More stories

  • in

    Two million species catalogued by 500 experts

    CORRESPONDENCE
    11 January 2022

    Two million species catalogued by 500 experts

    Mark John Costello

    0
    ,

    R. Edward DeWalt

    1
    ,

    Thomas M. Orrell

    2
    &

    Olaf Banki

    3

    Mark John Costello

    Nord University, Bodø, Norway.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    R. Edward DeWalt

    University of Illinois, Champaign, Illinois, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Thomas M. Orrell

    Smithsonian Institution, Washington DC, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Olaf Banki

    Naturalis Biodiversity Centre, Leiden, the Netherlands.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    More than two million accepted species are now listed in the open-access Catalogue of Life (go.nature.com/3ym3h2g). This achievement addresses a major impediment to the management of biodiversity data by presenting an almost complete index of accepted names and known synonyms.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00010-z

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Latest on:

    Biodiversity

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    The UN must get on with appointing its new science board
    Editorial 08 DEC 21

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    Jobs

    Senior Medical Director, Global Medical Affairs Alzheimer’s Disease, Global Medical Evidence Generation

    Eisai Inc.
    Nutley, NJ, United States

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel More

  • in

    EU Nature Restoration Law needs ambitious and binding targets

    CORRESPONDENCE
    11 January 2022

    EU Nature Restoration Law needs ambitious and binding targets

    Kris Decleer

     ORCID: http://orcid.org/0000-0001-9621-8925

    0
    ,

    Jordi Cortina-Segarra

     ORCID: http://orcid.org/0000-0002-8231-3793

    1
    &

    Aveliina Helm

     ORCID: http://orcid.org/0000-0003-2338-4564

    2

    Kris Decleer

    Research Institute for Nature and Forest, Brussels, Belgium.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jordi Cortina-Segarra

    University of Alicante, Alicante, Spain.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Aveliina Helm

    University of Tartu, Tartu, Estonia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Initiatives by the European Commission to restore the continent’s degraded areas (J. Cortina-Segarra et al. Nature 535, 231; 2016) have proved disappointing. As the United Nations Decade on Ecosystem Restoration gathers momentum, the commission is preparing a law that has legally binding targets. To underscore the urgency, some 1,400 European scientists and 30 expert networks and institutions have signed a declaration by the Society for Ecological Restoration Europe (see go.nature.com/3st6k88).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 601, 191 (2022)
    doi: https://doi.org/10.1038/d41586-022-00011-y

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Environmental sciences

    Latest on:

    Law

    Elizabeth Holmes verdict: researchers share lessons for science
    News 04 JAN 22

    What Sci-Hub’s latest court battle means for research
    News 13 DEC 21

    Science agency on trial following deadly White Island volcano eruption
    News 06 OCT 21

    Ecology

    Wind power versus wildlife: root mitigation in evidence
    Correspondence 11 JAN 22

    Two million species catalogued by 500 experts
    Correspondence 11 JAN 22

    From the archive
    News & Views 11 JAN 22

    Environmental sciences

    Rapid microbial methanogenesis during CO2 storage in hydrocarbon reservoirs
    Article 22 DEC 21

    Half measures in One Health fail people and the environment
    Correspondence 21 DEC 21

    Uncovering global-scale risks from commercial chemicals in air
    Article 15 DEC 21

    Jobs

    W1 Professor (Tenure Track) of Molecular Plant Biologyr

    University of Tübingen (Uni Tübingen)
    Tübingen, Baden-Württemberg, Germany

    Early Career Fellowship Programme 2021

    Human Technopole
    Milano, Italy

    A tenure-track position in the field of ecology/evolutionary biology/conservation biology

    Ben-Gurion University of the Negev (BGU)
    Midrashet Ben-Gurion, Israel

    Leaders of Independent Junior Research Group (JRG) 2022

    Asia Pacific Center for Theoretical Physics (APCTP)
    Pohang, Korea, South More

  • in

    Ecoregional and temporal dynamics of dugong habitat use in a complex coral reef lagoon ecosystem

    1.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    2.Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).
    Google Scholar 
    3.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).PubMed 

    Google Scholar 
    4.Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).
    Google Scholar 
    5.Mannocci, L. et al. Temporal resolutions in species distribution models of highly mobile marine animals: Recommendations for ecologists and managers. Divers. Distrib. 23, 1098–1109 (2017).
    Google Scholar 
    6.Sequeira, A. M. M., Bouchet, P. J., Yates, K. L., Mengersen, K. & Caley, M. J. Transferring biodiversity models for conservation: Opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264 (2018).
    Google Scholar 
    7.Cleguer, C., Grech, A., Garrigue, C. & Marsh, H. Spatial mismatch between marine protected areas and dugongs in New Caledonia. Biol. Conserv. 184, 154–162 (2015).
    Google Scholar 
    8.Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 

    Google Scholar 
    9.Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 

    Google Scholar 
    10.Hazen, E. L. et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 54, 1415–1428 (2017).
    Google Scholar 
    11.Sequeira, A. M. M. et al. Overhauling ocean spatial planning to improve marine megafauna conservation. Front. Mar. Sci. 6, 639 (2019).
    Google Scholar 
    12.Marsh, H. & Sobtzick, S. Dugong dugon. In The IUCN RedList of Threatened Species (2019:e.T6909A160756767). https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6909A160756767.en. Accessed November 2020 (2019).13.Marsh, H., O’Shea, T. J. & Reynolds, J. E. I. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).
    Google Scholar 
    14.Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    15.Nowicki, R. J., Thomson, J. A., Fourqurean, J. W., Wirsing, A. J. & Heithaus, M. R. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13424 (2021).Article 
    PubMed 

    Google Scholar 
    16.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Living on the edge: Dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 74, 93–101 (2007).
    Google Scholar 
    17.Aragones, L. V., Lawler, I. R., Foley, W. J. & Marsh, H. Dugong grazing and turtle cropping: Grazing optimization in tropical seagrass systems?. Oecologia 149, 635–647 (2006).PubMed 
    ADS 

    Google Scholar 
    18.Preen, A. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124, 201–213 (1995).ADS 

    Google Scholar 
    19.Unsworth, R. K. F., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 1–8 (2017).CAS 
    ADS 

    Google Scholar 
    21.Ponnampalam, L. S., Fairul Izmal, J. H., Adulyanukosol, K., Ooi, J. L. S. & Reynolds, J. E. Aligning conservation and research priorities for proactive species and habitat management: The case of dugongs Dugong dugon in Johor, Malaysia. Oryx 49, 743–749 (2015).
    Google Scholar 
    22.Preen, A. The Status and Conservation of Dugongs in the Arabian Region. Saudi Arabia, Meteorological and Environmental Protection Administration (MEPA), Coastal and Marine Management Series. Report, No 10, (1989).23.Preen, A. Distribution, abundance and conservation status of dugongs and dolphins in the southern and western Arabian Gulf. Biol. Conserv. 118, 205–218 (2004).
    Google Scholar 
    24.Findlay, K. P., Cockcroft, V. G. & Guissamulo, A. T. Dugong abundance and distribution in the Bazaruto Archipelago, Mozambique. Afr. J. Mar. Sci. 33, 441–452 (2011).
    Google Scholar 
    25.Pilcher, N. J. et al. A low-cost solution for documenting distribution and abundance of endangered marine fauna and impacts from fisheries. PLoS ONE 12, e0190021 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Hashim, M. et al. Using fisher knowledge, mapping population, habitat suitability and risk for the conservation of dugongs in Johor Straits of Malaysia. Mar. Policy 78, 18–25 (2017).
    Google Scholar 
    27.Bayliss, P. & Hutton, M. Integrating Indigenous Knowledge and Survey Techniques to Develop a Baseline for Dugong (Dugong dugon) Management in the Kimberley. Final Report of project 1.2.5 of the Kimberley Marine Research Program Node of the Western Australian Marine Science Institution, WAMSI (2017).28.Campbell, R., Holley, D. & Bardi-Jawi Ranger Group. Movement Behaviours and Habitat Usage of West Kimberley Dugongs : A Community Based Approach Final Report to the National Marine Mammal Centre November 2010. Final Report to the National Marine Mammal Centre (2010).29.Cleguer, C. et al. Working with the Community to Understand Use of Space by Dugongs and Green Turtles in Torres Strait. Final Report to the Mura Badulgal Representative NativeTitle Body Corporate and the Department of the Environment, National Environment Science Program TropicalWater Quality Hub (James Cook University, Townsville, 2016).30.Gredzens, C. et al. Satellite tracking of sympatric marine megafauna can inform the biological basis for species co-management. PLoS ONE 9, e98944 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Holley, D. Movement Patterns and Habitat Usage of Shark Bay Dugongs. MSc thesis, Edith Cowan University, Perth. https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1070&context=theses (2006).32.Sheppard, J. et al. Movement heterogeneity of dugongs, Dugong dugon (Müller), over large spatial scales. J. Exp. Mar. Bio. Ecol. 334, 64–83 (2006).
    Google Scholar 
    33.Hagihara, R. et al. Improving the Estimates of Abundance of Dugongs and Large Immature and Adult-Sized Green Turtles in Western and Central Torres Strait. Report to the National Environmental Science Programme (Reef and Rainforest Research Centre Limited, Cairns 2016).34.De Iongh, H. H., Langeveld, P. & Van Der Wal, M. Movement and home ranges of dugongs around the Lease Islands, East Indonesia. Mar. Ecol. 19, 179–193 (1998).ADS 

