More stories

  • in

    Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations

    1.Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447 (2018).Article 

    Google Scholar 
    2.Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    3.Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157 (2007).Article 
    PubMed 
    ADS 

    Google Scholar 
    4.Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015 (2018).Article 
    PubMed 

    Google Scholar 
    6.Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325 (2006).Article 

    Google Scholar 
    8.Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009 (2011).Article 

    Google Scholar 
    9.Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (2007).Article 
    PubMed 

    Google Scholar 
    10.Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).
    Google Scholar 
    12.Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719 (2001).Article 

    Google Scholar 
    13.Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014 (2010).Article 
    ADS 

    Google Scholar 
    14.Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).15.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291 (2015).Article 

    Google Scholar 
    17.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730 (2017).Article 

    Google Scholar 
    18.Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500 (2019).Article 

    Google Scholar 
    19.Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293 (2019).Article 

    Google Scholar 
    20.Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).
    Google Scholar 
    21.Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713 (2009).Article 
    ADS 

    Google Scholar 
    23.Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com (2020).24.Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125 (2020).Article 

    Google Scholar 
    25.Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827 (2019).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786 (2010).Article 
    PubMed 

    Google Scholar 
    28.Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1 (2015).Article 

    Google Scholar 
    29.Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).30.Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384 (2015).Article 

    Google Scholar 
    31.Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001 (2010).Article 

    Google Scholar 
    36.Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021 (2014).Article 

    Google Scholar 
    38.Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391 (2018).Article 
    PubMed 

    Google Scholar 
    39.López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).40.Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 (2017).Article 
    PubMed 

    Google Scholar 
    41.Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).43.Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553 (1980).Article 

    Google Scholar 
    45.Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680 (2011).Article 
    PubMed 
    ADS 

    Google Scholar 
    48.Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234 (2007).Article 
    PubMed 

    Google Scholar 
    49.Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).50.Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).51.Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718 (1998).Article 

    Google Scholar 
    52.Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    53.Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4 (2005).Article 

    Google Scholar 
    54.Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723 (1998).Article 

    Google Scholar 
    57.Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (1993).Article 

    Google Scholar 
    58.Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014 (2013).Article 

    Google Scholar 
    60.Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    61.Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866 (2018).Article 
    PubMed 

    Google Scholar 
    62.Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).
    Google Scholar 
    63.Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822 (2008).Article 
    PubMed 

    Google Scholar 
    64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014 (2019).Article 
    ADS 

    Google Scholar 
    66.Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).67.Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).68.Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362 (2014).Article 

    Google Scholar 
    70.Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010 (2014).Article 

    Google Scholar 
    72.Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health

    SettingThis study was conducted in Cantabria, a region of the North coast of Spain.Design and patientsA cross-sectional study with prospective data collection was performed at the Allergy Services of the Marqués de Valdecilla University Hospital in Santander and the Sierrallana Hospital in Torrelavega (Cantabria, Spain).98 patients diagnosed of rhinoconjunctivitis, asthma or both, caused by sensitization to grass pollen, were included in a sequential way from October 2015 to March 2016.Written informed consent was obtained from all patients before entering the study. The study met the principles of the 1975 Helsinki declaration and was reviewed and approved by the local Research Committee of Cantabria (CEIC reference number 2015.207).A serum sample was obtained from each patient and stored at – 20 °C until used.Pollen extract preparationAll methods were performed in accordance with the relevant guidelines and regulations.Cortaderia selloana (CS) pollen was obtained commercially (Iber-Polen, Jaén, Spain) and then extracted at a 1:10 (w/v) ratio in PBS pH 6.5 with magnetic stirring for 90 min. at 5 °C. The soluble fraction was separated by centrifugation. After dialysis against PBS, the extract was filtered through 0, 22 µm filters. Protein content was determined by Bradford method (BioRad, Hercules, CA, USA). Two different batches were obtained (07 and 09) with consistent results.Part of the extract was adjusted to 0.25 mg protein/ml and formulated in PBS with 50% glycerol, phenol 0.51% (SPT buffer). The remaining extract was stored in aliquots at − 20 °C.Phleum pratense (Phl) pollen extract was made as described for CS. The origin of the pollen in this case was ALK Source Materials, Post Falls, Idaho, USA.The protein profiles of the CS or the Phl extracts were determined by polyacrylamide electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) under reducing conditions (Invitrogen-Novex tricine gels 10–20% acrylamide, Fisher Scientific, SL, Madrid Spain).Skin prick testPatients were skin prick tested (SPT) with a commercial extract (ALK-Abelló, S.A. Madrid, Spain) of Phl and the CS extract. Histamine dihydrochloride solution (10 mg/ml) and SPT buffer were used as positive and negative control (no reaction), respectively.The SPT wheal areas were measured by planimetry. A cut-off area of 7 mm2 (about 3 mm average diameter) or higher was considered a positive test result (histamine).The CS extract was tested in 10 control subjects, that were not sensitised to grass pollen, with negative result (no reaction).IgE assaysSerum samples were tested for IgE antibodies against Phleum pratense (Phl) pollen extract and the allergens Phl p 1, Phl p 5, Phl p 7 (polcalcin) and Phl p 12 (profilin) (ImmunoCap FEIA, Thermo Fisher Scientific, Barcelona, Spain).In addition, specific IgE against Phl and CS pollen extracts was determined by RAST (Radio Allergo Sorbent Test). Paper discs were activated with CNBr and sensitised with the pollen extracts as described by Ceska et al.21. Phl and CS discs were incubated overnight with 50 µL of the patient’s serum and after washing (0.1% Tween-20 in PBS), with approximately 100,000 cpm of the iodine 125–labeled anti-IgE mAb HE-2 for 3 h as described22. Finally, the discs were washed, and their radioactivity was determined in a gamma counter. sIgE values in kilounits per litre were determined by interpolating in a standard curve built up with Lolium perenne—sensitised discs and 4 dilutions of a serum pool from patients with grass allergy, which was previously calibrated in arbitrary kU/l.A cut-off value of 0.35 kU/l was considered positive for both ImmunoCap and RAST. There was a very significant correlation between the sIgE against Phl determined by both methods (r Spearman = 0.8874, p  More

