T, et al. Three-dimensional reconstruction of Heterocapsa circularisquama RNA virus by electron cryo-microscopy. J Gen Virol. 2011;92:1960–70.CAS 
    PubMed 

    Google Scholar 
    32.Shi M, Lin XD, Tian J-H, Chen L-J, Chen X, Li C-IU, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540:539–43.CAS 
    PubMed 

    Google Scholar 
    33.Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76:159–216.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73:4433–48.PubMed 
    PubMed Central 

    Google Scholar 
    35.Vlok M, Lang AS, Suttle CA. Marine RNA virus quasispecies are distributed throughout the oceans. mSphere. 2019;4:1–18.
    Google Scholar 
    36.Domingo E, Martinez-salas E, Sobrino F, de la Torre JC, Portela A, Ortin J, et al. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene. 1985;40:1–8.CAS 
    PubMed 

    Google Scholar 
    37.Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–8.CAS 
    PubMed 

    Google Scholar 
    38.Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–85.CAS 
    PubMed 

    Google Scholar 
    39.Gélin P, Postaire B, Fauvelot C, Magalon H. Molecular phylogenetics and evolution reevaluating species number, distribution and endemism of the coral genus Pocillopora Lamarck, 1816 using species delimitation methods and microsatellites. Mol Phylogenet Evol. 2017;109:430–46.PubMed 

    Google Scholar 
    40.Pratchett MS, McCowan D, Maynard JA, Heron SF. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS ONE. 2013;8:1–10.
    Google Scholar 
    41.Donovan MK, Adam TC, Shantz AA, Speare KE, Munsterman KS, Rice MM, et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc Natl Acad Sci USA. 2020;117:5351–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Siebeck UE, Marshall NJ, Kluter A, Hoegh-Guldberg O. Monitoring coral bleaching using a colour reference card. Coral Reefs. 2006;25:453–60.
    Google Scholar 
    43.Winters G, Holzman R, Blekhman A, Beer S, Loya Y. Photographic assessment of coral chlorophyll contents: Implications for ecophysiological studies and coral monitoring. J Exp Mar Biol Ecol. 2009;380:25–35.CAS 

    Google Scholar 
    44.Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. 2021;15:3271–85.PubMed 

    Google Scholar 
    45.Pinzón JH, Lajeunesse TC. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol. 2011;20:311–25.PubMed 

    Google Scholar 
    46.Flot JF, Tillier S. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene. 2007;401:80–87.CAS 
    PubMed 

    Google Scholar 
    47.Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr. 2013;40:1595–608.
    Google Scholar 
    48.Johnston EC, Forsman ZH, Flot JF, Schmidt-Roach S, Pinzón JH, Knapp ISS, et al. A genomic glance through the fog of plasticity and diversification in Pocillopora. Sci Rep. 2017;7:5991.PubMed 
    PubMed Central 

    Google Scholar 
    49.Wham DC, Carmichael M, LaJeunesse TC. Microsatellite loci for Symbiodinium goreaui and other Clade C Symbiodinium. Coservation Genet Resour. 2014;6:127–9.
    Google Scholar 
    50.Bay LK, Ulstrup KE, Nielsen HB, Jarmer H, Goffard N, Willis BL, et al. Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol. 2009;18:3062–75.CAS 
    PubMed 

    Google Scholar 
    51.Veglia AJ, Vicéns RER, Grupstra CGB, Howe-Kerr LI, Correa AMS. vAMPirus: an automated, comprehensive virus amplicon sequencing analysis program. 2021: available at https://zenodo.org/record/4549851 (accessed February 17, 2021).52.Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016;81257: available at https://doi.org/10.1101/081257.53.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;2016:1–22.
    Google Scholar 
    54.Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:1–19.
    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 

    Google Scholar 
    56.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.CAS 
    PubMed 

    Google Scholar 
    57.Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.4-6. R Package Version 25-6 2019.58.Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.
    Google Scholar 
    59.Bates DM, Maechler M, Bolker B, Walker S. lme4: Mixed-effects modeling with R. R Package Version 11-7 HttpCRANR-Proj 2014.60.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550.PubMed 
    PubMed Central 

    Google Scholar 
    61.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere. 2018;3:e00069–18.PubMed 
    PubMed Central 

    Google Scholar 
    63.Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    64.Biebricher CK, Eigen M. What Is a Quasispecies? In: Domingo E (ed). Quasispecies: concept and implications for virology. 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–31.65.Gelbart M, Harari S, Ben-ari Y, Kustin T, Wolf D, Mandelboim M, et al. Drivers of within-host genetic diversity in acute infections of viruses. PLoS Pathog. 2020;16:e1009029.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    67.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature. 2003;424:741.CAS 
    PubMed 

    Google Scholar 
    68.Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science. 2007;315:513–5.CAS 
    PubMed 

    Google Scholar 
    69.Holmes EC. The RNA virus quasispecies: fact or fiction? J Mol Biol. 2010;400:271–3.CAS 
    PubMed 

    Google Scholar 
    70.Pybus OG, Rambaut A, Belshaw R, Freckleton RP, Drummond AJ, Holmes EC. Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol. 2007;24:845–52.CAS 
    PubMed 

    Google Scholar 
    71.Holmes EC. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol. 2003;77:11296–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Edwards CTT, Holmes EC, Pybus OG, Wilson DJ, Viscidi RP, Abrams EJ, et al. Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection. Genetics. 2006;174:1441–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLIFE. 2014;3:e03125.PubMed 
    PubMed Central 

