1.Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).CAS
PubMed
Google Scholar
2.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS
PubMed
Google Scholar
3.Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117, 1–8 (2021).
Google Scholar
4.Kulakowski, D. et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Ecol. Manag. 388, 120–131 (2017).
Google Scholar
5.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129, 1–55 (2015).
Google Scholar
6.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200, 1–8 (2020).
Google Scholar
7.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS
PubMed
Google Scholar
8.Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).
Google Scholar
9.Sallé, A. et al. Forest decline differentially affects trophic guilds of canopy-dwelling beetles. Ann. For. Sci. 77, 86 (2020).
Google Scholar
10.Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2015).
Google Scholar
11.Evans, P. M. et al. Testing the relative sensitivity of 102 ecological variables as indicators of woodland condition in the New Forest, UK. Ecol. Indic. 107, 105575, 1–12 (2019).
Google Scholar
12.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Google Scholar
13.Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).PubMed
Google Scholar
14.Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).PubMed
Google Scholar
15.Moretti, M., Obrist, M. K. & Duelli, P. Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography 27, 173–186 (2004).
Google Scholar
16.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121, 1–13 (2019).
Google Scholar
17.Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).PubMed
Google Scholar
18.Cardoso, P. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).
Google Scholar
19.Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding‐based biomonitoring. Mol. Ecol. Resour. 19, 900–928 (2019).PubMed
PubMed Central
Google Scholar
20.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).CAS
PubMed
PubMed Central
Google Scholar
21.Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213, 1–16 (2013).
Google Scholar
22.Wang, C. et al. The ecological impact of pest-induced tree dieback on insect biodiversity in Yunnan pine plantations, China. Ecol. Manag. 491, 119173, 1–11 (2021).
Google Scholar
23.Roland, J. & Taylor, P. D. Insect parasitoid species respond to forest structure at different spatial scales. Nature 386, 710–713 (1997).CAS
Google Scholar
24.Nguyen, L.-T.-H. et al. Bottom-up effect of water stress on the aphid parasitoid Aphidius ervi. Entomol. Gen. 38, 15–27 (2018).
Google Scholar
25.Lebourgeois, F., Rathgeber, C. B. K. & Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 21, 364–376 (2010).
Google Scholar
26.Camarero, J. J., Bigler, C., Linares, J. C. & Gil-Pelegrín, E. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. Ecol. Manag. 262, 759–769 (2011).
Google Scholar
27.Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data system. Mol. Ecol. Notes 7, 355–364 (2007).CAS
PubMed
PubMed Central
Google Scholar
28.Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).PubMed
Google Scholar
29.McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832, 1–18 (2019).
Google Scholar
30.Latombe, G., McGeoch, M., Nipperess, D. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity (version 1.2.0) [software] https://github.com/GLatombe/zetadiv (2020).31.Brown, A. M. et al. The fourth-corner solution—using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
Google Scholar
32.Hartop, E., Srivathsan, A., Ronquist, F. & Meier, R. Large-scale Integrative Taxonomy (LIT): resolving the data conundrum for dark taxa. Preprint at BioRxiv https://doi.org/10.1101/2021.04.13.439467 (2021).33.Kortmann, M. et al. Ecology versus society: impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biol. Conserv. 254, 10893, 1–9 (2021).
Google Scholar
34.Thorn, S. et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 101, e02949, 1–8 (2020).
Google Scholar
35.Müller, J., Noss, R. F., Bussler, H. & Brandl, R. Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol. Conserv. 143, 2559–2569 (2010).
Google Scholar
36.Cours, J. et al. Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Ecol. Manag. 482, 11881, 1–14 (2021).
Google Scholar
37.Herrault, P.-A. et al. Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc. Ecol. 31, 877–893 (2016).
Google Scholar
38.Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).
Google Scholar
39.Fleishman, E., Noss, R. & Noon, B. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6, 543–553 (2006).
Google Scholar
40.Borges, P. A. V., Rigal, F., Ros-Prieto, A. & Cardoso, P. Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conserv. Divers. 13, 508–518 (2020).
Google Scholar
41.Ienco, A., Dapporto, L., Greco, S., Infusino, M. & Scalercio, S. β-diversity partitioning of moth communities within and between different forest types. Sci. Nat. 107, 8, 1–11 (2020).
Google Scholar
42.Thorn, S. et al. The living dead: acknowledging life after tree death to stop forest degradation. Front. Ecol. Environ. 18, 505–512 (2020).
Google Scholar
43.Arnan, X., Bosch, J., Comas, L., Gracia, M. & Retana, J. Habitat determinants of abundance, structure and composition of flying Hymenoptera communities in mountain old-growth forests. Insect Conserv. Divers. 4, 200–211 (2011).
Google Scholar
44.Säterberg, T., Jonsson, T., Yearsley, J., Berg, S. & Ebenman, B. A potential role for rare species in ecosystem dynamics. Sci. Rep. 9, 11107, 1–12 (2019).
Google Scholar
45.Jain, M. et al. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014).PubMed
Google Scholar
46.Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150269, 1–10 (2016).
Google Scholar
47.Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).PubMed
Google Scholar
48.Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).
Google Scholar
49.Seibold, S. et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 53, 934–943 (2016).
Google Scholar
50.Ji, Y. et al. SPIKEPIPE: a metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20, 256–267 (2020).CAS
PubMed
Google Scholar
51.Sire, L. et al. The challenge of DNA barcoding saproxylic beetles in natural history collections—exploring the potential of parallel multiplex sequencing with Illumina MiSeq. Front. Ecol. Evol. 7, 495, 1–12 (2019).
