More stories

  • in

    The metabolic cost of turning right side up in the Mediterranean spur-thighed tortoise (Testudo graeca)

    1.Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5(5211), 1–11. https://doi.org/10.1038/ncomms6211 (2014).CAS 
    Article 

    Google Scholar 
    2.Gans, C. & Hughes, G. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J. Exp. Biol. 47(1), 1–20 (1967).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Jackson, D. C., Singer, J. H. & Downey, P. T. Oxidative cost of breathing in the turtle Chrysemys picta bellii. Am. J. Physiol. 261, R1325–R1328 (1991).CAS 
    PubMed 

    Google Scholar 
    4.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta. J. Exp. Zool. 311A, 551–562. https://doi.org/10.1002/jez.478 (2009).Article 

    Google Scholar 
    5.Ruhr, I., Rose, K., Sellers, W., Crossley, D. II. & Codd, J. Turning turtle: Scaling relationships and self-righting ability in Chelydra serpentina. Proc. R. Soc. B. 288, 20210213. https://doi.org/10.1098/rspb.2021.0213 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Pritchard, P. C. H. Encyclopaedia of Turtles (TFH, 1979).
    Google Scholar 
    7.Carr, A. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California (Cornell University Press, 1952).
    Google Scholar 
    8.Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Int. Comp. Biol. 48(6), 769–787. https://doi.org/10.1093/icb/icn088 (2008).Article 

    Google Scholar 
    9.McNeill Alexander, R. Gaits of mammals and turtles. J. R. Soc. Jpn. 11(3), 314–319 (1993).Article 

    Google Scholar 
    10.Zani, P. A. & Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornate. J. Exp. Biol. 211, 3671–3676. https://doi.org/10.1242/jeb.019869 (2008).Article 
    PubMed 

    Google Scholar 
    11.Sellers, W. I., Rose, K. A. R., Crossley, D. A. II. & Codd, J. R. Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits. Comp. Biochem. Physiol. A. 247, 110739. https://doi.org/10.1016/j.cbpa.2020.110739 (2020).CAS 
    Article 

    Google Scholar 
    12.Chiari, Y., van der Meijden, A., Caccone, A., Claude, J. & Gilles, B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-15787-7 (2017).CAS 
    Article 

    Google Scholar 
    13.Woledge, R. C. The energetics of tortoise muscle. J. Physiol. 197(3), 685–707 (1968).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Steyermark, A. C. & Spotila, J. R. Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4, 1050–1057. https://doi.org/10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2 (2001).Article 

    Google Scholar 
    15.Rubin, A. M., Blob, R. W. & Mayerl, C. J. Biomechanical factors influencing successful self-righting in the Pleurodire turtle, Emydura subglobosa. J. Exp. Biol. 221, jeb182642. https://doi.org/10.1242/jeb.182642 (2018).Article 
    PubMed 

    Google Scholar 
    16.Penn, D. & Brockmann, H. J. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Anim. Behav. 49, 1531–1539. https://doi.org/10.1016/003-3472(95)90074-8 (1995).Article 

    Google Scholar 
    17.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372. https://doi.org/10.1006/bjls.2000.0504 (2001).Article 

    Google Scholar 
    18.Zuffi, M. A. L. & Corti, C. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, Western Mediterranean Sea): Preliminary data. Amphib-Reptil. 24, 441–447 (2003).Article 

    Google Scholar 
    19.Domokos, G. & Várkonyi, P. L. Geometry and self-righting of turtles. Proc. R. Soc. B. 275(1630), 11–17. https://doi.org/10.1098/rspb.2007.1188 (2008).Article 
    PubMed 

    Google Scholar 
    20.Mann, G. K. H., O’Riain, M. J. & Hofmeyr, M. D. Shaping up to fight: Sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). J. Zool. 269, 373–379. https://doi.org/10.1111/j.1469-7998.2006.00079x (2006).Article 

    Google Scholar 
    21.Golubović, A., Bonnet, X., Djordjević, S., Djurakic, M. & Tomović, L. Variations in righting behavior across Hermann’s tortoise populations. J. Zool. 291, 69–75. https://doi.org/10.1111/jzo.12047 (2013).Article 

    Google Scholar 
    22.Golubović, A., Andelkovic, M., Arsovski, D., Bonnet, X. & Tomović, L. Locomotor performances reflect habitat constraints in an armoured species. Behav. Ecol. Sociobiol. 71, 93. https://doi.org/10.1007/s00265-017-2318-0 (2017).Article 

    Google Scholar 
    23.Ashe, V. M. The righting reflex in turtles: A description and comparison. Psychol. Sci. 20, 150–152. https://doi.org/10.3758/BF03335647 (1970).Article 

    Google Scholar 
    24.Golubović, A., Tomović, L. & Ivanović, A. Geometry of self-righting: The case of Hermann’s tortoises. Zool. Anz. 254, 99–105. https://doi.org/10.1016/j.jcz.2014.12.003 (2015).Article 

    Google Scholar 
    25.Finkler, M. S. Influence of water availability during hatching on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle, Chelydra serpentina. Physiol. Biochem. Zool. 72, 714–722. https://doi.org/10.1086/316711 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Stojadinović, D., Milošević, D. & Crnobrnja-Isailović, J. Righting time versus shell size and shape dimorphism in adult Hermann’s tortoises: Field observations meet theoretical predictions. Anim. Biol. 63(4), 381–396. https://doi.org/10.1163/15707563-00002420 (2013).Article 

    Google Scholar 
    27.Delmas, V., Baudry, E., Girondot, M. & Prevot-Julliard, A.-C. The righting reflex as a fitness indicator in freshwater turtles. Biol. J. Linn. Soc. 91, 99–109. https://doi.org/10.1111/j.1095-8312/2007.00780.x (2007).Article 

    Google Scholar 
    28.Burger, J. Behavior of hatchling diamondback terrapins (Malaclemys terrapin) in the field. Copeia 1976, 742. https://doi.org/10.2307/1443457 (1976).Article 

    Google Scholar 
    29.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206, 3391–3404. https://doi.org/10.1242/jeb.00553 (2003).Article 
    PubMed 

    Google Scholar 
    30.Gaunt, A. S. & Gans, C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J. Morph. 128, 195–227. https://doi.org/10.1002/jmor.1051280205 (1969).Article 

    Google Scholar 
    31.Lambertz, M., Böhme, W. & Perry, S. F. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Crytodira) and related species, and its phylogenetic implications. Comp. Biochem. Physiol. 156, 330–336. https://doi.org/10.1016/j.cbpa.2009.12.016 (2010).CAS 
    Article 

    Google Scholar 
    32.de Souza, R. B. B. & Klein, W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J. Exp. Biol. 224(12), 242386. https://doi.org/10.1242/jeb.242386 (2021).Article 

