More stories

  • in

    Changes in the sediment microbial community structure of coastal and inland sinkholes of a karst ecosystem from the Yucatan peninsula

    Our results show that differences in environmental conditions between inland and coastal sinkholes, caused mainly by the inflow of seawater in the latter, influence the microbial community structure of their sediments. Furthermore, the microbial community structure also varied within the sinkholes and according to the sediment zone sampled, suggesting that a connection between the atmosphere in the outermost location of the sediments and sunlight creates an environment distinct from that found in deeper caves. Together with the different environmental factors that were measured (in situ physicochemical composition of water and sediment) these characteristics could drive niche-specific microbial community structures associated with the sediment zones. Additionally, beta-diversity analysis showed separate clustering of the sediment microbial communities from the coastal and inland sinkholes, and of the WM zone from cavern and cave zones at both sinkholes. Microbial community structure associated with karst environments have shown to be significantly influenced by environmental factors as seen in the Bahamian blue holes19, a coastal sinkhole13, a Floridan anchialine sinkhole20, and sediments from Chinese karst caves21.Microbial communities from karst sediments can be limited by nutrients such as carbon, phosphorus, and nitrogen21, therefore, influencing their structure. Differences in the microbial community composition associated with multiple environmental factors (moisture, type of niche, nitrogen) were also reported in karst cave sediments from China21. Previous studies had shown there was no effect on the alpha diversity of water column assemblages in the Yucatan groundwater associated with the type of sinkhole (inland or coastal)6. However, this observation may be limited due to the low sample number used in the study6. For other karst sinkholes, the microbial community dynamics differ between the water column and the sediments6,22,23,24.The karst caves and sinkholes of the underground river in Yucatan are characterized by low phosphorus concentrations and high levels of nitrate, mostly related to Anthropocentric activities (urban developments, farms and agriculture)3. The inland sinkhole at Noh Mozón showed the highest concentration of nitrate detected in the study and, not surprisingly, the area is surrounded by agricultural fields. The presence of organic matter in the sinkholes from the Yucatan peninsula are highly dependent on the connection between the cave systems, on the levels of exposure to light, and on their morphology3. High concentrations of organic carbon (661 ± 132 μM) and methane (6466 ± 659 nM) have been reported in the top layer of the water masses in coastal sinkholes before13. In this study, the highest concentration of organic carbon was observed in the sediments from the coastal sinkhole, likely originating from the surrounding vegetation and from seawater intrusion. We hypothesize that the differences in nutrients found at these two types of sinkholes influence the structure of their microbial communities.Other environmental factors such as pH and dissolved oxygen (DO), may also contribute significantly to the composition and structure of microbial communities, as seen in freshwater lake sediments22. Davis and Garey20 reported distinct microbial communities with unique functions for each water layer from an anchialine sinkhole from the Florida karst aquifer and suggested that this occurred as a result of the influence of the hydrochemistry, including differences in the concentration carbon and other nutrients from the environment20. Analyses of the sinkhole caves from the Yucatan underwater river support observations that physical and chemical parameters create distinct ecological niches which host unique microbes, as a high abundance of exclusive (not shared) ASVs were observed in the three sediment zones at both locations.The taxonomic diversity from the coastal and inland sinkholes included Chloroflexi, Crenarchaeota, Desulfobacterota, Proteobacteria, Nitrospirota, Bacteroidota, and Firmicutes as the most abundant phyla in the sediment samples, however, there were differences in the relative abundance associated with the type of sinkhole and sediment zone. Some of these phyla (Chloroflexi, Proteobacteria, and Bacteroidetes) have been reported in sediments from freshwater karst sinkholes from Lake Huron25 in water and sediments from other sinkholes in the Yucatan peninsula6, and in the karst caves bacteriome from southwest China21. A study that included coastal marine sediments from two sites in the Yucatan peninsula, showed high abundances of Spirochaeta, Desulfococcus, Clostridium, Psychrobacter26, four genera that were abundant in the coastal sinkhole. However, Desulfococcus, Synechococcus were also abundant in the inland sinkhole. Of the most abundant genera reported for sediments from different marine environments in the Yucatan coast23, Acinetobacter, Desulfotignum, Desulfovibrio, Pseudomonas, Sedimenticola, and Sulfurimonas were also present in the coastal sinkhole while only Pseudomonas and Sedimenticola were also present in the inland sinkhole23. The high number of families shared between the coastal sinkhole and marine sediments from the Yucatan coast, together with the salinity levels registered at the bottom layer of the water column in the coastal sinkhole, suggest an interconnection between these two environments which shapes the microbial communities present in the sediments of caverns and caves of this sinkhole. The genus Nitrospira was abundant in the WM from the coastal sinkhole and in all sediment zones from the inland sinkhole. This genus has been reported as one of the most abundant in the surface of speleothems from El Zapote coastal sinkhole2, and is considered a complete ammonia oxidizer (comammox), meaning it converts ammonia to nitrate through nitrite. A negative correlation between abundance of this genus and salinity has been reported before, which could explain the low concentration of Nitrospira in the cavern and cave from the coastal sinkhole, where the highest salinity was observed27. Connectivity between coastal sinkholes and the ocean, as well as the terrestrial input of soil organic matter (OM) has been reported for the underground karst aquifer in the Yucatan peninsula13. As in other sediments, degradation of OM is carried out by several MFGs including acetogenic bacteria, methanogens, and sulfate reducers13,20,28. When these MFGs were analyzed in coastal and inland sinkholes, differences in their relative abundances were clearly marked by the type of sinkhole and by the sediment zone analyzed, supporting the hypothesis that environmental differences drive microbial community distributions in these niches. The high abundance of sulfate-reducing bacteria (SRB) in the three sediment zones from the coastal sinkhole suggests that sulfate reduction is a predominant function. SRB degrade organic matter using sulfate with sulfide as waste or end-product19,30, originating hydrogen sulfide (H2S)29, which could explain the low concentration of sulfate the hydrogen sulfide (H2S) cloud observed and previously reported in the WM zone of El Zapote coastal sinkhole30. In this study, high levels of sulfate (SO−4) were measured in the water samples from the cavern and cave zones from El Zapote sinkhole, which could be associated with sulfate-rich deposits, such as gypsum beds, which have been reported in other sinkholes from the Yucatan peninsula (up to 2400 mg/L of sulfate concentration)3. However, we do not disregard other possible sources of sulfate, associated with seawater intrusion or as a product of sulfide or sulfur oxidation29,31 by sulfur-oxidizing bacteria detected in this study.The inland sinkhole had a low concentration of sulfate and low abundances of SRB. The high abundance of methanogenic bacteria in the WM zone from the coastal sinkhole detected in the MFG analysis supports the previous hypothesis of acetoclastic methanogenesis due to high inputs of organic matter13. Methylotrophic bacteria were most abundant at the inland sinkhole in the WM zone, suggesting the presence of methyl compounds, such as methane or methanol which can be used as a source of carbon and energy32. High methane concentrations have been quantified in shallow water masses from the Yucatan aquifer system13, consistent with observations from this study. ‘Candidatus Methylomirabilis’ was identified in the sediment of the WM zone from Noh-Mozón and has been previously described as being able to perform nitrite-dependent anaerobic methane oxidation, using methane as electron donor and nitrate and nitrite as electron acceptors33, which would be possible in these sediments considering the low levels of oxygen (average of 2.3 mg/L) detected in the water column above them and assuming this would lead to lower levels of oxygen in the sediments. We hypothesize that bacteria from this genus could be using the nitrite produced by ammonia oxidizing bacteria and archaea observed in this zone (Nitrosomonadaceae, Nitrospiraceae, and Nitrosococcaceae). The low abundance of methanotrophic microbes in the coastal sinkhole (mainly the cavern and cave zones) could be derived from the high concentrations of hydrogen sulfide previously reported at this location, which have been suggested to be toxic to methane-oxidizing microbes34. Therefore, a decrease in the anaerobic oxidation of methane, and a poor methane removal capacity is hypothesized in the sediments from this coastal sinkhole. Further research could focus on the influence of the saline intrusion on methanotrophic microbes and methane levels in El Zapote sinkhole sediments. As expected, photosynthetic bacterial abundances differed with the type of sinkhole and sediment zone. Both sinkholes are so the presence of daylight can start the photosynthetic process which would occur most in the WM zone. However, only the inland sinkhole showed a high abundance of photosynthetic bacteria within its WM zone. The coastal sinkhole water column and sediments would be deprived of photosynthetic bacteria since the water source is the underground aquifer, lacks photosynthesizers. Ammonia oxidizing bacteria (AOB) and archaea (AOA), and nitrite-oxidizing bacteria (NOB) were relatively abundant in the three sediment zones from the inland sinkhole and in the WM from the coastal sinkhole, these observation at the WM from El Zapote agree with previous observations2. Anaerobic ammonium oxidation (anammox) uses nitrite (as a product of nitrate reduction), as electron acceptor35. The high levels of nitrate concentration in the water column from the three sediment zones at the inland sinkhole and at the WM from the coastal sinkhole may influence the abundance of AOB, AOA and NOB in the sediments from these zones, while NH4+ and nitrite values were below detection limit ( More

  • in

    Personality, density and habitat drive the dispersal of invasive crayfish

    1.Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D. Dispersal (Oxford University Press, 2001).
    Google Scholar 
    2.Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Google Scholar 
    3.Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 
    4.Cote, J., Fogarty, S., Brodin, T., Weinersmith, K. & Sih, A. Personality-dependent dispersal in the invasive mosquitofish: Group composition matters. Proc. R. Soc. B Biol. Sci. 278, 1670–1678 (2011).
    Google Scholar 
    5.Quinn, J. L., Cole, E. F., Patrick, S. C. & Sheldon, B. C. Scale and state dependence of the relationship between personality and dispersal in a great tit population. J. Anim. Ecol. 80, 918–928 (2011).PubMed 