    Google Scholar 
    35.Cleguer, C., Garrigue, C. & Marsh, H. Dugong (Dugong dugon) movements and habitat use in a coral reef lagoonal ecosystem. Endanger. Species Res. 43, 167–181 (2020).
    Google Scholar 
    36.Sheppard, J., Jones, R. E., Marsh, H. & Lawler, I. R. Effects of tidal and diel cycles on dugong habitat use. J. Wildl. Manag. 73, 45–59 (2009).
    Google Scholar 
    37.Sheppard, J., Marsh, H., Jones, R. E. & Lawler, I. R. Dugong habitat use in relation to seagrass nutrients, tides, and diel cycles. Mar. Mammal Sci. 26, 855–879 (2010).
    Google Scholar 
    38.Zeh, D. R. et al. Evidence of behavioural thermoregulation by dugongs at the high latitude limit to their range in eastern Australia. J. Exp. Mar. Bio. Ecol. 508, 27–34 (2018).
    Google Scholar 
    39.UNESCO. Lagoons of New Caledonia: Reef Diversity and Associated Ecosystems (U.W.H. Centre, 2009).40.Payri, C. New Caledonia: World of Corals (IRD Editions/Solaris, Marseille/Nouméa, 2018).41.Oremus, M., Garrigue, C. & Cleguer, C. Isolement et diversité génétique des dugongs de Nouvelle-Calédonie (Unpublished Report, 2011).42.Oremus, M., Garrigue, C. & Cleguer, C. Etude génétique complémentaire sur le statut de la population de dugong de Nouvelle-Calédonie (Unpublished Report, 2015).43.Garrigue, C., Patenaude, N. & Marsh, H. Distribution and abundance of the dugong in New Caledonia, southwest Pacific. Mar. Mammal Sci. 24, 81–90 (2008).
    Google Scholar 
    44.Cleguer, C. et al. Drivers of change in the relative abundance of dugongs in New Caledonia. Wildl. Res. 44, 365–376 (2017).
    Google Scholar 
    45.Gonson, C. et al. Decadal increase in the number of recreational users is concentrated in no-take marine reserves. Mar. Pollut. Bull. 107, 144–154 (2016).CAS 
    PubMed 

    Google Scholar 
    46.Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    47.Hussey, N. E. et al. Aquatic animal telemetry: A panoramic window into the underwater world. Science (80-.) 348, 1255642 (2015).
    Google Scholar 
    48.Hagihara, R. et al. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna. PLoS ONE 13, e0191476 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Sequeira, A. M. M. et al. The importance of sample size in marine megafauna tagging studies. Ecol. Appl. 29, e01947 (2019).CAS 
    PubMed 

    Google Scholar 
    50.Derville, S., Constantine, R., Baker, C. S., Oremus, M. & Torres, L. G. Environmental correlates of nearshore habitat distribution by the Critically Endangered Maui dolphin. Mar. Ecol. Prog. Ser. 551, 261–275 (2016).CAS 
    ADS 

    Google Scholar 
    51.Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).
    Google Scholar 
    52.Pinto, C. et al. Using individual tracking data to validate the predictions of species distribution models. Divers. Distrib. 22, 682–693 (2016).
    Google Scholar 
    53.Tingley, M. W., Wilkerson, R. L., Howell, C. A. & Siegel, R. B. An integrated occupancy and space-use model to predict abundance of imperfectly detected, territorial vertebrates. Methods Ecol. Evol. 7, 508–517 (2016).
    Google Scholar 
    54.Roberts, J. J. et al. Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    55.Mannocci, L., Roberts, J. J., Pedersen, E. J. & Halpin, P. N. Geographical differences in habitat relationships of cetaceans across an ocean basin. Ecography (Cop.) 43, 1250–1259 (2020).
    Google Scholar 
    56.Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Fear factor: Do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)?. Oecologia 153, 1031–1040 (2007).PubMed 
    ADS 

    Google Scholar 
    57.Jollit, I. Spatialisation des activités humaines et aide à la décision pour une gestion durable des écosystèmes coralliens: la pêche plaisancière dans le lagon sud-ouest de la Nouvelle-Calédonie. PhD dissertation, Université de la Nouvelle-Calédonie (2010).58.Maitland, R. N., Lawler, I. R. & Sheppard, J. K. Assessing the risk of boat strike on Dugongs Dugong dugon at Burrum Heads, Queensland, Australia. Pac. Conserv. Biol. 12, 321–326 (2006).
    Google Scholar 
    59.Preen, A. Interactions Between Dugongs and Seagrasses in a Subtropical Environment. PhD dissertation, James Cook University, Townsville, Australia (1992).60.Hodgson, A. Dugong Behaviour and Responses to Human Influences. PhD dissertation, James Cook University (2004).61.Edwards, H. H. et al. Influence of manatees’ diving on their risk of collision with watercraft. PLoS ONE 11, e0151450 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    62.Rycyk, A. M. et al. Manatee behavioral response to boats. Mar. Mamm. Sci. 34, 924–962 (2018).
    Google Scholar 
    63.Garrigue, C. Macrophyte associations on the soft bottoms of the South-West Lagoon of New Caledonia: Description, structure and biomass. Bot. Mar. 38, 481–492 (1995).
    Google Scholar 
    64.Andréfouët, S. et al. Nation-wide hierarchical and spatially-explicit framework to characterize seagrass meadows in the Indo-Pacific: Example application to New Caledonia. Mar. Pollut. Bull. 173, 113036 (2021).PubMed 

    Google Scholar 
    65.Cleguer, C. Informing Dugong Conservation at Several Spatial and Temporal Scales in New Caledonia. PhD dissertation, James Cook University (2015).66.Anderson, P. K. Dugongs of Shark Bay, Australia–Seasonal migration, water temperature and forage. Natl. Geogr. Res. 2, 473–490 (1986).
    Google Scholar 
    67.Heithaus, M. R. & Dill, L. M. Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491 (2002).
    Google Scholar 
    68.Roger, J. Données bathymétriques et topographiques de Nouvelle-Calédonie : Réalisation d’un MNT terre-mer pour l’étude de l’aléa tsunami (projet TSUCAL). (Institut de Recherche pour le Développement, 2020).69.Andréfouët, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space. In Opening Talk, 10th International Coral Reef Symposium (eds Suzuki, Y. et al.) 1732–1745 (Japanese Coral Reef Society, 2006).
    Google Scholar 
    70.Andréfouët, S., Cabioch, G., Flamand, B. & Pelletier, B. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. Coral Reefs 28, 691–707 (2009).ADS 

    Google Scholar 
    71.Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).MATH 

    Google Scholar 
    72.Marsh, H. & Rathbun, G. B. Development and application of conventional and satellite radio tracking techniques for studying dugong movements and habitat use. Aust. Wildl. Res. 17, 83–100 (1990).
    Google Scholar 
    73.Lanyon, J. M. et al. A method for capturing dugongs (Dugong dugong) in open water. Aquat. Mamm. 32, 196–201 (2006).
    Google Scholar 
    74.Cleguer, C., Derville, S., Kelly, N., Lambourne, R. & Garrigue, C. Programme SIREN : Suivi à fine échelle de la fréquentation et du déplacement des dugongs dans la zone Voh-Koné- Pouembout , pour une gestion améliorée de l’espèce Rapport final (Technical report prepared for Koniambo Nickel SAS, 2020).75.Johnson, D., London, J., Lea, M. A. & Durban, J. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    76.Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: Identifying profitable places and homogeneous movements bouts. Ecology 89, 3336–3348 (2008).PubMed 

    Google Scholar 
    77.Hyndman, R. et al. Forecast: Forecasting Functions for Time Series and Linear Models. https://pkg.robjhyndman.com/forecast/ (R package version 8.15, 2021).78.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme (R package version 3.1–152, 2021).79.Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability (Chapman and Hall/CRC, 1990).
    Google Scholar 
    80.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    81.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).MATH 

    Google Scholar 
    82.Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 

    Google Scholar 
    83.Cox, T. & Schepers, L. Tides: Quasi-periodic Time Series Characteristics. https://CRAN.R-project.org/package=Tides (R package version 2.1., 2018).84.Boldina, I. & Beninger, P. G. Strengthening statistical usage in marine ecology: Linear regression. J. Exp. Mar. Bio. Ecol. 474, 81–91 (2016).
    Google Scholar 
    85.Russell, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans (R package version 1.4.7., 2020).86.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar  More

  • in

    The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic

    1.Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).PubMed 

    Google Scholar 
    2.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B Biol. Sci. 280, 20131541 (2013).
    Google Scholar 
    3.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    4.Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).
    Google Scholar 
    5.Rocha, L. A. et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol. Ecol. 14, 3921–3928 (2005).PubMed 

    Google Scholar 
    6.Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Fraser, C. I., Kay, G. M., du Plessis, M. & Ryan, P. G. Breaking down the barrier: Dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).
    Google Scholar 
    8.Thorrold, S. R. & McKinnon, A. D. Response of larval fish assemblages to a riverine plume in coastal waters of the central Great Barrier Reef lagoon. Limnol. Oceanogr. 40, 177–181 (1995).ADS 