    Google Scholar 
    33.Jodice, P. G. R., Epperson, D. M. & Visser, G. H. Daily energy expenditure in free-ranging gopher tortoises (Gopherus polyphemus). Copeia 2006(1), 129–136. https://doi.org/10.1643/0045-8511(2006)006[0129:DEEIFG]2.0.CO;2 (2006).Article 

    Google Scholar 
    34.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article 

    Google Scholar 
    35.Shadmehr, R., Huang, H. J. & Ahmed, A. A. A representation of effort in decision-making and motor control. Curr. Biol. 26, 1929–1934. https://doi.org/10.1016/j.cub.2016.05.065 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Shepard, E. L. C. et al. Energy landscapes shapes animal movement ecology. Am. Nat. 182(3), 298–312. https://doi.org/10.1086/671257 (2013).Article 
    PubMed 

    Google Scholar 
    37.Baudinette, R. V., Miller, A. M. & Sarre, M. P. Aquatic and terrestrial locomotory energetics in a toad and a turtle: A search for generalisations among ectotherms. Physiol. Biochem. Zool. 73(6), 672–682. https://doi.org/10.1086/318101 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hailey, A. & Coulson, I. M. Measurement of time budgets from continuous observation of thread-trailed tortoises (Kinixys spekii). Herp. J. 9, 15–20 (1999).
    Google Scholar 
    39.Kram, R. & Taylor, C. R. Energetics of running: A new perspective. Nature 346, 265–267. https://doi.org/10.1038/346265a0 (1990).CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar 
    40.Taylor, C. R. Relating mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994).CAS 
    PubMed 

    Google Scholar 
    41.Cavagna, G. A. & Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481. https://doi.org/10.1113/jphysiol.1977.sp011866 (1977).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Carrier, D. R., Deban, S. M. & Fischbein, T. Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J. Exp. Biol. 209, 2224–2237. https://doi.org/10.1242/jeb.02236 (2006).Article 
    PubMed 

    Google Scholar 
    43.Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292. https://doi.org/10.1242/jeb.115.1.283 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Barclay, C. J. The basis of difference in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharm. Physiol. 44(12), 1279–1286. https://doi.org/10.1111/1440-1681.12850 (2017).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Nwoye, L. O. & Goldspink, G. Biochemical efficiency and intrinsic shortening speed in selected fast and slow muscles. Experientia 37, 856–857. https://doi.org/10.1007/BF1985678 (1981).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Lambert, M. Temperature, activity and field sighting in the Mediterranean spur-thighed or common garden tortoise Testudo graeca. Biol. Conserv. 21, 39–54. https://doi.org/10.1016/0006-3207(81)90067-7 (1981).Article 

    Google Scholar 
    47.Tracy, R., Zimmerman, L., Tracy, C., Bradley, K. & Castle, K. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conserv. Biol. 5(2), 269–273. https://doi.org/10.2744/1071-8443(2006)5[269:ROFPIT]2.0.co;2 (2006).Article 

    Google Scholar 
    48.Huey, R. & Kingsolver, J. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Lailvaux, S. & Irschick, D. Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct. Ecol. 21(3), 534–543. https://doi.org/10.1111/j.1365-2435.2007.01263.x (2007).Article 

    Google Scholar 
    50.Lighton, J. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2008).Book 

    Google Scholar 
    51.Brody, S. Bioenergetics and Growth (Reinhold, 1945).
    Google Scholar  More

  • in

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    1.Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 108, 17905–17909 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Fischer, E. M. & Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 41, 547–554 (2014).ADS 

    Google Scholar 
    4.Della-Marta, P. M., Haylock, M. R., Luterbacher, J. & Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).ADS 

    Google Scholar 
    5.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Chang. 8, 469–477 (2018).ADS 

    Google Scholar 
    6.Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 38, 1699–1712 (2015).
    Google Scholar 
    7.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Steppe, K., Sterck, F. & Deslauriers, A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 20, 335–343 (2015).CAS 
    PubMed 

    Google Scholar 
    9.Peters, R. L. et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 229, 213–229 (2021).CAS 

    Google Scholar 
    10.Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).
    Google Scholar 
    11.Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS 
    PubMed 

    Google Scholar 
    12.Martínez‐Vilalta, J., Anderegg, W. R. L., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 223, 22–32 (2019).
    Google Scholar 
    13.Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 211, 839–849 (2016).
    Google Scholar 
    14.Dietrich, L., Zweifel, R. & Kahmen, A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 38, 941–952 (2018).PubMed 

    Google Scholar 
    15.Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).
    Google Scholar 
    16.Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).ADS 

    Google Scholar 
    17.Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    18.Peters, W., Bastos, A., Ciais, P. & Vermeulen, A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190505 (2020).
    Google Scholar 
    19.Albergel, C. et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 11, 520 (2019).ADS 

    Google Scholar 
    20.Smith, N. E. et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190509 (2020).CAS 

    Google Scholar 
    21.Brun, P. et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 26, 7021–7035 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Ramonet, M. et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190513 (2020).CAS 

    Google Scholar 
    23.Bastos, A. et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 

    Google Scholar 
    24.Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS 
    ADS 

    Google Scholar 
    25.Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    26.Rita, A. et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 26, 851–863 (2020).PubMed 
    ADS 

    Google Scholar 
    27.Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).ADS 

    Google Scholar 
    28.Larysch, E., Stangler, D. F., Nazari, M., Seifert, T. & Kahle, H.-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests 12, 75 (2021).
    Google Scholar 
    29.Rohner, B., Kumar, S., Liechti, K., Gessler, A. & Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 120, 106903 (2021).
    Google Scholar 
    30.Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M. & Wilmking, M. Tree growth at the end of the 21st century – the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 15, 074022 (2020).ADS 

    Google Scholar 
    31.Kowalska, N. et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190518 (2020).CAS 

    Google Scholar 
    32.Zweifel, R. et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 171, 302–305 (2020).
    Google Scholar 
    33.Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).CAS 
    PubMed 

    Google Scholar 
    34.D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).PubMed 
    ADS 

    Google Scholar 
    35.Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 210, 459–470 (2016).CAS 

    Google Scholar 
    36.Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014).CAS 

    Google Scholar 
    37.Zweifel, R. et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 227, 1081–1096 (2020).CAS 

    Google Scholar 
    38.Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    39.Zweifel, R., Zimmermann, L. & Newbery, D. M. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 25, 147–156 (2005).CAS 
    PubMed 

    Google Scholar 
    40.Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 209, 123–136 (2016).CAS 

    Google Scholar 
    41.Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 221, 693–705 (2019).
    Google Scholar 
    42.Poyatos, R., Aguadé, D. & Martínez-Vilalta, J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 75, 100 (2018).
    Google Scholar 
    43.Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).CAS 
    PubMed 

