1.FAO. Superfruits: Myth or truth? in Proceedings International Symposium, Ho Chi Minh, Vietnam, 140 (2013).
2.Chamberlain, J., Darr, D. & Meinhold, K. Rediscovering the contributions of forest and trees to transition global food system. Forests 11, 1098. https://doi.org/10.3390/f11101098 (2020).Article
Google Scholar
3.Vanzani, P. et al. Wild mediterranean plants as traditional food: A valuable source of antioxidants. J. Food Sci. 76, 46–51 (2011).Article
Google Scholar
4.Genskowsky, E. et al. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96, 4235–4242 (2016).CAS
Article
Google Scholar
5.Benedetti, S. Monografía de maqui, Aristotelia chilensis (Mol.) Stuntz 60 (Instituto Forestal, 2012).
Google Scholar
6.Vogel, H., Razmilic, H., San Martin, I., Doll, U. & González, B. Plantas Medicinales Chilena. Experiencias de domesticación y cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y maqui. Editorial Universitaria de Talca, 192 (2005).7.Gironés-Vilaplana, A., Mena, P., García-Viguera, C. & Moreno, D. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Food Sci. Tech. 47, 279–286 (2012).
Google Scholar
8.Quispe-Fuentes, I., Vega-Gálvez, A., Vásquez, V., Uribe, E. & Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process Eng. 40, 124–132 (2017).Article
Google Scholar
9.Fredes, C., Montenegro, G., Zoffoli, J., Gómez, M. & Robert, P. Polyphenol content and antioxidant activity of maqui during fruit development and maturation in central Chile. Chilean J. Agric. Res. 72, 582–589 (2012).Article
Google Scholar
10.Céspedes, C., El-Hafidi, M., Pavon, N. & Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 107, 820–829 (2008).Article
Google Scholar
11.Céspedes, C., Alarcon, J., Avila, J. & Nieto, A. Anti-inflammatory activity of Aristotelia chilensis (stuntz) (Elaeocarpaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9, 91–99 (2010).
Google Scholar
12.Céspedes, C. et al. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol. 108, 438–450 (2017).
13.Muñoz, O. et al. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 63, 849–859 (2011).Article
Google Scholar
14.Rojo, L. et al. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. 131, 387–396 (2012).CAS
Article
Google Scholar
15.Zúñiga, G., Tapia, A., Arenas, A., Contreras, R. & Zuñiga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: A review. Phytochem. Rev. 16, 1081–1094. https://doi.org/10.1007/s11101-017-9533-1 (2017).CAS
Article
Google Scholar
16.Vogel, H. et al. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants. 1, 123–133 (2014).
Google Scholar
17.Liu, Y. & El-Kassaby, Y. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evol. Biol. 19, 231. https://doi.org/10.1186/s12862-019-1553-6 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
18.Villemereuil, P., Gaggiotti, O., Mouterde, M. & Till-Bottraud, I. Common garden experiment in the genomic era: New perspectives and opportunities. Heredity 116, 249–254 (2016).Article
Google Scholar
19.Torres-Ruiz, J. et al. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 39, 1736–1749. https://doi.org/10.1093/treephys/tpz090 (2019).Article
PubMed
Google Scholar
20.Sáenz-Romero, C., Kremer, A., Nagy, L., Kehlet, J. & Mátyás, C. Common garden comparison confirm inherited differences in sensitivity to climate change between forest tree species. PerrJ. 7, 6213. https://doi.org/10.7717/peerj.6213 (2019).Article
Google Scholar
21.Aspinwall, M. et al. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiol. 8, 1095–1112. https://doi.org/10.1093/treephys/tpx047 (2017).CAS
Article
Google Scholar
22.Knutzen, F., Meier, I. & Leuschner, C. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. https://doi.org/10.1093/treephys/tpv057 (2015).CAS
Article
PubMed
Google Scholar
23.Mkwezalamba, I., Munthali, C. & Missanjo, E. Phenotypic variation in fruit morphology among provenances of Sclerocarya birrea (A. Rich.) Hochst. Int. J. Forestry Res. 1, 1–8. https://doi.org/10.1155/2015/735418 (2015).Article
Google Scholar
24.Sudrajat, D. Genetic variation of fruit, seed, and seedling characteristics among 11 populations of white Jabon in Indonesia. For. Sci. Tech. 12(1), 9–15. https://doi.org/10.1080/21580103.2015.1007896 (2016).Article
Google Scholar
25.Teklehaimanot, Z., Lanek, J. & Tomlinson, H. Provenance variation in morphology and leaflet anatomy of Parkia biglobosa and its relation to drought tolerance. Trees 13, 96–102. https://doi.org/10.1007/pl00009742 (1998).Article
Google Scholar
26.Åkerström, A., Jaakola, L., Bång, U. & Jäderlund, A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). J. Agric. Food Chem. 58, 11939–11945. https://doi.org/10.1021/jf102407n (2010).CAS
Article
PubMed
Google Scholar