    Google Scholar 
    9.Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    10.Lentz, S. J. The Amazon River plume during AmasSeds: Subtidal current variability and the importance of wind forcing. J. Geophys. Res. 100, 2377–2390 (1995).ADS 

    Google Scholar 
    11.Figueiredo, A. G., Allison, M. & Nittrouer, C. A. Amazon Discharge: Internal Report for AMASSEDS Researches. (1991).12.Nittrouer, C. A. & DeMaster, D. J. The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).ADS 

    Google Scholar 
    13.Jo, Y.-H., Yan, X. H., Dzwonkowski, B. & Liu, W. T. A study of the freshwater discharge from the Amazon River into the tropical Atlantic using multi-sensor data. Geophys. Res. Lett. 32, 1–4 (2005).
    Google Scholar 
    14.Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–11 (2016).
    Google Scholar 
    15.Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front. Mar. Sci. 5, 142 (2018).
    Google Scholar 
    16.Neumann-Leitão, S. et al. Zooplankton from a reef system under the influence of the Amazon River plume. Front. Microbiol. 9, 1–15 (2018).
    Google Scholar 
    17.Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 80 (2020).
    Google Scholar 
    18.Barroso, C. X., Lotufo, T. M. C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).
    Google Scholar 
    19.Brandini, F. P., Lopes, R. M., Gutseit, K. S. & Sassi, R. Planctonologia na Plataforma Continental do Brasil: Diagnose e Revisão Bibliográfica. (CEMAR/MMA/CIRM/FEMAR, 1997).20.Loder, J. W., Boicourt, W. C. & Simpson, J. H. Western ocean boundary shelves coastal segment (W). Sea 11, 3–27 (1998).
    Google Scholar 
    21.Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 

    Google Scholar 
    22.Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Saeedi, H., Simões, M. & Brandt, A. Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Prog. Oceanogr. 178, 102199 (2019).
    Google Scholar 
    24.OBIS. Ocean Biogeographic Information System. http://www.iobis.org (2021).25.Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    26.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    27.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    28.Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    29.Costello, M. J., Stocks, K., Zhang, Y., Grassle, J. F. & Fautin, D. G. About the Ocean Biogeographic Information System. Vol. 29. (2007).30Miloslavich, P. et al. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PLoS ONE 5, e11916 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Boltovskoy, D. & Valentin, J. L. Overview of the history of biological oceanography in the southwestern Atlantic, with emphasis on plankton. in Plankton Ecology of the Southwestern Atlantic (eds. Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P., Calliari, D. L. & Santinelli, N. H.). 3–34. https://doi.org/10.1007/978-3-319-77869-3_1 (Springer, 2018).32Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Lopes, R. M. Marine zooplankton studies in Brazil: A brief evaluation and perspectives. An. Acad. Bras. Ciênc. 79, 369–379 (2007).PubMed 

    Google Scholar 
    34.Alves-Júnior, F. D. A. et al. Taxonomy of deep-sea shrimps of the superfamily Oplophoroidea Dana 1852 (Decapoda: Caridea) from Southwestern Atlantic. Zootaxa 4613, 401–442 (2019).
    Google Scholar 
    35.Eduardo, L. N. et al. Biodiversity, ecology, fisheries, and use and trade of Tetraodontiformes fishes reveal their socio-ecological significance along the tropical Brazilian continental shelf. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 761–774 (2020).
    Google Scholar 
    36.Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., Costa da Silva, A. & Nogueira Júnior, M. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. J. Plankton Res. 43, 270–287 (2021).
    Google Scholar 
    37.Tosetto, E. G., Neumann-Leitão, S. & Nogueira Júnior, M. New species of Eirenidae (Hydrozoa: Leptothecata) from the Amazonian coast (northern Brazil). Sci. Mar. 84, 421–430 (2020).
    Google Scholar 
    38.Santana, C. S. et al. Amazon river plume influence on planktonic decapods in the tropical Atlantic. J. Mar. Syst. 212, 103428 (2020).
    Google Scholar 
    39.Tosetto, E. G., Neumann-Leitão, S., Bertrand, A. & Júnior, M. N. First record of Cirrholovenia polynema (Hydrozoa: Leptothecata) in the Western Atlantic Ocean. Ocean Coast. Res. 69, e21006 (2021).
    Google Scholar 
    40.Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Bowen, B. W., Muss, A., Rocha, L. A. & Grant, W. S. Shallow mtDNA coalescence in Atlantic Pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered. 97, 1–12 (2005).
    Google Scholar 
    42.Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. R. Soc. B Biol. Sci. 272, 573–579 (2005).
    Google Scholar 
    43.Rocha, L. A., Rocha, C. R., Robertson, D. R. & Bowen, B. W. Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol. Biol. 8, 157 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    44.Agard, J. B. R., Hubbard, R. H. & Griffith, J. K. The relation between productivity, disturbance and the biodiversity of Caribbean phytoplankton: Applicability of Huston’s dynamic equilibrium model. J. Exp. Mar. Biol. Ecol. 202, 1–17 (1996).
    Google Scholar 
    45.Toonen, R. J., Bowen, B. W., Iacchei, M. & Briggs, J. C. Biogeography, marine. in Encyclopedia of Evolutionary Biology (ed. Kliman, R. M.). 166–178. https://doi.org/10.1016/B978-0-12-800049-6.00120-7 (Academic Press, 2016).46.Briggs, J. C. & Bowen, B. W. Marine shelf habitat: Biogeography and evolution. J. Biogeogr. 40, 1023–1035 (2013).
    Google Scholar 
    47.Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 
    48.Bartlow, A. W. & Agosta, S. J. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 96, 223–246 (2021).PubMed 

    Google Scholar 
    49.South Atlantic Zooplankton. (Backhuys Publishers, 1999).50.Mapstone, G. M. Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9, 1–37 (2014).
    Google Scholar 
    51.Young, C. M., Sewell, M. A. & Rice, M. E. Atlas of Marine Invertebrate Larvae. Vol. 6. (Academic Press, 2002).52.Strathmann, R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Mar. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    53.Haddoock, S. H. D. A golden age of gelata Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530–531, 549–556 (2004).
    Google Scholar 
    54Dossa, A. N. et al. Near-surface western boundary circulation off Northeast Brazil. Prog. Oceanogr. 190, 102475 (2021).
    Google Scholar 
    55.Luiz, O., Floeter, S., Rocha, L. & Ferreira, C. Perspectives for the lionfish invasion in the South Atlantic: Are Brazilian reefs protected by the currents?. Mar. Ecol. Prog. Ser. 485, 1–7 (2013).ADS 

    Google Scholar 
    56.Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Google Scholar 
    57.Giangrande, A. Polychaete reproductive patterns, life cycles and life histories: An overview. in Oceanography and Marine Biology. Vol. 35. (eds. Ansell, A., Gibson, R. N. & Barnes, M.) (CRC Press, 1997).58.Nogueira Júnior, M. & Oliveira, V. M. Strategies of plankton occupation by polychaete assemblages in a subtropical estuary (south Brazil). J. Mar. Biol. Assoc. U. K. 97, 1651–1661 (2017).
    Google Scholar 
    59Assunção, R. V. et al. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Prog. Oceanogr. 187, 102399 (2020).
    Google Scholar 
    60.Molleri, G. S. F., Novo, E. M. L. M. & Kampel, M. Space-time variability of the Amazon River plume based on satellite ocean color. Cont. Shelf Res. 30, 342–352 (2010).ADS 

    Google Scholar 
    61.López, R., López, J. M., Morell, J., Corredor, J. E. & Del Castillo, C. E. Influence of the Orinoco River on the primary production of eastern Caribbean surface waters: Primary Production of Caribbean waters. J. Geophys. Res. Oceans 118, 4617–4632 (2013).ADS 

    Google Scholar 
    62.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. (2014).63.Clarke, K. R. & Gorley, R. N. PRIMER 6 + PERMANOVA. (2006).64.Larsson, J. et al. Package ‘eulerr’. (2018).65.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar  More

  • in

    Mechanisms of dispersal and colonisation in a wind-borne cereal pest, the haplodiploid wheat curl mite

    1.Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).ADS 

    Google Scholar 
    2.Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics in Dispersal Ecology and Evolution 251–265 (Oxford University Press, 2013). https://doi.org/10.1093/acprof:oso/9780199608898.003.0020.3.Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I. & Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity (Edinb). 119, 328–338 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Machado, F. P., Roldán-Correa, A. & Schinazi, R. B. Colonization and collapse. ALEA, Lat. Am. J. Probab. Math. Stat. 14, 719–731 (2017)5.Junior, V. V., Machado, F. P. & Roldán-Correa, A. Dispersion as a survival strategy. J. Stat. Phys. 164, 937–951 (2016).MathSciNet 
    MATH 
    ADS 

    Google Scholar 
    6.Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).PubMed 

    Google Scholar 
    7.Nichols, R. A. & Hewitt, G. M. The genetic consequences of long distance dispersal during colonization. Heredity (Edinb). 72, 312–317 (1994).
    Google Scholar 
    8.Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).PubMed 