    Google Scholar 
    74.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    75.Munson-mcgee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, et al. A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments. ISME J. 2018;12:1706–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2017;3:1–14.
    Google Scholar 
    77.Wang L, Wu S, Liu T, Sun J, Chi S, Liu C, et al. Endogenous viral elements in algal genomes. Acta Oceano Sin. 2014;33:102–7.CAS 

    Google Scholar 
    78.Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature. 2020;588:141–5.CAS 
    PubMed 

    Google Scholar 
    79.Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Holmes EC. The evolution of endogenous viral elements. Cell Host Microbe. 2011;10:368–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Ripp S, Miller RV. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology. 1997;143:2065–70.CAS 
    PubMed 

    Google Scholar 
    82.Onodera S, Olkkonen VM, Gottlieb P, Strassman J, Qiao XY, Bamford DH, et al. Construction of a transducing virus from double-stranded RNA bacteriophage phi6: establishment of carrier states in host cells. J Virol. 1992;66:190–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.de la Higuera I, Kasun GW, Torrance EL, Pratt AA, Maluenda A, Colombet J, et al. Unveiling crucivirus diversity by mining metagenomic data. mBio. 2020;11:e01410–20.PubMed 
    PubMed Central 

    Google Scholar 
    84.Ku C, Sheyn U, Sebé-Pedrós A, Ben-Dor S, Schatz D, Tanay A, et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv. 2020;6:eaba4137.85.Deng L, Ignacio-espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–6.CAS 

    Google Scholar 
    86.Jonge PAD, Costa AR, Franklin L, Brouns SJJ, Jonge PAD, Meijenfeldt FABV, et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. ISCIENCE. 2020;23:101439.PubMed 
    PubMed Central 

    Google Scholar 
    87.Jiang SC, Paul JH. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser. 1994;104:163–72.
    Google Scholar 
    88.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 

    Google Scholar 
    89.Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev. 2010;74:42–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Thingstad TF, Våge S, Storesund JE, Sandaa R, Giske J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. PNAS. 2014;111:7813–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.
    Google Scholar 
    92.Tomaru Y, Hata N, Masuda T, Tsuji M, Igata K, Masuda Y, et al. Ecological dynamics of the bivalve-killing dinoflagellate Heterocapsa circularisquama and its infectious viruses in different locations of western Japan. Environ Microbiol. 2007;9:1376–83.PubMed 

    Google Scholar 
    93.Sadeghi M, Tomaru Y, Ahola T. RNA viruses in aquatic unicellular eukaryotes. Viruses 2021.94.Randall RE, Griffin DE. Within host RNA virus persistence: mechanisms and consequences. Curr Opin Virol. 2017;23:35–42.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Roossinck MJ. Lifestyles of plant viruses. Philos Trans R Soc B Biol Sci. 2010;365:1899–905.
    Google Scholar 
    96.Honjo MN, Emura N, Kawagoe T, Sugisaka J, Kamitani M, Nagano AJ, et al. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J. 2020;14:506–18.CAS 
    PubMed 

    Google Scholar 
    97.Kim Y, Kim YJ, Paek K-H. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. J Exp Bot. 2020;72:1432–48.
    Google Scholar 
    98.Jones RAC. Chapter three – future scenarios for plant virus pathogens as climate change progresses. In: Kielian M, Maramorosch K, Mettenleiter TC (eds).2016. Academic Press, pp 87–147.99.Brüwer JD, Agrawal S, Liew YJ, Aranda M, Voolstra CR. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 2017;17:1–11.
    Google Scholar 
    100.Cevallos RC, Sarnow P. Temperature protects insect cells from infection by cricket paralysis virus. J Virol. 2010;84:1652–5.CAS 
    PubMed 

    Google Scholar 
    101.Edgar RS, Lielausis I. Temperature-sensitive mutants of bacteriophage T4D: their isolation and genetic characterization. Genetics. 1964;49:649–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci USA. 2008;105:18413–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Seifert M, van Nies P, Papini FS, Arnold JJ, Poranen MM, Cameron CE, et al. Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2020;48:5591–602.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Wooldridge SA. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs. 2014;33:15–27.
    Google Scholar 
    105.Hédouin L, Rouzé H, Berthe C, Perez-Rosales G, Martinez E, Chancerelle Y, et al. Contrasting patterns of mortality in Polynesian coral reefs following the third global coral bleaching event in 2016. Coral Reefs. 2020;39:939–52.
    Google Scholar 
    106.Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O. Host-Specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS ONE. 2013;8:e68533–e68533.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol. 2014;23:4226–40.CAS 
    PubMed 

    Google Scholar  More

  • in

    Dietary shifts and social interactions drive temporal fluctuations of the gut microbiome from wild redfronted lemurs

    1.McKenney EA, Koelle K, Dunn RR, Yoder AD. The ecosystem services of animal microbiomes. Mol Ecol. 2018;27:2164–72.CAS 
    PubMed 

    Google Scholar 
    2.Miller ET, Svanbäck R, Bohannan BJM. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol Evol. 2018;33:926–35.PubMed 

    Google Scholar 
    3.Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25:789–802.CAS 
    PubMed 

    Google Scholar 
    4.Björk JR, Dasari M, Grieneisen L, Archie EA. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. Am J Primatol. 2019;81:1–23.
    Google Scholar 
    5.Sun B, Wang X, Bernstein S, Huffman MA, Xia DP, Gu Z, et al. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci Rep. 2016;6:1–8.
    Google Scholar 
    6.Wu Q, Wang X, Ding Y, Hu Y, Nie Y, Wei W, et al. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc R Soc B Biol Sci. 2017;284:20170955.7.Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 2015;9:2423–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 2014;69:434–43.PubMed 

