More stories

  • in

    Wind power versus wildlife: root mitigation in evidence

    CORRESPONDENCE
    11 January 2022

    Wind power versus wildlife: root mitigation in evidence

    Tim Schmoll

    0
    &

    Frank M. Schurr

    1

    Tim Schmoll

    Bielefeld University, Bielefeld, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Frank M. Schurr

    University of Hohenheim, Stuttgart, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Germany’s new government plans to dramatically expand the production of onshore wind power. It intends to deploy “innovative technical mitigation measures such as anti-collision systems” for turbines to avoid large-scale killing of birds and bats and undermining conservation goals. We argue that it should also use this roll-out to systematically evaluate such systems.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00012-x

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Renewable energy

    Biodiversity

    Latest on:

    Renewable energy

    COVID’s career impact and embryo secrets — the week in infographics
    News 19 NOV 21

    The start-ups chasing clean, carbon-free fusion energy
    News Feature 17 NOV 21

    Scientists cheer India’s ambitious carbon-zero climate pledge
    News 05 NOV 21

    Biodiversity

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    Jobs

    Senior Medical Director, Global Medical Affairs Alzheimer’s Disease, Global Medical Evidence Generation

    Eisai Inc.
    Nutley, NJ, United States

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel More

  • in

    Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant

    Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan Theor Appl Genet 109(3):588–595PubMed 

    Google Scholar 
    Akerman A, Bürger R (2014) The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model J Math Biol 68(5):1135–1198PubMed 

    Google Scholar 
    Al-Asadi H, Petkova D, Stephens M, Novembre J (2019) Estimating recent migration and population-size surfaces PLoS Genet 15(1):e1007908PubMed 
    PubMed Central 

    Google Scholar 
    Baker HG (1967) Support for Baker’s law-as a rule Evolution 21(4):853–856PubMed 

    Google Scholar 
    Baker K, Baker K, Bayer M, Cook N, Dreißig S, Dhillon T, Russell J, Hedley PE, Morris J, Ramsay L, Colas I et al. (2014) The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression Plant J 79(6):981–992CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Battey C, Ralph PL, Kern AD (2020) Space is the place: effects of continuous spatial structure on analysis of population genetic data Genetics 215(1):193–214CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross’ Arta’ × H. spontaneum 41-1 Theor Appl Genet 107(7):1215–1225CAS 
    PubMed 

    Google Scholar 
    Bedada G, Westerbergh A, Nevo E, Korol A, Schmid KJ (2014) DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel Heredity 112(6):646–655CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berner D, Roesti M (2017) Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate Mol Ecol 26(22):6351–6369CAS 
    PubMed 

    Google Scholar 
    Bhatia G, Patterson N, Sankararaman S, Price AL (2013) Estimating and interpreting FST: the impact of rare variants Genome Res 23(9):1514–1521CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohra A, Kilian B, Kilian B, Sivasankar S, Caccamo M, Mba, C, McCouch SR, Varshney RK (2021) Reap the crop wild relatives for breeding future crops. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.08.009Bradburd GS, Coop GM, Ralph PL (2018) Inferring continuous and discrete population genetic structure across space. Genetics 210(1):33–52PubMed 
    PubMed Central 

    Google Scholar 
    Bürger R, Akerman A (2011) The effects of linkage and gene flow on local adaptation: a two-locus continent–island model. Theor Popul Biol 80(4):272–288PubMed 
    PubMed Central 

    Google Scholar 
    Cabreros I, Storey JD (2019) A likelihood-free estimator of population structure bridging admixture models and principal components analysis. Genetics 212(4):1009–1029PubMed 
    PubMed Central 

    Google Scholar 
    Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172(1):557–567CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capblancq T, Luu K, Blum MG, Bazin E (2018) Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour 18(6):1223–1233CAS 
    PubMed 

    Google Scholar 
    Caye K, Jumentier B, Lepeule J, François O (2019) LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol 36(4):852–860CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, Casas AM, Igartua E (2019) Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Mol Ecol 28(8):1994–2012PubMed 
    PubMed Central 

    Google Scholar 
    Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaptation to climate change. New Phytol 206(3):913–931PubMed 

    Google Scholar 
    Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (pcnm). Ecol Model 196(3-4):483–493
    Google Scholar 
    Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2019) adespatial: multivariate multiscale spatial analysis. R package version 0.3-7. https://CRAN.R-project.org/package=adespatialElshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103(4):285–298CAS 
    PubMed 

    Google Scholar 
    Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL (2014) Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G34(7):1193–1203PubMed 
    PubMed Central 

    Google Scholar 
    Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315
    Google Scholar 
    Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol Ecol 27(9):2215–2233CAS 
    PubMed 

    Google Scholar 
    Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25(1):104–120CAS 
    PubMed 

    Google Scholar 
    Galkin E, Dalal A, Evenko A, Fridman E, Kan I, Wallach R, Moshelion M (2018) Risk-management strategies and transpiration rates of wild barley in uncertain environments. Physiol Plant 164(4):412–428CAS 
    PubMed 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555–1579CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson MJ, Moyle LC (2020) Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol 29(12):2204–2217CAS 
    PubMed 

    Google Scholar 
    Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220PubMed 
    PubMed Central 

    Google Scholar 
    Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Slayton ER, Wilkins O, Castillo CC, Negrão S et al. (2020) Genomic history and ecology of the geographic spread of rice. Nat Plants 6(5):492–502PubMed 

    Google Scholar 
    Hämälä T, Savolainen O (2019) Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol Biol Evol 36(11):2557–2571
    Google Scholar 
    Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080CAS 
    PubMed 

    Google Scholar 
    Hartfield M, Bataillon T, Glémin S (2017) The evolutionary interplay between adaptation and self-fertilization. Trends Genet 33(6):420–431CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L (2016) The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in yellowstone mimulus guttatus. Mol Ecol 25(22):5647–5662CAS 
    PubMed 

    Google Scholar 
    Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B et al. (2017) Soilgrids250m: Global gridded soil information based on machine learning. PLoS ONE 12(2):e0169748PubMed 
    PubMed Central 

    Google Scholar 
    Herzig P, Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K (2018) Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. J Exp Bot 69(7):1517–1531CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill W, Weir B (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33(1):54–78CAS 
    PubMed 

    Google Scholar 
    Hodgins KA, Yeaman S (2019) Mating system impacts the genetic architecture of adaptation to heterogeneous environments. New Phytol 224(3):1201–1214PubMed 

    Google Scholar 
    House GL, Hahn MW (2018) Evaluating methods to visualize patterns of genetic differentiation on a landscape. Mol Ecol Resour 18(3):448–460PubMed 

    Google Scholar 
    Hübner S, Korol AB, Schmid KJ (2015) Rna-seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley hordeum spontaneum. BMC Plant Biol15(1):1–14
    Google Scholar 
    Hübner S, Bdolach E, Ein-Gedy S, Schmid KJ, Korol A, Fridman E (2013) Phenotypic landscapes: phenological patterns in wild and cultivated barley. J Evol Biol 26(1):163–174PubMed 

    Google Scholar 
    Hübner S, Günther T, Flavell A, Fridman E, Graner A, Korol A, Schmid KJ (2012) Islands and streams: clusters and gene flow in wild barley populations from the Levant. Mol Ecol 21(5):1115–1129PubMed 

    Google Scholar 
    Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18(7):1523–1536PubMed 

    Google Scholar 
    Jakob SS, Rödder D, Engler JO, Shaaf S, Özkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6(3):685–702CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X-Q, Angessa TT, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston LB, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers KJ, Langridge P, Waugh R, Pozniak CJ, Scholz U, Mayer KFX, Spannagl M, Li C, Mascher M, Stein N (2020) The barley pan-genome reveals the hidden legacy of mutation breeding Nature 588:284–289. https://doi.org/10.1038/s41586-020-2947-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241
    Google Scholar 
    Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genom 276(3):230–241CAS 

    Google Scholar 
    Lasky JR, Des Marais DL, McKAY JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21(22):5512–5529PubMed 

    Google Scholar 
    Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya C, Mitchell SE et al. (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1(6):e1400218PubMed 
    PubMed Central 

    Google Scholar 
    Lawson DJ, Van Dorp L, Falush D (2018) A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat Commun 9(1):1–11CAS 

    Google Scholar 
    Lee C-R, Mitchell-Olds T (2011) Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol Ecol 20(22):4631–4642PubMed 
    PubMed Central 

    Google Scholar 
    Leek JT (2011) Asymptotic conditional singular value decomposition for high-dimensional genomic data. Biometrics 67(2):344–352PubMed 

    Google Scholar 
    Legendre P, Legendre L (2012) Canonical analysis. In: Numerical ecology, 3rd English edn, chap. 11. Elsevier Science BV, The Netherlands, pp 625–710López-Goldar X, Agrawal AA (2021) Ecological interactions, environmental gradients, and gene flow in local adaptation Trends Plant Sci 26(8):796–809PubMed 