    Google Scholar 
    6.Brodin, T., Lind, M. I., Wiberg, M. K. & Johansson, F. Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav. Ecol. Sociobiol. 67, 135–143 (2013).
    Google Scholar 
    7.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 199–205 (1998).
    Google Scholar 
    8.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    9.Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 

    Google Scholar 
    10.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 

    Google Scholar 
    11.Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 

    Google Scholar 
    12.Juette, T., Cucherousset, J. & Cote, J. Animal personality and the ecological impacts of freshwater non-native species. Curr. Zool. 60, 417–427 (2014).
    Google Scholar 
    13.Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. 104, 15017–15022 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Conrad, J. L., Weinersmith, K. L., Brodin, T., Saltz, J. B. & Sih, A. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 

    Google Scholar 
    15.Cote, J., Fogarty, S., Weinersmith, K., Brodin, T. & Sih, A. Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proc. R. Soc. B Biol. Sci. 277, 1571–1579 (2010).
    Google Scholar 
    16.Malange, J., Izar, P. & Japyassú, H. Personality and behavioural syndrome in Necromys lasiurus (Rodentia: Cricetidae): Notes on dispersal and invasion processes. Acta Ethol. 19, 189–195 (2016).
    Google Scholar 
    17.Rees, E. M. A. et al. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK. PLoS ONE 12, e0178805 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    19.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    20.Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).CAS 
    PubMed 

    Google Scholar 
    21.Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 76, 751–786 (2010).
    Google Scholar 
    22.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    23.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 

    Google Scholar 
    24.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).
    Google Scholar 
    25.Duckworth, R. A. Evolution of personality: Developmental constraints on behavioral flexibility. Auk 127, 752–758 (2010).
    Google Scholar 
    26.Trillmich, F., Müller, T. & Müller, C. Understanding the evolution of personality requires the study of mechanisms behind the development and life history of personality traits. Biol. Lett. 14, 20170740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Dingemanse, N. J. & Réale, D. Natural selection and animal personality. Behaviour 142, 1159–1184 (2005).
    Google Scholar 
    28.Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. Ecological implications of behavioural syndromes. Ecol. Lett. 15, 278–289 (2012).PubMed 

    Google Scholar 
    29.Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).PubMed 

    Google Scholar 
    30.Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions?. Trends Ecol. Evol. 27, 57–64 (2012).PubMed 

    Google Scholar 
    31.Hirsch, P. E., Thorlacius, M., Brodin, T. & Burkhardt-Holm, P. An approach to incorporate individual personality in modeling fish dispersal across in-stream barriers. Ecol. Evol. 7, 720–732 (2017).PubMed 

    Google Scholar 
    32.Groen, M. et al. Is there a role for aggression in round goby invasion fronts?. Behaviour 149, 685–703 (2012).
    Google Scholar 
    33.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).PubMed 

    Google Scholar 
    34.Lopez, D. P., Jungman, A. A. & Rehage, J. S. Nonnative African jewelfish are more fit but not bolder at the invasion front: A trait comparison across an Everglades range expansion. Biol. Invasions 14, 2159–2174 (2012).
    Google Scholar 
    35.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).
    Google Scholar 
    36.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (University of Chicago Press, 2013).
    Google Scholar 
    37.Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 

    Google Scholar 
    38.Archard, G. A. & Braithwaite, V. A. The importance of wild populations in studies of animal temperament. J. Zool. 281, 149–160 (2010).
    Google Scholar 
    39.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).
    Google Scholar 
    40.Liedvogel, M., Chapman, B. B., Muheim, R. & Åkesson, S. The behavioural ecology of animal movement: Reflections upon potential synergies. Anim. Migr. 1, 39–46 (2013).
    Google Scholar 
    41.Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).PubMed 

    Google Scholar 
    42.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement, dispersal and refuge use of co-occurring introduced and native crayfish. Freshw. Biol. 51, 1359–1368 (2006).
    Google Scholar 
    43.Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).
    Google Scholar 
    44.Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).
    Google Scholar 
    45.Lindstrom, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. 110, 13452–13456 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bubb, D. H., Thom, T. J. & Lucas, M. C. The within-catchment invasion of the non-indigenous signal crayfish Pacifastacus leniusculus (Dana), in upland rivers. Bull. Fr. Pêche Piscic. 376–377, 665–673 (2005).
    Google Scholar 
    47.Závorka, L., Lassus, R., Britton, J. R. & Cucherousset, J. Phenotypic responses of invasive species to removals affect ecosystem functioning and restoration. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15271 (2020).Article 
    PubMed 

    Google Scholar 
    48.Sbragaglia, V. & Breithaupt, T. Daily activity rhythms, chronotypes, and risk-taking behavior in the signal crayfish. Curr. Zool. https://doi.org/10.1093/cz/zoab023 (2021).Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).50.Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).
    Google Scholar 
    51.Rupia, E. J., Binning, S. A., Roche, D. G. & Lu, W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J. Anim. Ecol. 85, 927–937 (2016).PubMed 

    Google Scholar 
    52.Karavanich, C. & Atema, J. Individual recognition and memory in lobster dominance. Anim. Behav. 56, 1553–1560 (1998).CAS 
    PubMed 

    Google Scholar 
    53.Houlihan, D., Govind, C. & El Haj, A. Energetics of swimming in Callinectes sapidus and walking in Homarus americanus. Comp. Biochem. Physiol. Part A Physiol. 82, 267–279 (1985).
    Google Scholar 
    54.Vogt, G. Functional anatomy. In Biology of Freshwater Crayfish (ed. Holdich, D. M.) 53–151 (Blackwell Science Ltd., 2002).
    Google Scholar 
    55.Southwood, T. R. E. & Henderson, P. A. Ecological Methods (Blackwell Science Ltd., 2000).
    Google Scholar 
    56.Clark, J. & Kershner, M. Size-dependent effects of visible implant elastomer marking on crayfish (Orconectes obscurus) growth, mortality, and tag retention. Crustaceana 79, 275–284 (2006).
    Google Scholar 
    57.Streissl, F. & Hödl, W. Habitat and shelter requirements of the stone crayfish, Austropotamobius torrentium Schrank. Hydrobiologia 477, 195–199 (2002).
    Google Scholar 
    58.Chadwick, D. D. A. et al. A novel ‘triple drawdown’ method highlights deficiencies in invasive alien crayfish survey and control techniques. J. Appl. Ecol. 58, 316–326 (2021).
    Google Scholar 
    59.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    60.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    61.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
    Google Scholar 
    62.Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
    Google Scholar 
    63.Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).
    Google Scholar 
    64.Robinson, C. A., Thom, T. J. & Lucas, M. C. Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw. Biol. 44, 509–521 (2000).
    Google Scholar 
    65.Bubb, D. H., O’Malley, O. J., Gooderham, A. C. & Lucas, M. C. Relative impacts of native and non-native crayfish on shelter use by an indigenous benthic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 448–455 (2009).
    Google Scholar 
    66.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    67.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inferences: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    68.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6. (2019).69.Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, 2008).MATH 

    Google Scholar 
    70.Edwards, D. D., Rapin, K. E. & Moore, P. A. Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish, Orconectes virilis. Ethology 124, 311–330 (2018).
    Google Scholar 
    71.Teknomo, K. Similarity Measurements. https://people.revoledu.com/kardi/tutorial/Similarity (2015).72.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    73.Vainikka, A., Rantala, M. J., Niemelä, P., Hirvonen, H. & Kortet, R. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol. 14, 17–25 (2011).
    Google Scholar 
    74.Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N. & Skalski, G. T. Explaining leptokurtic movement distributions: Intrapopulation variation in boldness and exploration. Am. Nat. 158, 124–135 (2001).CAS 
    PubMed 

    Google Scholar 
    75.Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L. & Drent, P. J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. London. Ser. B Biol. Sci. 270, 741–747 (2003).
    Google Scholar 
    76.McMahon, T. E. & Tash, J. C. Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology 69, 1871–1883 (1988).
    Google Scholar 
    77.Porter, J. H. & Dooley, J. L. Animal dispersal patterns: A reassessment of simple mathematical models. Ecology 74, 2436–2443 (1993).
    Google Scholar 
    78.Einum, S., Sundt-Hansen, L. & Nislow, K. H. The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos 113, 489–496 (2006).
    Google Scholar 
    79.Lodge, D. M. & Hill, A. M. Factors governing species composition, population size and productivity of coolwater crayfishes. Nord. J. Freshw. Res. 69, 111–136 (1994).
    Google Scholar 
    80.Berthouly-Salazar, C., van Rensburg, B. J., Le Roux, J. J., van Vuuren, B. J. & Hui, C. Spatial sorting drives morphological variation in the invasive bird, Acridotheris tristis. PLoS ONE 7, e38145 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).
    Google Scholar 
    82.Wilshin, S. et al. Limping following limb loss increases locomotor stability. J. Exp. Biol. 221, jeb174268 (2018).PubMed 