    Google Scholar 
    9.Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A, Melin AD. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 2019;13:183–96. 22.CAS 
    PubMed 

    Google Scholar 
    10.Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.PubMed 
    PubMed Central 

    Google Scholar 
    11.Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH, Buchholz TA, et al. Seasonal cycling in the gut microbiome of the Hadza Hunter-Gatherers of Tanzania. Science. 2017;357:802–6.
    Google Scholar 
    12.Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1786.PubMed 
    PubMed Central 

    Google Scholar 
    13.Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9:1–20.
    Google Scholar 
    14.Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ Microbiol. 2016;18:1312–25.PubMed 

    Google Scholar 
    15.Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923.PubMed 
    PubMed Central 

    Google Scholar 
    16.De Vrieze J, Pinto AJ, Sloan WT, Ijaz UZ. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome. 2018;6:63.PubMed 
    PubMed Central 

    Google Scholar 
    17.Kappeler PM, Fichtel C. A 15-year perspective on the social organization and life history of sifaka in Kirindy Forest. In: Long-term field studies of primates. Springer Berlin Heidelberg; 2012. p. 101–21.18.Peckre LR, Defolie C, Kappeler PM, Fichtel C. Potential self-medication using millipede secretions in red-fronted lemurs: combining anointment and ingestion for a joint action against gastrointestinal parasites? Primates. 2018;59:483–94.PubMed 

    Google Scholar 
    19.Ostner J. Social thermoregulation in redfronted lemurs (Eulemur fulvus rufus). Folia Primatol. 2002;73:175–80.
    Google Scholar 
    20.Amoroso CR, Kappeler PM, Fichtel C, Nunn CL. Water availability impacts habitat use by red-fronted lemurs (Eulemur rufifrons): An experimental and observational study. Int J Primatol. 2020;41:61–80.
    Google Scholar 
    21.Koch F, Ganzhorn JU, Rothman JM, Chapman CA, Fichtel C. Sex and seasonal differences in diet and nutrient intake in Verreaux’s sifakas (Propithecus verreauxi). Am J Primatol. 2017;79:1–10.CAS 
    PubMed 

    Google Scholar 
    22.Clough D. Gastro-intestinal parasites of red-fronted lemurs in Kirindy Forest, western Madagascar. J Parasitol. 2010;96:245–51.PubMed 

    Google Scholar 
    23.Gogarten JF, Calvignac-Spencer S, Nunn CL, Ulrich M, Saiepour N, Nielsen HV, et al. Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny. Mol Ecol Resour. 2020;20:204–15.PubMed 

    Google Scholar 
    24.Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. Wiley Interdiscip Rev Syst Biol Med. 2019;11:e1438.PubMed 

    Google Scholar 
    25.Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2020;14:609–22.CAS 
    PubMed 

    Google Scholar 
    26.Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr Comp Biol. 2017;57:770–85.PubMed 
    PubMed Central 

    Google Scholar 
    27.Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.
    Google Scholar 
    28.Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 2012;7:e40863.29.Porat I, Vishnivetskaya TA, Mosher JJ, Brandt CC, Yang ZK, Brooks SC, et al. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb Ecol. 2010;60:784–95.PubMed 
    PubMed Central 

    Google Scholar 
    30.Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S. Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods. 2011;84:12–8.CAS 
    PubMed 

    Google Scholar 
    31.Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 

    Google Scholar 
    32.Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ Microbiol Rep. 2019;11:487–94.PubMed 

    Google Scholar 
    33.Berkelmann D, Schneider D, Hennings N, Meryandini A, Daniel R. Soil bacterial community structures in relation to different oil palm management practices. Sci Data. 2020;7:1–7.
    Google Scholar 
    34.Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.PubMed 
    PubMed Central 

    Google Scholar 
    35.Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina paired-end read mergeR. Bioinformatics. 2014;30:614–20.CAS 
    PubMed 

    Google Scholar 
    36.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    37.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;2016:1–22.
    Google Scholar 
    38.Edgar RC UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016;081257.39.Edgar RC UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. 2016;074252.40.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    42.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    43.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64.CAS 

    Google Scholar 
    44.Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.CAS 
    PubMed 

    Google Scholar 
    45.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 

    Google Scholar 
    46.Team Rc. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.r-project.org.47.Team Rs. RStudio: Integrated Development for R. Boston, MA: RStudio; 2019.48.Andersen KS, Kirkegaard RH, Albertsen M ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018;10–1.49.Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.CAS 
    PubMed 

    Google Scholar 
    50.Wickham H, Rstudio. stringr: Simple, consistent wrappers for common string operations. 2019. Available from: https://cran.r-project.org/package=stringr.51.Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20.
    Google Scholar 
    52.Dowle M, Srinivasan A, Gorecki J, Chirico M, Stetsenko P, Short T, et al. data.table: Extension of “data.frame”. 2019. Available from: https://cran.r-project.org/package=data.table.53.Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
    Google Scholar 
    54.Wickham H ggplot2: Elegant graphics for data analysis. New York: Spinger-Verlag New York; 2016.55.Chen L, Reeve J, Zhang L, Huang S, Wang X, Chen J. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ. 2018;2018:1–20.
    Google Scholar 
    56.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Price MN, Dehal PS, Arkin AP. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.58.Rambaut A. FigTree—tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburg; 2020. Available from: http://tree.bio.ed.ac.uk/software/figtree.59.Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.CAS 
    PubMed 