    Google Scholar 
    44.Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A 111, 14489–14493 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    45.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    46.Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 24, 2390–2402 (2018).PubMed 
    ADS 

    Google Scholar 
    47.Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G. & Shaw, J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 10, 1091–1095 (2020).ADS 

    Google Scholar 
    48.Leuzinger, S., Zotz, G., Asshoff, R. & Korner, C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 25, 641–650 (2005).PubMed 

    Google Scholar 
    49.Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N. & Kahmen, A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 36, 1508–1519 (2016).PubMed 

    Google Scholar 
    50.Rosengren, U. et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 21, 77–100 (2006).
    Google Scholar 
    51.Salomón, R. L., Limousin, J.-M., Ourcival, J.-M., Rodríguez-Calcerrada, J. & Steppe, K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 40, 1379–1391 (2017).PubMed 

    Google Scholar 
    52.Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    53.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT). Database Glob. Ecol. Biogeogr. 30, 25–37 (2021).
    Google Scholar 
    54.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 
    ADS 

    Google Scholar 
    55.van der Maaten, E. et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 7, 2585–2594 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    56.Körner, C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).PubMed 

    Google Scholar 
    57.Walthert, L. et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 753, 141792 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    58.Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 44, 1315–1328 (2021).CAS 
    PubMed 

    Google Scholar 
    59.Poyatos, R. et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).ADS 

    Google Scholar 
    60.Steppe, K., von der Crone, J. S. & De Pauw, D. J. W. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 7, 993 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    61.Sass-Klaassen, U. et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 7, 1–6 (2016).
    Google Scholar 
    62.Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017).PubMed 
    ADS 

    Google Scholar 
    63.Sparks, A. H., Hengl, T. & Nelson, A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2, 177 (2017).ADS 

    Google Scholar 
    64.Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).65.Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 143, 123–145 (2007).
    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    67.Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Google Scholar 
    68.Frich, P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).ADS 

    Google Scholar 
    69.Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, 1–22 (2006).
    Google Scholar 
    70.Knüsel, S., Peters, R. L., Haeni, M., Wilhelm, M. & Zweifel, R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests 12, 765 (2021).
    Google Scholar 
    71.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    72.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    73.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019). More

  • in

    A taxonomic, genetic and ecological data resource for the vascular plants of Britain and Ireland