    Google Scholar 
    83.Podgorniak, T., Blanchet, S., De Oliveira, E., Daverat, F. & Pierron, F. To boldly climb: Behavioural and cognitive differences in migrating European glass eels. R. Soc. Open Sci. 3, 150665 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can. J. Zool. 84, 1202–1209 (2006).
    Google Scholar 
    85.Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
    Google Scholar 
    86.Bubb, D. H., Thom, T. J. & Lucas, M. C. Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers. Freshw. Biol. 49, 357–368 (2004).
    Google Scholar 
    87.Hudina, S., Kutleša, P., Trgovčić, K. & Duplić, A. Dynamics of range expansion of the signal crayfish (Pacifastacus leniusculus) in a recently invaded region in Croatia. Aquat. Invasions 12, 67–75 (2017).
    Google Scholar 
    88.Wutz, S. & Geist, J. Sex- and size-specific migration patterns and habitat preferences of invasive signal crayfish (Pacifastacus leniusculus Dana). Limnologica 43, 59–66 (2013).
    Google Scholar 
    89.Fraser, H., Barnett, A., Parker, T. H. & Fidler, F. The role of replication studies in ecology. Ecol. Evol. 10, 5197–5207 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    90.Linzmaier, S. M., Goebel, L. S., Ruland, F. & Jeschke, J. M. Behavioral differences in an over-invasion scenario: marbled vs. spiny-cheek crayfish. Ecosphere 9, e02385 (2018).
    Google Scholar 
    91.Wang, X. et al. Anthropogenic habitat loss accelerates the range expansion of a global invader. Divers. Distrib. https://doi.org/10.1111/ddi.13359 (2021).Article 

    Google Scholar  More

  • in

    Hydrological properties predict the composition of microbial communities cycling methane and nitrogen in rivers

    Relationships between microbial diversity and base flow indexThe number of reads obtained per sample and total number of OTUs obtained after rarefaction for each gene dataset are summarised in Table S2. According to taxonomic analyses of our 16S rRNA gene dataset, archaeal communities in our river sediment samples consisted largely of OTUs assigned to the Woesarchaeota (20.8% of OTUs and 24.7% of reads) and Methanomicrobia (16.9% of OTUs and 31.8% of reads). Of the functional groups analysed here, ten OTUs were assigned to AOA, Nitrososphaera (n = 8) and Nitrosopumilus (n = 2), that together formed 4.8% of all archaeal 16S rRNA reads. A total of 137 OTUs were assigned to orders of methanogenic archaea, with 15.3% and 16% of archaeal reads assigned to the orders Methanomicrobiales and Methanosarcinales, respectively, with other methanogen orders constituting a further 6.7% of reads.Bacterial communities were more diverse and OTUs assigned to taxa within the functional groups analysed here formed a relatively small proportion of our bacterial 16S rRNA gene dataset. Ammonia oxidising bacteria were represented by only five OTUs (all assigned to Nitrosospira) that together constituted 0.02% of the total bacterial community across our sediments. A further 84 OTUs were assigned to methanotrophic genera, and these OTUs contributed a total of 0.88% of all bacterial 16S rRNA sequences. These were Methylobacter (30 OTUs, 0.7% of bacterial sequences), Methylophilus (15 OTUs, 0.1% of bacterial sequences), Methylosoma (7 OTUs, 0.004% of bacterial sequences), Methylomonas and Methylotenera (6 OTUs each, 0.02 and 0.002% of bacterial sequences, respectively), and Methylosarcina (5 OTUs, 0.002% of bacterial sequences), with a further eight genera represented by a total of 15 OTUs. As reported previously, no OTUs were assigned to known anammox genera, which were likely below the limit of detection in our study [8].The OTU richness of archaeal communities (based on 16S rRNA amplicons) was negatively, albeit weakly, related to BFI (coef = 0.52, z = −2.95, adj-D2 = 0.12, P  More

  • in

    Effectiveness of protection areas in safeguarding biodiversity and ecosystem services in Tibet Autonomous Region

    1.Cao, S. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).ADS 

    Google Scholar 
    2.Kinzig, A. P. et al. Response—Ecosystem services: Free lunch no more. Science 335, 656 (2012).ADS 
    CAS 

    Google Scholar 
    3.Zhang, J. et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake. For. Ecol. Manage. 319, 1–9 (2014).
    Google Scholar 
    4.Chen, Z. et al. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 648, 1097–1104 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Boerema, A., Van Passel, S. & Meire, P. Cost-effectiveness analysis of ecosystem management with ecosystem services: From theory to practice. Ecol. Econ. 152, 207–218 (2018).
    Google Scholar 
    6.Bouwma, I. et al. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 29, 213–222 (2018).
    Google Scholar 
    7.Carpenter, S. R. et al. Millennium ecosystem assessment: Research needs. Science 314, 257 (2006).CAS 
    PubMed 

    Google Scholar 
    8.Xiao, Q., Tao, J., Xiao, Y. & Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environ. Monit. Assess. 189, 493 (2017).PubMed 

    Google Scholar 
    9.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Zhang, J. et al. Modeling activity patterns of wildlife using time-series analysis. Ecol. Evol. 7, 2575–2584 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    11.Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).ADS 
    CAS 

    Google Scholar 
    12.Ouyang, W. et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 613–614, 798–809 (2018).ADS 
    PubMed 

    Google Scholar 
    13.Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Feng, X. et al. Human cystic and alveolar echinococcosis in the Tibet Autonomous Region (TAR), China. J. Helminthol. 89, 671–679 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hallquist, M. et al. Photochemical smog in China: Scientific challenges and implications for air-quality policies. Natl. Sci. Rev. 3, 401–403 (2016).CAS 

    Google Scholar 
    17.Zhang, G. G. et al. Abundance and conservation of waterbirds breeding on the Changtang Plateau, Tibet Autonomous Region, China. Waterbirds 38, 19–29 (2015).CAS 

    Google Scholar 
    18.Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10 (2018).
    Google Scholar 
    19.Wangdwei, M., Steele, B. & Harris, R. B. Demographic responses of plateau pikas to vegetation cover and land use in the Tibet Autonomous Region, China. J. Mammal. 94, 1077–1086 (2013).
    Google Scholar 
    20.Zhuo, G., La, B., Pubu, C. & Luo, B. Study on daily surface evapotranspiration with SEBS in Tibet Autonomous Region. J. Geogr. Sci. 24, 113–128 (2014).ADS 

    Google Scholar 
    21.Butarbutar, T., Soedirman, S., Neupane, P. R. & Köhl, M. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. https://doi.org/10.1186/s40663-019-0195-x (2019).Article 

    Google Scholar 
    22.Yu, W. J. & Zhou, W. Q. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 634, 1362–1371 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Storch, F., Kändler, G. & Bauhus, J. Assessing the influence of harvesting intensities on structural diversity of forests in south-west Germany. For. Ecosyst. https://doi.org/10.1186/s40663-019-0199-6 (2019).Article 

    Google Scholar 
    24.Xiao, Y. & Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess 190, 258 (2018).PubMed 

    Google Scholar 
    25.Ge, J. et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 218, 162–173 (2018).ADS 

    Google Scholar 
    26.Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Xin, S. et al. Forestland-cover changes in China’s tropical area: Historical patterns, implications, and policy options-a case study from Xishuangbanna. J. Sustain. For. 36, 18–31 (2017).
    Google Scholar 
    28.Rao, Y. et al. Integrating ecosystem services value for sustainable land-use management in semi-arid region. J. Clean. Prod. 186, 662–672 (2018).
    Google Scholar 
    29.Ricketts, T. H. et al. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun. 7, 13106 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Nguyen, M. D., Ancev, T. & Randall, A. Forest governance and economic values of forest ecosystem services in Vietnam. Land Use Policy 97, 103297 (2018).
    Google Scholar 
    31.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A. 114, 1601–1606 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Ouyang, Z. et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. U.S.A. 117, 14593–14601 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Anne, B. et al. Towards an operational methodology to optimize ecosystem services provided by urban soils. Landsc. Urban Plan. 176, 1–9 (2018).
    Google Scholar 
    34.Karlen, D. L., Peterson, G. A. & Westfall, D. G. Soil and water conservation: Our history and future challenges. Soil Sci. Soc. Am. J. 78, 1493–1499 (2014).ADS 

    Google Scholar 
    35.Tuo, D., Xu, M. & Gao, G. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau. Sci. Total Environ. 633, 1032–1040 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Rubio-Delgado, J., Schnabel, S., Gómez-Gutiérrez, Á. & Sánchez-Fernández, M. Estimation of soil erosion rates in dehesas using the inflection point of holm oaks. CATENA 166, 56–67 (2018).
    Google Scholar 
    37.Abouabdillah, A. et al. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use Manage. 30, 539–549 (2014).
    Google Scholar 
    38.Dominati, E. J., Mackay, A., Lynch, B., Heath, N. & Millner, I. An ecosystem services approach to the quantification of shallow mass movement erosion and the value of soil conservation practices. Ecosyst. Serv. 9, 204–215 (2014).
    Google Scholar 
    39.Engdawork, A. & Bork, H.-R. Long-term indigenous soil conservation technology in the Chencha Area, Southern Ethiopia: Origin, characteristics, and sustainability. Ambio 43, 932–942 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    40.Sverdrup, H. U. & Olafsdottir, A. H. Considerations on the future biomass production potential of Iceland, and what role that could have in future fuel supply and carbon balances. J. Sustain. For. 36, 647–665 (2017).
    Google Scholar 
    41.Ofoegbu, C. & Speranza, C. I. Assessing rural peoples’ intention to adopt sustainable forest use and management practices in South Africa. J. Sustain. For. 36, 729–746 (2017).
    Google Scholar 
    42.Munyati, C. & Sinthumule, N. I. Cover gradients and the forest-community frontier: Indigenous forests under communal management at Vondo and Xanthia, South Africa. J. Sustain. For. 33, 757–775 (2014).
    Google Scholar 
    43.Xiao, Q., Gao, Y., Hu, D., Tan, H. & Wang, T. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: A case study for China’s Hunan Province. Int. J. Environ. Res. Public Health 8, 2937–2950 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    44.Sun, Q., Miao, C., Qiao, Y. & Duan, Q. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim. Dyn. 49, 4281–4292 (2017).
    Google Scholar 
    45.Cao, S., Chen, L., Xu, C. & Liu, Z. Impact of three soil types on afforestation in China’s Loess Plateau: Growth and survival of six tree species and their effects on soil properties. Landsc. Urban Plan. 83, 208–217 (2007).
    Google Scholar 
    46.Setten, G. & Brown, K. M. Ecosystem services as an integrative framework: What is the potential? Land Use Policy 75, 549–556 (2018).
    Google Scholar 
    47.Arroyo-Vargas, P., Fuentes-Ramírez, A., Muys, B. & Pauchard, A. Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. For. Ecosyst. https://doi.org/10.1186/s40663-019-0202-2 (2019).Article 

