More stories

  • in

    Functional consequences of Palaeozoic reef collapse

    1.Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198. https://doi.org/10.1126/science.1182241 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Kiessling, W. Geological and biologic controls on the evolution of reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173–192. https://doi.org/10.1146/annurev.ecolsys.110308.120251(2009) (2009).Article 

    Google Scholar 
    3.Talent, J. A. Organic reef-building: Episodes of extinction and symbiosis?. Senckenb. Lethaea 69, 315–368 (1988).
    Google Scholar 
    4.Flügel, E. & Kiessling, W. Patterns of Phanerozoic reef crises. SEPM Spec. Public. 72, 691–733 (2002).
    Google Scholar 
    5.Pandolfi, J. M. & Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7, 52–58. https://doi.org/10.1016/j.cosust.2013.11.020 (2014).Article 

    Google Scholar 
    6.Copper, P. Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).ADS 
    Article 

    Google Scholar 
    7.Copper, P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM Spec. Public. 72, 181–238 (2002).
    Google Scholar 
    8.Copper, P. & Scotese, C. R. Megareefs in Middle Devonain supergreenhouse climates. Spec. Public. Geol. Soc. Am. 370, 209–230. https://doi.org/10.1130/0-8137-2370-1.209 (2003).Article 

    Google Scholar 
    9.Ries, J. B. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7(9), 2795–2849 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Scotese, C. R., Song, H., Mills, B. J. & van der Meer, D. G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2021.103503 (2021).Article 

    Google Scholar 
    11.Zapalski, M. K., Nowicki, J., Jakubowicz, M. & Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 416–429. https://doi.org/10.1016/j.palaeo.2017.09.028 (2017).Article 

    Google Scholar 
    12.Mora, C. I., Driese, S. G. & Seager, P. G. Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19(10), 1017–1020 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8(1), 1–8. https://doi.org/10.1038/ncomms14845 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Kiessling, W., Flügel, E. & Golonka, J. Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bull. 83(10), 1552–1587 (1999).
    Google Scholar 
    15.Burchette, T. P. European Devonian reefs: a review of current concepts and models. SEPM Spec. Public. 30, 85–142 (1981).
    Google Scholar 
    16.Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E. & Bambach, R. K. Paleozoic paleogeography. Annu. Rev. Earth Planet. Sci. 7(1), 473–502 (1979).ADS 
    Article 

    Google Scholar 
    17.Belka, Z. & Narkiewicz, M. Devonian. In: McCann, T. The Geology of Central Europe, 1: Precambrian and Palaeozoic. 383–410. The Geological Society of London (2008).18.Golonka, J. Plate-tectonic maps of the Phanerozoic. SEPM Spec. Public. 72, 21–75 (2002).
    Google Scholar 
    19.Oczlon, M. S. Ocean currents and unconformities: the north Gondwana Middle Devonian. Geology 18(6), 509–512 (1990).ADS 
    Article 

    Google Scholar 
    20.Dopieralska, J. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts. Geochem. Geophys. Geosyst. 10(3), Q03015. https://doi.org/10.1029/2008GC002247 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Jakubowicz, M. et al. At the southern limits of the Devonian reef zone: Palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geol. J. 54(1), 10–38. https://doi.org/10.1002/gj.3152 (2019).Article 

    Google Scholar 
    22.Wood, R. Reef evolution (Oxford University Press, 1999).
    Google Scholar 
    23.Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215(4539), 1501–1503 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    24.McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40(2), 147–150. https://doi.org/10.1016/j.palaeo.2004.05.010 (2012).ADS 
    Article 

    Google Scholar 
    25.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. 113(42), E6325–E6334. https://doi.org/10.1073/pnas.1613094113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Zapalski, M. K., Wrzołek, T., Skompski, S. & Berkowski, B. Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland). Coral Reefs 36(3), 847–860. https://doi.org/10.1007/s00338-017-1575-8 (2017).ADS 
    Article 

    Google Scholar 
    27.Zapalski, M. K., Baird, A. H., Bridge, T., Jakubowicz, M. & Daniell, J. Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef. Coral Reefs 40(2), 417–431. https://doi.org/10.1007/s00338-020-02048-9 (2021).Article 

    Google Scholar 
    28.Zapalski, M. K., Hubert, B. L., Nicollin, J. P., Mistiaen, B. & Brice, D. The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of the Ardennes–changes through time. Bulletin de la Société Géologique de France 178(5), 383–390. https://doi.org/10.2113/gssgfbull.178.5.383 (2007).Article 

    Google Scholar 
    29.Zapalski, M., Pinte, E. & Mistiaen, B. Late Famennian? Chaetosalpinx in Yavorskia (Tabulata): the youngest record of tabulate endobionts. Acta Geol. Pol. 58(3), 321–324 (2008).
    Google Scholar 
    30.Zapalski, M. K. & Berkowski, B. The oldest species of? Yavorskia (Tabulata) from the upper Famennian of the Holy Cross Mountains (Poland). Acta Geol. Pol. 62(2), 197–204 (2012).
    Google Scholar 
    31.Zapalski, M. K., Berkowski, B. & Wrzołek, T. Tabulate corals after the Frasnian/Famennian crisis: a unique fauna from the Holy Cross Mountains, Poland. PLoS ONE 11(3), e0149767. https://doi.org/10.1371/journal.pone.0149767 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Stanley, G. D. Jr. & Lipps, J. H. Photosymbiosis: the driving force for reef success and failure. Paleontol. Soc. Paper 17, 33–60 (2011).Article 

    Google Scholar 
    33.Coates, A. G. & Jackson, J. B. C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13, 363–378 (1987).Article 

    Google Scholar 
    34.Zapalski, M. K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc B Biol. Sci. 281(1775), 20132663. https://doi.org/10.1098/rspb.2013.2663 (2014).CAS 
    Article 

    Google Scholar 
    35.Zapalski, M. K. & Berkowski, B. The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38(1), 137–147. https://doi.org/10.1007/s00338-018-01761-w (2019).ADS 
    Article 