  • in

    Forecasting water quality parameters using artificial neural network for irrigation purposes

    The result of this study is presented in three categories, namely; the descriptive statistics, the water quality test result and the ANN model and the model evaluation performance, respectively.The descriptive statistics result is presented in Tables 1, 2, 3, 4. This describes the basic features of the data in this study. They provide simple summaries about the sample and the measures such as the mean, median, maximum, minimum and standard deviation, respectively.Table 1 Descriptive statistics of the analyzed water quality at point 1.Full size tableTable 2 Descriptive statistics of the analyzed water quality at point 2.Full size tableTable 3 Descriptive statistics of the analyzed water quality at point 3.Full size tableTable 4 Descriptive statistics of the analyzed water quality at point 4.Full size tableThe descriptive statistics in Tables 1,2, 3, 4 shows that the mean values of the data set ranges from 6.29 to 6.34, 1956.21 to 2458.19, 3.35 to 7.39 and 39.13 to 51.06 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The median values of the data set ranges from 6.31 to 6.39, 2010.00 to 2439.50, 3.14 to 4.24 and 39.13 to 51.06 for pH, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The Maximum values data set ranges from 6.48 to 6.64, 2286.00 to 2742.00, 2.21 to 5.82, and 64.50 to 88.45 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The minimum values dataset ranges from 6.00 to 6.09, 1367.00 to 2199.00, 2.01 to 3.18, and 21.21 to 40.24 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The standard deviation values ranges from 0.08 to 0.16, 114.47 to 213.04, 0.23 to 31.49 and 14.06 to 8.16 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The low values of standard deviation recorded in this study shows that data set were very close to the mean of the dataset.The water quality analysis test result indicates the level of concentrations of the TDS (mg/l), EC (dS/m) and Na (mg/l) in the Ele river in Nnewi, Anambra State Nigeria. The FAO standard for irrigation water quality for TDS, EC and Na are 0–2000, 0–3 and 0–40, respectively. The water quality results show that the pH values which ranges from 6.01 to 6.87 were within the FAO standard in all the points for both rainy and dry seasons, whereas the TDS (mg/l), EC (dS/m) and Na (mg/l) parametric values range from 2001 to 2506, 3.01 to 5.76, and 40.42 to 73.45 respectively, were above the FAO standard from point 1 to point 3 and falls within the FAO standard at point 4 with values ranging from 1003 to 1994, 2.01 to 2.78 and 31.24 to 39.44, respectively. However, during the dry season, the TDS, EC, and Na values range from 2002 to 2742, 3.04 to 5.82 and 40.14 to 88.45 respectively, were all above the FAO standard. Anthropogenic pollution emitted into water bodies has recently been identified as a significant source of pollutants that need immediate action in order to avoid serious environmental effects11.The results equally revealed that the concentrations decrease along the sampling points going downstream. It is noteworthy that irrigation water with a pH outside the normal range may cause a nutritional imbalance or may contain a toxic ion which is harmful to crops19. The high concentrations of TDS as observed in this study are likely to increase the salinity of the river water, change the taste of the water, and as well decrease the dissolved oxygen level of the surface water making it difficult for the survival of plants and aquatic organisms7.Moreover, these anions and cations which increase the electric conductivity in water affect irrigation adversely since salts settle at crop root zones making it difficult for infiltration, absorption of moisture and nutrients necessary for crop production.The ANN model and forecast for the water quality parameters are shown from Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Considering the water quality permissible range, River quality modeling and forecast shows different variations seasonally such that the pollution level during dry season was higher than the rainy season.Figure 4(A and B): pH model and