    Google Scholar 
    48.Paudel, S. & Sah, J. P. Effects of different management practices on stand composition and species diversity in subtropical forests in Nepal: Implications of community participation in biodiversity conservation. J. Sustain. For. 34, 738–760 (2015).
    Google Scholar 
    49.Su, L., Miao, C., Borthwick, A. G. L. & Duan, Q. Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Res. 49, 94–105 (2017).ADS 

    Google Scholar 
    50.Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Miao, C., Sun, Q., Duan, Q. & Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. 47, 3221–3234 (2016).
    Google Scholar 
    53.Zhang, J. et al. Divergent responses of sympatric species to livestock encroachment at fine spatiotemporal scales. Biol. Conserv. 209, 119–129 (2017).
    Google Scholar 
    54.Cao, S., Liu, Y., Su, W., Zheng, X. & Yu, Z. The net ecosystem services value in mainland China. Sci. China Earth Sci. 61, 595–603 (2018).ADS 

    Google Scholar 
    55.Waiswa, D., Stern, M. J. & Prisley, S. P. Drivers of deforestation in the Lake Victoria crescent, Uganda. J. Sustain. For. 34, 259–275 (2015).
    Google Scholar 
    56.Xiao, Q. & Hu, D. Dynamic characteristics of a water resource structure in an urban ecological system: Structure modelling based on input–occupancy–output technology. J. Clean. Prod. 153, 548–557 (2017).
    Google Scholar  More

  • in

    Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015

    Here we describe methods for the GAEZ+ 2015 Annual Crop Data, and the GAEZ+ 2015 Monthly Cropland Data. The Annual Crop Data was generated first, then the Monthly Cropland Data was calculated based on the Harvest Area results of the Annual Data (Fig. 1).Fig. 1Schematic overview of annual and monthly data production methods. The GAEZ+ 2015 products described in this paper are in dark blue boxes; publicly available data used are in light blue. Dark blue arrows indicate which data are used in each processing step, and grey arrows from steps to data show which steps result in final GAEZ+ 2015 data products. The processing steps listed here are referred to in the Methods section text.Full size imageGAEZ+ 2015 Annual Crop Data MethodsThe GEAZ+ 2015 Annual Crop Data updates the 2010 GAEZ v4 crop harvest area, yield, and production maps6,7 (identified as Theme 5 in ref. 7) using national-scale data on the change in crop harvested area and livestock numbers from 2010 to 2015, based on statistics for 160 crop groups, and cattle and buffalo, from FAOSTAT5.Three datasets were used to produce GAEZ+ 2015 Annual Crop Data:

    1.

    FAOSTAT crop production domain: annual, country-level data on crop harvested area (H) and crop production (P) for each crop from the FAOSTAT database (Table 1)Table 1 GAEZ and FAOSTAT crop harmonization.Full size table

    2.

    GAEZ v46,7 gridded global annual harvested area, yield, and production by crop for the 26 FAOSTAT crops and crop categories at 5-minute resolution

    3.

    Global Administrative Unit Layer (GAUL 2012)13 data. GAUL 2012 reports the fraction of each global 5-minute grid cell that falls within a given country or disputed territory. There are 275 unique global administrative units.

    Step 1. Calculate crop changes from 2010 to 2015 by country:
    For each country, we extracted the harvested area (H) and crop production (P) for each of the 160 FAOSTAT crop categories, c, from the FAOSTAT database. We averaged three years (2009–2011) of annual national crop harvested area data to represent 2010 national crop harvest area, H2010, and three years (2014–2016) of annual crop harvested area data to represent 2015 national crop harvest area, H2015, then calculated a ratio, rHc, of 2015 to 2010 harvested areas for each crop c in each country, and equivalently, for crop production:$$r{H}_{c}={H}_{2015}/{H}_{2010}$$
    (1)
    $$r{P}_{c}={P}_{2015}/{P}_{2010}$$
    (2)
    This results in 160 rH and rP values per country. If harvest area and production values for a particular crop are zero or unreported in the FAOSTAT data, then rHc and rPc are both set to 1.0 (i.e., no change from 2010 to 2015). Three years of data are averaged (2009 – 2011 and 2014 – 2016) to account for missing data for some country/year combinations and to avoid emphasizing reported outliers.
    Step 2. Aggregate FAOSTAT-based ratios to the GAEZ crop categories:
    We followed the crop aggregation methods of the GAEZ model to aggregate the FAOSTAT crop list (160 unique crops as of 2019) to 26 crops (see Table 1). For each of the 26 GAEZ crop categories, if there is more than one matching FAOSTAT crop (see Table 1) then we applied an area-weighted average (based on FAOSTAT year 2015 harvested area) of the FAOSTAT crops within each country to the rH and rP values for that crop and country. This results in 26 rH and rP values per country. There was one exception to this: the GAEZ_2010 crop category ‘fodder crops’ was an aggregate of 17 FAOSTAT crops (see Table 1) for which harvest area data are no longer reported on FAOSTAT; i.e., GAEZ_2010 had obtained FAOSTAT data on fodder crops circa 2010, but FAOSTAT no longer provides any data on fodder crops for any year. We assumed that the 2010 to 2015 fractional change in fodder crop harvest area in each country was proportional to the change in the FAOSTAT reported national herd sizes for cattle and buffalo livestock data5 for that country, following the same methodology as for crop harvested area change (see Step 2 below). This method assumes a negligible international trade of fodder crops as indicated by bilateral trade matrices available from FAOSTAT.
    Step 3. Apply country-level ratios to grid cells:
    Calculated country-level ratios were then applied to each grid cell k, using the GAUL_201213 definitions for which grid cells fall within which countries. Some grid cells are split between two or more countries. In this case, all model output variables for the grid cell are divided between the countries based on the fraction of grid cell area falling within the country i:$${H}_{c,2015}^{k}={H}_{c,2010}^{k}{sum }_{i},{f}_{i}^{k}r{H}_{c,i}$$
    (3)
    $${P}_{c,2015}^{k}={P}_{c,2010}^{k}{sum }_{i},{f}_{i}^{k}r{P}_{c,i}$$
    (4)
    where ({H}_{c,2015}^{k}) is the year 2015 harvested area (or production) for crop c in grid cell k; ({f}_{i}^{k}) is the fraction of country i in grid cell k, and rHc,i and rPc,i are the ratios for crop c in country i as calculated in Eqs. 1 and 2. This results in 26 H and P values per grid cell. If the sum of all crop harvest areas exceeds 99% of the grid cell area, all crop harvest areas are reduced equally to fit within 99% of the area.
    Special Case: Sudan
    FAOSTAT data for years before 2011 report data for Sudan, and for South Sudan and Sudan after 2011. To compute the ratios for these grid cells, we split the 2010 data for Sudan into a virtual ‘North’ Sudan and ‘South_Sudan’, using the data for the year 2012, which was reported for both countries. We then used these generated 2010 data and applied the same methodology as described above to calculate changes in harvested areas and production in all grid cells in both countries.
    Special Case: Small regions and islands
    Forty-nine countries – generally small regions or islands – had no data reported for crop harvested area by FAOSTAT. We assumed that there was no change in crop harvested area for the grid cells in these countries. Note that many may have had zero ha as previously-reported crop area in GAEZ v4. These countries are (the number following each region is the region’s number in ADM0_CODE in the GAUL_2012 data13):Anguilla (9), Aruba (14), Ashmore_and_Cartier_Islands (16), Azores_Islands (74578), Baker_Island (22), Bassas_da_India (25), Bird_Island (32), Bouvet_Island (36), British_Indian_Ocean_Territory (38), Christmas_Island (54), Clipperton_Island (55), Cocos (Keeling)_Islands (56), Europa_Island (80), French_Southern_and_Antarctic_Territories (88), Glorioso_Island (96), Greenland (98), Guernsey (104), Heard_Island_and_McDonald_Islands (109), Howland_Island (112), Isle_of_Man (120), Jarvis_Island (127), Jersey (128), Johnston_Atoll (129), Juan_de_Nova_Island (131), Kingman_Reef (134), Kuril_islands (136), Madeira_Islands (151), Mayotte (161), Midway_Island (164), Navassa_Island (174), Netherlands_Antilles (176), Norfolk_Island (184), Northern_Mariana_Islands (185), Palmyra_Atoll (190), Paracel_Islands (193), Pitcairn (197), Saint_Helena (207), Scarborough_Reef (216), Senkaku_Islands (218), South_Georgia_and_the_South_Sandwich_Islands (228), Spratly_Islands (230), Svalbard_and_Jan_Mayen_Islands (234), Tromelin_Island (247), Turks_and_Caicos_Islands (251), United_States_Virgin_Islands (258), Wake_Island (265), Gibraltar (95), Holy_See (110), Liechtenstein (146).
    Special Case: Disputed Areas
    Some grid cells in the GAUL_201213 cell-table database are assigned to nine disputed areas, rather than to specific countries. We assumed that there was no change in crop harvested area or production from 2010 to 2015 for grid cells these disputed areas. These areas are (the number following each region is the region’s number of the ADM0_CODE in the GAUL_201213 data):Abyei (102), Aksai_Chin (2), Arunachal_Pradesh (15), China/India (52), Hala’ib_Triangle (40760), Ilemi_Triangle (61013), Jammu_and_Kashmir (40781), Ma’tan_al-Sarra (40762), Falkland_Islands_(Malvinas) (81).
    Step 4. Compute 2015 crop yields:
    Crop yields were computed for each crop, c, and grid cell, k, as the ratio of crop production to crop harvest area (if harvest area, Hc,k,2015, is zero, then yield, Yc,k,2015, is set to zero):$${Y}_{c,k,2015}={P}_{c,k,2015}/{H}_{c,k,2015}$$
    (5)
    The resulting gridded global data are:

    A.