    The broad categories of data included in the repository are summarized in Online-only Table 2 and visualized in Fig. 2. Each category is explained in greater detail below, while full details together with accompanying notes are given in the repository (Database_structure.csv) and in Supplementary File 1. Online-only Table 2 gives an overview of data coverage per category, both across all species and for native species separately. A complete list of data sources is available in Supplementary File 2.Fig. 2Visualization of the attributes presented in the database.Full size imageGeneration of the species listTaxon names listed in the most recent and widely accepted New Flora of the British Isles’ index12 were digitized via the Optical Character Recognition Software ReadirisTM 17 (IRIS). Results from the digitization were transferred into a spreadsheet and obvious recognition errors were fixed. The resulting table contained 5,687 taxa and associated taxonomic authorities. A total of 360 unnamed hybrids were excluded, as well as species noted to have only questionable or unconfirmed records, leaving 5,038 species. Forty-one intergeneric hybrid species, 827 entries relating to (notho)subspecies, (notho)varieties, cultivars and forma were also removed along with 720 named hybrids. Species that were included by Stace12 but which he considered not to be part of the flora (i.e. listed as ‘other species’ and ‘other genera’, e.g. genus Tragus or Coreopsis verticillata) were also excluded. Seven species that were labelled ‘extinct’ in the flora were included as there were indications that the species might be in the process of reintroduction (e.g. Bromus interruptus, Bupleurum falcatum and Schoenoplectus pungens). Extinct native and archaeophyte species without any signs of reintroduction (e.g. Dryopteris remota) are also listed but no additional data are provided and they are not included in calculations of completeness of data (Online-only Table 2). The final number of extant species listed here is therefore 3,209 (comprising 1,468 natives, 1,690 aliens and 51 species with unknown status), plus 18 formally extinct species (natives and archaeophytes not seen in the study region since 1999). Species names and taxonomic authorities were revised according to the 2021 reprint of the New Flora of the British Isles, communicated to us by C.A.S. ahead of publication. Genera with less well-defined species – for example due to apomixis – contain additional information on subgenera, sections, and aggregates, as per Stace12. Since misidentifications are common in these groups, we include a column termed ‘unclear_species_marker’ that allows for these species to be quickly identified and excluded from analyses if appropriate. Such genera are often incompletely listed in our database since most microspecies are not sufficiently well defined.TaxonomyNomenclature of the list was checked by Global Names Resolver in the R package ‘taxize’20,21, using the International Plant Names Index (IPNI)22 as the data source, to remove any digitisation errors. Resolved names were used to determine accepted higher taxonomic hierarchy (family, order) again using taxize, with the National Center for Biotechnology Information (NCBI) database. Species that could not be resolved by the Global Names Resolver or did not yield matches in the NCBI database for their higher taxonomic ranks were manually checked for name matches in the World Checklist of Vascular Plants (WCVP)17. Species within the original species list that were found to be identical to a different spelling in WCVP were retained in the database. In such instances, and when slight spelling differences occurred, the columns ‘taxon_name‘ and ‘taxon_name_WCVP‘ differ. To improve clarity, each species is presented here with its unique identification number according to the WCVP (listed as ‘kew_id’) together with three additional columns (i.e. WCVP.URL, POWO.URL and IPNI.URL) which contain hyperlinks to the freely accessible taxon description websites of the (WCVP)17, Plants of the World Online (POWO)23 and (IPNI)22, respectively. Thus, while the taxon names used in the database correspond to those used by Stace12, changes in the accepted species name since publication can be traced in columns ‘taxonomic_status’ and ‘accepted_kew_id’. The family classification of WCVP follows APG IV24 for angiosperms, Christenhusz et al. (2011)25 for gymnosperms and Christenhusz & Chase (2014)26 for ferns and lycopods.Native statusWe offer three different datasets which describe the status of a species as native or non-native, and its level of establishment in BI. The first is extracted from Stace (2019)12, the second contains the status codes used in PLANTATT10 and the unpublished ALIENATT (pers. comm. author K.J.W.) dataset, and the third is extracted from Alien Plants13. The status from Stace12 and Stace & Crawley13 assigns a species to either native or alien status, with aliens subdivided into archaeophytes and neophytes at different levels of establishment (e.g. denizen, colonist etc., see Online-only Table 1). Status codes from the BSBI can be either AC (alien casual), AN (neophyte), AR (archaeophyte), N (native), NE (native endemic) or NA (native status doubtful).Functional traitsData for five ecologically relevant functional traits (i.e. seed mass, specific leaf area [SLA], leaf area, leaf dry matter content [LDMC] and vegetative height) were downloaded from public data available in the TRY database27 (for specific authors see Supplementary File 1 and Supplementary File 2). Averages were calculated using the available measurements downloaded for each species, excluding rows where the measurement was 0. In addition, the maximum vegetative height for each species is given, where available.Realized niche descriptionRealized niche descriptions based on assessments made on plants living in BI are given in the form of Ellenberg indicator values18, as published in PLANTATT10. Ellenberg indicator values place each species along an environmental gradient (e.g. light or salinity) by assigning a number on an ordinal scale, depending on the species preference for the specific gradient (Online-only Table 2). This information is often used to gain insights into environmental changes based on species occurrences28. For species listed under a previously accepted name in PLANTATT, the information was associated with the accepted synonym in Stace (2019)12. Due to the low coverage of PLANTATT for non-native species included in our list, we additionally include Ellenberg indicator values based on Central European assessments, as made available by Döring29. Each Ellenberg category is listed in a separate column, keeping the information from both data sources separate to avoid confounding of assessments based on two different regions (i.e. Britain and Ireland versus Central Europe).Life strategyTo characterize the life strategy of a species, we used the CSR scheme developed by Grime19, which classifies each species as either a competitor (C), stress tolerator (S), ruderal (R) or a combination of these (e.g. CS, SR). CSR classifications were obtained from the Electronic Comparative Plant Ecology database30. Due to the low coverage of available CSR assessments for species in our database (i.e. data available for just 460 out of 3,209 species) we imputed CSR strategies for a further 981 species using available functional trait data, following the method proposed by Pierce et al.31. The functional leaf traits required for this method – i.e. specific leaf area, leaf area, leaf dry matter content – were obtained from the TRY database27. Pre-existing30 and newly imputed CSR strategies are listed in separate columns.Growth form, succulence and life-formPlant growth form descriptions were obtained from the TRY database27 and filtered for those entries given by specific contributors (Online-only Table 2) to maintain consistent use of growth form categories. Information on whether a species was considered to be a succulent was obtained by screening the entire growth form information obtained from the TRY database for the phrase ‘succulence’ or ‘succulent’.Species life-form categories according to Raunkiaer32 were determined for each species in our dataset with regard to the typical life-form of the species as it grows in BI (pers. comm. M.J.M.C.).Associated biome and originInformation given in the Ecoflora database3 for the biome that each species is associated with was matched to the species names according to Stace12. The recognized biome categories follow Preston & Hill33 and are ‘Arctic montane’, ‘Boreal Montane’, ‘Boreo-Arctic Montane’, ‘Boreo-Temperate’, ‘Mediterranean’, ‘Mediterranean-Atlantic’, ‘Southern Temperate’, ‘Temperate’, ‘Wide Boreal’ and ‘Wide Temperate’.For non-native species, the assumed origin (i.e. the region that plants were most likely to have been introduced to BI from, rather than the full non-BI distribution of a species) was adapted from Stace12 into a brief description of their country or region of origin. In addition, these descriptions were manually allocated to the TDWG level 1 regions listed in the World Geographical Scheme for Recording Plant Distributions (WGSRPD, TDWG)34.Species distributionsDistribution metrics for each species are given as the number of 10-km square hectads in BI with records for the species in question within a specified time window. The data were derived from the BSBI Distribution Database35 and were extracted for each species, dividing the study region into Great Britain (incl. Isle of Man), Ireland and the Channel Islands, as previously partitioned for data available in PLANTATT10. The database was queried using species and hectads for grouping, showing only records ‘matching or within 2 km of county boundary’ and excluding ‘do-not-map-flagged occurrences’. The data were not corrected for sampling bias and should therefore only be used as an indication of trends.Hybrid propensityData on hybridization is provided for 641 species, obtained from the Hybrid flora of the British Isles36 which enumerates every hybrid reported in BI up until 2015 (pers. comm. M.R.B.). Each entry was transcribed manually, and then filtered to exclude (a) hybrids that have been recorded, but not formed in the British Isles, (b) triple hybrids (mainly reported for the genus Salix), (c) doubtful records, (d) hybrids between subspecific ranks, and (e) hybrids where at least one parent is not native (only archaeophytes included). This left 821 hybrid combinations for data aggregation. The metric chosen here is hybrid propensity, which is a per-species metric of how many other species a focal species hybridizes with (sensu Whitney et al., 201037). A scaled hybrid propensity metric is also given which was calculated by weighting the hybrid propensity score by the number of intrageneric combinations for a given genus, to account for the greater opportunities of hybridization in larger genera.DNA barcodesDNA barcode sequences for plant species present in BI are currently available for 1,413 species in our database. The information was derived from a dataset of rbcL, matK and ITS2 sequences compiled for the UK flora generated by the National Botanic Garden of Wales and the Royal Botanic Garden Edinburgh38,39 (pers. comm. L.J. and N.D.V.). The data are given as a hyperlink to the record’s page on the Barcode of Life Data Systems (BOLD40) which includes the DNA barcode sequences as well as scans of the herbarium specimen and information on the sample’s collection. Most species have multiple record pages associated with them, due to the sampling of more than one individual. We include a maximum of three BOLD accessions per species; the full range of individuals sampled can be accessed via the original publications38,39. DNA barcodes are almost exclusively available for native species. Future releases of our database will increase the coverage of the non-native flora significantly. Where species in the BOLD database are attributed to a species name that is considered synonymous with another name in our list, the hyperlink is matched to the latest nomenclature12. 1,421 species have at least one sequence associated with them and 935 species have sequence data for all three sequences (rbcL, matK and ITS2).Genome size and chromosome numbersGenome size data for 2,117 specimens (at least one measurement per species) were obtained from various sources. Measurements for a total of 467 species were newly estimated using plant material of known BI origin, often sourced  from the Millennium Seedbank of the Royal Botanic Gardens, Kew (RBG Kew)41. The measurements were made by flow cytometry using seeds or seedlings and following an established protocol42. Information on the extraction buffers and calibration standard species used are available in the file GS_Kew_BI.csv, along with peak CV values of the measurements as a quality control. Where more than one measurement is reported per species, the measurements were made on plant material from different populations or using different buffers. Previously published data for additional species were obtained from reports on the Czech flora43, the Dutch flora44, and prime values listed in the Plant DNA C-values database45,46. Since significant intraspecific differences in genome size between plant material from different geographical origins have previously been described, predominantly due to cytotype diversity in ploidy level47, genome size measurements from previously published sources were assessed with regard to the origin of the material. The column ‘from_BI_material’ (GS_BI.csv, BI_main.csv) allows users to filter for measurements made on material from BI to exclude a potential bias. The information was obtained from the original publication source of each measurement.Chromosome numbers for 1,410 species (at least one chromosome number per species) determined exclusively from material collected in BI were obtained from an extensive dataset compiled by R.J.G. from various published studies, unpublished theses and personal communications from trusted sources. The counts were made between 1898 and 2017, with a large proportion stemming from efforts to achieve greater coverage of the flora by a team of cytologists based at the University of Leicester and headed by R.J.G. Part of the dataset was previously incorporated into the BSBI’s data catalogue5 but has since undergone revisions to incorporate new information and changes in taxonomy. The dataset contained many measurements at subspecies level which were allocated to the species level taxon in our list. This served to include as much of the often considerable infraspecific variation as possible. Since some species for which chromosome counts have been reported elsewhere are lacking chromosome counts from British or Irish material, they are absent from this dataset. To fill such gaps, we also present chromosome numbers from reports on the Czech flora43, the Dutch flora44, and the Plant DNA C-values database45,46. More