    Google Scholar 
    36.Coates, A. G., & Oliver Jr, W. A. Coloniality of Coral Zoantharia: Animal Colonies.–3–29 (1973).37.Lipps, J. H., & Stanley, G. D. Photosymbiosis in past and present reefs. In Coral Reefs at the Crossroads (pp. 47–68). Springer (2016).38.Blieck, A., Brice, D., Fesir, R., Guillot, F., Majesté-Mejoulas, C., and Meillez, F., The Devonian of France and Belgium, in McMillan, A.F., Embry, A.F., and Glass, D.J., eds., Devonian of the world, Canadian Society of Petroleum Geologists, Calgary, 1, p. 359–400 (1988)39.Porter, J. W. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110, 731–742 (1976).ADS 
    Article 

    Google Scholar 
    40.McGhee, G. R. Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 260–270 (2013).Article 

    Google Scholar 
    41.Aboussalam, Z. S. & Becker, R. T. The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304(1–2), 136–164 (2011).Article 

    Google Scholar 
    42.Zambito, J. J., Brett, C. E., & Baird, G. C. The Late Middle Devonian (Givetian) Global Taghanic Biocrisis in its type area (northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In Earth and Life (pp. 677–703). Springer (2012).43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371), 80–83. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Racki, G. A volcanic scenario for the Frasnian-Fammenian major biotic crisis and other Late Devonian global changes: More answers than questions?. Global Planet. Change 189, 103174 (2020).Article 

    Google Scholar 
    45.Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17(1), 56–67 (2011).ADS 
    Article 

    Google Scholar 
    46.Kowalewski, M. Time-averaging, overcompleteness, and the geological record. J. Geol. 104(3), 317–326 (1996).ADS 
    Article 

    Google Scholar 
    47.Hubert, B. L., Zapalski, M., Nicollin, J. P., Mistiaen, B. & Brice, D. Selected benthic faunas from the Devonian of the Ardennes: an estimation of palaeobiodiversity. Acta Geol. Pol. 57(2), 223–262 (2007).
    Google Scholar 
    48.Zapalski, M. K. Tabulata (anthozoa) from the givetian and frasnian of the southern region of the holy cross Mts. (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).
    Google Scholar 
    49.Nowiński, A. Tabulata and chaetetida from the devonian and carboniferous of southern Poland. Palaeontol. Pol. 35, 1–125 (1976).
    Google Scholar 
    50.McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Natl. Acad. Sci. 115(12), 3084–3089. https://doi.org/10.1073/pnas.1716643115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    52.Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12.53.Mouillot, D., Graham, N. A. J., Villeger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbance. Trends Ecol. Evol. 28, 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin et al. “Package ‘vegan’.” (2020). More

  • in

    The pollen virome of wild plants and its association with variation in floral traits and land use

    Pollen collection and RNA extractionPollen is a microscopic and notoriously resistant plant product. Thus, methods to collect a sufficient and roughly equivalent volume of pollen per species, and to ensure RNA was collected from viruses both internal and external to pollen grains, were developed specifically for this work. At each of the four regions, we identified visually asymptomatic plants species that were in full flower and in high enough abundance to achieve our pollen sample minimum. Many of the pollen samples were collected from public roadsides. However, some from the California Grasslands were collected from the University of California’s McLaughlin Natural Reserve, and some from the Eastern Deciduous Agro-forest Interface were collected from the University of Pittsburgh’s Pymatuning Laboratory of Ecology. We had permission to sample in both places. In addition, we obtained permission from the USDA Forest Service to sample in the Till Ridge Cove area of the Chattahoochee-Oconee National Forest for sampling in Central Appalachia. None of the sampled plants displayed classic viral symptoms (e.g., leaf yellowing, vein clearing, leaf distortions, growth abnormalities). To achieve the broadest representation of plant species, we selected species in different families, where feasible. Also when possible, we focused primarily on perennial species to avoid any effects of life history variation. From these, we collected 30 to 50 mg of pollen from newly dehiscing anthers (3–967 fresh hermaphroditic flowers from 1–27 plants per species; Supplementary Table 3) in situ using a sterile sonic dismembrator (Fisherbrand Model 50, Fisher Scientific, Waltham, MA, USA) with a frequency of 20 Hz. We removed non-pollen tissues (e.g., anther debris) with sterile forceps. In addition to removing non-pollen debris that was visible to the naked eye in the field at the time of pollen sample collection, we conducted microscopic and gene expression analyses to confirm the purity of the pollen samples in the lab (Supplementary Methods). Visibly pure pollen from a single species was transferred to a 2-mL collection tube with Lysing Matrix D (MP Biomedicals, Irvine, CA, USA) and kept on dry ice until transported to and stored at −80°C at the University of Pittsburgh (Pittsburgh, PA, USA).Before extracting the total RNA, we freeze-dried the pollen samples (FreeZone 4.5 Liter Benchtop Freeze Dry System, Labconco Corporation, Kansas City, MO, USA) and lysed with a TissueLyser II (Qiagen, Inc., Germantown, MD, USA) at 30 Hz with varying times for different plant species (Supplementary Table 3). We confirmed via microscopy that this protocol resulted in the breakage of ≥50% of the pollen grains in a sample. The total RNA, including dsRNA, was extracted using the Quick-RNA Plant Miniprep Extraction Kit (Zymo Research Corporation, Irvine, CA, USA), following the full manufacturer’s protocol, including the optional steps of in-column DNA digestion and inhibitor removal.RNA sequencingWe assessed the quantity and quality of the total RNA extracted from each pollen sample with a Qubit 2.0 fluorometer (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) and with TapeStation analyses performed by the Genomics Research Core (GRC) at the University of Pittsburgh. Only samples with an RNA integrity value of ≥1.9 were used (Supplementary Table 3). Stranded RNA libraries were prepared by the GRC using the TruSeq Total RNA Library Kit (Illumina, Inc., San Diego, CA, USA), and ribosomal depletion was performed using a RiboZero Plant Leaf Kit (Illumina, Inc., San Diego, CA, USA). At the GRC, we pooled depleted RNA libraries from six species on a single lane of an Illumina NextSeq500 platform.Pre-virus detection stepsA sequencing depth of 117–260 million 75 bp paired-end reads was achieved per sample (Supplementary Table 3). Sequences were demultiplexed and trimmed of adapter sequences. We used the Pickaxe pipeline42,60,61 to detect known and novel pollen-associated viruses. First, Pickaxe removes poor-quality raw reads42,60,61 and aligns the quality-filtered reads using the Bowtie2 aligner with default parameters62 to a subtraction library. Each customized subtraction library contained the host plant species genome or the most closely related plant genomes in the National Center for Biotechnology Information (NCBI) database, if the host plant genome was not available (Supplementary Table 7), as well as other possible contaminant genomes (e.g., the human genome)42,60,61. The subtraction libraries with 1–8 closely related plant genomes, a bioinformatically tractable amount, were used to remove plant sequences, which allows for a conservative estimate of the viruses associated with pollen to be made. The size of the subtraction libraries did not influence the number of identified viruses, as there was no correlation between library size and either estimate of virus richness (conservative: r = 0.08, P = 0.75; relaxed: r = 0.06, P = 0.77). After subtraction, only non-plant reads remained and were used for viral detection.Known RNA virus detection, identity confirmationWith Pickaxe, we used the Bowtie2 aligner with default parameters62 (v2.3.4.2-3) to align viral non-plant reads to Viral RefSeq42,60,61 (hereafter, VRS; Index of /refseq/release/viral (nih.gov)). Each known virus reflects the top hit of an alignment to VRS42,60,61. Following Cantalupo et al.42, we considered a known virus to be present if the viral reads covered at least 20% of the top hit and aligned to it at least ten times. For viruses with segmented genomes, at least one segment was required to meet these criteria.Contig annotation and extension; novel RNA viral genome detection, identity confirmationViral reads were assembled into contigs using the CLC Assembly Cell (Qiagen Digital Insights, Redwood City, CA, USA), and Pickaxe was used to remove repetitive, short ( More