    Google Scholar 
    9.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    10.Skelsey, P., With, K. A. & Garrett, K. A. Why dispersal should be maximized at intermediate scales of heterogeneity. Theor. Ecol. 6, 203–211 (2013).PubMed 

    Google Scholar 
    11.Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 1–7 (2017).ADS 

    Google Scholar 
    12.Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution (N. Y.) 51, 354–362 (1997).
    Google Scholar 
    13.Bijlsma, R., Bundgaard, J. & Boerema, A. C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 13, 502–514 (2000).
    Google Scholar 
    14.Reed, D. H., Briscoe, D. A. & Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 3, 301–307 (2002).CAS 

    Google Scholar 
    15.Reed, D. H., Lowe, E. H., Briscoe, D. A. & Frankham, R. Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution (N. Y.) 57, 1822–1828 (2003).
    Google Scholar 
    16.Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Szücs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 114, 13501–13506 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 

    Google Scholar 
    19.Tien, N. S. H., Sabelis, M. W. & Egas, M. Inbreeding depression and purging in a haplodiploid: Gender-related effects. Heredity (Edinb). 114, 327–332 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Smith, A. L. et al. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc. R. Soc. B Biol. Sci. 283, 20152934 (2016).21.Clotuche, G. et al. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6, e18854 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Clotuche, G., Navajas, M., Mailleux, A.-C. & Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8, e77573 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99, 479–486 (2009).CAS 
    PubMed 

    Google Scholar 
    24.Hein, G. L., French, R., Siriwetwiwat, B. & Amrine, J. W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 105, 1801–1808 (2012).CAS 
    PubMed 

    Google Scholar 
    25.Kuczyński, L. et al. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp. Appl. Acarol. 82, 17–31 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    26.Helle, W. & Wysoki, M. 1.3.2 Arrhenotokous parthenogenesis. In World Crop Pests (eds Lindquist, E. E., Sabelis, M. W., Bruin, J.) vol. 6, 169–172 (Elsevier, 1996).27.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).28.Sabelis, M. W. & Bruin, J. 1.5.3 Evolutionary ecology: Life history patterns, food plant choice and dispersal. World Crop Pests 6, 329–366 (1996).
    Google Scholar 
    29.Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim. Behav. 155, 141–151 (2019).
    Google Scholar 
    30.Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).
    Google Scholar 
    31.Powell, J. R. The effects of founder-flush cycles on ethological isolation in laboratory populations of Drosophila in Genetics. In Speciation and the Founder Principle (eds Giddings, L. V. et al.) 239–251 (Oxford University Press, 1989).
    Google Scholar 
    32.Jamieson, I. G. Efecto fundador, endogamia y pérdida de diversidad genética en cuatro programas de reintroducción de Aves. Conserv. Biol. 25, 115–123 (2011).PubMed 

    Google Scholar 
    33.Montero-Pau, J., Gómez, A. & Serra, M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6, e6094 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Perrin, N. & Mazalov, V. Dispersal and inbreeding avoidance. Am. Nat. 154, 282–292 (1999).PubMed 

    Google Scholar 
    35.Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. M. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Soc. 62, 237–245 (2015).
    Google Scholar 
    36.Tabadkani, S. M., Nozari, J. & Lihoreau, M. Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 99, 779–788 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    37.Yearsley, J. M., Viard, F. & Broquet, T. The effect of collective dispersal on the genetic structure of a subdivided population. Evolution (N. Y.) 67, 1649–1659 (2013).
    Google Scholar 
    38.van der Kooi, C. J., Matthey-Doret, C. & Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 1, 304–316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    39.Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 

    Google Scholar 
    40.Nault, L. R. & Styer, W. E. The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. Ann. Entomol. Soc. Am. 62, 1446–1455 (1969).
    Google Scholar 
    41.Southwood, T. R. E., May, R. M., Hassell, M. P. & Conway, G. R. Ecological strategies and population parameters. Am. Nat. 108, 791–804 (1974).
    Google Scholar 
    42.Frost, W. E. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol. Entomol. 22, 37–46 (1997).
    Google Scholar 
    43.Ronce, O. & Clobert, J. Dispersal syndromes in Dispersal Ecology and Evolution (eds Baguette, M., Benton, T. G., Bullock, J. M.) vol. 1, 119–138 (Oxford University Press, 2012).44.Laska A. et al. A sink host allows a specialist herbivore to persist in a seasonal source. Proc. Roy. Soc. B, accepted for publication (2021).45.Skoracka, A. et al. Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr. Syst. 26, 417 (2012).
    Google Scholar 
    46.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).CAS 
    PubMed 

    Google Scholar 
    47.Karpicka-Ignatowska, K. et al. A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci. Rep. 9, (2019).48.Karpicka-Ignatowska, K., Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. Exp. Appl. Acarol. 83, 513–525 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    49.Amrine, J. W. & Manson, D. C. M. Preparation, mounting and descriptive study of eriophyoid mites. In Eriophyoid Mites—Their Biology, Natural Enemies and Control Vol. 6 (eds Lindquist, E. E. & Bruin, M. W.) 383–396 (Elsevier, 1996).
    Google Scholar 
    50.de Lillo, E., Craemer, C., Amrine, J. W. & Nuzzaci, G. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51, 283–307 (2010).PubMed 

    Google Scholar 
    51.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/. Accessed 24 Apr 2020.52.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    53.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    54.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    55.Wood, S. N. Generalized Additive Models (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.Book 
    MATH 

    Google Scholar 
    56.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans More

  • in

    Seasonal pattern of food habits of large herbivores in riverine alluvial grasslands of Brahmaputra floodplains, Assam

    1.Krebs, C. J. Ecological Methodology 2nd edn. (Addison Welsey Educational Publishers Inc, 1999).
    Google Scholar 
    2.Tewari, R. & Rawat, G. S. Studies on the food and feeding habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel conservation reserve, Haridwar, Uttarakhand, India. ISRN Zool. 2013, 1–6. https://doi.org/10.1155/2013/278213 (2013).Article 

    Google Scholar 
    3.Brodeur, R. D., Smith, B. E., McBride, R. S., Heintz, R. & Farley, E. New perspectives on the feeding ecology and trophic dynamics of fishes. Environ. Biol. Fishes. 100, 293–297. https://doi.org/10.1007/s10641-017-0594-1 (2017).Article 

    Google Scholar 
    4.Vesey-FitzGerald, D. F. Grazing succession among East African game animals. J. Mammal. 41, 161–172. https://doi.org/10.2307/1376351 (1960).Article 

    Google Scholar 
    5.Lamprey, H. F. Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. Afr. J. Ecol. 1, 63–92. https://doi.org/10.1111/j.1365-2028.1963.tb00179.x (1963).Article 

    Google Scholar 
    6.Ahrestani, F. S. Asian Eden Large Herbivore Ecology in India (Wageningen University, 2009).
    Google Scholar 
    7.Bell, R. H. V. The use of herb layer by grazing ungulates in the Serengeti. In Animal Populations in Relation to their Food Resources (eds. Watson, A.) 111–124 (Blackwell Science, 1970).8.Jarman, P. The social organisation of antelopes in relation to their ecology. Behaviour 48, 215–267. https://doi.org/10.1163/156853974X00345 (1974).Article 

    Google Scholar 
    9.Hofmann, R. R. & Stewart, D. R. M. Grazer of browser: A classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226–240 (1972).Article 

    Google Scholar 
    10.Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).ADS 
    Article 

    Google Scholar 
    11.Kleiber, M. The Fire of Life. An Introduction to Animal Energetics (Krieger, 1932).
    Google Scholar 
    12.Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672. https://doi.org/10.1086/284369 (1985).Article 

    Google Scholar 
    13.Hofmann, R. R. The Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants. East African Monograph in Biology, vol. 2, 1–364 (E.A. Lit. Bureau, 1973).14.Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. Grazing and browsing by large herbivores in South and Southeast Asia. In The Ecology of Large Herbivores in South and Southeast Asia, (eds. Ahrestani, F. S. & Sankaran, M.) 99–120. (Springer, 2016).15.Geist, V. On the relationship of social evolution and ecology in Ungulates. Am. Zool. 14, 205–220. https://doi.org/10.1093/icb/14.1.205 (1974).Article 

    Google Scholar 
    16.Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: Allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714. https://doi.org/10.1371/journal.pone.0068714 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol. 28, 385–394. https://doi.org/10.1017/S0266467412000302 (2012).Article 

    Google Scholar 
    18.Pradhan, N. M., Wegge, P., Moe, S. R. & Shrestha, A. K. Feeding ecology of two endangered sympatric mega-herbivores: Asian elephant Elephas maximus and greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal. Wildl. Biol. 14, 147–154. https://doi.org/10.2981/0909-6396(2008)14[147:feotes]2.0.co;2 (2008).Article 

    Google Scholar 
    19.McNaughton, S. J. & Georgiadis, N. J. Ecology of African grazing and browsing mammals. Annu. Rev. Ecol. Syst. 17, 39–66. https://doi.org/10.1146/annurev.es.17.110186.000351 (1986).Article 