    Google Scholar 
    Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24(5):1031–1046PubMed 

    Google Scholar 
    Lundgren E, Ralph PL (2019) Are populations like a circuit? Comparing isolation by resistance to a new coalescent-based method. Mol Ecol Resour 19(6):1388–1406PubMed 

    Google Scholar 
    Makowski D, Ben-Shachar M, Lüdecke D (2019) bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4(40):1541
    Google Scholar 
    Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433CAS 
    PubMed 

    Google Scholar 
    Mascher M (2019) Pseudomolecules and annotation of the second version of the reference genome sequence assembly of barley cv. morex [morex v2]. https://doi.ipk-gatersleben.de:443/DOI/83e8e186-dc4b-47f7-a820-28ad37cb176b/d1067eba-1d08-42e2-85ec-66bfd5112cd8/2McVean G (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5(10):e1000686Mee JA, Yeaman S (2019) Unpacking conditional neutrality: genomic signatures of selection on conditionally beneficial and conditionally deleterious mutations. Am Nat 194(4):529–540PubMed 

    Google Scholar 
    Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P et al. (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51(2):319–326CAS 
    PubMed 

    Google Scholar 
    Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102(7):2442–2447CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V et al. (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49(3):476
    Google Scholar 
    Nevo E, Zohary D, Brown A, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33(3):815–833CAS 
    PubMed 

    Google Scholar 
    Nevo E, Beharav A, Meyer RC, Hackett CA, Forster BP, Russell JR, Powell W (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biol J Linn Soc84(2):205–224
    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=veganPankin A, Altmüller J, Becker C, von Korff M (2018) Targeted resequencing reveals genomic signatures of barley domestication. New Phytol 218(3):1247–1259CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633):418–422CAS 

    Google Scholar 
    Pembleton L, Cogan N, Forster J (2013) StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations Mol Ecol Res 13:946–952. https://doi.org/10.1111/1755-0998.12129CAS 
    Article 

    Google Scholar 
    Peterman WE (2018) Resistancega: an r package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9(6):1638–1647
    Google Scholar 
    Petkova D, Novembre J, Stephens M (2016) Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet 48(1):94CAS 
    PubMed 

    Google Scholar 
    Pham A-T, Maurer A, Pillen K, Brien C, Dowling K, Berger B, Eglinton JK, March TJ (2019) Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biol 19(1):134PubMed 
    PubMed Central 

    Google Scholar 
    Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J (2013) Complex patterns of local adaptation in teosinte. Genome Biol Evol 5(9):1594–1609PubMed 
    PubMed Central 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24(17):4348–4370PubMed 

    Google Scholar 
    Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC, Bowers JE, Burke JM, Rieseberg LH (2013) Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun 4(1):1–8
    Google Scholar 
    Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S et al. (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48(9):1024CAS 
    PubMed 

    Google Scholar 
    Samuk K, Samuk K, Owens GL, Delmore KE, Miller SE, Rennison DJ, Schluter D (2017) Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol Ecol 26(17):4378–4390PubMed 

    Google Scholar 
    Sato K, Mascher M, Himmelbach A, Haberer G, Spannagl M, Stein N (2021) Chromosome-scale assembly of wild barley accession ‘OUH602’. G3 11(10):jkab244PubMed 
    PubMed Central 

    Google Scholar 
    Schmid K, Kilian B. Russell J (2018) Barley domestication, adaptation and population genomics. In: The Barley Genome, Springer International Publishing: Cham, pp 317–336Szkiba D, Kapun M, von Haeseler A, Gallach M (2014) SNP2GO: functional analysis of genome-wide association studies. Genetics 197(1):285–289PubMed 
    PubMed Central 

    Google Scholar 
    Terrazas RA, Balbirnie-Cumming K, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Fridman E, Bulgarelli D (2020) A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Sci Rep 10(1):1–13
    Google Scholar 
    Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 29(12):673–680PubMed 

    Google Scholar 
    Tsuda Y, Chen J, Stocks M, Källman T, Sønstebø JH, Parducci L, Semerikov V, Sperisen C, Politov D, Ronkainen T et al. (2016) The extent and meaning of hybridization and introgression between siberian spruce (picea obovata) and norway spruce (picea abies): cryptic refugia as stepping stones to the west? Mol Ecol 25(12):2773–2789CAS 
    PubMed 

    Google Scholar 
    Turner-Hissong SD, Mabry ME, Beissinger TM, Ross-Ibarra J, Pires JC (2020) Evolutionary insights into plant breeding Curr Opin Plant Biol 54:93–100. https://doi.org/10.1016/j.pbi.2020.03.003CAS 
    Article 
    PubMed 

    Google Scholar 
    de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23(8):2006–2019PubMed 

    Google Scholar 
    Volis S (2011) Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and QST-FST test. New Phytol 192(1):237–248CAS 
    PubMed 

    Google Scholar 
    Volis S, Mendlinger S, Ward D (2002a) Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol J Linn Soc 77(4):479–490
    Google Scholar 
    Volis S, Mendlinger S, Ward D (2002b) Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2):131–138PubMed 

    Google Scholar 
    Volis S, Zaretsky M, Shulgina I (2010) Fine-scale spatial genetic structure in a predominantly selfing plant: role of seed and pollen dispersal. Heredity 105(4):384–393CAS 
    PubMed 

    Google Scholar 
    Volis S, Shulgina I, Ward D, Mendlinger S (2003) Regional subdivision in wild barley allozyme variation: adaptive or neutral? J Hered 94(4):341–351CAS 
    PubMed 

    Google Scholar 
    Volis S, Verhoeven K, Mendlinger S, Ward D (2004) Phenotypic selection and regulation of reproduction in different environments in wild barley. J Evol Biol 17(5):1121–1131CAS 
    PubMed 

    Google Scholar 
    Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S (2005) Distinguishing adaptive from nonadaptive genetic differentiation: comparison of q st and f st at two spatial scales. Heredity 95(6):466–475CAS 
    PubMed 

    Google Scholar 
    Volis S, Yakubov B, Shulgina I, Ward D, Zur V, Mendlinger S (2001) Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biol J Linn Soc 74(3):289–303
    Google Scholar 
    Wang X, Chen Z-H, Yang C, Zhang X, Jin G, Chen G, Wang Y, Holford P, Nevo E, Zhang G et al. (2018) Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proc Natl Acad Sci USA 115(20):5223–5228CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiegmann M, Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K (2019) Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues Sci Rep 9(1):6397. https://doi.org/10.1038/s41598-019-42673-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration–selection balance. Evolution 65(7):1897–1911PubMed 

    Google Scholar 
    Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B (2012) A high-performance computing toolset for relatedness and principal component analysis of snp data Bioinformatics 28(24):3326–3328. https://doi.org/10.1093/bioinformatics/bts606CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Distinct gut microbiomes in two polar bear subpopulations inhabiting different sea ice ecoregions

    1.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651. https://doi.org/10.1126/science.1155725 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527. https://doi.org/10.1007/s00248-017-1041-8 (2018).Article 
    PubMed 

    Google Scholar 
    3.Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).CAS 
    PubMed 

    Google Scholar 
    5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651. https://doi.org/10.1038/ismej.2017.133 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27. https://doi.org/10.1007/s10592-019-01150-y (2019).Article 

    Google Scholar 
    7.Ellegaard, K. M. & Engel, P. Beyond 16S rRNA Community profiling: intra-species diversity in the gut microbiota. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.01475 (2016).8.Sugden, S., Sanderson, D., Ford, K., Stein, L. Y. & St. Clair, C. C. An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci. Rep. 10, 22207, doi:https://doi.org/10.1038/s41598-020-78891-1 (2020).9.Góngora, E., Elliott, K. H. & Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1200. https://doi.org/10.1038/s41598-020-80557-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970. https://doi.org/10.1126/science.1198719 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nature Commun 7, 10516 (2016).ADS 
    CAS 

    Google Scholar 
    12.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64, doi:https://doi.org/10.1038/s41559-017-0402-5 (2018).14.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582, doi:https://doi.org/10.1038/s41559-021-01403-5 (2021).15.Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527. https://doi.org/10.1111/mec.14278 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Alfano, N. et al. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci. Rep. 5, 10189. https://doi.org/10.1038/srep10189 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B. & Gänzle, M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. Plos One 6, e27905 (2011).18.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    19.Durner, G., Laidre, K. & York, G. Polar Bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN. xxx+ 207pp (2018).20.Amstrup, S. C., Marcot, B. G. & Douglas, D. C. in Arctic sea ice decline: Observations, projections, mechanisms, and implications Geophysics monograph series (eds E.T. DeWeaver, C.M. Bitz, & L.-B. Tremblay) 213–268 (AGU, 2008).21.Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr 78, 591–613 (2008).
    Google Scholar 
    22.McKinney, M. A. et al. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears. Environ. Sci. Technol. 45, 896–902 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Laidre, K. L. et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 29, 724–737 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    24.Stern, H. L. & Laidre, K. L. Sea-ice indicators of polar bear habitat. Cryosphere 10, 2027–2041. https://doi.org/10.5194/tc-10-2027-2016 (2016).ADS 
    Article 