  • in

    Unequal allocation between male versus female reproduction cannot explain extreme vegetative dimorphism in Aulax species (Cape Proteaceae)

    Female plants must not only allocate resources to flowering but also to producing seeds as well as fruits and/or cones. This suggests that the costs of reproduction are higher for female than male plants, or for female function of hermaphrodite plants. Some dioecious plants (i.e. separate male and female plants) are vegetatively very different (i.e. dimorphic) between the sexes, such as females having larger branch and leaf sizes. Differences between male and female resource allocation to reproduction and the possible consequences of this for vegetative dimorphism in dioecious plants, is a central issue in plant evolution but it is a controversial and difficult topic1,2. In the most highly cited paper on this topic, Obeso1 notes it is practically impossible to measure the direct costs of male and female allocation to sexual reproduction. For example, most vascular plant species (about 95%) are hermaphrodites which makes measuring direct allocation by the two sexes, difficult. Thus Paterno et al.3 used an indirect allometric method to measure sexual allocation in hermaphroditic inflorescences and concluded that larger flowers represent greater relative allocation to male function.The problem of shared sexual allocation to inflorescences is avoided in dioecious plants making them important tests for ideas of sexual allocation in plants. However, they are both rare as species and as individuals and are typically large, forest trees. For example, there are relatively few dioecious individual trees in the very large Barro Colorado forest tree data set4. Again, this large size makes direct measurement, such as of allocation to reproductive structures, difficult. The Cape Floral Region is a useful place to investigate sexual allocation in plants and its consequences, because dioecy is relatively common and vegetative dimorphism between the sexes can be extreme. Also, Cape plants are amenable to research being short (about 2–5 m), rapidly mature and short-lived (about 5–20 years). Thus, the large (about 85 spp.) Cape genus Leucadendron (Proteaceae) is probably the most researched genus globally for male and female differences5,6,7,8,9,10,11,12,13,14.Even in these dioecious plants it is difficult to directly measure allocation to male and female function because of the difficulty of finding a common currency to compare allocation. For example, comparing allocation differences in attractiveness, nectar, seeds, pollen, cones and fruits and differences in the timing of producing these structures1. In Leucadendron males are generally more visually attractive than females. This is achieved by the loss of photosynthetic capacity in floral leaves and bracts12,15. It would be difficult to directly compare this photosynthetic loss in males, with for instance, female allocation to cones and seeds. Despite the difficulties in directly measuring and comparing allocation to reproduction, the consensus is that female allocation to sexual reproduction typically exceeds male allocation1, including in Leucadendron2,9.Greater female allocation to reproduction is one of the suggested reasons for vegetative dimorphism between the sexes2. The three main hypotheses for sexual vegetative dimorphism are (i) greater female sexual resource allocation requires this to be balanced by having a more efficient physiology (resource use efficiency hypothesis), or (ii) greater female allocation requires females to be in the more optimum habitats (the sexual site dimorphism hypothesis) and this facilitates vegetative differences, such as larger female leaves in the more mesic habitats. Finally, (iii) vegetative dimorphism may be a consequence of selection on reproductive traits (reproductive traits hypothesis). In support of the resource use efficiency hypothesis in Leucadendron, Harris and Pannell9 argue that supplying water to live, closed cones in the canopy of serotinous Leucadendron females is a form of maternal care that non-serotinous species and males do not incur. To keep these cones from opening they need always to be hydrated and therefore serotinous females need to be more efficient in their water use than their males. They argued that fewer and thicker branches in females provides a hydraulic advantage. However, the data in Midgley8 and Roddy et al.14 showed no support for sexual differences in water use efficiency. Clearly, there are opposing views as to whether females allocate more to reproduction than males and whether females are eco-physiologically more efficient than males.The sexual site dimorphism hypothesis has not been tested for Leucadendron presumably because males and females co-occur on a small spatial scale16 but is tested in the present analysis of Aulax umbellata and A. cancellata. In support of the reproductive trait’s hypothesis, it was argued5 that in Leucadendron, vegetative dimorphism is an allometric consequence of selection for smaller male inflorescences. Smaller inflorescences are then associated with more, but narrower, stems and thus smaller leaves via Corners Rules5. Besides the evolutionary relevance for understanding sexual differences in allocation, it may also have conservation implications. For example, Hultine et al.17 argued that dioecious plants are under more threat than hermaphrodites because dioecious females are presumed to allocate more resources to reproduction than males. As global change progresses, females may suffer greater mortality and thus dioecious populations may have lower reproductive potential if they become more male biased.One way around the measurement problem of determining direct allocation to sexual reproduction is to use indirect methods based on trade-offs1 such as the influence of allocation to sexual reproduction, on sex ratios and sizes of co-occurring male and female plants. If for example, males allocated less to reproduction than co-occurring females, they should be relatively larger or live longer and this would impact size and sex ratios, especially as plants age and competition intensifies.
    The Cape is uniquely suitable to consider allocation differences between the sexes because populations of dioecious Cape species are often large ( > 1000’s of plants ha−1) and with males and females co-existing at a fine spatial scale. The Cape Proteaceae grow in a stressful summer dry Mediterranean climate with nutrient-poor soils18. This provides strong selection on reproductive allocation to seeds (such as large size and high nutrient concentrations) to produce seedlings large enough to survive their first summer. The Cape Proteaceae are strongly fire-adapted. For example, many species are serotinous (canopy storage of seeds in live, closed cones which mainly open after fire)19. This too requires high female sex allocation to maintaining cones in the canopy. Most Cape Proteaceae species are post-fire re-seeders19 in that all plants die in fire. This results in single-aged populations of single-stemmed non-clonal individuals; adults die in fires and dense patches of seedlings establish in the first winter after the fire and die in the next fire. Co-occurring males and females have the same age and thus differences in size or sex ratios will mostly reflect allocation differences and competition rather than age or habitat. Also, because seedlings in the Cape grow up in an open post-fire environment, woody plants do not need to allocate specifically to height growth, to achieve full light. They are in full light their whole lives and therefore any sexual architectural differences do not reflect differences in habitat shadiness. Here we focused on Aulax umbellata, but also present sex ratios and size metrics for the congeneric A. cancellata. These are two common, single-stemmed strongly serotinous Cape species in the Proteaceae which are highly vegetatively dimorphic. Although both Leucadendron and Aulax are dioecious, a rare trait in the family, this represents independent evolution as the two genera are not close phylogenetically20. We test the hypothesis that vegetative sexual dimorphism in Aulax umbellata and Aulax cancellata can be explained by differences in allocation to growth. We predicted that co-occurring males and females would occur in equal sex ratios and be equal in size due to equal growth, despite vegetative dimorphism. More