    Google Scholar 
    20.Owen-Smith, R. N. Adaptive Herbivore Ecology: From Resources to Populations in Variable Environments. Adaptive Herbivore Ecology (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511525605.21.Olff, H., Ritchie, M. E. & Prins, H. H. T. Global environmental controls of diversity in large herbivores. Nature 415, 901–904. https://doi.org/10.1038/415901a (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Bailey, D. W. & Provenza, F. D. Mechanisms determining large-herbivore distribution. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 7–28 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_2.23.Prins, H. H. T. & Van Langevelde, F. Assembling a diet from different places. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 129–155 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_12.24.Fryxell, J. M. et al. Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol. Lett. 8, 328–335. https://doi.org/10.1111/j.1461-0248.2005.00727.x (2005).Article 

    Google Scholar 
    25.Du Toit, J., Rogers, K. & Biggs, H. The Kruger Experience: Ecology and Management of Savanna Heterogeneity, vol. 29 (Island Press, 2003).26.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103. https://doi.org/10.1126/sciadv.1400103 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Menon, V. Indian Mammals: A Field Guide. (Hachette India, 2014).28.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777. https://doi.org/10.1007/s10661-015-4990-8 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: Competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706. https://doi.org/10.1007/s11284-006-0177-7 (2006).Article 

    Google Scholar 
    30.WWF. Living Planet: Report 2016. Risk and Resilience in a New Era. (World Wide Fund for Nature International, 2016).31.Gebremedhin, B. et al. DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats: Implications for conservation. PLoS One 11, e0159133. https://doi.org/10.1371/journal.pone.0159133 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Spooner, F. E., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531. https://doi.org/10.1111/gcb.14361 (2018).ADS 
    Article 

    Google Scholar 
    33.Texeira, M., Baldi, G. & Paruelo, J. An exploration of direct and indirect drivers of herbivore reproductive performance in arid and semi-arid rangelands by means of structural equation models. J. Arid Environ. 81, 26–34. https://doi.org/10.1016/j.jaridenv.2012.01.017 (2012).ADS 
    Article 

    Google Scholar 
    34.Kupika, O. L., Gandiwa, E., Kativu, S. & Nhamo, G. Impacts of climate change and climate variability on wildlife resources in southern Africa: Experience from selected protected areas in Zimbabwe. In Selected Studies in Biodiversity, (eds. Şen, B. & Grillo, O.) 1–23 (IntechOpen, 2018). https://doi.org/10.5772/intechopen.70470.35.Joyce, C. B., Simpson, M. & Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2, e01240. https://doi.org/10.1002/ehs2.1240 (2016).Article 

    Google Scholar 
    36.Vasu, N. K., & Singh, G. Grasslands of Kaziranga National Park: Problems and approaches for management. In Ecology and Management of Grassland Habitats in India, vol. 17 (eds. Rawat, G. S., Adhikari, B. S.) 104–113 (Wildlife Institute of India, 2015).37.Dublin, H. T. Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 71–90 (University of Chicago Press, 1995).38.Sinclair, A. R. E. Equilibria in plant–herbivore interactions. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 91–113 (University of Chicago Press, 1995).39.Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165. https://doi.org/10.2307/3801981 (1998).Article 

    Google Scholar 
    40.Schmitt, M. H. & Shrader, A. M. Browser population-woody vegetation relationships in Savannas. In Savanna Woody Plants and Large Herbivores (eds. Scogings, F. P. & Sankaran, M.) 245–278 (Wiley, 2020). https://doi.org/10.1002/9781119081111.ch9.41.Konwar, P., Saikia, M. K. & Saikia, P. K. Abundance of food plant species and food habits of Rhinoceros unicornis Linn. in Pobitora Wildlife Sanctuary, Assam, India. J. Threat. Taxa. 1, 457–460. https://doi.org/10.11609/jott.o1640.457-60 (2009).Article 

    Google Scholar 
    42.Bhatta, R. Ecology and Conservation of Great Indian One-horned Rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary, Assam, India (Gauhati University, 2011).
    Google Scholar 
    43.Hazarika, B. C. & Saikia, P. K. Food habit and feeding patterns of great indian one-horned rhinoceros (Rhinoceros unicornis) in Rajiv Gandhi Orang National Park, Assam, India. ISRN Zool. 2012, 1–11. https://doi.org/10.5402/2012/259695 (2012).Article 

    Google Scholar 
    44.Dutta, D. K., Bora, P. J., Mahanta, R., Sharma, A. & Swargowari, A. Seasonal variations in food plant preferences of reintroduced Rhinos Rhinoceros unicornis (Mammalia: Perrissodactyla: Rhinocerotidae) in Manas National Park, Assam, India. J. Threat. Taxa. 8, 9525–9536. https://doi.org/10.11609/jott.2486.8.13.9525-9536 (2016).Article 

    Google Scholar 
    45.Brahmachary, R. L., Rakshit, B. & Mallik, B. Further attempts to determine the food habits of the Indian Rhinoceros at Kaziranga. J. Bombay Nat. Hist. Soc. 71, 295–299 (1974).
    Google Scholar 
    46.Banerjee, G. Habitat Use by the Great Indian Rhinoceros (Rhinoceros Unicornis) and Other Sympatric Large Herbivores in Kaziranga National Park, Assam, India (Wildlife Institute of India, 2001).
    Google Scholar 
    47.Patar, K. C. Behavioural Patterns of the One Horned Indian Rhinoceros (Spectrum Publication Guwahati, 2005).
    Google Scholar 
    48.Bawri, M. & Saikia, P. K. Preliminary study on the food plant species of Endangered Asiatic wild water buffalo Bubalus arnee Kerr in Kaziranga National Park, Assam India. NeBIO. 5, 49–55 (2014).
    Google Scholar 
    49.Sukumar, R. Ecology of the Asian elephant in southern India. I. Movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18. https://doi.org/10.1017/S0266467400003175 (1989).Article 

    Google Scholar 
    50.Schaller, G. B. The Deer and the Tiger. A Study of Wildlife in India, (University of Chicago Press, 1967). https://doi.org/10.7208/chicago/9780226736570.001.0001.51.Dhungel, S. K. & O’Gara, B. W. Ecology of the Hog Deer in Royal Chitwan National Park, Nepal. Wildl. Monogr. 119, 3–40. https://doi.org/10.2307/3830632 (1991).Article 

    Google Scholar 
    52.Johnsingh, A. J. T. & Manjrekar, N. Mammals of South Asia, 2 (Universities Press, 2016).
    Google Scholar 
    53.Sukumar, R. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. J. Trop. Ecol. 6, 33–53. https://doi.org/10.1017/S0266467400004004 (1990).Article 

    Google Scholar 
    54.Baskaran, N., Balasubramanian, M., Swaminathan, S. & Desai, A. A. Feeding ecology of the Asian elephant Elephas maximus Linnaeus in the Nilgiri Biosphere Reserve, southern India. J. Bombay Nat. Hist. Soc. 107, 3–13 (2010).
    Google Scholar 
    55.Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin Basin of North-east India. Mamm. Biol. 81, 53–60. https://doi.org/10.1016/j.mambio.2014.10.006 (2016).Article 

    Google Scholar 
    56.Kelton, S. D. & Skipworth, J. P. Food of sambar deer (Cervus unicolor) in a Manawatu (New Zealand) flax swamp. N. Z. J. Ecol. 10, 149–152 (1987).
    Google Scholar 
    57.Semiadi, G., Barry, T. N., Muir, P. D. & Hodgson, J. Dietary preferences of sambar (Cervus unicolor) and red deer (Cervus elaphus) offered browse, forage legume and grass species. J. Agric. Sci. 125, 99–107. https://doi.org/10.1017/S0021859600074554 (1995).Article 

    Google Scholar 
    58.Johnsingh, A. J. T. & Sankar, K. Food plants of chital, sambar and cattle on Mundanthurai Plateau, Tamil Nadu, south India. Mammalia 55, 57–66. https://doi.org/10.1515/mamm.1991.55.1.57 (1991).Article 

    Google Scholar 
    59.Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R. & Weladji, R. B. Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal. J. Zool. 265, 377–385. https://doi.org/10.1017/S0952836905006448 (2005).Article 

    Google Scholar 
    60.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x (2006).Article 
    PubMed 

    Google Scholar 
    61.Edwards, G. R. & Crawley, M. J. Herbivores, seed banks and seedling recruitment in mesic grassland. J. Ecol. 87, 423–435. https://doi.org/10.1046/j.1365-2745.1999.00363.x (1999).Article 

    Google Scholar 
    62.Marquis, R. J. The role of herbivores in terrestrial trophic cascades. In: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature, (eds. Terborgh, J. & Estes, J. A.) 109–123, (Island Press, 2010).63.Parikh, G. L. et al. The influence of plant defensive chemicals, diet composition, and winter severity on the nutritional condition of a free-ranging, generalist herbivore. Oikos 126, 1–8. https://doi.org/10.1111/oik.03359 (2017).Article 

    Google Scholar 
    64.Yadava, M. K. Kaziranga National Park: Detailed Report on Issues and Possible Solutions of Long-Term Protection of the Greater One-horned Rhinoceros in Kaziranga National Park Pursuant to the Order of the Hon’ble Guwahati High Court. 1–402 (Government of Assam, India, 2014).65.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Govt. of India Press, 1968).
    Google Scholar 
    66.Sharma, G. Studies on the mammalian diversity of Kaziranga National Park, Assam, India with their conservation status. J. New Biol. Rep. 7, 15–19 (2018).CAS 