27.Lätti, A., Riihinen, K. & Kainulainen, P. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56, 190–196. https://doi.org/10.1021/jf072857m (2008).CAS
Article
PubMed
Google Scholar
28.Uleberg, E. et al. Effects of temperature and photoperiod on yield and chemical composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 60, 10406–10414. https://doi.org/10.1021/jf302924m (2012).CAS
Article
PubMed
Google Scholar
29.Moya, M., González, B., Doll, U., Yuri, J. A. & Vogel, H. Different covers affect growth and development of three maqui clones (Aristotelia chilensis [Molina] Stuntz). J. Berry Res. 1, 1–10. https://doi.org/10.3233/jbr-180377 (2019).Article
Google Scholar
30.Cona, M. et al. New polymorphic nuclear microsatellites from Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae). Chilean J. Agri. Res. 80, 153–160. https://doi.org/10.4067/S0718-58392020000200153 (2020).Article
Google Scholar
31.Hamrick, J. Response of forest trees to global environmental changes. For. Ecol. Manag. 197, 323–335. https://doi.org/10.1016/j.foreco.2004.05.023 (2004).Article
Google Scholar
32.Salgado, P., Prinz, K., Finkeldey, R., Ramírez, C. & Vogel, H. Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers. Gen. Resour. Crop Evol. 64, 2083–2091 (2017).CAS
Article
Google Scholar
33.Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsc. Ecol. 21, 797–807. https://doi.org/10.1007/s10980-005-5245-9 (2006).Article
Google Scholar
34.O’Brien, E., Mazanex, R. & Krauss, S. Provenance variation of ecologically important traits of forest trees: implications for restoration. J. Appl. Ecol. 44, 583–593. https://doi.org/10.1111/j.1365-2664.2007.01313.x (2007).Article
Google Scholar
35.Singleton, V. & Rossi, J. Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS
Google Scholar
36.Giusti, M. & Wrolstad, R. Current protocols in food analytical chemistry. In Current Protocols in Food Analytical Chemistry (eds Wrolstad, R. et al.) F1.2.1-F1.2.13 (Wiley, 2001).
Google Scholar
37.González, B., Vogel, H., Razmilic, I. & Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 76, 158–165. https://doi.org/10.1016/j.indcrop.2015.06.038 (2015).CAS
Article
Google Scholar
38.Winn, M., Araman, P. & Lee, S-M. UrbanCrowns: An assessment and monitoring tool for urban trees. Gen. Tech. Rep. SRS-135. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 10 (2011).39.Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. N. Z. J. Stat. 46, 325–347 (2004).MathSciNet
Article
Google Scholar
40.Bastías, A. et al. Identification and characterization of microsatellite loci in Maqui (Aristotelia chilensis (Molina) Stuntz) using next-generation sequencing (NGS). PLoS ONE 11, e0159825. https://doi.org/10.1371/journal.pone.0159825 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
41.Espinoza, S. et al. Influence of provenance origin on the early performance of two sclerophyllous Mediterranean species established in burned drylands. Sci. Rep. 11, 6212. https://doi.org/10.1038/s41598-021-85599-3 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
42.Vander Mijnsbrugge, K., Bischoff, A. & Smith, B. A question of origin: Where and how to collect seed for ecological restoration. Basic Appl. Ecol. 11, 300–311. https://doi.org/10.1016/j.baae.2009.09.002 (2010).Article
Google Scholar
43.Gao, S. B. et al. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 8, 3148. https://doi.org/10.1038/s41598-018-21557-w (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
44.Lusk, C. & Del Pozo, A. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Aust. Ecol. 27, 173–182. https://doi.org/10.1046/j.1442-9993.2002.01168.x (2002).Article
Google Scholar
45.Brito, C., Bown, H., Fuentes, J., Franck, N. & Perez-Quezada, J. Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Rev. Chilena de Historia Natural. https://doi.org/10.1186/s40693-014-0008-0 (2014).Article
Google Scholar
46.Prado, C. & Damascos, M. Gas exchange and leaf specific mass of different foliar cohorts of the wintergreen shrub Aristotelia chilensis (Mol.) Stuntz (Eleocarpaceae) fifteen days before the flowering and the fall of the old cohort. Braz. Arch. Biol. Tech. 44, 277–282 (2001).Article
Google Scholar
47.Repetto-Giavalli, F., Cavieres, L. & Simonetti, J. Respuestas foliares de Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) a la fragmentación del bosque maulino. Revista Chilena Hist. Nat. 80, 469–477 (2007).
Google Scholar
48.Bustan, A. et al. Fruit load governs transpiration of olive trees. Tree Physiol. 36, 380–391. https://doi.org/10.1093/treephys/tpv138 (2016).Article
PubMed
PubMed Central
Google Scholar
49.Wünsche, J. & Lakso, A. Apple tree physiology—Implications for orchard and tree management. Compact Fruit Tree 33, 82–88 (2000).