  • in

    Emphasizing declining populations in the Living Planet Report

    1.Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020—Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).2.Harrison, I. et al. The freshwater biodiversity crisis. Science 362, 1369–1369 (2018).ADS 
    Article 

    Google Scholar 
    3.He, F. et al. The global decline of freshwater megafauna. Global Change Biol. 25, 3883–3892 (2019).ADS 
    Article 

    Google Scholar 
    4.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).Article 

    Google Scholar 
    7.Caughley, G. Directions in conservation biology. J. Anim. Ecol. 215–244 (1994).8.Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 

    Google Scholar  More

  • in

    Reply to: Do not downplay biodiversity loss

    1.Loreau, M. et al. Do not downplay biodiversity loss. Nature https://doi.org/10.1038/s41586-021-04179-7 (2022).2.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).Article 

    Google Scholar 
    4.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Divers. Distrib. 23, 1372–1380 (2017).Article 

    Google Scholar 
    5.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Murali, G. et al. Emphasizing declining populations in the Living Planet Report. Nature https://doi.org/10.1038/s41586-021-04165-z (2022).7.Leung, B., et al. Reply to: Emphasizing declining populations in the Living Planet Report. Nature https://doi.org/10.1038/s41586-021-04166-y (2022).8.Dornelas, M., et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).Article 

    Google Scholar 
    9.Hilborn, R. Faith based fisheries. Fisheries 31, 554–555 (2006).
    Google Scholar  More

  • in

    Reply to: Emphasizing declining populations in the Living Planet Report

    Department of Biology, McGill University, Montreal, Quebec, CanadaBrian Leung & Anna L. HargreavesBieler School of Environment, McGill University, Montreal, Quebec, CanadaBrian LeungDepartment of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaDan A. GreenbergSchool of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCentre for Biological Diversity, University of St Andrews, St Andrews, UKMaria DornelasIndicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UKRobin FreemanB.L. wrote the response. A.C.H. and D.A.G. helped with writing, editing and discussing ideas. B.M. and M.D. discussed ideas with some editing. R.F. contributed discussions to the original manuscript2. More

  • in

    Responses of birds and mammals to long-established wind farms in India

    1.Malthus, T. An Essay on the Principle of Population (Penguin Classics, 1798).
    Google Scholar 
    2.Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 