  • in

    Distinct soil bacterial patterns along narrow and broad elevational gradients in the grassland of Mt. Tianshan, China

    Environmental variable quantification along an altitudinal gradientThis study area included 22 sampling sites, and 66 samples, classified into three transects, namely Transect 1 (1047–1587 m), Transect 2 (876–3070 m), and Transect 3 (1602–2110 m). Significant differences in soil properties and plant parameters were observed along the three studied altitudinal transects (P  0.05%, while the remaining bacteria were merged into an “others” class. As shown in Fig. 1B, the proportion of Actinobacteria, Alphaproteobacteria and Gammaproteobacteria at each elevation was 45%, whereas Deltaproteabacteria, Acidobacteria_Subgroup_6, and Gemmatimonadetes were prevalent at low levels in most soil samples. At the genus level (Supplementary Fig. 1), 76 genera were detected in the research areas, with the dominant genera including norank_f_67-14_ o_Solirubrobacterales (5.72%), Rubrobacter (4.35%), Solirubrobacter (2.83%), Pseudonocardia (2.26%) and Bradyrhizobium (2.19%) and less than 0.01% of the bacterial genera were classified into others.Figure 1Bacterial community composition variations at the phylum (A) and class (B) levels in soil samples collected at different levels. These were done in R (v3.3.1, http://www.R-project.org).Full size imageBacterial community composition varies along elevation gradientsWe next sought to analyze the differences in relative bacterial abundance at the phylum level among Transects 1–3 (Fig. 2). Significant differences in the relative abundance of Actinobacteria, Proteobacteria, Acidobacteria, Verrucomicrobia, Firmicutes, and Rokubacteria were detected in samples from the different transects (Fig. 2A). The relative abundance of Actinobacteria and Firmicutes in Transect 1 (48.64% and 1.89%, respectively) was significantly higher than in Transect 2 (38.43% and 1.49%, respectively) and Transect 3 (39.63% and 0.98%, respectively) (P  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The discrepancy between fire ant recruitment to and performance on rodent carrion

    1.Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1), 12–24 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Weathers, K. C., Strayer, D. L. & Likens, G. E. Fundamentals of Ecosystem Science (Academic Press, 2012).
    Google Scholar 
    3.Payne, J. A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5), 592–602 (1965).
    Google Scholar 
    4.Anderson, G. S., Cervenka, V. J., Haglund, W. & Sorg, M. Insects associated with the body: Their use and analyses. Adv. Forens. Taphonomy 2, 1 (2002).
    Google Scholar 
    5.Smith, K. G. A manual of forensic entomology. (1986).6.Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).PubMed 

    Google Scholar 
    7.Benbow, M. E., Tomberlin, J. K. & Tarone, A. M. Carrion Ecology, Evolution, and Their Applications (CRC Press, 2015).
    Google Scholar 
    8.Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. 106(31), 12809–12813 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Pechal, J. L. et al. Field documentation of unusual post-mortem arthropod activity on human remains. J. Med. Entomol. 52(1), 105–108 (2015).PubMed 

    Google Scholar 
    10.Campobasso, C. P., Marchetti, D., Introna, F. & Colonna, M. F. Postmortem artifacts made by ants and the effect of ant activity on decompositional rates. Am. J. Forens. Med. Pathol. 30(1), 84–87 (2009).
    Google Scholar 
    11.Eubanks, M. D., Lin, C. & Tarone, A. M. The role of ants in vertebrate carrion decomposition. Food Webs 18, e00109 (2019).
    Google Scholar 
    12.Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 2, 51–63 (1974).
    Google Scholar 
    13.Andrade-Silva, J., Pereira, E. K. C., Silva, O., Delabie, J. H. C. & Rebelo, J. M. M. Ants (Hymenoptera: Formicidae) associated with pig carcasses in an urban area. Sociobiology 62(4), 527–532 (2015).
    Google Scholar 
    14.Chin, H. C. et al. Ants (Hymenoptera: Formicidae) associated with pig carcasses in Malaysia. Trop. Biomed. 26(1), 106–109 (2009).
    Google Scholar 
    15.Prado Castro, C., García, M. D., Palma, C. & Martínez-Ibáñez, M. D. First report on sarcosaprophagous Formicidae from Portugal (Insecta: Hymenoptera). Annales de la Société entomologique de France 50(1), 51–58 (2014).
    Google Scholar 
    16.Neto-Silva, A., Dinis-Oliveira, R. J. & Prado e Castro, C.,. Diversity of the Formicidae (Hymenoptera) carrion communities in Lisbon (Portugal): Preliminary approach as seasonal and geographic indicators. Forens. Sci. Res. 3(1), 65–73 (2018).
    Google Scholar 
    17.Payne, J. A., King, E. W. & Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 219(5159), 1180–1181 (1968).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Meyer, F., Monroe, M. D., Williams, H. N. & Goddard, J. Solenopsis invicta x richteri (Hymenoptera: Formicidae) necrophagous behavior causes post-mortem lesions in pigs which serve as oviposition sites for Diptera. Forens. Sci. Int. Rep. 2, 100067 (2020).
    Google Scholar 
    19.De Jong, G. D., Meyer, F. & Goddard, J. Relative roles of blow flies (Diptera: Calliphoridae) and invasive fire ants (Hymenoptera: Formicidae: Solenopsis spp.) in carrion decomposition. J. Med. Entomol. 58(3), 1074–1082 (2021).PubMed 

    Google Scholar 
    20.Early, M. & Goff, M. L. Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J. Med. Entomol. 23(5), 520–531 (1986).CAS 
    PubMed 