    Google Scholar 
    25.Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11, e0155932 (2016).26.Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145 (2015).
    Google Scholar 
    27.Herreman, J. K. & Peacock, E. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska. Ursus 24, 148–163 (2013).
    Google Scholar 
    28.Glad, T. et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 10, doi:https://doi.org/10.1186/1471-2180-10-10 (2010).29.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    31.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front. Microbiol. 8, doi:https://doi.org/10.3389/fmicb.2017.01666 (2017).32.Cho, G.-S. et al. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front. Microbiol. 7, doi:https://doi.org/10.3389/fmicb.2016.00658 (2016).33.Astbury, S. et al. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11, 569–580. https://doi.org/10.1080/19490976.2019.1681861 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    35.Jeong, Y. et al. Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J. Clin. Med. 8, 693 (2019).CAS 
    PubMed Central 

    Google Scholar 
    36.Liu, X. et al. Blautia-a new functional genus with potential probiotic properties?. Gut microbes 13, 1–21. https://doi.org/10.1080/19490976.2021.1875796 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Claus, S. P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271-e210 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    38.Martínez, I. et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75, 4175–4184 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Sergeant, M. J. et al. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9, e91941 (2014).40.Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).41.Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS One 8, e79353 (2013).42.Jiang, X.-L., Su, Y. & Zhu, W.-Y. Fermentation characteristics of Megasphaera elsdenii J6 derived from pig feces on different lactate isomers. J. Integr. Agric. 15, 1575–1583. https://doi.org/10.1016/S2095-3119(15)61236-9 (2016).CAS 
    Article 

    Google Scholar 
    43.Hobson, K. A. & Stirling, I. Low variation in blood delta C-13 among Hudson Bay polar bears: implications for metabolism and tracing terrestrial foraging. Mar. Mammal Sci 13, 359–367 (1997).
    Google Scholar 
    44.Hobson, K. A., Stirling, I. & Andriashek, D. S. Isotopic homogeneity of breath CO2 from fasting and berry-eating polar bears: implications for tracing reliance on terrestrial foods in a changing Arctic. Can. J. Zool 87, 50–55 (2009).CAS 

    Google Scholar 
    45.Sakamoto, M. & Ohkuma, M. Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int. J. Syst. Evol. Microbiol. 62, 2637–2642 (2012).46.Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).PubMed 

    Google Scholar 
    47.Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).PubMed 

    Google Scholar 
    48.Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085 (2010).49.Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
    Google Scholar 
    50.Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. https://doi.org/10.1111/1574-6976.12075 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.do Nascimento Silva, A., de Avila, E. D., Nakano, V. & Avila-Campos, M. J. Pathogenicity and genetic profile of oral Porphyromonas species from canine periodontitis. Arch. Oral Biol. 83, 20–24 (2017).52.Acuña-Amador, L. & Barloy-Hubler, F. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: a systematic review and meta-analysis. Anaerobe 66, 102280, doi:https://doi.org/10.1016/j.anaerobe.2020.102280 (2020).53.Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218. e213 (2021).54.Osman, M. A. et al. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 11, 2925. https://doi.org/10.1038/s41598-021-82465-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Murphy, E. C. & Frick, I.-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553. https://doi.org/10.1111/1574-6976.12005 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Vitali, B., Abruzzo, A. & Mastromarino, P. in The Microbiota in Gastrointestinal Pathophysiology (eds Martin H. Floch, Yehuda Ringel, & W. Allan Walker) 399–407 (Academic Press, 2017).57.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kapourchali, F. R. & Cresci, G. A. M. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr. Clin. Pract. 35, 386–405. https://doi.org/10.1002/ncp.10490 (2020).Article 
    PubMed 

    Google Scholar 
    59.Guo, G. et al. The Gut Microbial Community Structure of the North American River Otter (Lontra canadensis) in the Alberta Oil Sands Region in Canada: relationship with local environmental variables and metal body burden. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.4876 (2020).Article 
    PubMed 

    Google Scholar 
    60.Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS microbiology ecology 95, doi:https://doi.org/10.1093/femsec/fiz095 (2019).61.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).Article 

    Google Scholar 
    62.Atwood, T. C. et al. Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE 11, e0155932–e0155932. https://doi.org/10.1371/journal.pone.0155932 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).Article 

    Google Scholar 
    64.Bromaghin, J. F. et al. Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecol. Appl. 25, 634–651. https://doi.org/10.1890/14-1129.1 (2015).Article 
    PubMed 

    Google Scholar 
    65.Atwood, T. C. et al. Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci. Rep. 7, doi:https://doi.org/10.1038/s41598-017-13496-9 (2017).66.Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    67.Sonsthagen, S. A. et al. DNA metabarcoding of feces to infer summer diet of Pacific walruses. Mar. Mamm. Sci. https://doi.org/10.1111/mms.12717 (2020).Article 

    Google Scholar 
    68.Michaux, J., Dyck, M., Boag, P., Lougheed, S. & Van Coeverden de Groot, P. New insights on polar bear (Ursus maritimus) diet from faeces based on next-generation sequencing technologies. ARCTIC 74, 87–99, doi:https://doi.org/10.14430/arctic72239 (2021).69.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Dominianni, C. et al. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS One 10, doi: https://doi.org/10.1371/journal.pone.0124599 (2015).71.Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892. https://doi.org/10.1002/ajp.22555 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Peng, C. et al. Sex-specific association between the gut microbiome and high-fat diet-induced metabolic disorders in mice. Biol. Sex Differ. 11, 5. https://doi.org/10.1186/s13293-020-0281-3 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    74.Kaliannan, K. et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6, 205. https://doi.org/10.1186/s40168-018-0587-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Park, M. J. et al. Reproductive senescence and ischemic stroke remodel the gut microbiome and modulate the effects of estrogen treatment in female rats. Transl. Stroke Res., 1–19 (2019).76.Thiemann, G. W., Budge, S. M., Iverson, S. J. & Stirling, I. Unusual fatty acid biomarkers reveal age- and sex-specific foraging in polar bears (Ursus maritimus). Can. J. Zool. 85, 505–517. https://doi.org/10.1139/Z07-028 (2007).CAS 
    Article 

    Google Scholar 
    77.Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706. https://doi.org/10.1111/j.1365-2486.2012.02753.x (2012).ADS 
    Article 

    Google Scholar 
    78.Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).
    Google Scholar 
    79.Mshelia, E. S. et al. The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microb. Pathog. 118, 81–86. https://doi.org/10.1016/j.micpath.2018.03.018 (2018).Article 
    PubMed 

    Google Scholar 
    80.Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560. https://doi.org/10.1126/science.aad3503 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Feng, P. et al. A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients 11, 22 (2019).CAS 

    Google Scholar 
    83.Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere 2 (2017).84.Kreisinger, J., Bastien, G. r., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. B: Biol. Sci. 370, doi:https://doi.org/10.1098/rstb.2014.0295 (2015).85.Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    86.Baldo, L. et al. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME J. 11, 1975–1987 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    87.Yan, D. et al. Effects of Chronic Stress on the Fecal Microbiome of Malayan Pangolins (Manis javanica) Rescued from the Illegal Wildlife Trade. Curr. Microbiol. 78, 1017–1025. https://doi.org/10.1007/s00284-021-02357-4 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125-1136.e1128. https://doi.org/10.1016/j.cell.2016.10.020 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961. https://doi.org/10.1038/s41598-020-66865-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).CAS 
    PubMed 

    Google Scholar 
    91.Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139, 2102–2112 (2010).92.Walter, J. M., Bagi, A. & Pampanin, D. M. Insights into the potential of the Atlantic cod gut microbiome as biomarker of oil contamination in the marine environment. Microorganisms 7, 209 (2019).CAS 
    PubMed Central 

    Google Scholar 
    93.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comput. Biochem. Physiol. C: Toxicol. Pharmacol. 209, 1–8 (2018).CAS 

    Google Scholar 
    94.Breton, J. et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 1–11 (2013).
    Google Scholar 
    95.Schliebe, S. et al. Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall open-water period in the Southern Beaufort Sea. Polar Biol. 31, 999–1010 (2008).
    Google Scholar 
    96.Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int J Genomics 2016, 5304028–5304028, doi:https://doi.org/10.1155/2016/5304028 (2016).97.McKenney, E., Koelle, K., Dunn, R. & Yoder, A. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).CAS 
    PubMed 