    Google Scholar 
    60.Marzano V, Mancinelli L, Bracaglia G, Del Chierico F, Vernocchi P, Di Girolamo F, et al. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome.”. PLoS Negl Trop Dis. 2017;11:e0005916.PubMed 
    PubMed Central 

    Google Scholar 
    61.Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Heal Dis. 2015;26:27663.62.Hothorn T, Hornik K exactRankTests: exact distributions for rank and permutation tests. 2019. Available from: https://cran.r-project.org/package=exactRankTests.63.Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R nlme: Linear and nonlinear mixed effects models. 2020. Available from: https://cran.r-project.org/package=nlme.64.van den Boogaart G, Tolosana R compositions: an R package for compositional data analysis. 2020. Available from: http://www.stat.boogaart.de/compositions/.65.Wickham H, Francois R, Core Team R, Rstudio, Jylänki J, Jorgensen M readr: Read rectangular text data. 2018. Available from: http://readr.tidyverse.org.66.Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2019. Available from: https://cran.r-project.org/package=vegan.67.Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.PubMed 

    Google Scholar 
    68.Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    69.Reitmeier S, Hitch TCA, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE, et al. Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME COMMUN. 2021;1:31.
    Google Scholar 
    70.Sweeny AR, Lemon H, Ibrahim A, Nussey DH, Free A, McNally L. A mixed model approach for estimating drivers of microbiota community composition and differential taxonomic abundance (preprint). bioRxiv. 2020; https://doi.org/10.1101/2020.11.24.395715.71.Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J Mem Lang. 2013;68:255–78.
    Google Scholar 
    72.Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. Balancing type I error and power in linear mixed models. J Mem Lang. 2017;94:305–15.
    Google Scholar 
    73.Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks, California: Sage Publishing; 2019.74.Bolker BM. Ecological models and data in R. New Jersey, USA: Princeton University Press; 2008.75.Adams DC, Anthony CD. Using randomization techniques to analyse behavioural data. Anim Behav. 1996;51:733–8.
    Google Scholar 
    76.Baayen RH. Analyzing linguistic data. Cambridge: Cambridge University Press; 2008.77.Bartón K MuMIn: Multi-Model Inference. 2020. Available from: https://cran.r-project.org/package=MuMIn.78.Lüdecke D. sjPlot: Data Visualization for Statistics in Social Science. 2021. Available from: https://cran.r-project.org/package=sjPlot.79.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.
    Google Scholar 
    82.Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109. 15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. MBio. 2017;8:1–17.
    Google Scholar 
    84.Raymann K, Moeller AH, Goodman AL, Ochman H. Unexplored archaeal diversity in the great ape gut microbiome. mSphere. 2017;2:1–12.
    Google Scholar 
    85.Ley RE. Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016;13:69–70.CAS 
    PubMed 

    Google Scholar 
    86.Manara S, Asnicar F, Beghini F, Bazzani D, Cumbo F, Zolfo M, et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol. 2019;20:299.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Umanets A, de Winter I, IJdema F, Ramiro-Garcia J, van Hooft P, Heitkönig IMA, et al. Occupancy strongly influences faecal microbial composition of wild lemurs. FEMS Microbiol Ecol. 2018;94:1–13.
    Google Scholar 
    88.Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, et al. Local habitat, not phylogenetic relatedness, predicts gut microbiota better within folivorous than frugivorous lemur lineages. Biol Lett. 2019;15:5–11.
    Google Scholar 
    89.Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8:295–308.CAS 
    PubMed 

    Google Scholar 
    90.Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol. 2016;7:1–13.
    Google Scholar 
    91.Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018;26:563–74.CAS 
    PubMed 

    Google Scholar 
    92.Ricaboni D, Mailhe M, Cadoret F, Vitton V, Fournier PE, Raoult D. ‘Colidextribacter massiliensis’ gen. nov., sp. nov., isolated from human right colon. New Microbes New Infect. 2017;17:27–9.CAS 
    PubMed 

    Google Scholar 
    93.Qin P, Zou Y, Dai Y, Luo G, Zhang X, Xiao L. Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. shenzhenensis subsp. nov. Microorganisms. 2019;7:78.94.Sizova MV, Muller PA, Stancyk D, Panikov NS, Mandalakis M, Hazen A, et al. Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov., obligately anaerobic bacteria from the human oral cavity, and emended description of the genus Oribacterium. Int J Syst Evol Microbiol. 2014;64:2642–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Amato KR, Garber PA. Nutrition and foraging strategies of the black howler monkey (Alouatta pigra) in Palenque National Park, Mexico. Am J Primatol. 2014;76:774–87.CAS 
    PubMed 

    Google Scholar 
    96.White TCR. The significance of unripe seeds and animal tissues in the protein nutrition of herbivores. Biol Rev. 2011;86:217–24.PubMed 

    Google Scholar 
    97.Ortmann S, Bradley BJ, Stolter C, Ganzhorn JU. Estimating the quality and composition of wild animal diets—a critical survey of methods. In: Hohmann G, Robbins M, Boesch C, editors. Feeding ecology in apes and other primates ecological, physical, and behavioral aspects. Cambridge: Cambridge University Press; 2006. p. 395–418.98.Hippe H, Hagelstein A, Kramer I, Swiderski J, Stackebrandt E. Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinirnonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Evol Microbiol. 1999;49:779–82.
    Google Scholar 
    99.Privé F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, et al. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One. 2013;8:e69076.100.Flaiz M, Baur T, Brahner S, Poehlein A, Daniel R, Bengelsdorf FR. Caproicibacter fermentans gen. nov., sp. nov., a new caproate-producing bacterium and emended description of the genus Caproiciproducens. Int J Syst Evol Microbiol. 2020;70:4269–79.CAS 
    PubMed 

