Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism
1.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS
Google Scholar
2.IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).
Google Scholar
3.IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).
Google Scholar
4.Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).CAS
PubMed
ADS
Google Scholar
5.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed
Google Scholar
6.Lowe, A. T., Bos, J. & Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 9, 963. https://doi.org/10.1038/s41598-018-37764-4 (2019).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
7.Justić, D., Rabalais, N. N. & Turner, R. E. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41, 992–1003 (1996).ADS
Google Scholar
8.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS
PubMed
ADS
Google Scholar
9.del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed
ADS
Google Scholar
10.Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coast. 36, 697–707 (2013).CAS
Google Scholar
11.Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).ADS
Google Scholar
12.Gaarder, T. & Gran, H. H. Investigations of the production of plankton in the Oslo Fjord. Rapports Procès-Verbaux Réunions 42, 3–48 (1927).
Google Scholar
13.Bender, M. et al. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098 (1987).ADS
Google Scholar
14.Marra, J. Net and gross productivity: Weighing in with 14C. Aquat. Microb. Ecol. 56, 123–131 (2009).
Google Scholar
15.Hitchcock, G. L., Kirkpatrick, G., Minnett, P. & Palubok, V. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA. Harmful Algae 9, 351–358 (2010).CAS
PubMed
PubMed Central
Google Scholar
16.Stephenson, T. A., Zoond, A. & Eyre, J. The liberation and utilisation of oxygen by the population of rock-pools. J. Exp. Biol. 11, 162–172 (1934).
Google Scholar
17.Beyers, R. J. Relationship between temperature and the metabolism of experimental ecosystems. Science 136, 980–982 (1962).CAS
PubMed
ADS
Google Scholar
18.Duarte, C. M. & Regaudie-de-Gioux, A. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol. Oceanogr. 54, 1015–1022 (2009).CAS
ADS
Google Scholar
19.Noël, L.M.-L. et al. Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuar. Coast. Shelf Sci. 88, 153–159 (2010).ADS
Google Scholar
20.Hall, C. A. S. & Moll, R. Methods of assessing aquatic primary productivity. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 19–53 (Springer, 1975).
Google Scholar
21.Platt, T. et al. Biological production of the oceans: The case for a consensus. Mar. Ecol. Prog. Ser. 52, 77–88 (1989).ADS
Google Scholar
22.Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).ADS
Google Scholar
23.Odum, H. T. & Hoskin, C. M. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. 5, 16–46 (1958).
Google Scholar
24.Johnson, K. M., Burney, C. M. & Sieburth, J. M. Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65, 49–60 (1981).CAS
Google Scholar
25.Volaric, M. P., Berg, P. & Reidenbach, M. A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coast. 43, 2034–2045 (2020).CAS
Google Scholar
26.Collins, J. R. et al. An autonomous, in situ light-dark bottle device for determining community respiration and net community production. Limnol. Oceanogr. Method. 16, 323–338 (2018).
Google Scholar
27.Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
Google Scholar
28.Peterson, B. J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11, 359–385 (1980).
Google Scholar
29.Jackson, D. F. & McFadden, J. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35, 2–4 (1954).
Google Scholar
30.Van de Bogert, M. C., Carpenter, S. R. & Pace, M. L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 5, 145–155 (2007).
Google Scholar
31.Barone, B., Nicholson, D., Ferrón, S., Firing, E. & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnol. Oceanogr. Methods 17, 650–664 (2019).CAS
Google Scholar
32.Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: State of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).CAS
Google Scholar
33.Nicholson, D. P., Wilson, S. T., Doney, S. C. & Karl, D. M. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42, 4032–4039 (2015).CAS
ADS
Google Scholar
34.Mantikci, M., Hansen, J. L. S. & Markager, S. Photosynthesis enhanced dark respiration in three marine phytoplankton species. J. Exp. Mar. Biol. Ecol. 497, 188–196 (2017).CAS
Google Scholar
35.Truchot, J.-P. & Duhamel-Jouve, A. Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. Resp. Physiol. 39, 241–254 (1980).CAS
Google Scholar
36.Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81, 114–122 (2009).ADS
Google Scholar
37.Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466. https://doi.org/10.1371/journal.pone.0152466 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
38.Andersen, M. R., Kragh, T. & Sand-Jensen, K. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc. R. Soc. B 284, 20171427. https://doi.org/10.1098/rspb.2017.1427 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
39.Nielsen, K. J. Bottom-up and top-down forces in tide pools: Test of a food chain model in an intertidal community. Ecol. Monogr. 71, 187–217 (2001).