forecast graph at point 1.Full size imageFigure 5(A and B): TDS model and forecast graph at point 1.Full size imageFigure 6(A and B): EC model and forecast graph at point 1.Full size imageFigure 7(A and B): Na model and Forecast graph at point 1.Full size imageFigure 8(A and B): Ph model and Forecast graph at point 2.Full size imageFigure 9(A and B): TDS model and Forecast graph at point 2.Full size imageFigure 10(A and B): EC model and Forecast graph at point 2.Full size imageFigure 11(A and B): Na model and Forecast graph at point 2.Full size imageFigure 12(A and B): Ph model and Forecast graph at point 3.Full size imageFigure 13(A and B): TDS model and Forecast graph at point 3.Full size imageFigure 14(A and B): EC model and Forecast graph at point 3.Full size imageFigure 15(A and B): Na model and Forecast graph at point 3.Full size imageFigure 16(A and B): pH model and Forecast graph at point 4.Full size imageFigure 17(A and B): TDS model and Forecast graph at point.Full size imageFigure 18(A and B): EC model and Forecast graph at point 4.Full size imageFigure 19(A and B): Na model and Forecast graph at point 4.Full size imageGenerally, the artificial neural network model the actual data set very well. At various sampling points, the developed ANN models descriptively show insignificant values in deviation for the actual data set. There were continues variations in the developed models and forecasts over time. The feed-forward Multilayer Neural Network (FFMNN) Model Performance Evaluation Results are shown in Table 5. The model performance evaluation was carried out based on the developed ANN model training, Testing and forecast, respectively. The model performance evaluation was carried out using the coefficient of multiple determination R2 and Root Mean Squared Error (RMSE).Table 5 Statistical measurement of the trained, test and forecast model.Full size tableThe R2 values were generally observed to have varied in the second decimal place for the training, testing and forecast model, respectively.The training performance evaluation shows that R2 values ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989 and 0981 to 0.989, for pH, TDS, EC, and Na, respectively. The training results shows that the pH model have the best performance followed by EC, and Na.Also, the testing performance shows that the R2 value ranges from 0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967 and 0.953 to 0.968, for pH, TDS, EC and Na, respectively. However, the testing performance evaluation shows that TDS had the best performance. The forecast performance evaluation shows that the R2 values ranges from 0.945 to 0.968, 0.946 to 0.968, 0.944 to 0.967 and 0.949 to 0.965 for pH, TDS, EC and Na respectively. It was however discovered that the TDS made best forecast followed by the pH. The water quality forecast performance was further evaluated using the Root Mean Squared Error (RMSE) which ranges from 0.022 to 0.088, 0.012 to 0.087, 0.015 to 0.085and 0.014 to 0.084 for pH, TDS, EC and Na, respectively. The ANN model performed very well as their coefficient of multiple determinations R2 were very close 1, which is in agreement with the study of Awu et al. (2017) and Abrahart et al., (2005). On comparing the performance of the training model to the testing model and forecast, it shows that the training set performed better than the testing set followed by the forecast as its coefficient of multiple determinations, R2, was much closer to 1. More

  • in

    Correction to: Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    AffiliationsDepartment of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, SpainFrancisco Martinez-Hernandez, Inmaculada Garcia-Heredia & Manuel Martinez-GarciaDepartment of Biology, University of North Carolina at Greensboro, Greensboro, NC, USAAwa Diop & Louis-Marie BobayAuthorsFrancisco Martinez-HernandezAwa DiopInmaculada Garcia-HerediaLouis-Marie BobayManuel Martinez-GarciaCorresponding authorCorrespondence to
    Manuel Martinez-Garcia. More

  • in

    Short-term changes related to autotetraploidy in essential oil composition of Eucalyptus benthamii Maiden & Cambage and its applications in different bioassays