    Google Scholar 
    101.Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. Nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol. 2012;78:511–8.PubMed 
    PubMed Central 

    Google Scholar 
    102.Clough D, Heistermann M, Kappeler PM. Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus). Am J Phys Anthropol. 2010;142:441–52.PubMed 

    Google Scholar 
    103.Sarkar A, Harty S, Johnson KVA, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4:1020–35.PubMed 

    Google Scholar 
    104.van Vliet DM, Lin Y, Bale NJ, Koenen M, Villanueva L, Stams AJM, et al. Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., two marine anaerobes of the Pontiellaceae fam. nov. producing sulfated glycosaminoglycan-like exopolymers. Microorganisms. 2020;8:920. 18.PubMed Central 

    Google Scholar  More

  • in

    Tiny feather wing beetle reveals new way to fly

    Nature Video
    19 January 2022

    Tiny feather wing beetle reveals new way to fly

    How a novel flying technique copes with the weird physics of miniature flight

    Adam Levy

    Adam Levy

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Flying is a tricky business, but when you are less than a millimetre long, things get even tougher. At such tiny scales the physics of flight changes, and yet insects have evolved strategies to fly in miniature. In this Nature video, we zoom in on new research which is revealing the never-before-seen flight tactics of a species of feather wing beetle.Research Article: Novel flight style and light wings boost flight performance of tiny beetles

    doi: https://doi.org/10.1038/d41586-022-00144-0

    Related Articles

    The mystery of mosquito flight

    Birds gliding through bubbles reveal aerodynamic trick

    High-jumping beetle inspires agile robots

    Subjects

    Ecology

    Evolution

    Engineering

    Latest on:

    Ecology

    Biodiversity faces its make-or-break year, and research will be key
    Editorial 19 JAN 22

    Portugal leads with Europe’s largest marine reserve
    Correspondence 18 JAN 22

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Evolution

    Novel flight style and light wings boost flight performance of tiny beetles
    Article 19 JAN 22

    Thwarted vaccines, strange metals — the week in infographics
    News 18 JAN 22

    How rich countries skew the fossil record
    News 13 JAN 22

    Engineering

    Robots rise to meet the challenge of caring for old people
    Outlook 19 JAN 22

    Novel flight style and light wings boost flight performance of tiny beetles
    Article 19 JAN 22

    A crossbar array of magnetoresistive memory devices for in-memory computing
    Article 12 JAN 22

    Jobs

    Enrollment is open for the International PhD Program in Biology, Shenzhen University School of Medicine

    Shenzhen University Health Science Center
    Shenzhen, China

    Research Associate (Postdoc) on software testing

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Research Associate (PostDoc) in Software Engineering On Software Testing and Automated Debugging

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) student position in mitochondrial metabolism

    Karolinska Institutet, doctoral positions
    Solna, Sweden More

  • in

    Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest

    1.Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range management: Principles and practices 6th edn. (Pearson Education, Inc., 2011).
    Google Scholar 
    2.Dombroski, J. L. D., Praxedes, S. C., de Freitas, R. M. O. & Pontes, F. M. Water relations of Caatinga trees in the dry season. S. Afr. J. Bot. 77, 430–434 (2011).
    Google Scholar 
    3.Santos, M. G. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor. Experim. Plant Physiol. 26, 83–99 (2014).
    Google Scholar 
    4.Mendes, K. et al. Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Funct. Plant Biol. 10, 1–13 (2017).
    Google Scholar 
    5.Smith, W. K. & Nobel, P. S. Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broad leaf shrubs. Ecology 58, 1033–1043 (1977).
    Google Scholar 
    6.Kyparissis, A. & Manetas, Y. Seasonal leaf dimorphism in a semi-deciduous Mediterranean shrub-ecophysiological comparisons between winter and summer leaves. Acta Oecol.-Oecol. Plantarum 14, 23–32 (1993).
    Google Scholar 
    7.Kloeppel, B. D., Abrams, M. D. & Kubiske, M. E. Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments. Can. J. For. Res. 23(2), 181–189 (1993).
    Google Scholar 
    8.Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    9.Reich, P., Walters, M. & Ellsworth, D. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Pompelli, M. F. et al. Allometric models for non-destructive leaf area estimation of the Jatropha curcas. Biomass Bioenerg. 36, 77–85 (2012).
    Google Scholar 
    11.Duan, B., Yang, Y., Lu, Y., Korpelainen, H. & Berninger, F. C. L. Interactions between drought stress, ABA and genotypes in Picea asperata. J. Exp. Bot. 58, 3025–3036 (2007).CAS 
    PubMed 

    Google Scholar 
    12.Kwon, M. Y. & Woo, S. Y. Plants’ responses to drought and shade environments. Afr. J. Biotech. 15, 29–31 (2016).CAS 

    Google Scholar 
    13.Santos, J. C., Leal, I. R., Almeida-Cortez, J. S., Fernandes, G. W. & Tabarelli, M. Caatinga: the scientific negligence experienced by a dry tropical forest. Tropical Conservation Science 4, 276–286 (2011).
    Google Scholar 
    14.Almazroui, M., Islanm, M. N., Saeed, F., Alkhalaf, A. K. & Dambul, R. Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 194, 202–213 (2017).
    Google Scholar 
    15.Angulo-Brown, F., Sánchez-Salas, N., Barranco-Jiménez, M. A. & Rosales, M. A. Possible future scenarios for atmospheric concentration of greenhouse gases: A simplified thermodynamic approach. Renewable Energy 34, 2344–2352 (2009).CAS 

