Biocrusts mediate a new mechanism for land degradation under a changing climate
1.Science Plan and Implementation Strategy IGBP Report No. 53/IHDP Report No. 19 (Global Land Project, 2005).2.Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Desertification Synthesis Encyclopedia of the Anthropocene vols 1–5 (MEA, 2017).3.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2015).Article
Google Scholar
4.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).Article
Google Scholar
5.Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article
Google Scholar
6.Belnap, J. Surface disturbances: their role in acceleration desertification. Environ. Monit. Assess. 37, 38–57 (1995).Article
Google Scholar
7.Zhao, Y., Jia, R. L. & Wang, J. Towards stopping land degradation in drylands: water-saving techniques for cultivating biocrusts in situ. Land Degrad. Dev. 30, 2336–2346 (2019).Article
Google Scholar
8.Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).CAS
Article
Google Scholar
9.Coe, K. K. & Sparks, J. P. Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species. Oecologia 176, 933–942 (2014).Article
Google Scholar
10.Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).Article
Google Scholar
11.Belnap, J. & Gillette, D. A. Soil surface disturbance: impacts on potential wind erodibility of sand desert soils in SE Utah, USA. Land Degrad. Dev. 8, 355–362 (1997).Article
Google Scholar
12.Rutherford, W. A. et al. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 7, 44188 (2017).13.Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).14.Ferrenberg, S., Faist, A. M., Howell, A. & Reed, S. C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 429, 77–90 (2018).CAS
Article
Google Scholar
15.Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26, 6003–6014 (2020).16.Ferrenberg, S., Reed, S. C. & Belnap, J. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl Acad. Sci. USA 112, 12116–12121 (2015).CAS
Article
Google Scholar
17.Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change 2, 752–755 (2012).CAS
Article
Google Scholar
18.Concostrina-Zubiri, L. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics. Ecol. Appl. 24, 1863–1877 (2014).CAS
Article
Google Scholar
19.Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 479–498 (Springer, 2016).20.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).CAS
Article
Google Scholar
21.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS
Article
Google Scholar
22.Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, e03360 (2011).Article
Google Scholar
23.Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).Article
Google Scholar
24.Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).25.Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).Article
Google Scholar
26.Belnap, J. & Büdel, B. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 305–320 (Springer, 2016).27.Belnap, J. & Warren, S. D. Measuring restoration success: a lesson from Patton’s tank tracks. Ecol. Bull. 79, 33 (1998).28.Belnap, J. & Elderidge, D. in Biological Soil Crusts: Structure, Function and Management (eds Belnap, J. & Lange, O. L.) 363–383 (Springer, 2001).29.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).Article
Google Scholar
30.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article
Google Scholar
31.Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).32.Cayan, D. R. et al. Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. USA 107, 21271–21276 (2010).CAS
Article
Google Scholar
33.Christensen, N. S., Wood, A. W., Nathalie, V., Lettenmaier, D. P. & Palmer, R. N. The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim. Change 62, 337 (2004).Article
Google Scholar
34.Herrick, J. et al. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44, 27–35 (2001).Article
Google Scholar
35.Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil. Trans. R. Soc. B 367, 3087–3099 (2012).Article
Google Scholar
36.Scheffer, M. et al. Creating a safe operating space for iconic ecosystems: manage local stressors to promote resilience to global change. Science 347, 1317–1319 (2015).CAS
Article
Google Scholar
37.Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos 91, 285–293 (2000).Article
Google Scholar
38.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS
Article
Google Scholar
39.IPCC. Climate Change 2014: Impacts, Adaptations, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).40.Mirzabaev, A. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).41.Torres-Cruz, T. J. et al. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil 429, 113–125 (2018).CAS
Article
Google Scholar
42.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article
Google Scholar
43.Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2011).Article
Google Scholar
44.Tucker, C. L., Ferrenberg, S. & Reed, S. C. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state. Ecosystems 22, 15–32 (2018). https://doi.org/10.1007/s10021-018-0250-445.Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141, 317–324 (2004).Article
Google Scholar
46.Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).CAS
Article
Google Scholar
47.Kunkel, K. E., Easterling, D. R., Redmond, K. & Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 30, 1895–2000 (2003).Article
Google Scholar
48.Kim, J. A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the Western US. Clim. Change 68, 153–168 (2005).CAS
Article
Google Scholar
49.Smith, S. J. et al. Climate change impacts for the conterminous USA: an integrated assessment part 1. Scenarios and context. Clim. Change 69, 7–25 (2005). https://doi.org/10.1007/1-4020-3876-3_250.Schwinning, S., Belnap, J., Bowling, D. R. & Ehleringer, J. R. Sensitivity of the Colorado Plateau to change: climate, ecosystems, and society. Ecol. Soc. 13, 28 (2008).51.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).Article
Google Scholar
52.Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 11, 385–388 (1983).Article
Google Scholar
53.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).54.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).55.Oksanen, A. J. et al. Vegan: Community Ecology Package. Rpackage version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).56.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).Article
Google Scholar
57.Venables, W. & Ripley, B. Modern Applied Statistics with S. (Springer, 2002).58.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’ https://github.com/rvlenth/emmeans (2018).59.Signorell, A. DescTools: Tools for Descriptive Statistics (2021).60.Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).61.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn 1–476 (CRC/Taylor & Francis, 2017).62.Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).63.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 547–511 (1992).
Google Scholar
64.Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article
Google Scholar
65.Modrák, M., Barrett, M., Weber, F. & Coronado, E. bayesplot: Plotting for Bayesian Models. R package version 1.8.0 https://mc-stan.org/bayesplot/ (2021).66.Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article
Google Scholar
67.Phillips, M. L., Howell, A., Lauria, C. M., Belnap, J. & Reed, S. C. Data and software code from two long-term experiments (1996–2011 and 2005–2018) at three sites on the Colorado Plateau of North America (US Geological Survey, 2021); https://doi.org/10.5066/P9RUN1TP More