    Google Scholar 
    3.Hubbert, M. K. Nuclear energy and the fossil fuel. In Drilling and Production Practice. 1–57 (Shell Developmental Company, American Petroleum Institute, Houston, 1956).
    Google Scholar 
    4.Höök, M., Sivertsson, A. & Aleklett, K. Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Nat. Resour. Res. 19, 63–81 (2010).
    Google Scholar 
    5.Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).
    Google Scholar 
    6.Abbasi, S. A. & Abbasi, N. The likely adverse environmental impacts of renewable energy sources. Appl. Energy. 65, 121–144 (2000).
    Google Scholar 
    7.Vöhringer, M. Renewable energy and sustainable development: An impact assessment of micro and mini hydel projects in Gilgit-Baltistan, Pakistan. https://doi.org/10.17169/refubium-22914 (2010).8.Höök, M., Li, J., Johansson, K. & Snowden, S. Growth rates of global energy systems and future outlooks. Nat. Resour. Res. 21, 23–41 (2012).
    Google Scholar 
    9.Rotty, R. M. Growth in global energy demand and contribution of alternative supply systems. Energy 4, 881–890 (1979).
    Google Scholar 
    10.Aung, T. S., Overland, I. & Vakulchuk, R. Environmental performance of foreign firms: Chinese and Japanese firms in Myanmar. J. Clean. Prod. 312, 127701 (2021).
    Google Scholar 
    11.Lu, M. S., Chang, C. L., Lee, W. J. & Wang, L. Combining the wind power generation system with energy storage equipment. IEEE Trans. Ind. Appl. 45, 2109–2115 (2009).
    Google Scholar 
    12.Morinha, F. et al. Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61, 255–259 (2014).
    Google Scholar 
    13.Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Hum.–Wild. Interact. 10, 5 (2016).
    Google Scholar 
    14.Powlesland, R. G. Impacts of wind farms on birds: A review. Sci. Conserv. 289, 1–53 (2009).
    Google Scholar 
    15.Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
    Google Scholar 
    16.Wellig, S. D. et al. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE 13, e0192493. https://doi.org/10.1371/journal.pone.0192493 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Everaert, J. & Eric, W. M. S. Impact of wind turbines on birds in Zeebrugge (Belgium). Biodivers. Conserv. 16, 3345–3359 (2007).
    Google Scholar 
    18.Barrios, L. & Rodriguez, A. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol. 41, 72–81 (2004).
    Google Scholar 
    19.Barrios, L. & Rodriguez, A. Spatiotemporal patterns of bird mortality at two wind farms of Southern Spain. in Birds and wind farms: Risk Assessment and Mitigation (eds De Lucas, M. et al.) 229–239 (2007).20.Meek, E. R., Ribbands, J. B., Christer, W. B., Davy, P. R. & Higginson, I. The effects of aero-generators onmoorland bird populations in the Orkney Islands, Scotland. Bird Study 40, 140–143 (1993).
    Google Scholar 
    21.Smallwood, K. S. & Thelander, C. Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final report to the California Energy Commission. Public Interest Energy Research–Environmental Area, Contract (2004).22.Smallwood, K. S. & Thelander, C. Bird mortality in the Altamont Pass wind resource area, California. J. Wildl. Manag. 72, 215–223 (2008).
    Google Scholar 
    23.Drewitt, A. L. & Langston, R. H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 1134, 233–266 (2008).ADS 
    PubMed 

    Google Scholar 
    24.IWTMA—Indian Wind Turbine Manufacturers Association: INDIA—WIND POWER State wise Month wise Wind Power Installed Capacity 2019–2020. Accessed 7 May 2021. http://www.indianwindpower.com/wind-energy-in-india.php#tab1 (2020). 25.Smith, K. T., Taylor, K. L., Albeke, S. E. & Beck, J. L. Pronghorn winter resource selection before and after wind energy development in South-Central Wyoming. Rangel. Ecol. Manag. 73(2), 227–233 (2020).
    Google Scholar 
    26.Klich, D., Łopucki, R., Ścibior, A., Gołębiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).
    Google Scholar 
    27.Flydal, K., Eftestøl, S., Reimers, E. & Colman, J. E. Effects of wind turbines on area use and behaviour of semi-domestic reindeer in enclosures. Rangifer. 24(2), 55–66 (2004).
    Google Scholar 
    28.Rabin, L. A., Coss, R. G. & Owings, D. H. The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol. Conserv. 131(3), 410–420 (2006).
    Google Scholar 
    29.Łopucki, R. & Perzanowski, K. Effects of wind turbines on spatial distribution of the European hamster. Ecol. Indic. 84, 433–436 (2018).
    Google Scholar 
    30.Kumar, S. R., Ali, A. & Arun, P. R. Impact of wind turbines on birds: A case study from Gujarat, India. Sci. J. Environ. Sci. 228, 1–12 (2012).
    Google Scholar 
    31.Kumar, S. R., Ali, A. M. S. & Arun, P. R. Bat mortality due to collision with wind turbines in Kutch District, Gujarat, India. J. Threat. Taxa. 5(13), 4822–4824 (2013).
    Google Scholar 
    32.Kumar, V., Kumar, P. & Singh, J. An introduction to contaminants in agriculture and environment. In Contaminants in Agriculture and Environment: Health Risks and Remediation (eds. Kumar, V. et al.) 1–8 (Afro Environment India, Haridwar, India, 2019).
    Google Scholar 
    33.Pande, S. et al. CEPF Western Ghats Special Series: Avian collision threat assessment at Bhambarwadi Wind farm Plateau in northern Western Ghats. India. J. Threat. Taxa. 5(1), 3504–3515 (2013).
    Google Scholar 
    34.Narwade, S. et al. Mass mortality of wildlife due to hailstorms in Maharashtra, India. Bird Populations. 13, 28–35 (2014).
    Google Scholar 
    35.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    36.Erickson, W. P. et al. Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States. Western EcoSystems Technology, Inc., Cheyenne, WY (United States); RESOLVE, Inc., Washington, DC (United States). Accessed 20 Feb 2021. https://www.osti.gov/servlets/purl/822418/ (2001).37.Shoenfeld, P. Suggestions regarding avian mortality extrapolation. Prepared for the Mountaineer Wind Energy Center Technical Review Committee (2004).38.Buckland, S. T. et al. Introduction to Distance Sampling (Oxford University Press, 2001).
    Google Scholar 
    39.Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).
    Google Scholar 
    40.Cottam, G. & Curtis, J. T. The use of distance measures in phytosociological sampling. Ecology 37, 451–460 (1956).
    Google Scholar 
    41.Erickson, W. P., Jeffrey, J., Kronner, K. & Bay, K. Stateline wind project wildlife monitoring annual report, results for the period July 2001–December 2002. Technical report submitted to FPL Energy, the Oregon Office of Energy, and the Stateline Technical Advisory Committee (2003).42.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    43.McCune, B., Grace, J. B. & Urban, D. L. Analysis of Ecological Communities Vol. 28 (MjM Software Design, 2002).
    Google Scholar 
    44.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. Ecol. 18, 117–143 (1993).
    Google Scholar 
    45.Baskaran, N., Desai, A. A. & Udhayan, A. Population distribution and conservation of the four-horned antelope (Tetracerus quadricornis) in the tropical forest of Southern India. J. Sci. Trans. Environ. Technol. 2, 139–144 (2009).
    Google Scholar 
    46.Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154(2), 435–444 (2007).ADS 
    PubMed 