    Google Scholar 
    16.Glotfelty, T. & Zhang, Y. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions. Atmos. Environ. 152, 531–552 (2017).ADS 
    CAS 

    Google Scholar 
    17.O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).ADS 

    Google Scholar 
    18.Hulshof et al. Plant Functional Trait Variation in Tropical Dry Forests: A Review and Synthesis in Tropical Dry Forests in the Americas (ed. Sánchez-Azofeifa, A. et al.) 129–140 (2014).19.Mendes, K. R. et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 10, 9454 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Poulter, B. et al. Contribuition of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–604 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Campos, S. et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 471, 398–412 (2019).ADS 

    Google Scholar 
    22.Zappi, D. et al. Growing knowledge: An overview of seed plant diversity in Brazil. Rodriguésia 66, 1085–1113 (2015).
    Google Scholar 
    23.Pompelli, M. F., Pompelli, G. M., Cabrini, E. C., Alves, C. J. L. & Ventrella, M. C. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen availability. Biotemas 25, 13–28 (2012).
    Google Scholar 
    24.Rossatto, D. R. & Kolb, R. M. (2010) Gochnatia polymorpha (Less) Cabrera (Asteraceae) changes in leaf structure due to differences in light and edaphic conditions. Acta Bot. Bras. 24, 605–612 (2010).
    Google Scholar 
    25.Liu, Y. et al. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Ann. Bot. 118, 1329–1336 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    26.Pompelli, M. F., Martins, S. C., Celin, E. F., Ventrella, M. C. & Da Matta, F. M. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?. Braz. J. Biol. 70, 1083–1088 (2010).CAS 
    PubMed 

    Google Scholar 
    27.Björkman, O. Responses to different quantum flux densities. In Encyclopaedia of Plant Physiology (eds Lange, O. L. et al.) (Springer, Berlin, 1981).
    Google Scholar 
    28.Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill) seedlings under different canopies. For. Ecol. Manag. 201, 211–227 (2004).
    Google Scholar 
    29.Sam, O., Jeréz, E., Dell’Amico, J. & Ruiz-Sanchez, M. C. Water stress induced changes in anatomy of tomato leaf epidermes. Biol. Plant. 43, 275–277 (2000).
    Google Scholar 
    30.Shao, H. B., Chu, L.-Y., Jaleel, C. A. & Zhao, D. Water-deficit stress-induced anatomical changes in higher plants. C.R. Biol. 331, 215–225 (2008).PubMed 

    Google Scholar 
    31.Chartzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A. & Nastou, A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic. 95, 39–50 (2002).CAS 

    Google Scholar 
    32.Ennajeh, M., Vadel, A. M., Cochard, H. & Khemira, H. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotechnol. 85, 289–294 (2010).
    Google Scholar 
    33.Oguchi, R., Hikosaka, K. & Hirose, T. Does the photosynthetic light-acclimation need change in leaf anatomy?. Plant Cell Environ. 26, 505–512 (2003).
    Google Scholar 
    34.Johnson, D., Meinzer, F., Woodruff, D. & McCulloh, K. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ. 32, 828–836 (2009).PubMed 

    Google Scholar 
    35.Tyree, M. & Sperry, J. B. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40, 19–36 (1989).
    Google Scholar 
    36.McKown, A., Cochard, H. & Sack, L. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am. Nat. 175, 447–460 (2010).PubMed 

    Google Scholar 
    37.Nardini, A., Pedà, G. & Rocca, N. Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences. New Phytol. 196, 788–798 (2012).PubMed 

    Google Scholar 
    38.Nunes, A. et al. Plants used to feed ruminants in semi-arid Brazil: A study of nutritional composition guided by local ecological knowledge. J. Arid Environ. 135, 96–103 (2016).ADS 

    Google Scholar 
    39.Santos, A. C. J. & Melo, J. I. M. Flora vascular de uma área de caatinga no estado da Paraíba – Nordeste do Brasil. Revista Caatinga 23, 32–40 (2010).
    Google Scholar 
    40.Flexas, J. et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965–982 (2016).CAS 
    PubMed 

    Google Scholar 
    41.Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.He, W. & Zhang, X. Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J. Arid Environ. 53, 307–316 (2003).ADS 

    Google Scholar 
    43.Pinho-Pessoa, A. C. B. et al. Interannual variation in temperature and rainfall can modulate the physiological and photoprotective mechanisms of a native semiarid plant species. Indian J. Sci. Technol. 11, 1–17 (2018).CAS 

    Google Scholar 
    44.Reddy, T., Reddy, V. & Anbumozhi, V. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regul. 41, 75–88 (2003).CAS 

    Google Scholar 
    45.Thakur, P. & Sood, R. Drought tolerance of multipurpose agroforestry tree species during first and second summer droughts after transplanting. Indian J. Plant Physiol. 10, 32–40 (2005).
    Google Scholar 
    46.Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant, Cell Environ. 40, 237–248 (2016).
    Google Scholar 
    47.Markesteijn, L., Poorter, L. & Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 94, 515–525 (2007).PubMed 

    Google Scholar 
    48.Gotsch, S., Powers, J. & Lerdau, M. Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecol. 211, 133–146 (2010).
    Google Scholar 
    49.Popma, J. & Bongers, F. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 75, 625–632 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Evans, J. R. & Poorter, H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24, 755–767 (2001).CAS 