    Google Scholar 
    21.Stoker, R. L., Grant, W. E. & Bradleigh Vinson, S. Solenopsis invicta (Hymenoptera: Formicidae) effect on invertebrate decomposers of carrion in central Texas. Environ. Entomol. 24(4), 817–822 (1995).
    Google Scholar 
    22.Ekanem, M. S. & Dike, M. C. Arthropod succession on pig carcasses in southeastern Nigeria. Papeis Avulsos de Zoologia 50, 561–570 (2010).
    Google Scholar 
    23.Lindgren, N. K., Bucheli, S. R., Archambeault, A. D. & Bytheway, J. A. Exclusion of forensically important flies due to burying behavior by the red imported fire ant (Solenopsis invicta) in southeast Texas. Forensic Sci. Int. 204(1–3), e1–e3 (2011).PubMed 

    Google Scholar 
    24.Pereira, E. K. C. et al. Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) activity delays vertebrate carcass decomposition. Sociobiology 64(3), 369–372 (2017).
    Google Scholar 
    25.Dussutour, A. & Simpson, S. J. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55(3), 329–333 (2008).
    Google Scholar 
    26.Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    27.Tschinkel, W. R. The Fire Ants (Belknap Press, 2013).
    Google Scholar 
    28.Paula, M. C. et al. Action of ants on vertebrate carcasses and blow flies (Calliphoridae). J. Med. Entomol. 53(6), 1283–1291 (2016).PubMed 

    Google Scholar 
    29.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Google Scholar 
    30.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2 4, (2019).31.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2018).
    Google Scholar 
    32.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    33.Porter, S. D., Bhatkar, A., Mulder, R., Vinson, B. S. & Clair, D. J. Distribution and density of polygyne fire ants (Hymenoptera: Formicidae) in Texas. J. Econ. Entomol. 84(3), 866–874 (1991).CAS 
    PubMed 

    Google Scholar 
    34.Cook, S. C., Eubanks, M. D., Gold, R. E. & Behmer, S. T. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79(2), 429–437 (2010).
    Google Scholar 
    35.Smith, C. R. & Tschinkel, W. R. Ant fat extraction with a Soxhlet extractor. Cold Spring Harbor Protocols 7, 5243 (2009).
    Google Scholar 
    36.Wills, B. D. et al. Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS ONE 10(7), e0132440 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    37.Bockoven, A. A., Wilder, S. M. & Eubanks, M. D. Intraspecific variation among social insect colonies: persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 10(7), e0133868 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
    Google Scholar 
    39.Gavilanez-Slone, J. & Porter, S. D. Colony growth of two species of Solenopsis fire ants (Hymenoptera: Formicidae) reared with crickets and beef liver. Florida Entomol. 96(4), 1482–1488 (2013).
    Google Scholar 
    40.Sorensen, A. A., Busch, T. M. & Vinson, S. B. Factors affecting brood cannibalism in laboratory colonies of the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 140–150 (1983).
    Google Scholar 
    41.Williams, D. F., Vander Meer, R. K. & Lofgren, C. S. Diet-induced nonmelanized cuticle in workers of the imported fire ant Solenopsis invicta Buren. Arch. Insect Biochem. Physiol. 4(4), 251–259 (1987).CAS 

    Google Scholar 
    42.Porter, S. D. Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 288–291 (1989).
    Google Scholar 
    43.Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 2, 229–232 (1970).
    Google Scholar 
    44.Porter, S. D., Valles, S. M. & Gavilanez-Slone, J. M. Long-term efficacy of two cricket and two liver diets for rearing laboratory fire ant colonies (Hymenoptera: Formicidae: Solenopsis invicta). Florida Entomol. 98(3), 991–993 (2015).
    Google Scholar 
    45.Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B Biol. Sci. 284(1846), 20162052 (2017).
    Google Scholar 
    46.Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis Invicta during one annual cycle. Ecol. Monogr. 63(4), 425–457 (1993).
    Google Scholar 
    47.Deslippe, R. J. & Savolainen, R. Sex investment in a social insect: The proximate role of food. Ecology 76(2), 375–382 (1995).
    Google Scholar 
    48.Rosenfeld, C. S. & Roberts, R. M. Maternal diet and other factors affecting offspring sex ratio: A review. Biol. Reprod. 71(4), 1063–1070 (2004).CAS 
    PubMed 

    Google Scholar 
    49.Hasegawa, E. Sex allocation in the ant Camponotus (Colobopsis) nipponicus (Wheeler): II. The effect of resource availability on sex-ratio variability. Insectes Soc. 60(3), 329–335 (2013).
    Google Scholar 
    50.Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).CAS 
    PubMed 

    Google Scholar 
    51.Liu, W., Longnecker, M., Tarone, A. M. & Tomberlin, J. K. Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim. Behav. 115, 217–225 (2016).
    Google Scholar 
    52.Tomberlin, J. K. et al. Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays 39(2), 1600203 (2017).
    Google Scholar 
    53.Frederickx, C. et al. Volatile organic compounds released by blowfly larvae and pupae: New perspectives in forensic entomology. Forensic Sci. Int. 219(1–3), 215–220 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Frederickx, C., Dekeirsschieter, J., Verheggen, F. J. & Haubruge, E. Host-habitat location by the parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J. Forensic Sci. 59(1), 242–249 (2014).CAS 
    PubMed 

    Google Scholar 
    55.Schettino, M. et al. Response of a predatory ant to volatiles emitted by aphid-and caterpillar-infested cucumber and potato plants. J. Chem. Ecol. 43(10), 1007–1022 (2017).CAS 
    PubMed 

    Google Scholar 
    56.Sawyer, S. J., Rusch, T. W., Tarone, A. M. & Tomberlin, J. K. Wing buzzing as a potential antipredator defense against an invasive predator. Food Webs 27, e00192 (2021).
    Google Scholar 
    57.Wells, J. D. & Greenberg, B. Effect of the red imported fire ant (Hymenoptera: Formicidae) and carcass type on the daily occurrence of postfeeding carrion-fly larvae (Diptera: Calliphoridae, Sarcophagidae). J. Med. Entomol. 31(1), 171–174 (1994).CAS 
    PubMed 

    Google Scholar  More

  • in

    From under the ice

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Phenotypic variation of fruit and ecophysiological traits among maqui (Aristotelia chilensis [Molina] Stuntz) provenances established in a common garden

    1.FAO. Superfruits: Myth or truth? in Proceedings International Symposium, Ho Chi Minh, Vietnam, 140 (2013).
    2.Chamberlain, J., Darr, D. & Meinhold, K. Rediscovering the contributions of forest and trees to transition global food system. Forests 11, 1098. https://doi.org/10.3390/f11101098 (2020).Article 

    Google Scholar 
    3.Vanzani, P. et al. Wild mediterranean plants as traditional food: A valuable source of antioxidants. J. Food Sci. 76, 46–51 (2011).Article 

    Google Scholar 
    4.Genskowsky, E. et al. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96, 4235–4242 (2016).CAS 
    Article 