    Google Scholar 
    98.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    99.Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr 74, 211–235 (2004).
    Google Scholar 
    100.Galicia, M. P., Thiemann, G. W., Dyck, M. G. & Ferguson, S. H. Characterization of polar bear (Ursus maritimus) diets in the Canadian High Arctic. Polar Biol. 38, 1983–1992 (2015).
    Google Scholar 
    101.Bourque, J. et al. Feeding habits of a new Arctic predator: Insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12 (2018).ADS 
    CAS 

    Google Scholar 
    102.Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801 (2006).
    Google Scholar 
    103.Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc.: Ser. B (Methodol.) 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    104.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).105.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
    Google Scholar 
    107.Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    108.McMurdie, P., Holmes, S., Kindt, R., Legendre, P. & O’Hara, R. P. an R package for reproducible interactive analysis and graphics of microbiome census data. Watson M, editor. PLoS One [Internet]. Public Library of Science (2013).109.McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10, e1003531. https://doi.org/10.1371/journal.pcbi.1003531 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).
    Google Scholar 
    111.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    112.Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. https://doi.org/10.1038/s41467-020-17041-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Rode, K. D. et al. Identifying reliable indicators of fitness in polar bears. PLoS ONE 15, e0237444. https://doi.org/10.1371/journal.pone.0237444 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar  More

  • in

    Tundra vegetation change and impacts on permafrost

    1.Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 3 (eds Pörtner, H.-O. et al.) (Intergovernmental Panel on Climate Change, 2019).2.Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010). A field study in which dwarf-shrub canopies were removed experimentally, resulting in increased thaw depths, thereby, underscoring the protective role of vegetation cover on permafrost.
    Google Scholar 
    3.van Huissteden, J. Thawing Permafrost: Permafrost Carbon in a Warming Arctic (Springer, 2020).4.Jorgenson, M. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    5.Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).
    Google Scholar 
    6.Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    Google Scholar 
    7.Sturm, M. et al. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).
    Google Scholar 
    8.Sturm, M. et al. Winter biological processes could help convert arctic tundra to shrubland. BioScience 55, 17–26 (2005).
    Google Scholar 
    9.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    Google Scholar 
    10.Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018). Review article showing how Arctic ecosystem processes can influence soil thermal dynamics in permafrost soil.
    Google Scholar 
    11.Shur, Y. L. & Jorgenson, M. T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 18, 7–19 (2007).
    Google Scholar 
    12.Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
    Google Scholar 
    13.Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00240-1 (2022).14.Ksenofontov, S., Backhaus, N. & Schaepman-Strub, G. ‘There are new species’: indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geogr. 42, 34–57 (2019).
    Google Scholar 
    15.Schuur, E. A. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).
    Google Scholar 
    16.Kokelj, S. V. & Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).
    Google Scholar 
    17.Keuper, F. et al. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).
    Google Scholar 
    18.Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob. Change Biol. 22, 1927–1941 (2016).
    Google Scholar 
    19.Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M. & Dorrepaal, E. Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytol. 223, 1328–1339 (2019).
    Google Scholar 
    20.Wang, P. et al. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. J. Ecol. 105, 947–957 (2017).
    Google Scholar 
    21.Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
    Google Scholar 
    22.Osterkamp, T. et al. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr. Periglac. Process. 20, 235–256 (2009).
    Google Scholar 
    23.Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    Google Scholar 
    24.Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    Google Scholar 
    25.Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).
    Google Scholar 
    26.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    27.Lenton, T. M. et al. Climate tipping points – too risky to bet against. Nature 575, 592–595 (2019).
    Google Scholar 
    28.Miner, K. R. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).Article 

    Google Scholar 
    29.Peterson, K. & Billings, W. Tundra vegetational patterns and succession in relation to microtopography near Atkasook, Alaska. Arct. Alp. Res. 12, 473–482 (1980).
    Google Scholar 
    30.Bliss, L. in North American Terrestrial Vegetation (eds Barbour, M. G. & Billings W. D.) (Cambridge Univ. Press, 1988).31.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 
    32.Frost, G. V., Epstein, H. E. & Walker, D. A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).
    Google Scholar 
    33.Walker, D. A. et al. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environ. Res. Lett. 7, 015504 (2012).
    Google Scholar 
    34.Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).
    Google Scholar 
    35.Chernov, Y. I. & Matveyeva, N. in Polar Alpine Tundra (ed. Wielgolaski, F. E.) 361–507 (Elsevier, 1997).36.Elvebakk, A. in The Species Concept in the High North: A Panarctic Flora Initiative (eds Nordal, I. & Razzhivin, V. Y.) 81–112 (The Norwegian Academy of Science and Letters, 1999).37.Yurtsev, B. A. Floristic division of the Arctic. J. Veg. Sci. 5, 765–776 (1994).
    Google Scholar 
    38.Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012). A meta-analysis of field-observed vegetation changes from 46 polar sites indicating widespread increases of shrub vegetation and increased plant size.
    Google Scholar 
    39.Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. New Phytol. 205, 34–58 (2015).
    Google Scholar 
    40.Hobbie, J. E. & Hobbie, E. A. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87, 816–822 (2006).
    Google Scholar 
    41.Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013).
    Google Scholar 
    42.Clemmensen, K. E. et al. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol. Lett. 24, 1193–1204 (2021).
    Google Scholar 
    43.Minke, M., Donner, N., Karpov, N., de Klerk, P. & Joosten, H. Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr. Periglac. Process. 20, 357–368 (2009).
    Google Scholar 
    44.Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    Google Scholar 
    45.Grunberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020). A field study reporting that large variations in soil temperatures and thaw depths can be explained by vegetation-mediated differences in snow height.
    Google Scholar 
    46.Magnússon, R. I. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    47.Jorgenson, M. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015). Outlines the role of ground ice and vegetation succession in thermokarst terrain, including first estimates of recovery times.
    Google Scholar 
    48.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). A meta-analysis of plant species responses to experimental climate warming across Arctic sites, finding that shrubs and graminoids generally responded positively to warming, whereas lichens and bryophytes responded more negatively.
    Google Scholar 
    49.Frost, G. V. et al. Arctic Report Card 2020: Tundra Greenness. https://doi.org/10.25923/46rm-0w23 (NOAA, 2020). Provides an annual update of Arctic NDVI, offering a long-standing record of Arctic greening and browning.50.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020). Review article outlining complexity in Arctic greening and browning dynamics. The temporal and spatial scale of spectral data and the role of non-vegetation-related processes and ground-truthing remains essential.
    Google Scholar 
    51.Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
    Google Scholar 
    52.Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    Google Scholar 
    53.Bhatt, U. S. et al. Circumpolar Arctic Tundra vegetation change is linked to sea ice decline. Earth Interact. 14, 1–20 (2010).
    Google Scholar 
    54.Oechel, W. C. & Billings, W. in Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective (eds Chapin, F. S. III et al.) 139–168 (Academic Press, 1992).55.Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).
    Google Scholar 
    56.Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. III Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
    Google Scholar 
    57.Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
    Google Scholar 
    58.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar 
    59.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
    Google Scholar 
    60.van der Kolk, H.-J., Heijmans, M. M., van Huissteden, J., Pullens, J. W. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).
    Google Scholar 
    61.Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).
    Google Scholar 
    62.Leffler, A. J., Klein, E. S., Oberbauer, S. F. & Welker, J. M. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Oecologia 181, 287–297 (2016).
    Google Scholar 
    63.Euskirchen, E. et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 12, 731–750 (2006).
    Google Scholar 
    64.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar 
    65.National Academies of Sciences, Engineering, and Medicine. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).66.Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).
    Google Scholar 
    67.Bokhorst, S. et al. Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob. Change Biol. 14, 2603–2612 (2008).
    Google Scholar 
    68.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120490 (2013).
    Google Scholar 
    69.Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).
    Google Scholar 
    70.Turetsky et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019). Reveals that abrupt thaw of permafrost could double the estimated future release of greenhouse gases from permafrost soils compared with scenarios of gradual thaw.
    Google Scholar 
    71.Bokhorst, S. F., Bjerke, J. W., Tømmervik, H., Callaghan, T. V. & Phoenix, G. K. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol. 97, 1408–1415 (2009).
    Google Scholar 
    72.Bjerke, J. W. et al. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 9, 084006 (2014).
    Google Scholar 
    73.Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
    Google Scholar 
    74.Olofsson, J., Tommervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
    Google Scholar 
    75.Lara, M. J., Nitze, I., Grosse, G., Martin, P. & McGuire, A. D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 8, 2345 (2018).
    Google Scholar 
    76.Verdonen, M., Berner, L. T., Forbes, B. C. & Kumpula, T. Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett. 15, 105020 (2020).
    Google Scholar 
    77.Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).
    Google Scholar 
    78.Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    Google Scholar 
    79.Magnússon, R. Í. et al. Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ. 782, 146877 (2021).
    Google Scholar 
    80.Nitze, I. & Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 181, 27–41 (2016).
    Google Scholar 
    81.Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Glob. Change Biol. 27, 652–663 (2021).
    Google Scholar 
    82.Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    Google Scholar 
    83.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).
    Google Scholar 
    84.Beamish, A. et al. Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: a review and outlook. Remote Sens. Environ. 246, 111872 (2020).
    Google Scholar 
    85.Blok, D. et al. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011).
    Google Scholar 
    86.Boelman, N. T., Gough, L., McLaren, J. R. & Greaves, H. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environ. Res. Lett. 6, 035501 (2011).
    Google Scholar 
    87.Sturm, M., Racine, C. & Tape, K. Climate change – increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
    Google Scholar 
    88.Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
    Google Scholar 
    89.Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A. M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarctic Alp. Res. 47, 785–806 (2015).
    Google Scholar 
    90.Jorgenson, J. C., Jorgenson, M. T., Boldenow, M. L. & Orndahl, K. M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 10, 1305 (2018).
    Google Scholar 
    91.Hobbie, J. E. et al. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46, 160–173 (2017).
    Google Scholar 
    92.Virkkala, A.-M., Abdi, A. M., Luoto, M. & Metcalfe, D. B. Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environ. Res. Lett. 14, 124061 (2019).
    Google Scholar 
    93.Ropars, P. & Boudreau, S. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).
    Google Scholar 
    94.Ropars, P., Levesque, E. & Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 103, 679–690 (2015).
    Google Scholar 
    95.Tremblay, B., Levesque, E. & Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik. Environ. Res. Lett. 7, 035501 (2012).
    Google Scholar 
    96.Boulanger-Lapointe, N., Levesque, E., Boudreau, S., Henry, G. H. R. & Schmidt, N. M. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. J. Biogeogr. 41, 1967–1978 (2014).
    Google Scholar 
    97.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environ. Res. Lett. 8, 015035 (2013).
    Google Scholar 
    98.Lantz, T. C., Kokelj, S. V., Gergel, S. E. & Henry, G. H. Relative impacts of disturbance and temperature: persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Glob. Change Biol. 15, 1664–1675 (2009).
    Google Scholar 
    99.Huebner, D. C. & Bret-Harte, M. S. Microsite conditions in retrogressive thaw slumps may facilitate increased seedling recruitment in the Alaskan Low Arctic. Ecol. Evol. 9, 1880–1897 (2019).
    Google Scholar 
    100.Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).
    Google Scholar 
    101.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).
    Google Scholar 
    102.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    103.Didan, K. MYD13Q1 MODIS/Aqua vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MYD13Q1.006 (2015).Article 