    Google Scholar 
    47.Šálek, M. et al. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 60(2), 193–200 (2014).
    Google Scholar 
    48.Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Pitman, M. L. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262(4), 405–411 (2004).
    Google Scholar 
    49.Majumder, A., Sankar, K., Qureshi, Q. & Basu, S. Food habits and temporal activity patterns of the Golden Jackal Canis aureus and the Jungle Cat Felis chaus in Pench Tiger Reserve, Madhya Pradesh. J. Threat. Taxa. 3(11), 2221–2225 (2011).
    Google Scholar 
    50.Gaikwad, M. C. & Narwade, S. S. The status of Chinkara Gazella bennettii (Mammalia: Cetartiodactyla: Bovidae) at Mayureshwar Wildlife Sanctuary, Supe, Baramati, Pune and a note on its current distribution in the southwestern region of the Deccan Plateau of Maharashtra, India. J. Threat. Taxa. 8(3), 8590–8595 (2016).
    Google Scholar 
    51.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118(2), 264–270 (2020).
    Google Scholar 
    52.Anoop, V., Arun, P. R. & Jayapal, R. Do black-naped hares Lepus nigricollis (Mammalia: Lagomorpha: Leporidae) have synanthropic association with wind farms?. J. Threat. Taxa. 10(7), 11925–11927 (2018).
    Google Scholar 
    53.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    54.MacKenzie, D. I. et al. Occupancy Modelling and Estimation (Academic Press, 2006).
    Google Scholar 
    55.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).MathSciNet 
    MATH 

    Google Scholar 
    56.Burnham, K. P. & Anderson, D. R. in Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer-Verlag, New York, 2002).MATH 