    1.Ladiges, P. Y., Udovicic, F. & Nelson, G. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J. Biogeogr. 30, 989–998 (2003).
    Google Scholar 
    2.Goodger, J. Q. D., Senaratne, S. L., Nicolle, D. & Di Woodrow, I. E. ff erential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae ). Tree Physiol. 00, 1–10 (2018).
    Google Scholar 
    3.Doran, J. C. & Brophy, J. J. Importance of the tropical red gums. New For. 4, 157–178 (1990).
    Google Scholar 
    4.Doughty, R. W. The Eucalyptus. A Natural and Commercial History of the Gum Tree. (The John Hopkins University Press, 2000).5.Silva, P. H. M. da, Brito, J. O. & Junior, F. G. da S. Potential of eleven Eucalyptus species for the production of essential oils. Sci. Agric. 63, 85–89 (2006).6.Coppen, J. J. W. Eucalyptus: the genus Eucalyptus. (Taylor & Francis, 2002).7.Barbosa, L. C. A., Filomeno, C. A. & Teixeira, R. R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 21, 1–33 (2016).
    Google Scholar 
    8.Lucia, A., Licastro, S., Zerba, E., Gonzalez, P. & Masuh, H. Bioresource technology sensitivity of Aedes aegypti adults (Diptera : Culicidae ) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 100, 6083–6087 (2009).CAS 
    PubMed 

    Google Scholar 
    9.Batista-Pereira, L. G. et al. Electrophysiological Responses of Atta sexdens rubropilosa workers. Z. Naturforsch. 61c, 749–755 (2006).
    Google Scholar 
    10.Döll-Boscardin, P. M. et al. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-based Complement. Altern. Med. 2012, 1–8 (2012).
    Google Scholar 
    11.Lin, H. et al. Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. Afr. J. Biotechnol. 9, 2252–2255 (2010).CAS 

    Google Scholar 
    12.Silva, A. J., Carvalho, C. R. & Clarindo, W. R. Chromosome set doubling and ploidy stability in synthetic auto- and allotetraploid of Eucalyptus: from in vitro condition to the field. Plant Cell. Tissue Organ Cult. 138, 387–394 (2019).
    Google Scholar 
    13.Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).CAS 
    PubMed 

    Google Scholar 
    14.Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 26, 271–279 (2020).CAS 
    PubMed 

    Google Scholar 
    15.Lavania, U. C. et al. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549 (2012).CAS 
    PubMed 

    Google Scholar 
    16.Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).
    Google Scholar 
    17.Marfil, C. F., Duarte, P. F. & Masuelli, R. W. Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Sci. Hortic. (Amsterdam) 234, 101–109 (2018).
    Google Scholar 
    18.Fernando, S. C., Goodger, J. Q. D., Chew, B. L., Cohen, T. J. & Woodrow, I. E. Induction and characterisation of tetraploidy in Eucalyptus polybractea R.T. Baker. Ind. Crops Prod. 140, 111633 (2019).CAS 

    Google Scholar 
    19.da Silva Souza, T. et al. Polyploidy as a strategy to improve the industrial quality of eucalypt wood. Wood Sci. Technol. 55, 181 (2020).
    Google Scholar 
    20.Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).CAS 
    PubMed 

    Google Scholar 
    21.Naidoo, S. et al. Uncovering the defence responses of eucalyptus to pests and pathogens in the genomics age. Tree Physiol. 34, 931–943 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Rasmussen, J. J. et al. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquat. Toxicol. 140–141, 340–345 (2013).PubMed 

    Google Scholar 
    23.Estep, A. S., Sanscrainte, N. D., Waits, C. M., Louton, J. E. & Becnel, J. J. Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico. J. Med. Entomol. 54, 1643–1648 (2017).CAS 
    PubMed 

    Google Scholar 
    24.Braga, I. A., Lima, J. B. P., Da Silva Soares, S. & Valle, D. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas. Brazil. Mem. Inst. Oswaldo Cruz 99, 199–203 (2004).PubMed 

    Google Scholar 
    25.Mendes, L. A. et al. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod. 108, 684–689 (2017).CAS 

    Google Scholar 
    26.Dutra, Q. P. et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep. 10, 12213 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Mendes, L. A. et al. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. Sci. Hortic. (Amsterdam) 238, 295–302 (2018).CAS 

    Google Scholar 
    28.Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crop. Prod. 109, 374–383 (2017).CAS 

