A novel molecular diagnostic method for the gut content analysis of Philaenus DNA
1.Rodrigues, A. S. B. et al. New mitochondrial and nuclear evidences support recent demographic expansion and an atypical phylogeographic pattern in the spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae). PLoS ONE 9, 1–12. https://doi.org/10.1371/journal.pone.0098375 (2014).CAS
Article
Google Scholar
2.Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 659–668. https://doi.org/10.4454/JPP.V95I3.034 (2013).Article
Google Scholar
3.Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia Italy. J. Econ. Entomol. 107, 1316–1319. https://doi.org/10.1603/EC14142 (2014).Article
PubMed
Google Scholar
4.Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 109, 175–186. https://doi.org/10.1094/PHYTO-08-18-0319-FI (2019).CAS
Article
PubMed
Google Scholar
5.Cavalieri, V. et al. Transmission of Xylella fastidiosa subspecies pauca sequence type 53 by different insect species. Insects 10, 324. https://doi.org/10.3390/insects10100324 (2019).Article
PubMed Central
Google Scholar
6.Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Entomol. Soc. Am. 98, 775–786. https://doi.org/10.1603/0013-8746(2005)098[0775:vtoxfa]2.0.co;2 (2005).Article
Google Scholar
7.Schneider, K. et al. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. U. S. A. 117, 9250–9259. https://doi.org/10.1073/pnas.1912206117 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
8.Dongiovanni, C. et al. Evaluation of insecticides for the control of juveniles of Philaenus spumarius L., 2015–2017. Arthropod Manag. Tests 43, 2015–2017. https://doi.org/10.1093/amt/tsy073 (2018).Article
Google Scholar
9.Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-44997-4 (2019).CAS
Article
Google Scholar
10.Nyffeler, M. & Benz, G. Spiders in natural pest control: A review. J. Appl. Entomol. 103, 321–339. https://doi.org/10.1111/j.1439-0418.1987.tb00992.x (1987).Article
Google Scholar
11Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. https://doi.org/10.1007/s00114-017-1440-1 (2017).Article
Google Scholar
12.Nyffeler, M. Ecological impact of spider predation: A critical assessment of Bristowe’s and Turnbull’s estimates. Bull. Br. Arachnol. Soc. 11, 367–373 (2000).
Google Scholar
13.Phillipson, J. A contribution to the feeding biology of Mitopus morio (F) (Phalangida). J. Anim. Ecol. 29, 35–43. https://doi.org/10.2307/2269 (1960).Article
Google Scholar
14Harper, G. & Whittaker, J. The role of natural enemies in the colour polymorphism of Philaenus spumarius (L.). J. Anim. Ecol. 45, 91–104. https://doi.org/10.2307/3769 (1976).Article
Google Scholar
15.Benhadi-Marín, J. et al. A guild-based protocol to target potential natural enemies of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa (Xanthomonadaceae): A case study with spiders in the olive grove. Insects 11, 100. https://doi.org/10.3390/insects11020100 (2020).Article
PubMed Central
Google Scholar
16.King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x (2008).CAS
Article
PubMed
Google Scholar
17.Sint, D., Raso, L., Kaufmann, R. & Traugott, M. Optimizing methods for PCR-based analysis of predation. Mol. Ecol. Resour. 11, 795–801. https://doi.org/10.1111/j.1755-0998.2011.03018.x (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
18.Rejili, M. et al. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull. Entomol. Res. 106, 695–699. https://doi.org/10.1017/S000748531600050X (2016).CAS
Article
PubMed
Google Scholar
19Albertini, A. et al. Detection of Bactrocera oleae (Diptera: Tephritidae) DNA in the gut of the soil species Pseudoophonus rufipes (coleoptera: Carabidae). Span. J. Agric. Res. https://doi.org/10.5424/sjar/2018163-12860 (2018).Article
Google Scholar
20.Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641. https://doi.org/10.1046/j.1365-294X.2002.01471.x (2002).CAS
Article
PubMed
Google Scholar
21.Sousa, L. L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 1, 199–214. https://doi.org/10.1002/edn3.27 (2019).Article
Google Scholar
22.Juen, A. & Traugott, M. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol. Biochem. 38, 1872–1879. https://doi.org/10.1016/j.soilbio.2005.11.034 (2006).CAS
Article
Google Scholar
23.Monzó, C., Sabater-Muñoz, B., Urbaneja, A. & Castańera, P. Tracking medfly predation by the wolf spider, Pardosa cribata Simon, in citrus orchards using PCR-based gut-content analysis. Bull. Entomol. Res. 100, 145–152. https://doi.org/10.1017/S0007485309006920 (2010).CAS
Article
PubMed
Google Scholar
24.Lantero, E., Matallanas, B., Pascual, S. & Callejas, C. PCR species-specific primers for molecular gut content analysis to determine the contribution of generalist predators to the biological control of the vector of Xylella fastidiosa. Sustainability 10, 4–11. https://doi.org/10.3390/su10072207 (2018).CAS
Article
Google Scholar
25.Cohen, A. C. Extra-oral digestion in predaceous terrestrial Arthropoda. Annu Rev Entomol. 40, 85–103. https://doi.org/10.1146/annurev.en.40.010195.000505 (1995).ADS
CAS
Article
Google Scholar