    GAEZ+ 2015 Crop Harvest Area14

    B.

    GAEZ+ 2015 Crop Yield15

    C.

    GAEZ+ 2015 Crop Production16

    This new data product consists of 156 data files in geotiff format, one rainfed harvested area file and one irrigated harvested area file for each crop harvest area (1000 ha (107 m2) per 5-minute grid cell), crop production (1000 tonnes (106 kg) per 5-minute grid cell), and crop yield (tonnes per ha (10−1 kg m−2) per 5-minute grid cell), for each of the 26 GAEZ crops or crop categories in Table 1.GAEZ+ 2015 monthly cropland area methodsTwo datasets were used to produce monthly cropland area by crop and by irrigated vs rainfed management. These are:

    1.

    GAEZ+ 2015 Annual Harvested Area14 (as developed above)

    2.

    MIRCA2000 cropland area4

    Step 5. Harmonize the GAEZ+ 2015 and MIRCA2000 crop lists
    The MIRCA20004 cropland product provides monthly growing area grids (gridded physical cropland area) for 26 irrigated and rainfed crops and crop categories, as well as cropping calendars that identify the planting month and harvesting month for each crop (via ‘subcrops’ – see below). However, the MIRCA2000 crop list is not the same as the GAEZ+ 2015 crop list; we matched each crop type in the GAEZ+ 2015 crop list to a crop type in the MIRCA2000 crop list to enable the application of MIRCA2000 crop calendars to GAEZ+ 2015 crops (Table 2). Out of the 26 GAEZ+ 2015 crops, 18 had clear 1:1 matching crop categories within MIRCA2000. The remaining 8 crops were matched based on general crop characteristics, i.e., annual vs. perennial, or to unmatched MIRCA2000 cereals.Table 2 List of GAEZ crop categories used in all GAEZ+ 2015 products, as well as the matching between GAEZ+ 2015 crops and MIRCA20004 crop categories for the purposes of producing GAEZ+ 2015 monthly cropland data.Full size tableAn essential component of the MIRCA2000 cropland dataset is the identification of subcrop categories within each crop category to split crops into areas grown in different seasons, or crops with different planting and harvesting dates within the same season. Up to 5 subcrops can be defined to represent such multi-cropping practices. Below, we use the following notation:HG = annual harvested area from the GAEZ+ 2015 product for a given cropHM = annual harvested area calculated from the MIRCA2000 data for a given cropAM,n = cropland area of MIRCA2000 crop, subcrop n, by monthAG,n = cropland area of GAEZ+ 2015 crop, subcrop n, by monthAG = cropland area of GAEZ+ 2015 crop, by month
    Step 6. Apply MIRCA2000 monthly crop calendars to GAEZ+ 2015 annual data
    To generate the monthly cropland physical area of GAEZ+ 2015 crops, we followed these steps for each GAEZ crop in each grid cell:

    1.

    For a given GAEZ crop in a given grid cell, is the area reported >0 for the matching MIRCA2000 crop?

    a.

    If YES, then use the MIRCA2000 data for the grid cell and crop considered.

    b.

    If NO, then find the closest grid cell with the matching MIRCA2000 crop category, and apply the MIRCA2000 crop rotation from that grid cell to the given crop/grid cell combination for the following steps.

    2.

    Does the matching MIRCA2000 crop category (Table 1) have more than 1 subcrop?

    a.

    If NO, then AG = HG for all months of the cropping season, as defined by the MIRCA2000 crop calendar.

    b.

    If YES, then for each subcrop category n, apply the ratio of AM,n/HM to HG, then sum the subcrop areas within each month such that:

    $${A}_{G}=sum _{n}frac{{A}_{M,n}}{{H}_{M}}{H}_{G}$$

    3.

    For each month and each grid cell, check if the sum of all crops (irrigated and rainfed) is greater than the 99% of area of the grid cell. We assume that at least 1% of land must be retained as non-cropland for agricultural infrastructure such as roads, buildings, irrigation infrastructure, and other landcovers (e.g. rivers, wetlands).

    a.

    If NO, then no further processing is done.

    b.

    If YES, then reduce crop area by the excess value based on a removal order (Table 2). Rainfed crops have higher removal order numbers for the excess truncation (starting with 1) before removing irrigated crops, until the cell area is not exceeded. A large removal number (e.g., 20) indicates that the crop’s land is unlikely to be removed. Large priority numbers are given to the staple crops to ensure these important food producing lands are consistent with FAOSTAT country data.

    The maximum monthly amount of physical cropland that was removed by step 3 is 711,543 ha, which is 0.05% of total global cropland physical area.The resulting global gridded data from Step 6 are monthly time series of cropland physical area by crop, subcrop, and production system, called GAEZ+_2015 Monthly Cropland Data17. Combining the MIRCA2000 crop calendar and subcrop rotation information with the GAEZ+ 2015 annual data allows for the representation of crop seasonality; e.g., Fig. 2 shows the aggregate monthly cropland physical area for Rice 1 and Rice 2 (two sub-crops of rice) over the northern hemisphere, clearly illustrating the two main rice-growing seasons.Fig. 2Aggregate monthly cropland physical area for Rice 1 and Rice 2 subcrops from monthly GAEZ+ 2015 over the northern hemisphere shows the two main rice-growing seasons. This seasonality is the result of combining GAEZ+ 2015 annual data with the MIRCA20004 crop calendars and subcrop divisions.Full size image More

  • in

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    1.Ottesen, E. A. et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl Acad. Sci. USA 110, E488–E497 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Muñoz-Marín, M. D. C. et al. The transcriptional cycle is suited to daytime N2 fixation in the unicellular cyanobacterium “Candidatus Atelocyanobacterium thalassa” (UCYN-A). mBio 10, e02495-18 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    3.Vislova, A., Sosa, O. A., Eppley, J. M., Romano, A. E. & DeLong, E. F. Diel oscillation of microbial gene transcripts declines with depth in oligotrophic ocean waters. Front. Microbiol. 10, 2191 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    4.Harke, M. J. et al. Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME J. 13, 118–131 (2019).CAS 
    PubMed 

    Google Scholar 
    5.Hernández Limón, M. D. et al. Transcriptional patterns of Emiliania huxleyi in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential.Environ. Microbiol. 22, 381–396 (2020).PubMed 

    Google Scholar 
    6.Becker, K. W. et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat. Commun. 9, 5179 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    7.Frischkorn, K. R., Haley, S. T. & Dyhrman, S. T. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J. 12, 997–1007 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    8.Ottesen, E. A. et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014).CAS 
    PubMed 

    Google Scholar 
    9.Wilson, S. T. et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat. Microbiol. 2, 17118 (2017).CAS 
    PubMed 

    Google Scholar 
    10.Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Strenkert, D. et al. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 2374–2383 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Boysen, A. K. et al. Particulate metabolites and transcripts reflect diel oscillations of microbial activity in the surface ocean. mSystems 6, e00896-20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.White, A. E., Barone, B., Letelier, R. M. & Karl, D. M. Productivity diagnosed from the diel cycle of particulate carbon in the North Pacific Subtropical Gyre: optically derived productivity. Geophys. Res. Lett. 44, 3752–3760 (2017).CAS 

    Google Scholar 
    14.DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 

    Google Scholar 
    16.Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).CAS 
    PubMed 

    Google Scholar 
    17.Walbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light–dark synchronized bacterial cell cycle.PLoS ONE 7, e43432 (2012).
    Google Scholar 
    18.Steiner, P. A. et al. Highly variable mRNA half-life time within marine bacterial taxa and functional genes. Environ. Microbiol. 21, 3873–3884 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Moran, M. A. et al. Sizing up metatranscriptomics. ISME J. 7, 237–243 (2013).CAS 
    PubMed 

    Google Scholar 
    20.Tamames, J., Cobo-Simón, M. & Puente-Sánchez, F. Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes. BMC Genomics 20, 960 (2019).21.DiTullio, G. R. & Laws, E. A. Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: accuracy of methodology for predicting N-assimilation rates and N/C composition ratios. Mar. Ecol. Prog. Ser. 32, 123–132 (1986).CAS 

    Google Scholar 
    22.Granum, E., Kirkvold, S. & Myklestad, S. M. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar. Ecol. Prog. Ser. 242, 83–94 (2002).CAS 

    Google Scholar 
    23.Lacour, T., Sciandra, A., Talec, A., Mayzaud, P. & Bernard, O. Diel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of Isochrysis sp. J. Phycol. 48, 966–975 (2012).PubMed 

    Google Scholar 
    24.Follett, C. L., Dutkiewicz, S., Karl, D. M., Inomura, K. & Follows, M. J. Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J. 12, 1543–1557 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chen, W.-N. U. et al. Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31, 521–534 (2012).
    Google Scholar 
    26.Zhou, X. & Mopper, K. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar. Chem. 56, 201–213 (1997).CAS 

    Google Scholar 
    27.Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean.Nat. Microbiol. 4, 1706–1715 (2019).CAS 
    PubMed 