    Google Scholar 
    104.Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    105.Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).
    Google Scholar 
    106.Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-ice Conditions (US Geological Survey, 1997).107.Jones, G. A. & Henry, G. H. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 30, 277–296 (2003).
    Google Scholar 
    108.Cornelissen, J. H. C. et al. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J. Ecol. 89, 984–994 (2001).
    Google Scholar 
    109.Aguirre, D., Benhumea, A. E. & McLaren, J. R. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biol. Biochem. 153, 108121 (2021).
    Google Scholar 
    110.Gornall, J. L., Jonsdottir, I. S., Woodin, S. J. & Van der Wal, R. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153, 931–941 (2007).
    Google Scholar 
    111.Soudzilovskaia, N. A., Bodegom, P. M. & Cornelissen, J. H. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct. Ecol. 27, 1442–1454 (2013).
    Google Scholar 
    112.Blok, D. et al. The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14, 1055–1065 (2011).
    Google Scholar 
    113.Belke-Brea, M., Domine, F., Barrere, M., Picard, G. & Arnaud, L. Impact of shrubs on winter surface albedo and snow specific surface area at a low Arctic site: In situ measurements and simulations. J. Clim. 33, 597–609 (2020).
    Google Scholar 
    114.Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arct. Sci. 5, 202–217 (2019).
    Google Scholar 
    115.Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).
    Google Scholar 
    116.Wilson, M. A., Burn, C. & Humphreys, E. in Cold Regions Engineering 2019 (eds Bilodeau, J.-P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 687–695 (American Society of Civil Engineers, 2019).117.Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).
    Google Scholar 
    118.Paradis, M., Lévesque, E. & Boudreau, S. Greater effect of increasing shrub height on winter versus summer soil temperature. Environ. Res. Lett. 11, 085005 (2016).
    Google Scholar 
    119.Beringer, J., Chapin, F. S., Thompson, C. C. & McGuire, A. D. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric. For. Meteorol. 131, 143–161 (2005).
    Google Scholar 
    120.Kemppinen, J. et al. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24, 1378–1392 (2021). Quantifies the effects of shrub abundance on the soil thermal regime using a distinction between a rough, tall-shrub canopy and an aerodynamic, dwarf-shrub canopy.
    Google Scholar 
    121.Jorgenson, M. T., Ely, C. & Terenzi, J. in Shared Science Needs: Report from the Western Alaska Landscape Conservation Cooperative Science Workshop (eds Reynolds, J. H. & Wiggins, H. V.) 130–137 (2012).122.Sturm, M., Douglas, T., Racine, C. & Liston, G. E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeosci. 110, G01004 (2005).
    Google Scholar 
    123.Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43, RG4002 (2005).
    Google Scholar 
    124.Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
    Google Scholar 
    125.Lawrence, D. M. & Swenson, S. C. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett. 6, 045504 (2011).
    Google Scholar 
    126.Barrere, M., Domine, F., Belke-Brea, M. & Sarrazin, D. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. J. Clim. 31, 9507–9518 (2018).
    Google Scholar 
    127.Loranty, M. M., Goetz, S. J. & Beck, P. S. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).
    Google Scholar 
    128.Bonfils, C. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Google Scholar 
    129.Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).
    Google Scholar 
    130.Juszak, I., Eugster, W., Heijmans, M. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).
    Google Scholar 
    131.Göckede, M. et al. Negative feedback processes following drainage slow down permafrost degradation. Glob. Change Biol. 25, 3254–3266 (2019).
    Google Scholar 
    132.Bonan, G. Ecological Climatology: Concepts and Applications (Cambridge Univ. Press, 2015).133.Eugster, W. et al. Land–atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Glob. Change Biol. 6, 84–115 (2000).
    Google Scholar 
    134.Liljedahl, A. et al. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8, 3375–3389 (2011).
    Google Scholar 
    135.Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Google Scholar 
    136.Subin, Z. M. et al. Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. J. Clim. 26, 3139–3158 (2013).
    Google Scholar 
    137.Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Google Scholar 
    138.Asmus, A. L. et al. Shrub shading moderates the effects of weather on arthropod activity in arctic tundra. Ecol. Entomol. 43, 647–655 (2018).
    Google Scholar 
    139.Hinkel, K., Paetzold, F., Nelson, F. & Bockheim, J. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Change 29, 293–309 (2001).
    Google Scholar 
    140.Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. NPJ Clim. Atmos. Sci. 3, 28 (2020).
    Google Scholar 
    141.Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).
    Google Scholar 
    142.Aartsma, P., Asplund, J., Odland, A., Reinhardt, S. & Renssen, H. Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, 1577–1599 (2021).
    Google Scholar 
    143.Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).
    Google Scholar 
    144.Van Cleve, K. et al. Taiga ecosystems in interior Alaska. BioScience 33, 39–44 (1983).
    Google Scholar 
    145.Kade, A., Romanovsky, V. & Walker, D. The n-factor of nonsorted circles along a climate gradient in Arctic Alaska. Permafr. Periglac. Process. 17, 279–289 (2006).
    Google Scholar 
    146.Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R. & Wilson, C. J. Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016).
    Google Scholar 
    147.Klene, A. E., Nelson, F. E., Shiklomanov, N. I. & Hinkel, K. M. The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 33, 140–148 (2001).
    Google Scholar 
    148.van Everdingen, R. O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (National Snow and Ice Data Center/World Data Center for Glaciology, 2005).149.Iwahana, G. et al. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113 (2014).
    Google Scholar 
    150.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    151.Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017).
    Google Scholar 
    152.Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
    Google Scholar 
    153.Jorgenson, M., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).
    Google Scholar 
    154.Stieglitz, M., Déry, S., Romanovsky, V. & Osterkamp, T. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 30, 1721 (2003).
    Google Scholar 
    155.Anisimov, O. & Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 50, 2050–2059 (2021).
    Google Scholar 
    156.Tei, S. et al. An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrol. Process. 34, 522–537 (2020).
    Google Scholar 
    157.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).
    Google Scholar 
    158.Fraser, R. H. et al. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 10, 954 (2018).
    Google Scholar 
    159.Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).
    Google Scholar 
    160.Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).
    Google Scholar 
    161.Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).
    Google Scholar 
    162.Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    163.French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).
    Google Scholar 
    164.Burn, C. R. & Friele, P. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42, 31–40 (1989).
    Google Scholar 
    165.Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost — a review. Vadose Zone J. 15, vzj2016-01 (2016).
    Google Scholar 
    166.Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob. Change Biol. 16, 1870–1882 (2010).
    Google Scholar 
    167.Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, F02S17 (2007).
    Google Scholar 
    168.Cray, H. A. & Pollard, W. H. Vegetation recovery patterns following permafrost disturbance in a Low Arctic setting: case study of Herschel Island, Yukon, Canada. Arct. Antarct. Alp. Res. 47, 99–113 (2015).
    Google Scholar 
    169.Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).
    Google Scholar 
    170.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).
    Google Scholar 
    171.Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
    Google Scholar 
    172.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).
    Google Scholar 
    173.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
    Google Scholar 
    174.Hjort, J. E. A. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth. Environ. 3 https://doi.org/10.1038/s43017-021-00247-8 (2022).175.Kumpula, T., Pajunen, A., Kaarlejärvi, E., Forbes, B. C. & Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Change 21, 550–562 (2011).
    Google Scholar 
    176.Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).
    Google Scholar 
    177.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
    Google Scholar 
    178.Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Google Scholar 
    179.Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).
    Google Scholar 
    180.Mikhailov, I. Changes in the soil-plant cover of the high Arctic of Eastern Siberia. Eurasian Soil. Sci. 53, 715–723 (2020).
    Google Scholar 
    181.Frost, G. V. et al. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environ. Res. Lett. 15, 025003 (2020).
    Google Scholar 
    182.Whitley, M. A. et al. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 10, 258 (2018).
    Google Scholar  More