    Google Scholar 
    57.Kingsley, A. & Whittam, B. Potential Impacts of Wind Turbines on Birds at North Cape, Prince Edward Island (Bird Studies Canada, 2001).
    Google Scholar 
    58.Winkelman, J. E. Vogels en het Windpark nabij Urk (NOP): Aanvaringsslachtoffers en Verstoring van Pleisterende Eenden, Ganzen en Zwanen. RIN-report 89/15. Arnhem. (1989).59.Arun, P. R., Jayapal, R. & Anoop, V. Impact of Hara wind power project of CLP wind farms (India) ltd. On wildlife including migratory birds and raptors at Harpanahalli, Davangere, Karnataka. Final report Submitted to CLP Wind farms (India) Pvt. Ltd. SACON Report. 145 (2015).60.SGS Environment – Haverigg wind farm ornithological monitoring programme. Report to Windcluster Ltd. (1994).61.Tyler, S. J. Bird strike study at Bryn Titli wind farm, Rhayader. Report to National Wind Power Ltd (1995).62.Petterson, J. & Stalin, T. Influence of offshore windmill on migratory birds in southeast coast of Sweden. Report to GE Wind Energy. Piorkowski (2003).63.Grünkorn T., Diederichs A., Stahl B., Pöszig D. & Nehls G. Entwicklung einer Methode zur Abschätzung desKollisionsrisikos von Vögeln an Windenergie-anlagen. Bioconsult SH, Hockensbüll, Germany. Accessed 2 Feb 2021. http://www.umweltdaten.landsh.de/nuis/upool/gesamt/wea/voegel_wea.pdf (2005).64.Morrison, M. L. Avian Risk and Fatality Protocol (National Renewable Energy Lab., 1998).
    Google Scholar 
    65.Anderson, R. et al. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area (National Renewable Energy Lab. (NREL), 2005).
    Google Scholar 
    66.Hunt, G. & Hunt, T. The trend of golden eagle territory occupancy in the vicinity of the Altamont Pass Wind Resource Area: 2005 survey. Unpublished report of the California Energy Commission. Accessed 2 Feb 2021. www.energy.ca.gov/2006publications/CEC-500-2006-056/CEC-500-2006-056.pdf (2006).67.Brown, M. J., Linton, E. & Rees, E. C. Causes of mortality among wild swans in Britain. Wildfowl. 43, 70–79 (1992).
    Google Scholar 
    68.Larsen, J. K. & Clausen, P. Potential wind park impacts on whooper swans in winter: The risk of collision. Waterbirds. 25, 327–330 (2002).
    Google Scholar 
    69.Drewitt, A. L. & Langston, R. H. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).
    Google Scholar 
    70.Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of wind farm impacts on birds. Environ. Conserv. 34, 1–11 (2007).
    Google Scholar 
    71.Kuvlesky, W. P. Jr. et al. Wind energy development and wildlife conservation: Challenges and opportunities. J. Wildl. Manag. 71, 2487–2498 (2007).
    Google Scholar 
    72.Behr, O. & Helversen. O. V. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark “Roßkopf” (Freiburg i. Br.). Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Zoologie II: 1–42 (2005).73.Behr, O. et al. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark ‘Ittenschwander Horn’ (Freiburg i Br.). Report to Windpark Fröhnd GmbH & Co. KG (2006).74.Brinkmann, R., Schauer-Weisshahn H., & Bontadina F. Untersuchungen zu möglichen betriebsbedingten Auswirkungen von Windkraftanlagen auf Fledermäuse im Regierungsbezirk Freiburg. Report to Regierungspräsidium Freiburg, Referat 56 Naturschutz und Landschaftspflege. Accessed 2 Feb 2021. http://www.rp-freiburg.de/servlet/PB/show/1158478/rpf-windkraft-fledermaeuse.pdf (2006).75.Grunwald, T. & Schäfer, F. Aktivität von Fledermäusen im Rotorbereich von Windenergieanlagen an bestehenden WEA in Südwestdeutschland – Teil 2: Ergebnisse. Nyctalus. 12, 182–198 (2007).
    Google Scholar 
    76.Bach, P., Niermann, I. & Bach, L. Impact of wind speed on the activity of bats-at the coast and inland. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bachetal2011.pdf (2011).77.Bach, P., Bach, L., Ekschmitt, K., Frey, K. & Gerhardt, U. Bat fatalities at different wind facilities in Northwest Germany. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bach-Bat-fatalities-Poster-2013.pdf (2013).78.Cryan, P. M. & Brown, A. C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 139, 1–11 (2007).
    Google Scholar 
    79.Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829. https://doi.org/10.1098/rspb.2017.0829 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Kumar S. R. Impacts of wind farm on avifauna of Samakhiali region, Kutch, Gujarat, PhD thesis submitted to Bharathiyar University, Coimbatore (2017).81.De Lucas, M., Janss, G. F., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).
    Google Scholar 
    82.Leddy, K. L., Higgins, K. F. & Naugle, D. E. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands. Wilson. Bull. 111, 100–104 (1999).
    Google Scholar 
    83.Pearce-Higgins, J. W., Stephen, L., Langston, R. H., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).
    Google Scholar 
    84.Zimmerling, J., Pomeroy, A., d’Entremont, M. & Francis, C. Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol. 8, 1–13 (2013).
    Google Scholar 
    85.Schaller, G. B. The Deer and the Tiger: A Study of Wildlife in India (University Chicago Press, 1967).
    Google Scholar 
    86.Prasad, N. Home range, dispersal, and movement of blackbuck (Antilope cervicapra) population in relation to seasonal change in Mudmal and environs. PhD thesis submitted to Saurashtra University, Rajkot, India (1981).87.Ranjitsinh, M. K. Indian Blackbuck (Natraj Publishers, 1989).
    Google Scholar 
    88.Kumara, H. N., Rathnakumar, S., Sasi, R. & Singh, M. Conservation status of wild mammals in Biligiri Rangaswamy Temple wildlife sanctuary, the Western Ghats, India. Curr. Sci. 103, 933–940 (2012).
    Google Scholar 
    89.Rathore, D. Blackbuck occupancy in Moyar valley, Tamil Nadu. MSc thesis submitted to TERI University, Delhi (2017).90.Arandhara, S., Sathishkumar, S., Gupta, S. & Baskaran, N. Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. Eur. J. Wildl. Res. 67, 1–16 (2021).
    Google Scholar 
    91.Prater, S. H. The Book of Indian Animals (Oxford University Press, 1971).
    Google Scholar 
    92.Roberts, T. J. The Mammals of Pakistan (Oxford University Press, 1997).
    Google Scholar 
    93.Rahmani, A. R. Distribution of the Indian gazelle or chinkara Gazella bennetti (Sykes) in India. Mammalia 54, 605–620 (1990).
    Google Scholar 
    94.Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118, 264 (2020).
    Google Scholar 
    95.Gubbi, S., Seshadri, S. & Kumara, V. Counting the unmarked: Estimating animal population using count data. Electron. J. Appl. Stat. Anal. 12, 604–618 (2019).
    Google Scholar 
    96.Clutton-Brock, J., Corbet, G. B. & Hills, M. Review of the family Canidae, with a classification by numerical methods. Bull. Br. Mus. Nat. Hist. Zool. 29, 117–199 (1976).
    Google Scholar 
    97.Nowell, K. & Jackson, P. Wild Cats: Status Survey and Conservation Action Plan (IUCN, 1996).
    Google Scholar 
    98.Krishna, Y. C., Krishnaswamy, J. & Kumar, N. S. Habitat factors affecting site occupancy and relative abundance of four-horned antelope. J. Zool. 276, 63–70 (2008).
    Google Scholar  More

  • in

    Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer

    1.Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6–265sr6 (2014).2.Wilkinson, H. N. & Hardman, M. J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 10, 20023 (2020).
    Google Scholar 
    3.Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).CAS 
    PubMed 

    Google Scholar 
    4.Dvorak, H. F. Tumors: Wounds that do not heal–Redux. Cancer Immunol. Res. 3, 1–11 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schäfer, M. & Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628–638 (2008).PubMed 

    Google Scholar 
    6.MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).7.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 118, 145–152 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 

    Google Scholar 
    9.Bosch, T. C. G. Why polyps regenerate and we don’t: Towards a cellular and molecular framework for Hydra regeneration. Dev. Biol. 303, 421–433 (2007).CAS 
    PubMed 

    Google Scholar 
    10.Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Slack, J. M. Animal regeneration: Ancestral character or evolutionary novelty?. EMBO Rep. 18, 1497–1508 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wenger, Y., Buzgariu, W., Reiter, S. & Galliot, B. Injury-induced immune responses in Hydra. Semin. Immunol. 26, 277–294 (2014).CAS 
    PubMed 

    Google Scholar 
    13.Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science (80-. ). 298, 2188–2190 (2002).14.Kao, D., Felix, D. & Aboobaker, A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 14, 1–17 (2013).
    Google Scholar 
    15.Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science (80-. ). 363 (2019).16.DuBuc, T. Q., Traylor-Knowles, N. & Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, 24 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    17.Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    18.Owlarn, S. et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat. Commun. 8, 1–13 (2017).CAS 

    Google Scholar 
    19.Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration in the ctenophore Mnemiopsis leidyi occurs in the absence of a blastema, requires cell division, and is temporally separable from wound healing. BMC Biol. 17, 80 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    20.Pawlik, J. R. & Deignan, L. K. Cowries graze Verongid sponges on Caribbean reefs. Coral Reefs 34, 663 (2015).ADS 