    Google Scholar 
    5.Benedetti, S. Monografía de maqui, Aristotelia chilensis (Mol.) Stuntz 60 (Instituto Forestal, 2012).
    Google Scholar 
    6.Vogel, H., Razmilic, H., San Martin, I., Doll, U. & González, B. Plantas Medicinales Chilena. Experiencias de domesticación y cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y maqui. Editorial Universitaria de Talca, 192 (2005).7.Gironés-Vilaplana, A., Mena, P., García-Viguera, C. & Moreno, D. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Food Sci. Tech. 47, 279–286 (2012).
    Google Scholar 
    8.Quispe-Fuentes, I., Vega-Gálvez, A., Vásquez, V., Uribe, E. & Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process Eng. 40, 124–132 (2017).Article 

    Google Scholar 
    9.Fredes, C., Montenegro, G., Zoffoli, J., Gómez, M. & Robert, P. Polyphenol content and antioxidant activity of maqui during fruit development and maturation in central Chile. Chilean J. Agric. Res. 72, 582–589 (2012).Article 

    Google Scholar 
    10.Céspedes, C., El-Hafidi, M., Pavon, N. & Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 107, 820–829 (2008).Article 

    Google Scholar 
    11.Céspedes, C., Alarcon, J., Avila, J. & Nieto, A. Anti-inflammatory activity of Aristotelia chilensis (stuntz) (Elaeocarpaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9, 91–99 (2010).
    Google Scholar 
    12.Céspedes, C. et al. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol. 108, 438–450 (2017).
    13.Muñoz, O. et al. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 63, 849–859 (2011).Article 

    Google Scholar 
    14.Rojo, L. et al. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. 131, 387–396 (2012).CAS 
    Article 

    Google Scholar 
    15.Zúñiga, G., Tapia, A., Arenas, A., Contreras, R. & Zuñiga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: A review. Phytochem. Rev. 16, 1081–1094. https://doi.org/10.1007/s11101-017-9533-1 (2017).CAS 
    Article 

    Google Scholar 
    16.Vogel, H. et al. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants. 1, 123–133 (2014).
    Google Scholar 
    17.Liu, Y. & El-Kassaby, Y. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evol. Biol. 19, 231. https://doi.org/10.1186/s12862-019-1553-6 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Villemereuil, P., Gaggiotti, O., Mouterde, M. & Till-Bottraud, I. Common garden experiment in the genomic era: New perspectives and opportunities. Heredity 116, 249–254 (2016).Article 

    Google Scholar 
    19.Torres-Ruiz, J. et al. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 39, 1736–1749. https://doi.org/10.1093/treephys/tpz090 (2019).Article 
    PubMed 

    Google Scholar 
    20.Sáenz-Romero, C., Kremer, A., Nagy, L., Kehlet, J. & Mátyás, C. Common garden comparison confirm inherited differences in sensitivity to climate change between forest tree species. PerrJ. 7, 6213. https://doi.org/10.7717/peerj.6213 (2019).Article 

    Google Scholar 
    21.Aspinwall, M. et al. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiol. 8, 1095–1112. https://doi.org/10.1093/treephys/tpx047 (2017).CAS 
    Article 

    Google Scholar 
    22.Knutzen, F., Meier, I. & Leuschner, C. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. https://doi.org/10.1093/treephys/tpv057 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Mkwezalamba, I., Munthali, C. & Missanjo, E. Phenotypic variation in fruit morphology among provenances of Sclerocarya birrea (A. Rich.) Hochst. Int. J. Forestry Res. 1, 1–8. https://doi.org/10.1155/2015/735418 (2015).Article 

    Google Scholar 
    24.Sudrajat, D. Genetic variation of fruit, seed, and seedling characteristics among 11 populations of white Jabon in Indonesia. For. Sci. Tech. 12(1), 9–15. https://doi.org/10.1080/21580103.2015.1007896 (2016).Article 

    Google Scholar 
    25.Teklehaimanot, Z., Lanek, J. & Tomlinson, H. Provenance variation in morphology and leaflet anatomy of Parkia biglobosa and its relation to drought tolerance. Trees 13, 96–102. https://doi.org/10.1007/pl00009742 (1998).Article 

    Google Scholar 
    26.Åkerström, A., Jaakola, L., Bång, U. & Jäderlund, A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). J. Agric. Food Chem. 58, 11939–11945. https://doi.org/10.1021/jf102407n (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Lätti, A., Riihinen, K. & Kainulainen, P. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56, 190–196. https://doi.org/10.1021/jf072857m (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Uleberg, E. et al. Effects of temperature and photoperiod on yield and chemical composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 60, 10406–10414. https://doi.org/10.1021/jf302924m (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Moya, M., González, B., Doll, U., Yuri, J. A. & Vogel, H. Different covers affect growth and development of three maqui clones (Aristotelia chilensis [Molina] Stuntz). J. Berry Res. 1, 1–10. https://doi.org/10.3233/jbr-180377 (2019).Article 

    Google Scholar 
    30.Cona, M. et al. New polymorphic nuclear microsatellites from Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae). Chilean J. Agri. Res. 80, 153–160. https://doi.org/10.4067/S0718-58392020000200153 (2020).Article 

    Google Scholar 
    31.Hamrick, J. Response of forest trees to global environmental changes. For. Ecol. Manag. 197, 323–335. https://doi.org/10.1016/j.foreco.2004.05.023 (2004).Article 

    Google Scholar 
    32.Salgado, P., Prinz, K., Finkeldey, R., Ramírez, C. & Vogel, H. Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers. Gen. Resour. Crop Evol. 64, 2083–2091 (2017).CAS 
    Article 

    Google Scholar 
    33.Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsc. Ecol. 21, 797–807. https://doi.org/10.1007/s10980-005-5245-9 (2006).Article 

    Google Scholar 
    34.O’Brien, E., Mazanex, R. & Krauss, S. Provenance variation of ecologically important traits of forest trees: implications for restoration. J. Appl. Ecol. 44, 583–593. https://doi.org/10.1111/j.1365-2664.2007.01313.x (2007).Article 

    Google Scholar 
    35.Singleton, V. & Rossi, J. Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS 

    Google Scholar 
    36.Giusti, M. & Wrolstad, R. Current protocols in food analytical chemistry. In Current Protocols in Food Analytical Chemistry (eds Wrolstad, R. et al.) F1.2.1-F1.2.13 (Wiley, 2001).
    Google Scholar 
    37.González, B., Vogel, H., Razmilic, I. & Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 76, 158–165. https://doi.org/10.1016/j.indcrop.2015.06.038 (2015).CAS 
    Article 

    Google Scholar 
    38.Winn, M., Araman, P. & Lee, S-M. UrbanCrowns: An assessment and monitoring tool for urban trees. Gen. Tech. Rep. SRS-135. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 10 (2011).39.Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. N. Z. J. Stat. 46, 325–347 (2004).MathSciNet 
    Article 