    Google Scholar 
    67.Shrestha, R., Wegge, P. & Koirala, R. A. Summer diets of wild and domestic ungulates in Nepal Himalaya. J. Zool. 266, 111–119. https://doi.org/10.1017/S0952836905006527 (2005).Article 

    Google Scholar 
    68.Sparks, D. R. & Malechek, J. C. Estimating percentage dry weight in diets using a microscopic technique. J. Range Manag. 21, 264–265. https://doi.org/10.2307/3895829 (1968).Article 

    Google Scholar 
    69.Satkopan, S. Key to identification of plant remains in animal dropping. J. Bombay Nat. Hist. Soc. 69, 139–150 (1972).
    Google Scholar 
    70.Johnson, M. K., Wofford, H. H. & Pearson, H. A. Microhistological Techniques for Food Habits Analyses (U.S. Department of Agriculture, 1983).Book 

    Google Scholar 
    71.Jain, S. K. & Hajra, P. K. On the botany of Manas Wild Life Sanctuary in Assam. Bull. Bot. Surv. Ind. 17, 75–86 (1975).
    Google Scholar 
    72.Hajra, P. K. & Jain, S. K. Botany of Kaziranga and Manas (Surya International Publications, 1994).
    Google Scholar 
    73.Rahmani, A. R., Kasambe, R., Prabhu, S., Khot, R. & Bajaru, S. Biodiversity Studies at Kaziranga National Park. (2016).74.Vila, A. R., Galende, G. I. & Pastore, H. Feeding ecology of the endangered huemul (Hippocamelus bisulcus) in Los Alerces National Park, Argentina. Mastozool. Neotrop. 16, 423–431 (2009).
    Google Scholar 
    75.Borah, S. B., Sivasankar, T., Ramya, M. N. S. & Raju, P. L. N. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. https://doi.org/10.1007/s10661-018-6893-y (2018).Article 
    PubMed 

    Google Scholar 
    76.De Barba, M. et al. Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J. Appl. Ecol. 47, 172–181. https://doi.org/10.1111/j.1365-2664.2009.01752 (2010).Article 

    Google Scholar 
    77.Jachmann, H. & Bell, R. H. V. The use of elephant droppings in assessing numbers, occupance and age structure: A refinement of the method. Afr. J. Ecol. 22, 127–141. https://doi.org/10.1111/j.1365-2028.1984.tb00686.x (1984).Article 

    Google Scholar 
    78.Chaturvedi, R. K. & Sankar, K. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant (Wildlife Institute of India, 2006).
    Google Scholar 
    79.Colwell, R. K. & Elsensohn, J. E. EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37, 609–613. https://doi.org/10.1111/ecog.00814 (2014).Article 

    Google Scholar 
    80.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article 

    Google Scholar 
    81.Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    82.Barton, K. & Barton, M. K. Package ‘MuMIn’. R package version, 1 (2019).83.Harrell Jr, F. E. & Harrell Jr, M. F. E. Package ‘Hmisc’. CRAN2018, 2019, 235–236 (2019).84.Wei, T. et al. Package ‘corrplot’: Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
    Google Scholar  More

  • in

    Growth at the limits: comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis)

    1.Galloway, J. N. et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ. 16, 1677–1700 (1982).CAS 
    ADS 

    Google Scholar 
    2.Dodds, W. K., Perkin, J. S. & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environ. Sci. Technol. 47, 9061–9068 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99–114 (2014).ADS 

    Google Scholar 
    4.Dokulil, M. T. & Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. et al.) 1–16 (Springer, 2011).
    Google Scholar 
    5.Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful Cyanobacteria (Springer, 2005).
    Google Scholar 
    6.Harland, F. M. J., Wood, S. A., Moltchanova, E., Williamson, W. M. & Gaw, S. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins (Basel). 5, 2504–2521 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zurawell, R. W., Chen, H., Burke, J. M. & Prepas, E. E. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B 8, 1–37 (2005).CAS 

    Google Scholar 
    8.Funari, E. & Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97–125 (2008).CAS 
    PubMed 

    Google Scholar 
    9.Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environ. Toxicol. Chem. 35, 6–13 (2016).CAS 
    PubMed 

    Google Scholar 
    10.Pick, F. R. & Lean, D. R. S. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshw. Res. 21, 425–434 (1987).CAS 

    Google Scholar 
    11.Schindler, A. D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).CAS 
    PubMed 
    ADS 

    Google Scholar 
    12.Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, 1–20 (2010).
    Google Scholar 
    13.Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).CAS 

    Google Scholar 
    14.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Higgins, S. N. et al. Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: Evidence from a 46-year whole-lake experiment. Ecosystems 21, 1088–1100 (2018).CAS 

    Google Scholar 
    16.Dolman, A. M. et al. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE 7, e38757 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron-nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52, 1317–1327 (2007).CAS 
    ADS 

    Google Scholar 
    19.Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A. & Capone, D. G. Potential trace metal co-limitation controls on N2 fixation and NO3- uptake in lakes with varying trophic status. Front. Microbiol. 4, 1–12 (2013).CAS 

    Google Scholar 
    20.Newton, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In Biology of the Nitrogen Cycle 109–129 (Elsevier B. V, 2007).
    Google Scholar 
    21.Salama, Z. A., El-Fouly, M. M., Lazova, G. & Popova, L. P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 28, 445–451 (2006).CAS 

    Google Scholar 
    22.Sültemeyer, D. Carbonic anhydrase in eukaryotic algae: Characterization, regulation, and possible function during photosynthesis. Can. J. Bot. 76, 962–972 (1998).
    Google Scholar 
    23.Vallee, B. L. & Auld, D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).CAS 
    PubMed 

    Google Scholar 
    24.Wu, F. Y. & Wu, C. W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 7, 251–272 (1987).CAS 
    PubMed 

    Google Scholar 
    25.Beyer, W., Imlay, J. & Fridovich, I. Superoxide dismutases. Prog. Nucleic Acid Res. Mol. Biol. 40, 221–253 (1991).CAS 
    PubMed 

    Google Scholar 
    26.Holm-Hansen, O., Gerloff, G. H. & Skogg, F. Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675 (1954).CAS 

    Google Scholar 
    27.Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 
    ADS 

    Google Scholar 
    28.Steffens, G. C. M., Biewald, R. & Buse, G. Cytochrome c oxidase is three-copper, two-heme-A protein. Eur. J. Biochem. 164, 295–300 (1987).CAS 
    PubMed 

    Google Scholar 
    29.Price, R. C., Mortimer, N., Smith, I. E. M. & Maas, R. Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. N. Z. J. Geol. Geophys. 58, 213–228 (2015).CAS 

    Google Scholar 
    30.Downs, T. M., Schallenberg, M. & Burns, C. W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 70, 347–360 (2008).CAS 

    Google Scholar 
    31.Bayer, T. K., Schallenberg, M. & Martin, C. E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 42, 285–295 (2008).CAS 

    Google Scholar 
    32.Glass, J. B., Axler, R. P., Chandra, S. & Goldman, C. R. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front. Microbiol. 3, 1–11 (2012).
    Google Scholar 
    33.Sterner, R. W. et al. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495–507 (2004).CAS 
    ADS 

    Google Scholar 
    34.Vrede, T. & Tranvik, L. J. Iron constraints on planktonic primary production in oligotrophic lakes. Ecosystems 9, 1094–1105 (2006).CAS 

    Google Scholar 
    35.North, R. L., Guildford, S. J., Smith, R. E. H., Havens, S. M. & Twiss, M. R. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315–328 (2007).CAS 
    ADS 

    Google Scholar 
    36.Kelly, L. T. et al. Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus Dolichospermum. Aquat. Sci. 83, 1–11 (2021).
    Google Scholar 
    37.Sorichetti, R. J., Creed, I. F. & Trick, C. G. Iron and iron-binding ligands as cofactors that limit cyanobacterial biomass across a lake trophic gradient. Freshw. Biol. 61, 146–157 (2016).CAS 

    Google Scholar 
    38.Wood, S. A. et al. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: Insights into potential effects of climate change. Hydrobiologia 785, 71–89 (2017).CAS 

    Google Scholar 
    39.Li, X., Dreher, T. W. & Li, R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54, 54–68 (2016).CAS 
    PubMed 

    Google Scholar 
    40.Hawes, I. & Smith, R. Seasonal dynamics of epilithic periphyton in oligotrophic lake Taupo, New Zealand. N. Z. J. Mar. Freshw. Res. 28, 1–12 (1994).
    Google Scholar 
    41.Verburg, P. & Albert, A. Taupo Long Term Monitoring (Springer, 2018).
    Google Scholar 
    42.Marañón, E. Cell Size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).PubMed 

    Google Scholar 
    43.Kagami, M. & Urabe, J. Phytoplankton growth rate as a function of cell size: An experimental test in Lake Biwa. Limnology 2, 111–117 (2001).
    Google Scholar 
    44.Kraemer, S. M., Duckworth, O. W., Harrington, J. M. & Schenkeveld, W. D. C. Metallophores and trace metal biogeochemistry. Aquat. Geochem. 21, 159–195 (2015).CAS 