26.Krehenwinkel, H., Rödder, N. & Tautz, D. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Glob. Chang. Biol 21, 4320–4332. https://doi.org/10.1111/gcb.13042 (2015).ADS
Article
PubMed
Google Scholar
27.Kennedy, S. R. et al. High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities. Dev. Genes Evol. 230, 185–201. https://doi.org/10.1007/s00427-020-00652-x (2020).Article
PubMed
PubMed Central
Google Scholar
28.Hoogendoorn, M. & Heimpel, G. E. PCR-based gut content analysis of insect predators: Using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol. Ecol. 10, 2059–2067. https://doi.org/10.1046/j.1365-294X.2001.01316.x (2001).CAS
Article
PubMed
Google Scholar
29.Eitzinger, B., Unger, E. M., Traugott, M. & Scheu, S. Effects of prey quality and predator body size on prey DNA detection success in a centipede predator. Mol. Ecol. 23, 3767–3776. https://doi.org/10.1111/mec.12654 (2014).CAS
Article
PubMed
Google Scholar
30.Unruh, T. R. et al. Gut content analysis of arthropod predators of codling moth in Washington apple orchards. Biol. Control. 102, 85–92. https://doi.org/10.1016/j.biocontrol.2016.05.014 (2016).Article
Google Scholar
31.Rowley, C. et al. PCR-based gut content analysis to identify arthropod predators of Haplodiplosis marginata. Biol. Control 115, 112–118. https://doi.org/10.1016/j.biocontrol.2017.10.003 (2017).CAS
Article
Google Scholar
32.Macías-Hernández, N. et al. Molecular gut content analysis of different spider body parts. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0196589 (2018).CAS
Article
Google Scholar
33.Troedsson, C., Simonelli, P., Nägele, V., Nejstgaard, J. C. & Frischer, M. E. Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar. Biol. 156, 253–259. https://doi.org/10.1007/s00227-008-1079-8 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
34.Agustí, N., De Vicente, M. C. & Gabarra, R. Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: A new polymerase chain reaction-based technique for predator gut analysis. Mol. Ecol. 8, 1467–1474. https://doi.org/10.1046/j.1365-294X.1999.00717.x (1999).Article
PubMed
Google Scholar
35.Agustí, N., Unruh, T. R. & Welter, S. C. Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers. Bull. Entomol. Res. 93, 179–185. https://doi.org/10.1079/ber2003236 (2003).Article
PubMed
Google Scholar
36.Aebi, A. et al. Detecting arthropod intraguild predation in the field. Biocontrol 56, 429–440. https://doi.org/10.1007/s10526-011-9378-2 (2011).Article
Google Scholar
37.Hosseini, R., Schmidt, O. & Keller, M. A. Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: A polymerase chain reaction-based method. Entomol. Exp. Appl. 126, 194–202. https://doi.org/10.1111/j.1570-7458.2007.00657.x (2008).CAS
Article
Google Scholar
38.Agustí, N. et al. Collembola as alternative prey sustaining spiders in arable ecosystems: Prey detection within predators using molecular markers. Mol Ecol. 12, 3467–3475. https://doi.org/10.1046/j.1365-294X.2003.02014.x (2003).CAS
Article
PubMed
Google Scholar
39.Greenstone, M. H., Tillman, P. G. & Hu, J. S. Predation of the newly invasive pest Megacopta cribraria (Hemiptera: Plataspidae) in soybean habitats adjacent to cotton by a complex of predators. J Econ Entomol. 107, 947–954. https://doi.org/10.1603/EC13356 (2014).CAS
Article
PubMed
Google Scholar
40.Welch, K. D., Whitney, T. D. & Harwood, J. D. Non-pest prey do not disrupt aphid predation by a web-building spider. Bull. Entomol. Res. 106, 91–98. https://doi.org/10.1017/S0007485315000875 (2016).CAS
Article
PubMed
Google Scholar
41.Vincent, J. F. V. Arthropod cuticle: A natural composite shell system. Compos. Part A Appl. Sci. Manuf. 33, 1311–1315. https://doi.org/10.1016/S1359-835X(02)00167-7 (2002).Article
Google Scholar
42.Cardoso, P. et al. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: A case study in a Mediterranean forest. Insect Conserv. Divers. 1, 71–84. https://doi.org/10.1111/j.1752-4598.2007.00008.x (2008).Article
Google Scholar
43.Harwood, J. D., Phillips, S. W., Sunderland, K. D. & Symondson, W. O. C. Secondary predation: Quantification of food chain errors in an aphid-spider-carabid system using monoclonal antibodies. Mol. Ecol. 10, 2049–2057. https://doi.org/10.1046/j.0962-1083.2001.01349.x (2001).CAS
Article
PubMed
Google Scholar
44.Seabra, S. G. et al. Corrigendum to “Molecular phylogeny and DNA barcoding in the meadow-spittlebug Philaenus spumarius (Hemiptera, Cercopidae) and its related species” [Mol. Phylogenet. Evol. 56 (2010) 462–467]. Mol. Phylogenet. Evol. 152, 106888. https://doi.org/10.1016/j.ympev.2020.106888 (2020).CAS
Article
PubMed
Google Scholar
45.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS
PubMed
PubMed Central
Google Scholar
46.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, 1–12. https://doi.org/10.1093/nar/gks596 (2012).CAS
Article
Google Scholar
48.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).CAS
Article
Google Scholar
49.Morente, M. et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian Peninsula. Insects 9, 175. https://doi.org/10.3390/insects9040175 (2018).Article
PubMed Central
Google Scholar More