Google Scholar
40.Altieri, A. H., Trussell, G. C., Ewanchuk, P. J., Bernatchez, G. & Bracken, M. E. S. Consumers control diversity and functioning of a natural marine ecosystem. PLoS ONE 4, e5291. https://doi.org/10.1371/journal.pone.0005291 (2009).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
41.O’Connor, N. E., Bracken, M. E. S., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).
Google Scholar
42.Rheuban, J. E., Berg, P. & McGlathery, K. J. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507, 1–13 (2014).ADS
Google Scholar
43.Barrón, C. et al. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6, 144–153. https://doi.org/10.1007/s10021-002-0402-3 (2003).CAS
Article
Google Scholar
44.Kraufvelin, P., Lindholm, A., Pedersen, M. F., Kirkerud, L. A. & Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 157, 29–47 (2010).
Google Scholar
45.Epping, E. H. G. & Jørgensen, B. B. Light-enhanced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser. 139, 193–203 (1996).ADS
Google Scholar
46.Graham, J. M., Kranzfelder, J. A. & Auer, M. T. Light and temperature as factors regulating seasonal growth and distribution of Ulothrix zonata (Ulvophyceae). J. Phycol. 21, 228–234. https://doi.org/10.1111/j.0022-3646.1985.00228.x (1985).Article
Google Scholar
47.Hotchkiss, E. R. & Hall, R. O. Jr. High rates of daytime respiration in three streams: Use of δ18OO2 and O2 to model diel ecosystem metabolism. Limnol. Oceanogr. 59, 798–810. https://doi.org/10.4319/lo.2014.59.3.0798 (2014).CAS
Article
ADS
Google Scholar
48.Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).CAS
ADS
Google Scholar
49.Conley, D. J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C. M. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009).CAS
Google Scholar
50.Lefèvre, D., Bentley, T. L., Robinson, C., Blight, S. P. & Williams, P. J. L. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol. 184, 201–215 (1994).
Google Scholar
51.López-Urrutia, Á., SanMartin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).PubMed
PubMed Central
ADS
Google Scholar
52.Grant, J. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90, 299–306 (1986).
Google Scholar
53.Jankowski, K., Schindler, D. E. & Lisi, P. J. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).
Google Scholar
54.Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B. 365, 2117–2126 (2010).PubMed
PubMed Central
Google Scholar
55.Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).CAS
PubMed
ADS
Google Scholar
56.Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coast. 32, 123–145 (2009).CAS
Google Scholar
57.Howard, E. M. et al. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coast. 43, 1908–1922 (2020).CAS
Google Scholar
58.Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).CAS
PubMed
ADS
Google Scholar
59.Winslow, L. A. et al. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).CAS
Google Scholar
60.Sorte, C. J. B. & Bracken, M. E. S. Warming and elevated CO2 interact to drive rapid shifts in marine community production. PLoS ONE 10, e0145191. https://doi.org/10.1371/journal.pone.0145191 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
61.Hinode, K. et al. The phenology of gross ecosystem production in a macroalga and seagrass canopy is driven by seasonal temperature. Phycol. Res. 68, 298–312 (2020).CAS
Google Scholar
62.Bracken, M., Miller, L., Mastroni, S., Lira, S. & Sorte, C. Data from: Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism. Dryad Dataset https://doi.org/10.7280/D1M39B (2021).Article
Google Scholar
63.Reiskind, J. B., Seamon, P. T. & Bowes, G. Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87, 686–692 (1988).CAS
PubMed
PubMed Central
Google Scholar More