    Google Scholar 
    51.Pompelli, M. F. et al. Mesophyll thickness and sclerophylly among Calotropis procera morphotypes reveal water-saved adaptation to environments. J Arid Land. 11, 795–810 (2019).
    Google Scholar 
    52.Leigh, A., Sevanto, S., Close, J. & D & Nicotra A. B.,. The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions?. Plant Cell Environ. 40, 237–248 (2016).PubMed 

    Google Scholar 
    53.Gil-Pelegrín, E., Saz, M. A., Cuadrat, J. M., Peguero-Pina, J. J. & Sancho-Knapik, D. Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity. In Oaks Physiological Ecology Exploring the Functional Diversity of Genus Quercus L (eds Gil-Pelegrín, E. et al.) 137–193 (Springer, London, 2017).
    Google Scholar 
    54.Chazdon, R. L. & Kaufmann, S. Plasticity of leaf anatomy of two rain forest shrubs in relation to photosynthetic light acclimation. Funct. Ecol. 7, 385–394 (1993).
    Google Scholar 
    55.Smith, W., Vogelmann, T., De Lucia, E., Bell, D. & Shepherd, K. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide?. Bioscience 47, 785–793 (1997).
    Google Scholar 
    56.Boanares, D., Isaias, R. R. M. S., Sousa, H. C. & Kozovits, A. R. Strategies of leaf water uptake based on anatomical traits. Plant Biol. 20, 848–856 (2018).CAS 
    PubMed 

    Google Scholar 
    57.Fah, N. A. Plant Anatomy. 2nd ed, Oxford,USA, Butterworth Heinemann (1990).58.Holbrook, N.M. Water Balance of Plants. In: Taiz L, Zeiger E eds. Plant Physiology, 5th ed. Sunderland, Sinauer Associates Inc (2010).59.Glover, B. Differentiation in plant epidermal cells. J. Exp. Bot. 51, 497–505 (2000).CAS 
    PubMed 

    Google Scholar 
    60.Vogelman, T., Nishio, J. & Smith, W. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1, 65–70 (1996).
    Google Scholar 
    61.Fini, A. M. et al. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol. Plant. 157, 54–68 (2016).CAS 
    PubMed 

    Google Scholar 
    62.Oguchi, R., Hikosaka, K. & Hirose, T. Leaf anatomy as a constraint for photosynthetic acclimation: Differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell Environ. 28, 916–927 (2005).
    Google Scholar 
    63.Pollastrini, M. et al. Interaction and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Plant Biol. 16, 323–331 (2014).CAS 
    PubMed 

    Google Scholar 
    64.Sevillano, I., Short, I., Grant, J. & O’Reilly, C. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. For. Ecol. Manag. 374, 11–19 (2016).
    Google Scholar 
    65.Nguyen, H. T., Radacsi, P., Gosztola, B. & Nemeth, E. Effects of temperature and light intensity on morphological and phytochemical characters and antioxidant potential of wormwood (Artemisia absinthium L.). Biochem. Syst. Ecol. 79, 1–7 (2018).CAS 

    Google Scholar 
    66.Boardman, N. K. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28, 355–377 (1977).CAS 

    Google Scholar 
    67.Bejaoui, F. et al. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J. Plant Physiol. 198, 32–38 (2016).CAS 
    PubMed 

    Google Scholar 
    68.Van Rensburg, L., Krüger, G. H. J. & Krüger, H. Proline accumulation as drought-tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol. 141, 188–194 (1993).
    Google Scholar 
    69.Westoby, M. & Wright, I. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).ADS 
    PubMed 

    Google Scholar 
    70.Scoffoni, C. et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 213, 1076–1092 (2017).CAS 
    PubMed 

    Google Scholar 
    71.Sack, L. & Scoffoni, C. Leaf venation: Structure, function, development, evolution, ecology andapplications in the past, present and future. New Phytol. 198, 983–1000 (2013).PubMed 

    Google Scholar 
    72.Brodribb, T., Holbrook, N., Edwards, E. & Gutierrez, M. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).
    Google Scholar 
    73.Scoffoni, C. et al. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol. 207, 43–58 (2015).CAS 
    PubMed 

    Google Scholar 
    74.Mendes, K. R. & Marenco, R. A. Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. Scientia Agricola 67, 624–632 (2010).
    Google Scholar 
    75.Puglielli, G., Varone, L., Gratani, L. & Catoni, R. Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. Photosynthetica 55, 31–40 (2017).CAS 

    Google Scholar 
    76.O’Brien, T., Feder, N. & McCully, M. Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59, 368–373 (1965).
    Google Scholar 
    77.Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138 (1965).
    Google Scholar 
    78.Spurr, A. R. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).CAS 
    PubMed 

    Google Scholar 
    79.Reynolds, E. S. The use of load citrate at a high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Hardoon, D. R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16, 2639–2664 (2004).PubMed 
    MATH 

    Google Scholar  More

  • in

    Biodiversity faces its make-or-break year, and research will be key

    EDITORIAL
    19 January 2022

    Biodiversity faces its make-or-break year, and research will be key

    A new action plan to halt biodiversity loss needs scientific specialists to work with those who study how governments function.