    Google Scholar 
    45.Twiss, M. R., Auclair, J.-C. & Charlton, M. N. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can. J. Fish. Aquat. Sci. 57, 86–95 (2000).CAS 

    Google Scholar 
    46.Feng, Y., Fu, F. & Hutchins, D. A. Trace metal clean culture techniques. Res. Methods Environ. Physiol. Aquat. Sci. https://doi.org/10.1007/978-981-15-5354-7_36 (2021).Article 

    Google Scholar 
    47.Rhodes, L. et al. The Cawthron institute culture collection of micro-algae: A significant national collection. N. Z. J. Mar. Freshw. Res. 50, 291–316 (2016).
    Google Scholar 
    48.Bolch, C. J. S. & Blackburn, S. I. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J. Appl. Phycol. 8, 5–13 (1996).
    Google Scholar 
    49.Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochimie 88, 1721–1731 (2006).CAS 
    PubMed 

    Google Scholar 
    50.Gobler, C. J., Hutchins, D. A., Fisher, N. S., Cosper, E. M. & Sañudo-Wilhelmy, S. A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).CAS 
    ADS 

    Google Scholar 
    51.Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).
    Google Scholar 
    52.Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2, 65 (2017).
    Google Scholar 
    53.Helliwell, K. E. et al. Cyanobacteria and eukaryotic algae use different chemical variants of Vitamin B12. Curr. Biol. 26, 999–1008 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Anderson, M. A. & Morel, F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oceanogr. 27, 789–813 (1982).CAS 
    ADS 

    Google Scholar 
    55.Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: Prevalence of reductive Iron uptake. Life 5, 841–860 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Bruland, K. W., Knauer, G. A. & Martin, J. H. Zinc in north-east Pacific water. Nature 271, 741–743 (1978).CAS 
    ADS 

    Google Scholar 
    57.Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    58.Baken, S., Degryse, F., Verheyen, L., Merckx, R. & Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 45, 2584–2590 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Campbell, P. G. C. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, 1995).
    Google Scholar 
    60.Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. W. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep. Res. Part II 44, 209–227 (1997).CAS 

    Google Scholar 
    61.Facey, J. A., Apte, S. C. & Mitrovic, S. M. A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins (Basel). 11, 1–18 (2019).
    Google Scholar 
    62.Zhang, X. et al. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 151, 500–514 (2019).CAS 
    PubMed 

    Google Scholar 
    63.Wever, A. D. et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshw. Biol. 53, 264–277 (2008).
    Google Scholar 
    64.Nalewajko, C. & Murphy, T. P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: An experimental approach. Limnology 2, 45–48 (2001).
    Google Scholar 
    65.Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).ADS 

    Google Scholar 
    66.Hartig, J. H. & Wallen, D. G. The influence of light and temperature on growth and photosynthesis of fragilaria crotonensis kitton. J. Freshw. Ecol. 3, 371–382 (1986).
    Google Scholar 
    67.Tilman, D. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62, 802–815 (1981).
    Google Scholar 
    68.Tompkins, T. & Blinn, D. W. The effect of mercury on the growth rate of Fragilaria crotonensis kitton and Asterionella formosa Hass. Hydrobiologia 49, 111–116 (1976).CAS 

    Google Scholar 
    69.Kazamia, E. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, aar4536 (2018).ADS 

    Google Scholar 
    70.Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).CAS 
    PubMed 
    ADS 

    Google Scholar 
    71.Strzepek, R. F., Boyd, P. W. & Sunda, W. G. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 116, 4388–4393 (2019).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    72.Raven, J. A. The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol. 109, 279–287 (1988).CAS 

    Google Scholar 
    73.Kranzler, C., Rudolf, M., Keren, N. & Schleiff, E. Iron in cyanobacteria. Adv. Bot. Res. 65, 57–105 (2013).CAS 

    Google Scholar  More

  • in

    Forest tree growth is linked to mycorrhizal fungal composition and function across Europe

    1.Vittadini C. Monographia lycoperdineorum. Augustae Taurinorum, Torino, 1842.2.Frank B. On the nutrition of certain trees by underground fungi based on root symbiosis. Plant Biol. 1885;3:128–45.
    Google Scholar 
    3.Gadgil RL, Gadgil P. Mycorrhiza and litter decomposition. Nature 1971;233:133–133.CAS 
    PubMed 

    Google Scholar 
    4.Harley J. Problems of mycotrophy. London: Academic Press; 1975.5.Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. N. Phytol. 2015;205:1525–36.CAS 

    Google Scholar 
    6.Crowther TW, Van den Hoogen J, Wan J, Mayes MA, Keiser A, Mo L, et al. The global soil community and its influence on biogeochemistry. Science 2019;365:eaav0550.CAS 
    PubMed 

    Google Scholar 
    7.Bueno CG, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob Ecol Biogeo. 2017;26:690–9.
    Google Scholar 
    8.Steidinger BS, Crowther TW, Liang J, Nuland MEV, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019;569:404–8.CAS 
    PubMed 

    Google Scholar 
    9.Dixon RK, Garrett HE, Cox GS, Marx DH, Sander IL. Inoculation of three Quercus species with eleven isolates of ectomycorrhizal fungi. I. inoculation success and seedling growth relationships. Science. 1984;30:364–72.
    Google Scholar 
    10.Sim M-Y, Eom A-H. Effects of ectomycorrhizal fungi on growth of seedlings of Pinus densiflora. Mycobiology 2006;34:191–5.PubMed 
    PubMed Central 

    Google Scholar 
    11.Dickie IA. Host preference, niches and fungal diversity. N. Phytol. 2007;174:230–3.
    Google Scholar 
    12.Alberton O, Kuyper TW, Gorissen A. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil. 2007;296:159–72.CAS 

    Google Scholar 
    13.Karst J, Marczak L, Jones MD, Turkington R. The mutualism–parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 2008;89:1032–42.PubMed 

    Google Scholar 
    14.Dalong M, Luhe W, Guoting Y, Liqiang M, Chun L. Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination. Braz J Microbiol. 2011;42:1197–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 2017;355:181–4.CAS 
    PubMed 

    Google Scholar 
    16.Read DJ, Perez‐Moreno J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? N. Phytol. 2003;157:475–92.CAS 

    Google Scholar 
    17.Buscot F, Weber G, Oberwinkler F. Interactions between Cylindrocarpon destructans and ectomycorrhizas of Picea abies with Laccaria laccata and Paxillus involutes. Trees. 1992;6:83–90.
    Google Scholar 
    18.Morin C, Samson J, Dessureault M. Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can J Bot. 1999;77:169–74.
    Google Scholar 
    19.Abuzinadah RA, Read DJ. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. N. Phytol. 1989;112:55–60.CAS 

    Google Scholar 
    20.Jongbloed RH, Clement JMAM, Borst-Pauwels GWFH. Kinetics of NH4+ and K+ uptake by ectomycorrhizal fungi. effect of NH4+ on K+ uptake. Phys Plant 1991;83:427–32.CAS 

    Google Scholar 
    21.Selosse M, Bouchard D, Martin F, Tacon F. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can J Res. 2000;30:360–71.
    Google Scholar 
    22.Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Let. 2010;13:394–407.
    Google Scholar 
    23.Kipfer T, Wohlgemuth T, Heijden MGA, van der, Ghazoul J, Egli S. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal Fungi. PLoS ONE. 2012;7:e35275.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Pena R, Polle A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J. 2014;8:321–30.CAS 
    PubMed 

    Google Scholar 
    25.Mueller RC, Scudder CM, Whitham TG, Gehring CA. Legacy effects of tree mortality mediated by ectomycorrhizal fungal communities. N. Phytol. 2019;224:155–65.CAS 

    Google Scholar 
    26.Policelli N, Horton TR, Hudon AT, Patterson TR, Bhatnagar JM. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front Glob Change. 2020;3:97.
    Google Scholar 
    27.Bever JD, Schultz PA, Pringle A, Morton JB. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of Why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. BioScience 2001;51:923–31.
    Google Scholar 
    28.Delgado‐Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.
    Google Scholar 
    29.Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. PNAS 2016;113:8033–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016;353:1272–7.CAS 
    PubMed 

    Google Scholar 
    31.Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 2016;1:1–12.
    Google Scholar 
    32.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.
    Google Scholar 
    33.Lindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, et al. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol Lett. 2021;24:1341–51.PubMed 

    Google Scholar 
    34.Rineau F, Courty P-E. Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. Ann Sci. 2011;68:69–80.
    Google Scholar 
    35.Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and functional convergence across the North American soil mycobiome. PNAS 2014;111:6341–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Bio Biochem. 2016;97:188–98.CAS 

    Google Scholar 
    37.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 

    Google Scholar 
    38.Etzold S, Ferretti M, Reinds GJ, Solberg S, Gessler A, Waldner P, et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Ecol Man. 2020;458:117762.
    Google Scholar 
    39.Van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 2018;558:243–8.PubMed 