  • in

    Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms

    1.Qin, Y.-j. et al. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol. Appl. 11, 1990–2003 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    2.Christenson, L. D. & Foote, R. H. Biology of fruit flies. Annu. Rev. Entomol. 5, 171–192 (1960).
    Google Scholar 
    3.Clarke, A. R. et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50, 293–319 (2005).CAS 
    PubMed 

    Google Scholar 
    4.Culliney, T. W. The aliens have landed: invasive species threaten Hawaii agriculture. Agric. Hawaii 3, 6–9 (2002).
    Google Scholar 
    5.Cantrell, B., Chadwick, B. & Cahill, A. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly (CSIRO, Collingwood, 2002).6.Ekesi, S., De Meyer, M., Mohamed, S. A., Virgilio, M. & Borgemeister, C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 61, 219–238 (2016).CAS 
    PubMed 

    Google Scholar 
    7.Duyck, P. F., David, P. & Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 29, 511–520 (2004).
    Google Scholar 
    8.Liu, H., Zhang, C., Hou, B. H., Ou-Yang, G. C. & Ma, J. Interspecific competition between Ceratitis capitata and two Bactrocera spp. (Diptera: Tephritidae) evaluated via adult behavioral interference under laboratory conditions. J. Econ. Entomol. 110, 1145–1155 (2017).PubMed 

    Google Scholar 
    9.Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Schutze, M. K. et al. Synonymization of key pest species within the Bactrocera dorsalis complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural, and chemoecological data. Syst. Entomol. 40, 456–471 (2015).
    Google Scholar 
    11.Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Wu, N. et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 3, 105–115 (2019).PubMed 

    Google Scholar 
    13.Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    14.Sim, S. B. & Geib, S. M. A chromosome-scale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae. G3 (Bethesda) 7, 1927–1940 (2017).CAS 

    Google Scholar 
    15.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 

    Google Scholar 
    16.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    Google Scholar 
    17.Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, 109–114 (2012).
    Google Scholar 
    19.Ting, C. T. et al. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus. Proc. Natl Acad. Sci. USA 101, 12232–12235 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Yuan, Y. W. & Wessler, S. R. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl Acad. Sci. USA 108, 7884–7889 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Rappoport, N. & Linial, M. Trends in genome dynamics among major orders of insects revealed through variations in protein families. BMC Genomics 16, 583 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Sackton, T. B. et al. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 39, 1461–1468 (2007).CAS 
    PubMed 

    Google Scholar 
    23.Stephen, B. H. & David, L. H. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173 (1995).
    Google Scholar 
    24.Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).CAS 
    PubMed 

    Google Scholar 
    26.Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance-degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).CAS 
    PubMed 

    Google Scholar 
    27.Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response. Annu. Rev. Physiol. 61, 243–282 (1999).CAS 
    PubMed 

    Google Scholar 
    28.Iwama, G. K., Thomas, P. T., Forsyth, R. H. B. & Vijayan, M. M. Heat shock protein expression in fish. Rev. Fish. Biol. Fish. 8, 35–56 (1998).
    Google Scholar 
    29.Azad, P., Ryu, J. & Haddad, G. G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 51, 530–538 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Zhao, P. et al. Genome-wide analysis of the potato hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 19, 61 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    31.Weinstein, D. J. et al. The genome of a subterrestrial nematode reveals adaptations to heat. Nat. Commun. 10, 5268 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Gu, X. et al. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis, and Bactrocera correcta. Evol. Appl. 12, 1147–1163 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Sorensen, J. G., Dahlgaard, J. & Loeschcke, V. Genetic variation in thermal tolerance among natural populations of drosophila buzzatii: down regulation of hsp70 expression and variation in heat stress resistance traits. Funct. Ecol. 15, 289–296 (2001).
    Google Scholar 
    34.Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).PubMed 

    Google Scholar 
    35.Raza, M. F. et al. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 16, e1008441 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    36.Trempolec, N., Dave-Coll, N. & Nebreda, A. R. Snapshot: p38 MAPK signaling. Cell 152, 656–656.e1 (2013).CAS 
    PubMed 

    Google Scholar 
    37.Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).CAS 
    PubMed 

    Google Scholar 
    38.Vrailas-Mortimer, A. et al. A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev. Cell 21, 783–795 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Li, F. F., Xia, J., Li, J. M., Liu, J. M. & Wang, X. W. P38 MAPK is a component of the signal transduction pathway triggering cold stress response in the med cryptic species of Bemisia tabaci. J. Integr. Agr. 11, 303–311 (2012).CAS 

    Google Scholar 
    40.Xiao, X. P. et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol. 2, 17020 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Wan, F. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, 4237–4237 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    42.Drew, R. & Yuval, B. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (eds Aluja, M. & Norrbom, A.) 731−749 (CRC Press, 2000).43.Dahanukar, A., Hallem, E. A. & Carlson, J. R. Insect chemoreception. Curr. Opin. Neurobiol. 15, 423–430 (2005).CAS 
    PubMed 

    Google Scholar 
    44.Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Benton, R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30, 590–600 (2015).PubMed 

    Google Scholar 
    46.Miyazaki, H. et al. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochem. Mol. Biol. 101, 32–46 (2018).CAS 
    PubMed 

    Google Scholar 
    47.Ono, H. et al. Functional characterization of olfactory receptors in three Dacini fruit flies (Diptera: Tephritidae) that respond to 1-nonanol analogs as components in the rectal glands. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 239, 110346 (2020).
    Google Scholar 
    48.Harris, R. M. & Hofmann, H. A. Seeing is believing: dynamic evolution of gene families. Proc. Natl Acad. Sci. USA 112, 1252–1253 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9, 951−963 (2008).50.Arguello, J. R. et al. Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nat. Commun. 7, 11855 (2016).
    Google Scholar 
    51.Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    52.Vontas, J. et al. Insecticide resistance in Tephritid flies. Pestic. Biochem. Physiol. 100, 199–205 (2011).CAS 

    Google Scholar 
    53.Bergé, J. B., Feyereisen, R. & Amichot, M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 353, 1701–1705 (1998).
    Google Scholar 
    54.Scott, J. G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29, 757–777 (1999).CAS 
    PubMed 

    Google Scholar 
    55.Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).PubMed 

    Google Scholar 
    56.Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).CAS 
    PubMed 

    Google Scholar 
    58.Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3-Genes Genom. Genet. 4, 1339–1346 (2014).
    Google Scholar 
    59.Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 1–11 (2015).
    Google Scholar 
    61.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    63.Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 44, e147 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    64.Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).CAS 
    PubMed 

    Google Scholar 
    66.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Worley, K. C. et al. Improving genomes using long reads and PBJelly 2. In International Plant & Animal Genome Conference XXI (2014).68.Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).CAS 
    PubMed 

    Google Scholar 
    70.Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).PubMed 

    Google Scholar 
    71.Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
    Google Scholar 
    72.Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).CAS 
    PubMed 

    Google Scholar 
    73.Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinform. 18, 4.3.1–4.3.28 (2007).
    Google Scholar 
    74.Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89–e89 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    75.Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. & Buell, C. R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    76.Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    77.Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).CAS 
    PubMed 

    Google Scholar 
    79.Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets, and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).CAS 
    PubMed 

    Google Scholar 
    80.Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Edgar, R. C. & Myers, E. W. PILER: Identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).CAS 
    PubMed 

    Google Scholar 
    82.Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 

    Google Scholar 
    83.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    84.Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    85.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 