    Twitter

    Facebook

    Email

    Download PDF

    Targeted measures can help to stop extinctions, including of Père David’s deer (Elaphurus davidianus), but conserving biodiversity will also require combating climate change, cutting pollution and enhancing sustainable food systems.Credit: Staffan Widstrand/Wild Wonders of China/Nature Picture Library

    Biodiversity is being lost at a rate not seen since the last mass extinction. But the United Nations decade-old plan to slow down and eventually stop the decline of species and ecosystems by 2020 has failed. Most of the plan’s 20 targets — known as the Aichi Biodiversity Targets — have not been met.The Aichi targets are part of an international agreement called the UN Convention on Biological Diversity, and member states are now finalizing replacements for them. Currently referred to as the post-2020 global biodiversity framework (GBF), the new targets are expected to be agreed this summer at the second part of the convention’s Conference of the Parties (COP15) in Kunming, China. The meeting was due to be held in May, but is likely to be delayed by a few months. Finalizing the framework will be down to government representatives working with the world’s leading biodiversity specialists. But input from social-science researchers, especially those who study how organizations and governments work, would improve its chances of success.A draft of the GBF was published last July. It aims to slow down the rate of biodiversity loss by 2030. And by 2050, biodiversity will be “valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people”. The plan comprises 4 broad goals and 21 associated targets. The headline targets include conserving 30% of land and sea areas by 2030, and reducing government subsidies that harm biodiversity by US$500 billion per year. Overall, the goals and targets are designed to tackle each of the main contributors to biodiversity loss, which include agriculture and food systems, climate change, invasive species, pollution and unsustainable production and consumption.
    Fewer than 20 extinctions a year: does the world need a single target for biodiversity?
    The biodiversity convention’s science advisory body is reviewing the GBF and helping governments to decide how the targets are to be monitored. But researchers and policymakers have been writing biodiversity action plans since the 1990s, and most of these strategies have failed to make a lasting impact on two of the three key demands: that global biodiversity be conserved and that natural resources be used sustainably.Some of these failures are to do with governance, which is why it is important to involve not just researchers in the biological sciences, but also people who study organizations and how governments work. This knowledge, when allied to conservation science, will help policymakers to obtain a fuller picture of both the science gaps and the organizational challenges in implementing biodiversity plans.The GBF is a comprehensive plan. But success will require systemic change across public policy. That is both a strength and a weakness. If systemic change can be implemented, it will lead to real change. But if it cannot, there’s no plan B. This has led some researchers to argue that one target or number should be prioritized, and defined in a way that is clear to the public and to policymakers. It would be biodiversity’s equivalent of the 2 °C climate target. The researchers’ “rallying point for policy action and agreements” is to keep species extinction to well below 20 per year across all major groups (M. D. A. Rounsevell et al. Science 368, 1193–1195; 2020). Such focus does yield results. A study published in Conservation Letters found a high probability that targeted action has prevented 21–32 bird and 7–16 mammal extinctions since 1993 (F. C. Bolam et al. Conserv. Lett. 14, e12762; 2021). Extinction rates would have been around three to four times greater without conservation action, the researchers found.But not all agree that just one target should be given priority. A group of more than 50 biodiversity researchers from 23 countries point out in a policy report this week (see go.nature.com/3fv8oiv) that data on species are distributed unequally: 10, mostly high-income, countries account for 82% of records.
    The United Nations must get its new biodiversity targets right
    The researchers also modelled how different scenarios would affect the GBF’s 21 targets. They found that achieving the targets would require action in all of the target areas — not just a few. Focusing strongly on just one or two targets — such as expanding protected areas — will have, at best, a modest impact on achieving the UN convention’s goals and targets.The difficulty in getting governments to adopt such an integrated approach is that they (as well as non-governmental organizations and businesses) tend to tackle sustainability challenges piecemeal. Actions from last November’s climate COP in Glasgow, UK, will be implemented separately from those decided at the biodiversity COP because, in most countries, different government departments deal with climate change and biodiversity.The science advisers for the biodiversity convention will meet in Geneva, Switzerland, in March to finalize their advice. They are not advocating reform of how governments organize themselves to implement policies in sustainable development — partly (and rightly) because this is generally beyond their fields of expertise. But it’s not too late to consult those with the relevant knowledge.In the past, the UN has commissioned social scientists, for example in the UN Intellectual History Project, a series of 17 studies summarizing the experience of UN agencies spanning gender equality, diplomacy, development, trade and official statistics. However, this work, which ended in 2010, did not assess what has and hasn’t worked in science and environmental policy. Unless these perspectives are incorporated into biodiversity-research advice, any future plans risk going the way of their predecessors.

    Nature 601, 298 (2022)
    doi: https://doi.org/10.1038/d41586-022-00110-w

    Related Articles

    China takes centre stage in global biodiversity push

    Fewer than 20 extinctions a year: does the world need a single target for biodiversity?

    The biodiversity leader who is fighting for nature amid a pandemic

    The United Nations must get its new biodiversity targets right

    Subjects

    Biodiversity

    Climate change

    Economics

    Policy

    Latest on:

    Biodiversity

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    Landmark Colombian bird study repeated to right colonial-era wrongs
    News 11 JAN 22

    Climate change

    Countries should boycott Brazil over export-driven deforestation
    Correspondence 18 JAN 22

    Put defence money into planetary emergencies, urge Nobel winners
    Correspondence 18 JAN 22

    Message to mayors: cities need nature
    World View 17 JAN 22

    Economics

    Tackling the crisis of care for older people: lessons from India and Japan
    Outlook 19 JAN 22

    Extreme rainfall slows the global economy
    News & Views 12 JAN 22

    There is no silver bullet against climate change
    Correspondence 02 NOV 21

    Jobs

    Molecular Biologist/Plant Pathologist

    Forest Research
    Farnham, United Kingdom

    Research Fellow

    The University of Warwick
    Coventry, United Kingdom

    Scientist I / Scientist II

    OMass Technologies Limited
    Oxford, United Kingdom

    MSCA COFUND Doctoral Programme “UNIPhD – Training the next-generation talents”

    University of Padova (UNIPD)
    Padua, Italy More