    Google Scholar 
    28.Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed 

    Google Scholar 
    29.Kolody, B. C. et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 13, 2817–2833 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    32.Bork, P. et al. Tara Oceans studies plankton at planetary scale. Science 348, 873 (2015).CAS 
    PubMed 

    Google Scholar 
    33.Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Morris, R. M. et al. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series Study site. Limnol. Oceanogr. 50, 1687–1696 (2005).CAS 

    Google Scholar 
    36.Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).CAS 
    PubMed 

    Google Scholar 
    37.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    38.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS 

    Google Scholar 
    39.Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    40.Cuhel, R. L., Ortner, P. B. & Lean, D. R. S. Night synthesis of protein by algae. Limnol. Oceanogr. 29, 731–744 (1984).CAS 

    Google Scholar 
    41.Coesel, S. N. et al. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc. Natl Acad. Sci. USA 118, e2011038118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Bolay, P., Muro-Pastor, M. I., Florencio, F. J. & Klähn, S. The distinctive regulation of cyanobacterial glutamine synthetase. Life (Basel) 8, 52 (2018).CAS 

    Google Scholar 
    43.Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc. Natl Acad. Sci. USA 109, 1842–1849 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Berman, T. & Bronk, D. A. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol. 31, 279–305 (2003).
    Google Scholar 
    45.Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).CAS 

    Google Scholar 
    46.Bada, J. L. & Lee, C. Decomposition and alteration of organic compounds dissolved in seawater. Mar. Chem. 5, 523–534 (1977).CAS 

    Google Scholar 
    47.Poretsky, R. S., Sun, S., Mou, X. & Moran, M. A. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ. Microbiol. 12, 616–627 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    49.Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).CAS 

    Google Scholar 
    50.Hu, S. K., Connell, P. E., Mesrop, L. Y. & Caron, D. A. A hard day’s night: diel shifts in microbial eukaryotic activity in the North Pacific Subtropical Gyre. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00351 (2018).51.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946 (2013).CAS 

    Google Scholar 
    52.Becker, K. W. et al. Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean.ISME J. 15, 520–533 (2021).CAS 
    PubMed 

    Google Scholar 
    53.Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 15, 41–54 (2021).CAS 
    PubMed 

    Google Scholar 
    54.Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).
    Google Scholar 
    55.Shmida, A. & Ellner, S. Coexistence of plant species with similar niches. Vegetatio 58, 29–55 (1984).
    Google Scholar 
    56.Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).PubMed 

    Google Scholar 
    57.Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 

    Google Scholar 
    58.Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    60.Padisák, J. Identification of relevant time-scales in non-equilibrium community dynamics: conclusions from phytoplankton surveys. N. Z. J. Ecol. 18, 169–176 (1994).
    Google Scholar 
    61.Anderies, J. M. & Beisner, B. E. Fluctuating environments and phytoplankton community structure: a stochastic model. Am. Nat.155, 556–569 (2000).PubMed 

    Google Scholar 
    62.Wagg, C. et al. Functional trait dissimilarity drives both species complementarity and competitive disparity. Funct. Ecol. 31, 2320–2329 (2017).
    Google Scholar 
    63.Bligh, E.G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS 
    PubMed 

    Google Scholar 
    64.Boysen, A. K., Heal, K. R., Carlson, L. T. & Ingalls, A. E. Best-matched internal standard normalization in liquid chromatography–mass spectrometry metabolomics applied to environmental samples. Anal. Chem. 90, 1363–1369 (2018).CAS 
    PubMed 

    Google Scholar 
    65.MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Fountoulakis, M. & Lahm, H. W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).CAS 
    PubMed 

    Google Scholar 
    67.Popendorf, K. J., Fredricks, H. F. & Van Mooy, B. A. S. Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48, 185–195 (2013).CAS 
    PubMed 

    Google Scholar 
    68.Collins, J. R., Edwards, B. R., Fredricks, H. F. & Van Mooy, B. A. S. LOBSTAHS: an adduct-based lipidomics strategy for discovery and identification of oxidative stress biomarkers. Anal. Chem. 88, 7154–7162 (2016).CAS 
    PubMed 

    Google Scholar 
    69.Hummel, J. et al. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2, 54 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS 
    PubMed 

    Google Scholar 
    71.Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).CAS 
    PubMed 

    Google Scholar 
    72.Biller, S. J. et al. Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes.Environ. Microbiol. https://doi.org/10.1111/1462-2920.15834 (2021).Article 
    PubMed 

    Google Scholar 
    73.Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. Version 1.33. GitHub https://github.com/najoshi/sickle (2015).77.Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 

    Google Scholar 
    78.Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    79.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    80.Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 

    Google Scholar 
    82.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    83.Meinicke, P. UProC: tools for ultra-fast protein domain classification. Bioinformatics 31, 1382–1388 (2015).CAS 
    PubMed 

    Google Scholar 
    84.Mende, D. R., Boeuf, D. & DeLong, E. F. Persistent core populations shape the microbiome throughout the water column in the North Pacific Subtropical Gyre. Front. Microbiol. 10, 2273 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    85.White, A. E. et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J. Geophys. Res. Oceans 120, 7381–7399 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    86.Borchers, H. W. pracma: Practical numerical math functions. R package version 2 https://cran.r-project.org/web/packages/pracma/index.html (2019).87.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 1.56 (2012).88.Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the Kohonen package. J. Stat. Softw. 21, 1–19 (2007).
    Google Scholar 
    89.Hennig, C. fpc: Flexible procedures for clustering. R package version 2.2-9 (2010).90.Muratore, D. Code for complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Zenodo https://doi.org/10.5281/zenodo.3817416 (2020). More

  • in

    Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors

    1.Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Hou, Q. & Kolodkin-Gal, I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol., https://doi.org/10.1093/femsec/fiaa142 (2020).3.Frost, I. et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 12, 1582–1593 (2018).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Niehus, R. & Mitri, S. Handling unpredictable ecosystems. Nat. Ecol. Evol. 2, 1207–1208 (2018).PubMed 

    Google Scholar 
    5.Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Zhu, H., Sandiford, S. K. & van Wezel, G. P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol Biotechnol. 41, 371–386 (2014).CAS 
    PubMed 

    Google Scholar 
    7.Arakawa, K. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van. Leeuwenhoek 111, 743–751 (2018).CAS 
    PubMed 

    Google Scholar 
    8.Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol 11, 285–293 (2013).CAS 
    PubMed 

    Google Scholar 
    9.Westhoff, S., Kloosterman, A. M., van Hoesel, S. F. A., van Wezel, G. P. & Rozen, D. E. Competition sensing changes antibiotic production in streptomyces. mBio. 12, https://doi.org/10.1128/mBio.02729-20 (2021).10.Hou, Q. et al. Weaponizing volatiles to inhibit competitor biofilms from a distance. NPJ Biofilms Microbiomes 7, 2 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Shank, E. A. Considering the lives of microbes in microbial communities. mSystems 3, https://doi.org/10.1128/mSystems.00155-17 (2018).12.Shank, E. A. et al. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc. Natl Acad. Sci. USA 108, E1236–E1243 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lyons, N. A., Kraigher, B., Stefanic, P., Mandic-Mulec, I. & Kolter, R. A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol. 26, 733–742 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Stefanic, P., Kraigher, B., Lyons, N. A., Kolter, R. & Mandic-Mulec, I. Kin discrimination between sympatric Bacillus subtilis isolates. Proc. Natl Acad. Sci. USA 112, 14042–14047 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kalamara, M., Spacapan, M., Mandic-Mulec, I. & Stanley-Wall, N. R. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110, 863–878 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Harris, K. D. & Kolodkin-Gal, I. Applying the handicap principle to biofilms: condition-dependent signalling in Bacillus subtilis microbial communities. Environ. Microbiol., https://doi.org/10.1111/1462-2920.14497 (2018).17.Dorrestein, P. C. & Kelleher, N. L. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Nat. Prod. Rep. 23, 893–918 (2006).CAS 
    PubMed 

    Google Scholar 
    18.Bloudoff, K. & Schmeing, T. M. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys. Acta Proteins Proteom. 1865, 1587–1604 (2017).CAS 
    PubMed 

    Google Scholar 
    19.Butcher, R. A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 1506–1509 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Tsuge, K., Ano, T. & Shoda, M. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch. Microbiol. 165, 243–251 (1996).CAS 
    PubMed 

    Google Scholar 
    21.Coutte, F. et al. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl Microbiol. 109, 480–491 (2010).CAS 
    PubMed 

    Google Scholar 
    22.Hilton, M. D., Alaeddinoglu, N. G. & Demain, A. L. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway. J. Bacteriol. 170, 482–484 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Zheng, G., Hehn, R. & Zuber, P. Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J. Bacteriol. 182, 3266–3273 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.De Gonzalo, C. V. G., Zhu, L. Y., Oman, T. J. & van der Donk, W. A. NMR structure of the S-linked glycopeptide sublancin 168. Acs Chem. Biol. 9, 796–801 (2014).
    Google Scholar 
    25.Ongena, M. & Jacques, P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2008).CAS 
    PubMed 

    Google Scholar 
    26.Magnuson, R., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).CAS 
    PubMed 

    Google Scholar 
    27.Nakano, M. M. et al. Srfa is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus-Subtilis. J. Bacteriol. 173, 1770–1778 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Danevcic, T. et al. Surfactin facilitates horizontal gene transfer in Bacillus subtilis. Front. Microbiol. 12, doi:ARTN 657407 https://doi.org/10.3389/fmicb.2021.657407 (2021).29.Kluge, B., Vater, J., Salnikow, J. & Eckart, K. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus-Subtilis Atcc-21332. Febs Lett. 231, 107–110 (1988).CAS 
    PubMed 