    Google Scholar 
    86.Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).CAS 
    PubMed 

    Google Scholar 
    87.Tarailo-Graovac, M. & Chen, N. S. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4.10.1–4.10.14 (2009).
    Google Scholar 
    88.Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.She, R., Chu, J. S. C., Wang, K., Pei, J. & Chen, N. S. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    92.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Boeckmann, B. et al. The SWISS-PROT protein KnowledgeBase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).CAS 
    PubMed 

    Google Scholar 
    96.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization, and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 

    Google Scholar 
    97.Dimmer, E. C. et al. The UniProt-GO annotation database in 2011. Nucleic Acids Res. 40, D565–D570 (2012).CAS 
    PubMed 

    Google Scholar 
    98.Bairoch, A. PROSITE-a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19, 2241–2245 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Attwood, T. K. & Beck, M. E. Prints-a protein motif fingerprint database. Protein Eng. Des. Sel. 7, 841–848 (1994).CAS 

    Google Scholar 
    100.Zdobnov, E. M. & Apweiler, R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).CAS 
    PubMed 

    Google Scholar 
    101.Gough, J. & Chothia, C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments, and genome assignments. Nucleic Acids Res. 30, 268–272 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Thomas, P. D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Wu, C. H. et al. PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res. 32, D112–D114 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33, D212–D215 (2005).CAS 
    PubMed 

    Google Scholar 
    107.Finn, R. D. et al. Pfam: clans, web tools, and services. Nucleic Acids Res. 34, D247–D251 (2006).CAS 
    PubMed 

    Google Scholar 
    108.Lima, T. et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 37, D471–D478 (2009).CAS 
    PubMed 

    Google Scholar 
    109.Lees, J. et al. Gene3D: a domain-based resource for comparative genomics, functional annotation, and protein network analysis. Nucleic Acids Res. 40, D465–D471 (2012).CAS 
    PubMed 

    Google Scholar 
    110.Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    111.Mi, H. Y., Muruganujan, A., Ebert, D., Huang, X. S. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim, and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).CAS 

    Google Scholar 
    112.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Puttick, M. N. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019).CAS 
    PubMed 

    Google Scholar 
    114.Yang, Z. H. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997).CAS 

    Google Scholar 
    115.Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).CAS 
    PubMed 

    Google Scholar 
    116.Larkin, M. A. et al. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948 (2007).CAS 
    PubMed 

    Google Scholar 
    117.Subramanian, B., Gao, S., Lercher, M. J., Hu, S. & Chen, W. H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47, W270–W275 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    119.Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 

    Google Scholar  More

  • in

    Two million species catalogued by 500 experts

    CORRESPONDENCE
    11 January 2022

    Two million species catalogued by 500 experts

    Mark John Costello

    0
    ,

    R. Edward DeWalt

    1
    ,

    Thomas M. Orrell

    2
    &

    Olaf Banki

    3

    Mark John Costello

    Nord University, Bodø, Norway.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    R. Edward DeWalt

    University of Illinois, Champaign, Illinois, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Thomas M. Orrell

    Smithsonian Institution, Washington DC, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Olaf Banki

    Naturalis Biodiversity Centre, Leiden, the Netherlands.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    More than two million accepted species are now listed in the open-access Catalogue of Life (go.nature.com/3ym3h2g). This achievement addresses a major impediment to the management of biodiversity data by presenting an almost complete index of accepted names and known synonyms.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00010-z

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Latest on:

    Biodiversity

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    Jobs

    Senior Medical Director, Global Medical Affairs Alzheimer’s Disease, Global Medical Evidence Generation

    Eisai Inc.
    Nutley, NJ, United States

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel More

  • in

    Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities

    1.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad. Sci. USA 103, 12115–12120 (2006).CAS 
    ADS 

    Google Scholar 
    2.Pedros-Alio, C. The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466 (2012).PubMed 

    Google Scholar 
    3.Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Campbell, B. J., Yu, L. Y., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. P Natl Acad. Sci. USA 108, 12776–12781 (2011).CAS 
    ADS 

    Google Scholar 
    5.Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. Isme J. 6, 542–553 (2012).PubMed 

    Google Scholar 
    6.Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).CAS 
    PubMed 

    Google Scholar 
    7.Lawson, C. E. et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 17, 4979–4993 (2015).CAS 
    PubMed 

    Google Scholar 
    8.Newton, R. J. & Shade, A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Micro. Ecol. 78, 51–63 (2016).
    Google Scholar 
    9.Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. P Natl Acad. Sci. USA 106, 15527–15533 (2009).CAS 
    ADS 

    Google Scholar 
    10.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. RRNA operon copy number reflects ecological strategies of bacteria. Appl Environ. Micro. 66, 1328–1333 (2000).CAS 
    ADS 

    Google Scholar 
    11.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Polz, M. F. & Cordero, O. X. Bacterial evolution: genomics of metabolic trade-offs. Nat. Microbiol. 1, 16181 (2016).CAS 
    PubMed 

    Google Scholar 
    13.Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).PubMed 

    Google Scholar 
    14.Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).
    Google Scholar 
    15.Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: an elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).CAS 
    ADS 

    Google Scholar 
    16.Acharya, K., Kyle, M. & Elser, J. J. Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 49, 656–665 (2004).CAS 
    ADS 

    Google Scholar 
    17.Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish. Biol. 70, 121–140 (2007).
    Google Scholar 
    18.Matzek, V. & Vitousek, P. M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett. 12, 765–771 (2009).PubMed 

    Google Scholar 
    19.Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    21.Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 

    Google Scholar 
    22.Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos ONE 8, e57923 (2013).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5, 323–323 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    24.Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. Isme J. 10, 1147–1156 (2016).CAS 
    PubMed 

    Google Scholar 
    25.Wu, L. W. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. Isme J. 11, 2874–2878 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Wu, L. W. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 2579–2579 (2019).PubMed 

    Google Scholar 
    27.Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Dai, T. et al. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. Environ. Pollut. 260, 113971 (2020).CAS 
    PubMed 

    Google Scholar 
    29.Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Mbio 2, e00122–00111 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    30.Vellend, M. Conceptual Synthesis in Community Ecology. Q Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    31.Frey, E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    32.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. P Natl Acad. Sci. USA 116, 11824 (2019).CAS 

    Google Scholar 
    33.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. P Natl Acad. Sci. USA 116, 23582–23587 (2019).CAS 

    Google Scholar 
    37.Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).PubMed 

    Google Scholar 
    38.Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    39.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity. Env. Microbiol. Rep. 6, 173–183 (2014).CAS 

    Google Scholar 
    40.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 

    Google Scholar 
    42.Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chatzinikolaou, E. et al. Spatio-temporal benthic biodiversity patterns and pollution pressure in three Mediterranean touristic ports. Sci. Total Environ. 624, 648–660 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    44.Filippini, G. et al. Sediment bacterial communities associated with environmental factors in Intermittently Closed and Open Lakes and Lagoons (ICOLLs). Sci. Total Environ. 693, 133462 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Huse, S. M. et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Plos Genet. 4, e1000255 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    47.Salas-González, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).PubMed 

    Google Scholar 
    48.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad. Sci. USA 108, 4516 (2011).CAS 
    ADS 

    Google Scholar 
    49.Wear, E. K., Wilbanks, E. G., Nelson, C. E. & Carlson, C. A. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environ. Microbiol. 20, 2709–2726 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    52.Wu, L. W. et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 104, 1–10 (2016).PubMed 

    Google Scholar 
    53.Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. P Natl Acad. Sci. USA 106, 22427–22432 (2009).CAS 
    ADS 

    Google Scholar 
    54.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. Isme J. 9, 683–695 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    The metabolic cost of turning right side up in the Mediterranean spur-thighed tortoise (Testudo graeca)

    1.Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5(5211), 1–11. https://doi.org/10.1038/ncomms6211 (2014).CAS 
    Article 

    Google Scholar 
    2.Gans, C. & Hughes, G. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J. Exp. Biol. 47(1), 1–20 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Jackson, D. C., Singer, J. H. & Downey, P. T. Oxidative cost of breathing in the turtle Chrysemys picta bellii. Am. J. Physiol. 261, R1325–R1328 (1991).CAS 
    PubMed 

    Google Scholar 
    4.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta. J. Exp. Zool. 311A, 551–562. https://doi.org/10.1002/jez.478 (2009).Article 

    Google Scholar 
    5.Ruhr, I., Rose, K., Sellers, W., Crossley, D. II. & Codd, J. Turning turtle: Scaling relationships and self-righting ability in Chelydra serpentina. Proc. R. Soc. B. 288, 20210213. https://doi.org/10.1098/rspb.2021.0213 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Pritchard, P. C. H. Encyclopaedia of Turtles (TFH, 1979).
    Google Scholar 
    7.Carr, A. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California (Cornell University Press, 1952).
    Google Scholar 
    8.Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Int. Comp. Biol. 48(6), 769–787. https://doi.org/10.1093/icb/icn088 (2008).Article 

