Invasion front dynamics of interactive populations in environments with barriers
1.Williamson, M. & Griffiths, B. Biological invasions (Springer, New York, 1996).
Google Scholar
2.Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evolut. 32, 464–474 (2017).
Google Scholar
3.Van Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003).MATH
ADS
Google Scholar
4.OMalley, L., Korniss, G. & Caraco, T. Ecological invasion, roughened fronts, and a competitors extreme advance: integrating stochastic spatial-growth models. Bull. Math. Biol. 71, 1160–1188 (2009).MathSciNet
MATH
Google Scholar
5.Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The mathematics behind biological invasions Vol. 44 (Springer, New York, 2016).MATH
Google Scholar
6.Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937).MATH
Google Scholar
7.Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. 104, 3883–3888 (2007).CAS
PubMed
PubMed Central
ADS
Google Scholar
8.Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).CAS
PubMed
Google Scholar
9.Wolf, K. et al. Physical limits of cell migration: control by ecm space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).CAS
PubMed
PubMed Central
Google Scholar
10.Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Persp. Biol. 3, a005058 (2011).
Google Scholar
11.Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).CAS
PubMed
PubMed Central
Google Scholar
12.Spill, F., Reynolds, D. S., Kamm, R. D. & Zaman, M. H. Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 41–48 (2016).CAS
PubMed
PubMed Central
Google Scholar
13.Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).CAS
PubMed
Google Scholar
14.Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).CAS
Google Scholar
15.Azimzade, Y. & Saberi, A. A. Short-range migration can alter evolutionary dynamics in solid tumors. J. Stat. Mech. Theory Exp. 2019, 103502 (2019).MathSciNet
MATH
Google Scholar
16.West, J., Schenck, R., Gatenbee, C., Robertson-Tessi, M. & Anderson, A. R. Tissue structure accelerates evolution: premalignant sweeps precede neutral expansion. bioRxiv 542019 (2019).17.Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).CAS
PubMed
PubMed Central
Google Scholar
18.Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in wnt-driven mammary cancers. Nature 508, 113–117 (2014).CAS
PubMed
PubMed Central
ADS
Google Scholar
19.Shahriari, K. et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene (2016).20.Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).CAS
PubMed
Google Scholar
21.Martín-Pardillos, A. et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 19, 1–26 (2019).
Google Scholar
22.Kim, T.-M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).CAS
PubMed
Google Scholar
23.Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114 (2010).CAS
PubMed
PubMed Central
ADS
Google Scholar
24.Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109 (2010).CAS
PubMed
PubMed Central
ADS
Google Scholar
25.Capp, J.-P. et al. Group phenotypic composition in cancer. Elife 10, e63518 (2021).CAS
PubMed
PubMed Central
Google Scholar
26.Murray, J. D. Mathematical biology I: an introduction (2003).27.Mikhailov, A., Schimansky-Geier, L. & Ebeling, W. Stochastic motion of the propagating front in bistable media. Phys. Lett. A 96, 453–456 (1983).MathSciNet
ADS
Google Scholar
28.Hatzikirou, H., Brusch, L., Schaller, C., Simon, M. & Deutsch, A. Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339 (2010).MathSciNet
MATH
Google Scholar
29.Azimzade, Y., Sasar, M. & Maleki, I. Invasion front dynamics in disordered environments. Sci. Rep. 10, 1–10 (2020).
Google Scholar
30.Azimzade, Y., Saberi, A. A. & Sahimi, M. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Phys. Rev. E 100, 062409 (2019).PubMed
ADS
Google Scholar
31.Rapin, G. et al. Roughness and dynamics of proliferating cell fronts as a probe of cell-cell interactions. Sci. Rep. 11, 1–9 (2021).ADS
Google Scholar
32.Pérez-Beteta, J. et al. Tumor surface regularity at mr imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 171051 (2018).33.Pérez-Beteta, J. et al. Morphological mri-based features provide pretreatment survival prediction in glioblastoma. Eur. Radiol. 1–10 (2018).34.Brú, A. et al. Super-rough dynamics on tumor growth. Phys. Rev. Lett. 81, 4008 (1998).ADS
Google Scholar
35.Brú, A., Albertos, S., Subiza, J. L., García-Asenjo, J. L. & Brú, I. The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003).PubMed
PubMed Central
ADS
Google Scholar
36.Huergo, M., Pasquale, M., González, P., Bolzán, A. & Arvia, A. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys. Rev. E 85, 011918 (2012).CAS
ADS
Google Scholar
37.Munn, L. L. Dynamics of tissue topology during cancer invasion and metastasis. Phys. Biol. 10, 065003 (2013).PubMed
PubMed Central
ADS
Google Scholar
38.Dey, B., Sekhar, G. R. & Mukhopadhyay, S. K. In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. J. Biol. Phys. 1–40 (2018).39.Block, M., Schöll, E. & Drasdo, D. Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys. Rev. Lett. 99, 248101 (2007).CAS
PubMed
ADS
Google Scholar
40.Moglia, B., Guisoni, N. & Albano, E. V. Interfacial properties in a discrete model for tumor growth. Phys. Rev. E 87, 032713 (2013).ADS
Google Scholar
41.Moglia, B., Albano, E. V. & Guisoni, N. Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium. Phys. Rev. E 94, 052139 (2016).PubMed
ADS
Google Scholar
42.Scianna, M. & Preziosi, L. A hybrid model describing different morphologies of tumor invasion fronts. Math. Model. Nat. Phenom. 7, 78–104 (2012).MathSciNet
MATH
Google Scholar
43.Azimzade, Y., Saberi, A. A. & Sahimi, M. Role of the interplay between the internal and external conditions in invasive behavior of tumors. Sci. Rep. 8, 5968 (2018).PubMed
PubMed Central
ADS
Google Scholar
44.Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).CAS
PubMed
ADS
Google Scholar
45.Family, F. & Vicsek, T. Dynamics of fractal surfaces (World Scientific, Singapore, 1991).MATH
Google Scholar
46.Vicsek, T. Fractal growth phenomena (World scientific, Singapore, 1992).MATH
Google Scholar
47.Swanson, K. R., Bridge, C., Murray, J. & Alvord, E. C. Jr. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003).PubMed
Google Scholar
48.Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. 2, 1–13 (2019).
Google Scholar
49.Azimzade, Y., Saberi, A. A. & Gatenby, R. A. Superlinear growth reveals the allee effect in tumors. Phys. Rev. E 103, 042405 (2021).CAS
PubMed
ADS
Google Scholar
50.Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).CAS
PubMed
Google Scholar More