Google Scholar
50.Kelc, D., Vindis, P., Lakota, M. Measurements of Photosynthesis and Transpiration on Apple Trees, Chapter 18 in DAAAM International Scientific Book 2015. in (ed. Katalinic, B.), 199–208. (DAAAM International, 2015). https://doi.org/10.2507/daaam.scibook.2015.18. (ISBN 978-3-902734-05-1, ISSN 1726–9687).51.Lortie, C. & Aarssen, L. The specialization hypothesis for phenotypic plasticity in plants. Int. J. Plant Sci. 157, 484–487. https://doi.org/10.1086/297365 (1996).Article
Google Scholar
52.Nemeskéri, E. & Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 9, 447. https://doi.org/10.3390/agronomy9080447 (2019).CAS
Article
Google Scholar
53.Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci. Rep. https://doi.org/10.1038/srep19703 (2016).Article
PubMed
PubMed Central
Google Scholar
54.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).Article
PubMed
Google Scholar
55.Allegro, G., Pastore, C., Valentini, G. & Filippetti, I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy 11, 999. https://doi.org/10.3390/agronomy11050999 (2021).CAS
Article
Google Scholar
56.Chagné, D. et al. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic. Res. 1, 14046. https://doi.org/10.1038/hortres.2014.46 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
57.Gashu, K. et al. Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci. 11, 588739. https://doi.org/10.3389/fpls.2020.588739 (2020).Article
PubMed
PubMed Central
Google Scholar
58.Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z. & van Leeuwen, C. Adapting wine grape ripening to global change requires a multi-trait approach. Front. Plant Sci. 12, 624867. https://doi.org/10.3389/fpls.2021.624867 (2021).Article
PubMed
PubMed Central
Google Scholar
59.Nesmith, D. Fruit development period of several Southern Highbush Blueberry Cultivars. Int. J. Fruit Sci. 12, 249–255. https://doi.org/10.1080/15538362.2011.619430 (2012).Article
Google Scholar
60.Romero-Román, M. et al. Native species facing climate changes: Response of Calafate Berries To Low Temperature and UV radiation. Foods. 10, 196. https://doi.org/10.3390/foods10010196 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
61.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. 28, 137–142 (1995).CAS
Article
Google Scholar
62.Ebel, R. C., Proebsting, E. L. & Evans, R. G. Deficit irrigation to control vegetative growth in apple and monitoring fruit growth to schedule irrigation. HortScience 30, 1229–1232. https://doi.org/10.21273/hortsci.30.6.1229 (1995).Article
Google Scholar
63.Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58(2), 147–159. https://doi.org/10.1093/jxb/erl165 (2007).CAS
Article
PubMed
Google Scholar
64.Barnuud, N., Zerihun, A., Gibberd, M. & Bates, B. Berry composition and climate: Responses and empirical models. Inter. J. Biometeor. 58, 1207–1223. https://doi.org/10.1007/s00484-013-0715-2 (2014).ADS
Article
Google Scholar
65.Spinardi, A., Cola, G., Gardana, C. & Mignani, I. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 10, 1045. https://doi.org/10.3389/fpls.2019.01045 (2019).Article
PubMed
PubMed Central
Google Scholar
66.Stevenson, D. & Scalzo, J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2, 179–189. https://doi.org/10.3233/JBR-2012-038 (2012).CAS
Article
Google Scholar
67.Zarrouk, O. et al. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01640 (2016).Article
PubMed
PubMed Central
Google Scholar
68.Prange, R. K. & DeEll, J. R. Preharvest factors affecting postharvest quality of berry crops. HortScience 32, 824–830. https://doi.org/10.21273/hortsci.32.5.824 (1997).Article
Google Scholar
69.Mignard, O., Beguería, S., Reig, G. & Fonti, C. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Sci. Hortic. 285, 110142. https://doi.org/10.1016/j.scienta.2021.110142 (2021).CAS
Article
Google Scholar
70.González-Villagra, J., Rodrigues-Salvador, A., Nunes-Nesi, A., Cohen, J. & Reyes-Díaz, M. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol. Biochem. 124, 136–145. https://doi.org/10.1016/j.plaphy.2018.01.010 (2018).CAS
Article
PubMed
Google Scholar
71.Calderan, A. et al. Managing moderate water deficit increased anthocyanin concentration and proanthocyanidin galloylation in “Refošk” grapes in Northeast Italy. Agric. Water Manage. 246, 106684. https://doi.org/10.1016/j.agwat.2020.106684 (2021).Article
Google Scholar
72.Yáñez, M., Seiler, J. & Fox, T. Crown physiological responses of loblolly pine clones and families to silvicultural intensity: Assessing the effect of crown ideotype. For. Ecol. Manage. 398, 25–36. https://doi.org/10.1016/j.foreco.2017.05.002 (2017).Article
Google Scholar More