    Google Scholar 
    30.Gonzalez, D. J. et al. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157, 2485–2492 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rosenberg, G. et al. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2, 15027 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    32.Falardeau, J., Wise, C., Novitsky, L. & Avis, T. J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39, 869–878 (2013).CAS 
    PubMed 

    Google Scholar 
    33.Hoe, B. C., Gorzelnik, K. V., Yang, J. Y., Hendricks, N. & Dorrestein, P. C. Enzymatic resistance to the lipopeptide surfactin as identi fi ed through imaging mass spectrometry of bacterial competition. https://doi.org/10.1073/pnas.1205586109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1205586109 (2012).34.Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA 109, E1743–E1752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hu, F. X., Liu, Y. Y. & Li, S. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Factor. 18, https://doi.org/10.1186/s12934-019-1089-x (2019).36.Grau, A., Go, J. C. & Ortiz, A. A study on the interactions of surfactin with phospholipid vesicles. Biochim. Biophys. Acta. 1418, 307–319 (1999).37.Straight, P. D., Fischbach, M. A., Walsh, C. T., Rudner, D. Z. & Kolter, R. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 305–310 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Vargas-Bautista, C., Rahlwes, K. & Straight, P. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J. Bacteriol. 196, 717–728 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    39.Rajavel, M., Mitra, A. & Gopal, B. Role of Bacillus subtilis BacB in the synthesis of bacilysin. J. Biol. Chem. 284, 31882–31892 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Chen, X. H. et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140, 38–44 (2009).CAS 
    PubMed 

    Google Scholar 
    41.Wu, L. M. et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5, https://doi.org/10.1038/srep12975 (2015).42.Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5’-diphosphate 3’-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169–2176 (2003).CAS 
    PubMed 

    Google Scholar 
    43.Rapp, C., Jung, G., Katzer, W. & Loeffler, W. Chlorotetain from Bacillus-Subtilis, an antifungal dipeptide with an unusual chlorine-containing amino-acid. Angew. Chem. Int Ed. 27, 1733–1734 (1988).
    Google Scholar 
    44.Phister, T. G., O’Sullivan, D. J. & McKay, L. L. Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ. Microbiol 70, 631–634 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. & Shoda, M. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43, 2183–2192 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Msadek, T., Kunst, F., Klier, A. & Rapoport, G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173, 2366–2377 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Verhamme, D. T., Kiley, T. B. & Stanley-Wall, N. R. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol. Microbiol. 65, 554–568 (2007).CAS 
    PubMed 

    Google Scholar 
    48.Comella, N. & Grossman, A. D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol. Microbiol. 57, 1159–1174 (2005).CAS 
    PubMed 

    Google Scholar 
    49.Wolf, D. et al. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Res. 44, 2160–2172 (2016).CAS 
    PubMed 

    Google Scholar 
    50.Koroglu, T. E., Ogulur, I., Mutlu, S., Yazgan-Karatas, A. & Ozcengiz, G. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis. J. Mol. Microbiol Biotechnol. 20, 144–155 (2011).CAS 
    PubMed 

    Google Scholar 
    51.Ceyhan, D. I., Celekli, A. & Can, C. Relationship between soil composition, diversity and antifungal properties of Bacillus spp. isolated from southeastern Anatolia. Biotechnol. Biotec. Eq. 33, 170–177 (2019).CAS 

    Google Scholar 
    52.Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128, 1583–1594 (2020).CAS 
    PubMed 

    Google Scholar 
    53.Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovacs, A. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol., https://doi.org/10.1038/s41579-021-00540-9 (2021).54.Dergham, Y. et al. Comparison of the genetic features involved in Bacillus subtilis biofilm formation using multi-culturing approaches. Microorganisms 9, https://doi.org/10.3390/microorganisms9030633 (2021).55.Oppenheimer-Shaanan, Y. et al. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2, 15031 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Barabesi, C. et al. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189, 228–235 (2007).CAS 
    PubMed 

    Google Scholar 
    57.Marvasi, M., Visscher, P. T., Perito, B., Mastromei, G. & Casillas-Martinez, L. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol. 71, 341–350 (2010).CAS 
    PubMed 

    Google Scholar 
    58.Richter, M. & Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. P Natl Acad. Sci. USA 106, 19126–19131 (2009).ADS 
    CAS 

    Google Scholar 
    59.Goldoni, M. & Johansson, C. A mathematical approach to study combined effects of toxicants in vitro: Evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol. Vitr. 21, 759–769 (2007).60.Fan, F. & Wood, K. V. Bioluminescent assays for high-throughput screening. Assay. Drug Dev. Technol. 5, 127–136 (2007).CAS 
    PubMed 

    Google Scholar 
    61.McLoon, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R. & Losick, R. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J. Bacteriol. 193, 679–685 (2011).CAS 
    PubMed 

    Google Scholar 
    62.Irazoki, O., Hernandez, S. B. & Cava, F. Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.00500 (2019).63.Virmani, R. et al. The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. J. Biol. Chem. 294, 8930–8941 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    64.Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev. 33, 152–163 (2009).CAS 
    PubMed 

    Google Scholar 
    65.Libby, E. A., Goss, L. A. & Dworkin, J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoS Genet. 11, e1005275 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Rismondo, J., Percy, M. G. & Grundling, A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J. Biol. Chem. 293, 3293–3306 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Audisio, M. C. Gram-positive bacteria with probiotic potential for the Apis mellifera L. Honey Bee: the experience in the Northwest of Argentina. Probiotics Antimicrob. Proteins 9, 22–31 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Emmert, E. A. & Handelsman, J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol. Lett. 171, 1–9 (1999).CAS 
    PubMed 

    Google Scholar 
    69.Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34, 1037–1062 (2010).CAS 
    PubMed 

    Google Scholar 
    71.Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science 321, 256–259 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N. & Gibbs, K. A. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio. 4, https://doi.org/10.1128/mBio.00374-13 (2013).73.Hou, Q. & Kolodkin-Gal, I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol. Ecol. 96, https://doi.org/10.1093/femsec/fiaa142 (2020).74.Shivers, R. P. & Sonenshein, A. L. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53, 599–611 (2004).CAS 
    PubMed 

    Google Scholar 
    75.Zhang, Z. R. et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci. Adv. 6, https://doi.org/10.1126/sciadv.aay5781 (2020).76.Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 32, 149–167 (2008).CAS 
    PubMed 

    Google Scholar 
    77.Bhavsar, A. P. & Brown, E. D. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol. Microbiol. 60, 1077–1090 (2006).CAS 
    PubMed 

    Google Scholar 
    78.Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    79.Korgaonkar, A. K. & Whiteley, M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J. Bacteriol. 193, 909–917 (2011).CAS 
    PubMed 

    Google Scholar 
    80.Sicard, J. F. et al. N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut Pathog. 10, 26 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    81.Aliashkevich, A., Alvarez, L. & Cava, F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front. Microbiol. 9, 683 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    82.Rigali, S. et al. Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008).83.Vollmer, W. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev. 32, 287–306 (2008).CAS 
    PubMed 

    Google Scholar 
    84.Kim, S. J., Chang, J. & Singh, M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys. Acta 1848, 350–362 (2015).CAS 
    PubMed 

    Google Scholar 
    85.Vetsigian, K., Jajoo, R. & Kishony, R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol. 9, e1001184 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Cuthbertson, L. & Nodwell, J. R. The TetR family of regulators. Microbiol Mol. Biol. Rev. 77, 440–475 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J. 30, 3442–3453 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.van der Es, D., Hogendorf, W. F., Overkleeft, H. S., van der Marel, G. A. & Codee, J. D. Teichoic acids: synthesis and applications. Chem. Soc. Rev. 46, 1464–1482 (2017).PubMed 

    Google Scholar 
    89.Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).CAS 
    PubMed 

    Google Scholar 
    90.Dubnau, D. Genetic competence in Bacillus subtilis. Microbiol Rev. 55, 395–424 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Stefanic, P. et al. Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat. Commun. 12, 3457 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Salvadori, G., Junges, R., Morrison, D. A. & Petersen, F. C. Competence in Streptococcus pneumoniae and close commensal relatives: mechanisms and implications. Front. Cell Infect. Microbiol. 9, 94 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Jowett, G. H. Statistical-methods for research workers – Fisher, Ra. R. Stat. Soc. C.-Appl. 5, 68–70 (1956).
    Google Scholar 
    94.Farzand, A. et al. Marker assisted detection and LC-MS analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on Sclerotinia sclerotiorum. Biol. Control 133, 91–102 (2019).CAS 

    Google Scholar 
    95.Paksanont, S. et al. Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci. Rep. 8, 9167 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Andreevskaya, M. et al. Food spoilage-associated Leuconostoc, Lactococcus, and Lactobacillus species display different survival strategies in response to competition. Appl. Environ. Microbiol. 84, https://doi.org/10.1128/AEM.00554-18 (2018).97.Ju, S. Y. et al. Isolation and optimal fermentation condition of the Bacillus subtilis Subsp. natto strain WTC016 for nattokinase production. Fermentation-Basel 5, https://doi.org/10.3390/fermentation5040092 (2019).98.Mouloud, G., Daoud, H., Bassem, J., Atef, I. & Hani, B. New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Appl. Biochem. Biotech. 171, 2186–2200 (2013).CAS 

    Google Scholar  More

  • in

    Fourteen years of continuous soil moisture records from plant and biocrust-dominated microsites

    1.Cherlet, M., et al (Eds.). World Atlas of Desertification. Luxembourg: Publication Office of the European Union (2018).2.Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159–78 (2006).ADS 
    CAS 