    Google Scholar 
    40.Bastías, A. et al. Identification and characterization of microsatellite loci in Maqui (Aristotelia chilensis (Molina) Stuntz) using next-generation sequencing (NGS). PLoS ONE 11, e0159825. https://doi.org/10.1371/journal.pone.0159825 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Espinoza, S. et al. Influence of provenance origin on the early performance of two sclerophyllous Mediterranean species established in burned drylands. Sci. Rep. 11, 6212. https://doi.org/10.1038/s41598-021-85599-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vander Mijnsbrugge, K., Bischoff, A. & Smith, B. A question of origin: Where and how to collect seed for ecological restoration. Basic Appl. Ecol. 11, 300–311. https://doi.org/10.1016/j.baae.2009.09.002 (2010).Article 

    Google Scholar 
    43.Gao, S. B. et al. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 8, 3148. https://doi.org/10.1038/s41598-018-21557-w (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lusk, C. & Del Pozo, A. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Aust. Ecol. 27, 173–182. https://doi.org/10.1046/j.1442-9993.2002.01168.x (2002).Article 

    Google Scholar 
    45.Brito, C., Bown, H., Fuentes, J., Franck, N. & Perez-Quezada, J. Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Rev. Chilena de Historia Natural. https://doi.org/10.1186/s40693-014-0008-0 (2014).Article 

    Google Scholar 
    46.Prado, C. & Damascos, M. Gas exchange and leaf specific mass of different foliar cohorts of the wintergreen shrub Aristotelia chilensis (Mol.) Stuntz (Eleocarpaceae) fifteen days before the flowering and the fall of the old cohort. Braz. Arch. Biol. Tech. 44, 277–282 (2001).Article 

    Google Scholar 
    47.Repetto-Giavalli, F., Cavieres, L. & Simonetti, J. Respuestas foliares de Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) a la fragmentación del bosque maulino. Revista Chilena Hist. Nat. 80, 469–477 (2007).
    Google Scholar 
    48.Bustan, A. et al. Fruit load governs transpiration of olive trees. Tree Physiol. 36, 380–391. https://doi.org/10.1093/treephys/tpv138 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wünsche, J. & Lakso, A. Apple tree physiology—Implications for orchard and tree management. Compact Fruit Tree 33, 82–88 (2000).
    Google Scholar 
    50.Kelc, D., Vindis, P., Lakota, M. Measurements of Photosynthesis and Transpiration on Apple Trees, Chapter 18 in DAAAM International Scientific Book 2015. in (ed. Katalinic, B.), 199–208. (DAAAM International, 2015). https://doi.org/10.2507/daaam.scibook.2015.18. (ISBN 978-3-902734-05-1, ISSN 1726–9687).51.Lortie, C. & Aarssen, L. The specialization hypothesis for phenotypic plasticity in plants. Int. J. Plant Sci. 157, 484–487. https://doi.org/10.1086/297365 (1996).Article 

    Google Scholar 
    52.Nemeskéri, E. & Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 9, 447. https://doi.org/10.3390/agronomy9080447 (2019).CAS 
    Article 

    Google Scholar 
    53.Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci. Rep. https://doi.org/10.1038/srep19703 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).Article 
    PubMed 

    Google Scholar 
    55.Allegro, G., Pastore, C., Valentini, G. & Filippetti, I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy 11, 999. https://doi.org/10.3390/agronomy11050999 (2021).CAS 
    Article 

    Google Scholar 
    56.Chagné, D. et al. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic. Res. 1, 14046. https://doi.org/10.1038/hortres.2014.46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Gashu, K. et al. Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci. 11, 588739. https://doi.org/10.3389/fpls.2020.588739 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z. & van Leeuwen, C. Adapting wine grape ripening to global change requires a multi-trait approach. Front. Plant Sci. 12, 624867. https://doi.org/10.3389/fpls.2021.624867 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nesmith, D. Fruit development period of several Southern Highbush Blueberry Cultivars. Int. J. Fruit Sci. 12, 249–255. https://doi.org/10.1080/15538362.2011.619430 (2012).Article 

    Google Scholar 
    60.Romero-Román, M. et al. Native species facing climate changes: Response of Calafate Berries To Low Temperature and UV radiation. Foods. 10, 196. https://doi.org/10.3390/foods10010196 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. 28, 137–142 (1995).CAS 
    Article 

    Google Scholar 
    62.Ebel, R. C., Proebsting, E. L. & Evans, R. G. Deficit irrigation to control vegetative growth in apple and monitoring fruit growth to schedule irrigation. HortScience 30, 1229–1232. https://doi.org/10.21273/hortsci.30.6.1229 (1995).Article 

    Google Scholar 
    63.Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58(2), 147–159. https://doi.org/10.1093/jxb/erl165 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Barnuud, N., Zerihun, A., Gibberd, M. & Bates, B. Berry composition and climate: Responses and empirical models. Inter. J. Biometeor. 58, 1207–1223. https://doi.org/10.1007/s00484-013-0715-2 (2014).ADS 
    Article 

    Google Scholar 
    65.Spinardi, A., Cola, G., Gardana, C. & Mignani, I. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 10, 1045. https://doi.org/10.3389/fpls.2019.01045 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Stevenson, D. & Scalzo, J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2, 179–189. https://doi.org/10.3233/JBR-2012-038 (2012).CAS 
    Article 

    Google Scholar 
    67.Zarrouk, O. et al. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01640 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Prange, R. K. & DeEll, J. R. Preharvest factors affecting postharvest quality of berry crops. HortScience 32, 824–830. https://doi.org/10.21273/hortsci.32.5.824 (1997).Article 

    Google Scholar 
    69.Mignard, O., Beguería, S., Reig, G. & Fonti, C. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Sci. Hortic. 285, 110142. https://doi.org/10.1016/j.scienta.2021.110142 (2021).CAS 
    Article 

    Google Scholar 
    70.González-Villagra, J., Rodrigues-Salvador, A., Nunes-Nesi, A., Cohen, J. & Reyes-Díaz, M. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol. Biochem. 124, 136–145. https://doi.org/10.1016/j.plaphy.2018.01.010 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Calderan, A. et al. Managing moderate water deficit increased anthocyanin concentration and proanthocyanidin galloylation in “Refošk” grapes in Northeast Italy. Agric. Water Manage. 246, 106684. https://doi.org/10.1016/j.agwat.2020.106684 (2021).Article 

    Google Scholar 
    72.Yáñez, M., Seiler, J. & Fox, T. Crown physiological responses of loblolly pine clones and families to silvicultural intensity: Assessing the effect of crown ideotype. For. Ecol. Manage. 398, 25–36. https://doi.org/10.1016/j.foreco.2017.05.002 (2017).Article 

    Google Scholar  More