    Google Scholar 
    9.McNeill Alexander, R. Gaits of mammals and turtles. J. R. Soc. Jpn. 11(3), 314–319 (1993).Article 

    Google Scholar 
    10.Zani, P. A. & Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornate. J. Exp. Biol. 211, 3671–3676. https://doi.org/10.1242/jeb.019869 (2008).Article 
    PubMed 

    Google Scholar 
    11.Sellers, W. I., Rose, K. A. R., Crossley, D. A. II. & Codd, J. R. Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits. Comp. Biochem. Physiol. A. 247, 110739. https://doi.org/10.1016/j.cbpa.2020.110739 (2020).CAS 
    Article 

    Google Scholar 
    12.Chiari, Y., van der Meijden, A., Caccone, A., Claude, J. & Gilles, B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-15787-7 (2017).CAS 
    Article 

    Google Scholar 
    13.Woledge, R. C. The energetics of tortoise muscle. J. Physiol. 197(3), 685–707 (1968).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Steyermark, A. C. & Spotila, J. R. Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4, 1050–1057. https://doi.org/10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2 (2001).Article 

    Google Scholar 
    15.Rubin, A. M., Blob, R. W. & Mayerl, C. J. Biomechanical factors influencing successful self-righting in the Pleurodire turtle, Emydura subglobosa. J. Exp. Biol. 221, jeb182642. https://doi.org/10.1242/jeb.182642 (2018).Article 
    PubMed 

    Google Scholar 
    16.Penn, D. & Brockmann, H. J. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Anim. Behav. 49, 1531–1539. https://doi.org/10.1016/003-3472(95)90074-8 (1995).Article 

    Google Scholar 
    17.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372. https://doi.org/10.1006/bjls.2000.0504 (2001).Article 

    Google Scholar 
    18.Zuffi, M. A. L. & Corti, C. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, Western Mediterranean Sea): Preliminary data. Amphib-Reptil. 24, 441–447 (2003).Article 

    Google Scholar 
    19.Domokos, G. & Várkonyi, P. L. Geometry and self-righting of turtles. Proc. R. Soc. B. 275(1630), 11–17. https://doi.org/10.1098/rspb.2007.1188 (2008).Article 
    PubMed 

    Google Scholar 
    20.Mann, G. K. H., O’Riain, M. J. & Hofmeyr, M. D. Shaping up to fight: Sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). J. Zool. 269, 373–379. https://doi.org/10.1111/j.1469-7998.2006.00079x (2006).Article 

    Google Scholar 
    21.Golubović, A., Bonnet, X., Djordjević, S., Djurakic, M. & Tomović, L. Variations in righting behavior across Hermann’s tortoise populations. J. Zool. 291, 69–75. https://doi.org/10.1111/jzo.12047 (2013).Article 

    Google Scholar 
    22.Golubović, A., Andelkovic, M., Arsovski, D., Bonnet, X. & Tomović, L. Locomotor performances reflect habitat constraints in an armoured species. Behav. Ecol. Sociobiol. 71, 93. https://doi.org/10.1007/s00265-017-2318-0 (2017).Article 

    Google Scholar 
    23.Ashe, V. M. The righting reflex in turtles: A description and comparison. Psychol. Sci. 20, 150–152. https://doi.org/10.3758/BF03335647 (1970).Article 

    Google Scholar 
    24.Golubović, A., Tomović, L. & Ivanović, A. Geometry of self-righting: The case of Hermann’s tortoises. Zool. Anz. 254, 99–105. https://doi.org/10.1016/j.jcz.2014.12.003 (2015).Article 

    Google Scholar 
    25.Finkler, M. S. Influence of water availability during hatching on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle, Chelydra serpentina. Physiol. Biochem. Zool. 72, 714–722. https://doi.org/10.1086/316711 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Stojadinović, D., Milošević, D. & Crnobrnja-Isailović, J. Righting time versus shell size and shape dimorphism in adult Hermann’s tortoises: Field observations meet theoretical predictions. Anim. Biol. 63(4), 381–396. https://doi.org/10.1163/15707563-00002420 (2013).Article 

    Google Scholar 
    27.Delmas, V., Baudry, E., Girondot, M. & Prevot-Julliard, A.-C. The righting reflex as a fitness indicator in freshwater turtles. Biol. J. Linn. Soc. 91, 99–109. https://doi.org/10.1111/j.1095-8312/2007.00780.x (2007).Article 

    Google Scholar 
    28.Burger, J. Behavior of hatchling diamondback terrapins (Malaclemys terrapin) in the field. Copeia 1976, 742. https://doi.org/10.2307/1443457 (1976).Article 

    Google Scholar 
    29.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206, 3391–3404. https://doi.org/10.1242/jeb.00553 (2003).Article 
    PubMed 

    Google Scholar 
    30.Gaunt, A. S. & Gans, C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J. Morph. 128, 195–227. https://doi.org/10.1002/jmor.1051280205 (1969).Article 

    Google Scholar 
    31.Lambertz, M., Böhme, W. & Perry, S. F. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Crytodira) and related species, and its phylogenetic implications. Comp. Biochem. Physiol. 156, 330–336. https://doi.org/10.1016/j.cbpa.2009.12.016 (2010).CAS 
    Article 

    Google Scholar 
    32.de Souza, R. B. B. & Klein, W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J. Exp. Biol. 224(12), 242386. https://doi.org/10.1242/jeb.242386 (2021).Article 

    Google Scholar 
    33.Jodice, P. G. R., Epperson, D. M. & Visser, G. H. Daily energy expenditure in free-ranging gopher tortoises (Gopherus polyphemus). Copeia 2006(1), 129–136. https://doi.org/10.1643/0045-8511(2006)006[0129:DEEIFG]2.0.CO;2 (2006).Article 

    Google Scholar 
    34.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article 

    Google Scholar 
    35.Shadmehr, R., Huang, H. J. & Ahmed, A. A. A representation of effort in decision-making and motor control. Curr. Biol. 26, 1929–1934. https://doi.org/10.1016/j.cub.2016.05.065 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Shepard, E. L. C. et al. Energy landscapes shapes animal movement ecology. Am. Nat. 182(3), 298–312. https://doi.org/10.1086/671257 (2013).Article 
    PubMed 

    Google Scholar 
    37.Baudinette, R. V., Miller, A. M. & Sarre, M. P. Aquatic and terrestrial locomotory energetics in a toad and a turtle: A search for generalisations among ectotherms. Physiol. Biochem. Zool. 73(6), 672–682. https://doi.org/10.1086/318101 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hailey, A. & Coulson, I. M. Measurement of time budgets from continuous observation of thread-trailed tortoises (Kinixys spekii). Herp. J. 9, 15–20 (1999).
    Google Scholar 
    39.Kram, R. & Taylor, C. R. Energetics of running: A new perspective. Nature 346, 265–267. https://doi.org/10.1038/346265a0 (1990).CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar 
    40.Taylor, C. R. Relating mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994).CAS 
    PubMed 

    Google Scholar 
    41.Cavagna, G. A. & Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481. https://doi.org/10.1113/jphysiol.1977.sp011866 (1977).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Carrier, D. R., Deban, S. M. & Fischbein, T. Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J. Exp. Biol. 209, 2224–2237. https://doi.org/10.1242/jeb.02236 (2006).Article 
    PubMed 

    Google Scholar 
    43.Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292. https://doi.org/10.1242/jeb.115.1.283 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Barclay, C. J. The basis of difference in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharm. Physiol. 44(12), 1279–1286. https://doi.org/10.1111/1440-1681.12850 (2017).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Nwoye, L. O. & Goldspink, G. Biochemical efficiency and intrinsic shortening speed in selected fast and slow muscles. Experientia 37, 856–857. https://doi.org/10.1007/BF1985678 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Lambert, M. Temperature, activity and field sighting in the Mediterranean spur-thighed or common garden tortoise Testudo graeca. Biol. Conserv. 21, 39–54. https://doi.org/10.1016/0006-3207(81)90067-7 (1981).Article 

    Google Scholar 
    47.Tracy, R., Zimmerman, L., Tracy, C., Bradley, K. & Castle, K. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conserv. Biol. 5(2), 269–273. https://doi.org/10.2744/1071-8443(2006)5[269:ROFPIT]2.0.co;2 (2006).Article 

    Google Scholar 
    48.Huey, R. & Kingsolver, J. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Lailvaux, S. & Irschick, D. Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct. Ecol. 21(3), 534–543. https://doi.org/10.1111/j.1365-2435.2007.01263.x (2007).Article 

    Google Scholar 
    50.Lighton, J. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2008).Book 

    Google Scholar 
    51.Brody, S. Bioenergetics and Growth (Reinhold, 1945).
    Google Scholar  More