    Google Scholar 
    3.Maestre, F. T. et al. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J. Arid Environ. 75, 1282–91 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Noy-Meir, I. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Evol. Syst. 4(1), 25–51 (1973).
    Google Scholar 
    5.Puigdefábregas, J., Sole, A., Gutierrez, L., Del Barrio, G. & Boer, M. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Sci. Rev. 48(1–2), 39–70 (1999).ADS 

    Google Scholar 
    6.Puigdefábregas, J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf. Process. Landf. 30(2), 133–147 (2005).ADS 

    Google Scholar 
    7.Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17(7), 1242–1256 (2014).CAS 

    Google Scholar 
    8.Meza, F. J., Montes, C., Bravo-Martínez, F., Serrano-Ortiz, P. & Kowalski, A. S. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci. Rep. 8, 8570 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–35 (2004).ADS 
    PubMed 

    Google Scholar 
    10.Safirel, U & Adeel, Z. Ecosystems and human well-being: current state and trends, vol. 1. Washington, DC: Island Press (2005).11.Brocca, L., Melone, F., Moramarco, T. & Morbidelli, R. Spatial-temporal variability of soil moisture and its estimation across scales: Soil Moisture Spatiotemporal Variability. Water Resour. Res. 46, W02516 (2010).ADS 

    Google Scholar 
    12.Brocca, L. et al. Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sens. 50, 2542–2555 (2012).ADS 

    Google Scholar 
    13.Parinussa, R. et al. Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. Int. J. Remote Sens. 35, 7007–7029 (2014).
    Google Scholar 
    14.Cui, Y. et al. A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015. Sci. Data 6, 247 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    15.Solomon, S. et al. (Eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel in Climate Change. Cambridge and New York: Cambridge University Press (2007).16.Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. Biogeosci. 125(2), e2019JG005266 (2020).ADS 

    Google Scholar 
    17.Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11(1), 38–44 (2021).ADS 

    Google Scholar 
    18.Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 1–19 (2021).19.Naz, B. S., Kollet, S., Franssen, H. J. H., Montzka, C. & Kurtz, W. A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data 7(1), 1–14 (2020).
    Google Scholar 
    20.Tietjen, B. et al. Effects of climate change on the coupled dynamics of water and vegetation in drylands. Ecohydrology 3, 226–237 (2010).
    Google Scholar 
    21.Cui, Y. et al. A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015. Sci. Data 6(1), 1–7 (2019).
    Google Scholar 
    22.Tongway, D.J., Valentin, C., Seghieri, J. (Eds.). Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management. Berlin: Springer (2001).23.Maestre, F. T. & Cortina, J. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241(2), 279–291 (2002).CAS 

    Google Scholar 
    24.Maestre, F.T. et al. Biogeography of global drylands. New Phytol. (2021).25.Bhark, E. W. & Small, E. E. Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6, 0185–96 (2003).
    Google Scholar 
    26.Yepez, E. A. et al. Dynamics of transpiration and evaporation following a moisture pulse in semiarid grassland: a chamber-based isotope method for partitioning flux components. Agric. For. Meteorol. 132, 359–76 (2005).ADS 

    Google Scholar 
    27.Eldridge, D. J. et al. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13(4), 499–510 (2010).MathSciNet 

    Google Scholar 
    28.Cerdà, A. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. J. Arid Environ. 36(1), 37–51 (1997).ADS 
    MathSciNet 

    Google Scholar 
    29.Weber, B., Büdel, B. & Belnap, J. (Eds.). Biological soil crusts: an organizing principle in drylands. Cham: Springer (2016).30.Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26(10), 6003–6014 (2020).ADS 

    Google Scholar 
    31.Castillo-Monroy, A. P., Delgado-Baquerizo, M., Maestre, F. T. & Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 333, 21–34 (2010).CAS 

    Google Scholar 
    32.Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos. T. R. Soc. B. 367(1606), 3087–3099 (2012).
    Google Scholar 
    33.Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol. 19, 3835–3847 (2013).ADS 

    Google Scholar 
    34.Delgado‐Baquerizo, M. et al. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J. Ecol. 102(6), 1592–1605 (2014).
    Google Scholar 
    35.Delgado‐Baquerizo, M. et al. Differences in thallus chemistry are related to species‐specific effects of biocrust‐forming lichens on soil nutrients and microbial communities. Funct. Ecol. 29(8), 1087–1098 (2015).
    Google Scholar 
    36.Lafuente, A., Berdugo, M., Ladron de Guevara, M., Gozalo, B. & Maestre, F. T. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology 11(6), e1935 (2018).PubMed 

    Google Scholar 
    37.IUSS Working Group WRB. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Rome, Italy: FAO (2006).38.Chamizo, S., Cantón, Y., Lázaro, R. & Domingo, F. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. J. Hydrol. 489, 74–84 (2013).ADS 

    Google Scholar 
    39.Chamizo, S., Cantón, Y., Rodríguez‐Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrol. 9(7), 1208–1221 (2016).
    Google Scholar 
    40.Dalton, M., Buss, P., Treijs, A. & Portmann, M. in Irrigation Australia Limited Regional Conference (Penrith Panthers, 2015).41.Francesca, V., Osvaldo, F., Stefano, P. & Paola, R. P. Soil moisture measurements: Comparison of instrumentation performances. J. Irrig. Drain. Eng. 136(2), 81–89 (2010).
    Google Scholar 
    42.Payero, J. O., Nafchi, A. M., Davis, R. & Khalilian, A. An Arduino-based wireless sensor network for soil moisture monitoring using Decagon EC-5 sensors. Open J. soil Sci. 7(10), 288 (2017).
    Google Scholar 
    43.Payero, J. O., Qiao, X., Khalilian, A., Mirzakhani-Nafchi, A. & Davis, R. Evaluating the effect of soil texture on the response of three types of sensors used to monitor soil water status. JWARP 9(06), 566 (2017).
    Google Scholar 
    44.Sakaki, T., Limsuwat, A., Smits, K.M. & Illangasekare, T.H. Empirical two‐point α‐mixing model for calibrating the ECH2O EC‐5 soil moisture sensor in sands. Water Resour. Res. 44(4) (2008).45.Sharma, H., Shukla, M. K., Bosland, P. W. & Steiner, R. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agric. Water Manag. 179, 81–91 (2017).
    Google Scholar 
    46.Castillo-Monroy, A. P., Maestre, F. T., Rey, A., Soliveres, S. & García-Palacios, P. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosyst. 14(5), 835–847 (2011).CAS 

    Google Scholar 
    47.Steven, B., Gallegos-Graves, L. V., Belnap, J. & Kuske, C. R. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol. Ecol. 86(1), 101–113 (2013).CAS 
    PubMed 

    Google Scholar 
    48.Ding, J. & Eldridge, D. J. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant Soil 450(1), 429–441 (2020).CAS 

    Google Scholar 
    49.Rodríguez-Caballero, E. et al. Ecosystem services provided by biocrusts: from ecosystem functions to social values. J. Arid Envion. 159, 45–53 (2018).ADS 

    Google Scholar 
    50.Zaady, E., Eldridge, D.J. & Bowker, M.A. in Biological soil crusts: An organizing principle in drylands (Springer, 2016).51.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).52.Ushey, K. renv: Project Environments. R package version 0.13.2. https://CRAN.R-project.org/package=renv (2021).53.Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.14.0. https://CRAN.R-project.org/package=data.table (2021).54.Firke, S. janitor: Simple Tools for Examining and Cleaning Dirty Data. R package version 2.1.0. https://CRAN.R-project.org/package = janitor (2021).55.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS 

    Google Scholar 
    56.Zhu, H. kableExtra: Construct Complex Table with ‘kable’ and Pipe Syntax. R package version 1.3.4. https://CRAN.R-project.org/package=kableExtra (2021).57.Microsoft & Weston, S. foreach: Provides Foreach Looping Construct. R package version 1.5.1. https://CRAN.R-project.org/package=foreach (2020).58.Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).59.Wickham, H. & Hester, J. readr: Read Rectangular Text Data. R package version 1.4.0. https://CRAN.R-project.org/package=readr (2020).60.Ooms, J. writexl: Export Data Frames to Excel ‘xlsx’ Format. R package version 1.4.0. https://CRAN.R-project.org/package=writexl (2021).61.Müller, K., Wickham, H., James, D.A. & Falcon, S. RSQLite: ‘SQLite’ Interface for R. R package version 2.2.7. https://CRAN.R-project.org/package=RSQLite (2021).62.Csárdi, G., Podgórski, K. & Geldreich, R. zip: Cross-Platform ‘zip’ Compression. R package version 2.1.1. https://CRAN.R-project.org/package=zip (2020).63.Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.31. https://CRAN.R-project.org/package=knitr (2021).64.R Special Interest Group on Databases (R-SIG-DB), Wickham, H. & Müller, K. DBI: R Database Interface. R package version 1.1.1. https://CRAN.R-project.org/package=DBI (2021).65.Moreno, J. et al. The MOISCRUST dataset. figshare https://doi.org/10.6084/m9.figshare.14748384 (2021).66.Topp, G. C. & Davis, J. L. Measurement of soil water content using time-domain reflectometry (TDR): a field evaluation. Soil Sci. Soc. Am. J. 49, 19–24 (1985).ADS 

    Google Scholar 
    67.Cantón, Y., Solé-Benet, A. & Domingo, F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 285, 199–214 (2004).ADS 

    Google Scholar 
    68.Breshears, D. D. & Barnes, F. J. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landsc. Ecol. 14, 465–78 (1999).
    Google Scholar 
    69.D’Odorico, P., Caylor, K., Okin, G. S. & Scanlon, T. M. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res. 112, G04010 (2007).ADS 

    Google Scholar  More