    Google Scholar 
    40.Ferretti M, Fischer R Forest Monitoring: Methods for Terrestrial Investigations in Europe with an Overview of North America and Asia in Developments in Environmental Science. vol. 12. Elsevier, Amsterdam, 2013. pp 2-507.41.Dobbertin M, Neumann M Part V: Tree Growth. In: UNECE ICP Forests, Programme Co- ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. Eberswalde. 2016. https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part05.pdf.42.Averill C, Cates LL, Dietze MC, Bhatnagar JM. Spatial vs. temporal controls over soil fungal community similarity at continental and global scales. ISME J. 2019;13:2082–93.PubMed 
    PubMed Central 

    Google Scholar 
    43.Pellitier PT, Ibáñez I, Zak DR, Argiroff WA, Acharya K. Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree. Nat Commun. 2021;12:5403.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, et al. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iFor – Biogeo. 2013;6:326–30.
    Google Scholar 
    45.Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, et al. Good practice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES) for the IPCC. 2003. https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf.46.Waldner P. Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atm Env. 2014;95:363–74.CAS 

    Google Scholar 
    47.Nieminen T, De Vos B, Cools N, König N, Fischer R, Lost S, et al. Part XI: Soil Solution Collection and Analysis. In: UNECE ICP Forests Programme Co-ordinating Centre (eds): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. Eberswalde. 2016. https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part11.pdf.48.Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Inter J Clim. 2017;37:4302–15.
    Google Scholar 
    49.Cox F, Barsoum N, Lilleskov EA, Bidartondo MI. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett. 2010;13:1103–13.PubMed 

    Google Scholar 
    50.Okonechnikov K, Golosova O, Fursov M. Unipro GENE: a unified bioinformatics toolkit. Bioinf. 2012;28:1166–7.CAS 

    Google Scholar 
    51.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinf. 2010;26:2460–1.CAS 

    Google Scholar 
    52.Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. N. Phytol. 2010;186:281–5.
    Google Scholar 
    53.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.CAS 
    PubMed 

    Google Scholar 
    54.Douglas GM, Beiko RG, Langille MG Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt (eds). Microbiome Analysis. Methods in Molecular Biology. Vol 1849. Humana Press, New York, 2018. pp 169–77.55.Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat biot. 2013;31:814–21.CAS 

    Google Scholar 
    56.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:3568.PubMed 
    PubMed Central 

    Google Scholar 
    58.Revell LJ, Revell MLJ Package ‘phytools’. 2020. https://github.com/liamrevell/phytools.59.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Gibbons SM, Lekberg Y, Mummey DL, Sangwan N, Ramsey PW, Gilbert JA. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2017;2:e00178–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Pold G, Domeignoz-Horta LA, Morrison EW, Frey SD, Sistla SA, DeAngelis KM. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. MBio 2020;11:e02293–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Stewart JD, Shakya KM, Bilinski T, Wilson JW, Ravi S, Choi CS. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci Tot Env. 2020;724:138353.CAS 

    Google Scholar 
    63.Sun S, Jones RB, Fodor AA. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 2020;8:46.PubMed 
    PubMed Central 

    Google Scholar 
    64.Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Moore JAM, Anthony MA, Pec GJ, Trocha LK, Trzebny A, Geyer KM, et al. Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob Chan Bio. 2021;27:1349–64.
    Google Scholar 
    66.Team RC R: A language and environment for statistical computing. 2013.67.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. 2013. https://github.com/vegandevs/vegan.68.Morris MH, Pérez-Pérez MA, Smith ME, Bledsoe CS. Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 2008;18:375–83.PubMed 

    Google Scholar 
    69.Lindner DL, Banik MT. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots. Mycologia 2009;101:157–65.CAS 
    PubMed 

    Google Scholar 
    70.Orlovich DA, Draffin SJ, Daly RA, Stephenson SL. Piracy in the high trees: ectomycorrhizal fungi from an aerial ‘canopy soil’ microhabitat. Mycologia 2013;105:52–60.PubMed 

    Google Scholar 
    71.Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. N Phytol. 2010;188:291–301.CAS 

    Google Scholar 
    72.Morrison EW, Frey SD, Sadowsky JJ, van Diepen LT, Thomas WK, Pringle A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 2016;23:48–57.
    Google Scholar 
    73.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinf. 2019;35:526–8.CAS 

    Google Scholar 
    74.Madhulatha TS An overview on clustering methods. arXiv preprint. 2012;arXiv:1205.111775.Pallmann P, Hothorn LA. Analysis of means: a generalized approach using R. J Ap Stat 2016;43:1541–60.
    Google Scholar 
    76.De Caceres M, Jansen F, De Caceres MM Package ‘indicspecies’. 2016. https://vegmod.github.io/software/indicspecies.77.Wood S, Wood MS Package ‘mgcv’. 2015. https://cran.r-project.org/web/packages/mgcv/mgcv.pdf.78.Larsen WA, McCleary SJ. The use of partial residual plots in regression analysis. Technometrics 1972;14:781–90.
    Google Scholar 
    79.Gower ST, McMurtrie RE, Murty D. Aboveground net primary production decline with stand age: potential causes. Tr Eco Evol. 1996;11:378–82.CAS 

    Google Scholar 
    80.O’brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41:673–90.
    Google Scholar 
    81.Koide RT, Fernandez CW. The continuing relevance of “older” mycorrhiza literature: insights from the work of John Laker Harley (1911–1990). Mycorrhiza 2018;28:577–86.CAS 
    PubMed 

    Google Scholar 
    82.Anthony MA, Stinson KA, Moore JAM, Frey SD. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 2020;194:659–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Jonsson LM, Nilsson M-C, Wardle DA, Zackrisson O. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 2001;93:353–64.
    Google Scholar 
    84.Hazard C, Kruitbos L, Davidson H, Taylor AFS, Johnson D. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. N. Phytol. 2017;213:852–63.CAS 

    Google Scholar 
    85.Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG. Tree genetics defines fungal partner communities that may confer drought tolerance. PNAS 2017;114:11169–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354.87.Baxter JW, Dighton J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. N. Phytol. 2001;152:139–49.
    Google Scholar 
    88.Dighton J, White JF. The fungal community: its organization and role in the ecosystem. 3rd ed. CRC Press, Boca Raton, 2005.89.Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S, et al. Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Bio Biochem. 2013;57:468–76.CAS 

    Google Scholar 
    90.Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. N. Phytol. 2018;220:1200–10.
    Google Scholar 
    91.Nygren CMR, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AFS. Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. N. Phytol. 2008;180:875–89.CAS 

    Google Scholar 
    92.Wallenda T, Stober C, Högbom L, Schinkel H, George E, Högberg P, et al. Nitrogen Uptake Processes in Roots and Mycorrhizas (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer, Berlin, 2000. pp 122–43.93.Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeoch. 2018;139:103–22.CAS 

    Google Scholar 
    94.Marzluf GA. Regulation of nitrogen metabolism and gene expression in fungi. Microbi Rev. 1981;45:437–61.CAS 

    Google Scholar 
    95.Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Bio Biochem. 1994;26:1305–11.
    Google Scholar 
    96.Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. N. Phytol. 2014;203:245–56.
    Google Scholar 
    97.Lilleskov E, Hobbie EA, Horton T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 2011;4:174–83.
    Google Scholar 
    98.Franklin O, Näsholm T, Högberg P, Högberg MN. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. N. Phytol. 2014;203:657–66.CAS 

    Google Scholar 
    99.Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, et al. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 2015;9:1693–9.PubMed 

    Google Scholar 
    100.Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Div. 2020;105:1–16.
    Google Scholar 
    101.Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366:1–27.CAS 

    Google Scholar 
    102.Agerer R. Exploration types of ectomycorrhizae. Mycorrhiza 2001;11:107–14.
    Google Scholar 
    103.Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. Ectomycorrhizas and tipping points in forest ecosystems. N. Phytol 2021;231:1700–7.
    Google Scholar 
    104.Wasyliw J, Karst J. Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. J Ecol. 2020;108:2270–82.CAS 

    Google Scholar 
    105.LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE. Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 2013;172:257–69.PubMed 

    Google Scholar 
    106.Struck C. Amino acid uptake in rust fungi. Front Plant Sci. 2015;6:40.PubMed 
    PubMed Central 

    Google Scholar 
    107.Wen Z, Shi L, Tang Y, Shen Z, Xia Y, Chen Y. Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. Int J Phytorem. 2017;19:387–94.CAS 

    Google Scholar 
    108.Garbaye J, Churin J-L. Effect of ectomycorrhizal inoculation at planting on growth and foliage quality of Tilia tomentosa. J Arbor 1996;22:29–34.
    Google Scholar 
    109.Fernandez CW, Koide RT. The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol. 2013;6:479–86.
    Google Scholar 
    110.Heinonsalo J, Sun H, Santalahti M, Bäcklund K, Hari P, Pumpanen J. Evidences on the ability of mycorrhizal genus Piloderma to use organic nitrogen and deliver it to Scots Pine. PLoS ONE. 2015;10:e0131561.PubMed 
    PubMed Central 

    Google Scholar 
    111.Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014; 346.112.Polley H, Kroiher F, Riedel T Beech and spruce popular and in-demand. Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei. 2015. https://literatur.thuenen.de/digbib_extern/dn055748.pdf.113.Brzostek ER, Fisher JB, Phillips RP. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J Geophy Res. 2014;119:1684–97.
    Google Scholar 
    114.Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. PNAS 2005;102:11070–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 2019;7:31.
    Google Scholar  More