    Google Scholar 
    21.Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Mar. Sci. 5, 1–14 (2019).
    Google Scholar 
    22.Pawlik, J. R., Loh, T.-L., McMurray, S. E. & Finelli, C. M. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS One 8, e62573 (2013).23.Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).ADS 
    CAS 

    Google Scholar 
    24.de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80-. ). 342, 108–10 (2013).25.Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31, 778–789 (2016).
    Google Scholar 
    26.Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles and conservation concerns. Mar. Animal Forests https://doi.org/10.1007/978-3-319-17001-5 (2015).Article 

    Google Scholar 
    27.Soubigou, A., Ross, E. G., Touhami, Y., Chrismas, N. & Modepalli, V. Regeneration in sponge Sycon ciliatum partly mimics postlarval development. Development https://doi.org/10.1242/dev.193714 (2020).Article 
    PubMed 

    Google Scholar 
    28.Telford, M. J., Moroz, L. L. & Halanych, K. M. A sisterly dispute. Nature 529, 286–287 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Feuda, R. et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.008 (2017).Article 
    PubMed 

    Google Scholar 
    30.Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).PubMed 

    Google Scholar 
    31.Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3, e1211 (2015).32.Lavrov, A. I., Bolshakov, F. V., Tokina, D. B. & Ereskovsky, A. V. Sewing up the wounds: The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 330, 351–371 (2018).33.Ereskovsky, A. V. et al. Transdifferentiation and mesenchymal‐to‐epithelial transition during regeneration in Demospongiae (Porifera). J. Exp. Zool. Part B Mol. Dev. Evol. 334, 37–58 (2020).34.Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).35.Pozzolini, M. et al. Insights into the evolution of metazoan regenerative mechanisms: TGF superfamily member roles in tissue regeneration of the marine sponge Chondrosia reniformis Nardo, 1847. J. Exp. Biol. 222, jeb207894 (2019).36.Kenny, N. J. et al. Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A transcriptomic case study in the demosponge Halisarca caerulea. Mar. Genomics 37, 135–147 (2018).PubMed 

    Google Scholar 
    37.Pawlik, J. R. Handbook of marine natural products. in Handbook of Marine Natural Products (eds. Fattorusso, E., Gerwick, W. H. & Taglialatela-Scafati, O.) 677–705 (Springer, New York, 2012). https://doi.org/10.1007/978-90-481-3834-038.Walters, K. D. & Pawlik, J. R. Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges?. Integr. Comp. Biol. 45, 352–358 (2005).PubMed 

    Google Scholar 
    39.Becerro, M. A., Turon, X., Uriz, M. J. & Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 78, 429–438 (2003).
    Google Scholar 
    40.Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pita, L., Hoeppner, M. P., Ribes, M. & Hentschel, U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci. Rep. 8, 16081 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Stewart, F. J., Ottesen, E. A. & Delong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010).CAS 
    PubMed 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics btu170 (2014).44.Menzel, P. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2015).ADS 

    Google Scholar 
    45.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    PubMed 

    Google Scholar 
    46.Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M. & Kelly, S. TransRate: Reference free quality assessment of de-novo transcriptome assemblies. Genome Res. 26, 1134–1144 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. Genome analysis BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    48.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 

    Google Scholar 
    51.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800 (2011).52.Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, Berlin, 2016).53.Team, R. C. R: A language and environment for statistical computing. (2019).54.Team, Rs. RStudio: Integrated Development for R. (2015).55.Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).CAS 
    PubMed 

    Google Scholar 
    56.Pritchard, L., Jones, S. & Cock, P. IBioIC Introd. Bioinform. Train. Course https://doi.org/10.5281/zenodo.1184095 (2018).57.Forbes, S. A. et al. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet. 57 (2008).58.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife 8, 1–28 (2019).
    Google Scholar 
    59.Cerenius, L. & Söderhäll, K. Coagulation in invertebrates. J. Innate Immun. 3, 3–8 (2011).PubMed 

    Google Scholar 
    60.Davie, E. W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30, 10363–10370 (1991).CAS 
    PubMed 

    Google Scholar 
    61.Richardson, V. R., Cordell, P., Standeven, K. F. & Carter, A. M. Substrates of factor XIII-A: Roles in thrombosis and wound healing. Clin. Sci. 124, 123–137 (2013).CAS 

    Google Scholar 
    62.Domazet-Lošo, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 1–10 (2010).
    Google Scholar 
    63.Trigos, A. S., Pearson, R. B., Papenfuss, A. T. & Goode, D. L. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc. Natl. Acad. Sci. USA 114, 6406–6411 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rohani, M. G. & Parks, W. C. Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46, 113–121 (2015).PubMed 

    Google Scholar 
    65.Grose, R. et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).CAS 
    PubMed 

    Google Scholar 
    66.Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    67.Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).CAS 
    PubMed 

    Google Scholar 
    69.Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: Insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Petersen, H. O. et al. A comprehensive transcriptomic and proteomic analysis of Hydra head regeneration. Mol. Biol. Evol. 32, 1928–1947 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cardozo, M. J., Mysiak, K. S., Becker, T. & Becker, C. G. Reduce, reuse, recycle—Developmental signals in spinal cord regeneration. Dev. Biol. 432, 53–62 (2017).CAS 
    PubMed 

    Google Scholar 
    72.Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2, e1031 (2007).73.Stewart, Z. K. et al. Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus. Sci. Rep. 7, 41458 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGF signaling. Development 139, 1921–1930 (2012).CAS 
    PubMed 

    Google Scholar 
    75.Chen, H., Lin, F., Xing, K. & He, X. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat. Commun. 6, 1–10 (2015).ADS 

    Google Scholar 
    76.Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ćetković, H., Halasz, M. & Herak Bosnar, M. Sponges: A reservoir of genes implicated in human cancer. Mar. Drugs 16, 20 (2018).PubMed Central 

    Google Scholar  More