Google Scholar
52.Morinière, J. et al. Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS ONE 11, e0155497, 1–14 (2016).
Google Scholar
53.Ashfaq, M. et al. Insect diversity in the Saharo-Arabian region: revealing a little-studied fauna by DNA barcoding. PLoS ONE 13, e0199965, 1–16 (2018).
Google Scholar
54.Karlsson, D., Hartop, E., Forshage, M., Jaschhof, M. & Ronquist, F. The Swedish Malaise trap project: a 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255, 1–35 (2020).
Google Scholar
55.Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: an innovative combination trap for biologically diverse sampling. PLoS ONE 6, e21079, 1–7 (2011).
Google Scholar
56.Lambert, J., Drenou, C., Denux, J.-P., Balent, G. & Cheret, V. Monitoring forest decline through remote sensing time series analysis. GIScience Remote Sens 50, 437–457 (2013).
Google Scholar
57.Lemmon, P. E. A spherical densiometer for estimating forest overstory density. For. Sci. 2, 314–320 (1956).
Google Scholar
58.Larrieu, L. & Gonin, P. L’indice de biodiversité potentielle (ibp): une méthode simple et rapide pour évaluer la biodiversité potentielle des peuplements forestiers. Rev. For. Fr. 6, 727–748 (2008).
Google Scholar
59.Larsson, T.-B. in Criteria and Indicators for Sustainable Forest Management at the Forest Management Unit Level (eds. Franc, A., Laroussinie, O. & Karjalainen, T.) Vol. 38, 75–81 (European Forest Institute Proceeding, 2001).60.Gosselin, F. & Larrieu, L. Developing and using statistical tools to estimate observer effect for ordered class data: the case of the IBP (Index of Biodiversity Potential). Ecol. Indic. 110, 105884, 1–10 (2020).
Google Scholar
61.Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).PubMed
PubMed Central
Google Scholar
62.Leray, M., Haenel, Q. & Bourlat, S. J. in Marine Genomics (ed. Bourlat, S. J.) Vol. 1452, 209–218 (Springer New York, 2016).63.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34, 1–14 (2013).
Google Scholar
64.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS
PubMed
Google Scholar
65.Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6, 1–7 (2014).
Google Scholar
66.Illumina. Illumina two-channel SBS sequencing technology. Pub. No. 770-2013-054. https://www.well.ox.ac.uk/ogc/wp-content/uploads/2017/09/techspotlight_two-channel_sbs.pdf (2016).67.Knittel, T. & Picard, D. PCR with degenerate primers 9 containing deoxyinosine fails with PFU DNA polumerase. Genome Res. 2, 346–347 (1993).CAS
Google Scholar
68.Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).
Google Scholar
69.Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421, 1–10 (2009).
Google Scholar
70.Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88, 1–7 (2016).
Google Scholar
71.Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]. https://github.com/najoshi/sickle (2011).72.Nurk, S. et al. in RECOMB 2013: Research in Computational Molecular Biology (eds. Deng, M., Jiang, R., Sun, F. & Zhang, X.) Vol. 7821, 158–170 (Springer International Publishing, 2013).73.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinforma. 13, 31, 1–7 (2012).
Google Scholar
74.Zepeda-Mendoza, M. L., Bohmann, K., Carmona Baez, A. & Gilbert, M. T. P. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res. Notes 9, 255, 1–13 (2016).
Google Scholar
75.R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2017).76.Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestische Käferwelt der finnischen Bruchmoore. Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
Google Scholar
77.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584, 1–22 (2016).
Google Scholar
78.Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270, S96–S99 (2003).CAS
Google Scholar
79.Boyer, F. et al. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS
PubMed
Google Scholar
80.Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188, 1–11 (2017).
Google Scholar
81.Chamberlain, S. bold: Interface to BOLD systems API. (version 1.1.0) [software] https://CRAN.R-project.org/package=bold (2020).82.Godfray, C. H. J. Parasitoids: Behavioral and Evolutionary Ecology 472 pp (Princeton University Press, 1994).83.Bouget, C., Brustel, H. & Zagatti, P. The French Information System on Saproxylic BEetle Ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev. D’Ecologie Terre Vie Société Natl. Prot. Nat. 63, 33–36 (2008).84.Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).
Google Scholar
85.Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).
Google Scholar
86.Hsieh, T. C., Ma, K. H. & Chao, iNEXT: iNterpolation and EXTrapolation for species diversity (version 2.0.20) [software] http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).87.Oksanen, J. et al. vegan: Community ecology package (version 2.5-6) [software] https://CRAN.R-project.org/package=vegan (2020).88.Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2019).89.Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data (version 4.3.1) [software] https://CRAN.R-project.org/package=mvabund (2020).90.Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).
Google Scholar
91.De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
Google Scholar
92.Gaston, K. J. in Rarity Vol. 13, 1–21 (Springer, 1994).93.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217, 1–11 (2013).
Google Scholar
94.Akaike, H. Information theory and an extension of the maximum likelihood principle. in Second International Symposium on Information Theory 267–281 (1973).95.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
Google Scholar
96.Sire, L. et al. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Zenodo. https://doi.org/10.5281/zenodo.5653307 (2021).97.Sire, L. et al. Supplementary Data—Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. figshare. Dataset https://doi.org/10.6084/m9.figshare.16975636.v1 (2021). More