    Google Scholar 
    29.de Souza, S. et al. Essential oil of Psidium guajava : Influence of genotypes and environment. Sci. Hortic. (Amsterdam) 216, 38–44 (2017).
    Google Scholar 
    30.Adams, R. P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry (Allured Publishing Corporation, 2007).31.Fox, J. et al. Package ‘effects’: Effect displays for linear, generalised linear, and other models. Version 4(2–0), 1–35 (2020).
    Google Scholar 
    32.R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2020).33.Aragão, F. B. et al. Phytotoxic and cytotoxic effects of eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 35, 259–272 (2015).
    Google Scholar 
    34.de Assis Alves, T. et al. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 114, 59–67 (2018).35.Silva, T. C. R., Abreu, I. S. & Carvalho, C. R. Improved and reproducible flow cytometry methodology for nuclei isolation from single root meristem. J. Bot. 2010, 1–7 (2010).
    Google Scholar 
    36.Otto, F. DAPI staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).CAS 
    PubMed 

    Google Scholar 
    37.Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K. & Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 130, 543–551 (2017).
    Google Scholar 
    38.Iannicelli, J. et al. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. (Amsterdam). 260, 108854 (2020).39.Dhooghe, E., Laere, K. V., Eeckhaut, T., Leus, L. & Huylenbroeck, J. V. Mitotic chromosome doubling of plant tissues in vitro. 104, 359–373 (2011).
    Google Scholar 
    40.Aharoni, A., Jongsma, M. A. & Bouwmeester, H. J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bouvier, F. et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 24, 241–252 (2000).CAS 

    Google Scholar 
    42.Külheim, C. et al. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol. 191, 1041–1053 (2011).PubMed 

    Google Scholar 
    43.Mossi, A. J. et al. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). 91, 273–277 (2011).44.Henery, M. L., Moran, G. F., Wallis, I. R., Foley, W. J. & Henery, M. L. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. 176, 82–95 (2007).45.Kainer, D., Lanfear, R., Foley, W. J. & Külheim, C. Genomic approaches to selection in outcrossing perennials : focus on essential oil crops. Theor. Appl. Genet. 128, 2351–2365 (2015).PubMed 

    Google Scholar 
    46.Lucia, A., Licastro, S., Zerba, E. & Masuh, H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. 129, 107–114 (2008).47.Hantao, L. W. et al. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116, 1079–1084 (2013).CAS 
    PubMed 

    Google Scholar 
    48.Batish, D. R., Singh, H. P., Setia, N., Kaur, S. & Kohli, R. K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. – Sect. Biosci. 61, 465–471 (2006).CAS 

    Google Scholar 
    49.Arminante, F. et al. Allelopathic activity of essential oils from mediterranean labiatae. Acta Hort. 723, 347–352 (2006).CAS 

    Google Scholar 
    50.Batish, D. R. et al. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27, 171–177 (2007).CAS 

    Google Scholar 
    51.Vasconcelos, L. C. et al. Phytochemical analysis and effect of the essential oil of Psidium L . species on the initial development and mitotic activity of plants. Env. Sci. Poll. Res. 26, 26216–26228 (2019).52.Prates, H. T., Paes, J. M. V., Pires, N. de M., Filho, I. A. P. & Magalhães, P. C. Efeito do extrato aquoso de leucena na germinação e no desenvolvimento do milho. Pesq. Agropec. Bras. 1, 909–914 (2000).53.Fernandes, T. C. C., Mazzeo, D. E. C. & Marin-morales, M. A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to tri-X-uralin herbicide. Pest. Bioch. Phys. 88, 252–259 (2007).CAS 

    Google Scholar 
    54.Andrade, L. F., Davide, L. C. & Gedraite, L. S. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 73, 626–631 (2010).CAS 
    PubMed 

    Google Scholar  More

  • in

    Antigenic escape selects for the evolution of higher pathogen transmission and virulence

    Oligomorphic dynamics (OMD) of antigenic escapeWe considered a model of the antigenic escape of a pathogen from host herd immunity on a one-dimensional antigenicity space (x). We tracked the changes in the density (S(t,x)) of hosts that are susceptible to antigenicity variant x of pathogen at time t, and the density (I(t,x)) of hosts that are currently infected and infectious with antigenicity variant x of pathogen at time t:$$frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{ – infty }^infty beta sigma left( {x – y} right)Ileft( {t,y} right)dy,$$
    (5)
    $$frac{{partial Ileft( {t,x} right)}}{{partial t}} = beta Sleft( {t,x} right)Ileft( {t,x} right) – left( {gamma + alpha } right)Ileft( {t,x} right) + Dfrac{{partial ^2Ileft( {t,x} right)}}{{partial x^2}},$$
    (6)
    where β, α and γ are the transmission rate, virulence (additional mortality due to infection) and recovery rate of pathogens, which are independent of antigenicity. The function σ(x−y) denotes the degree of cross immunity: a host infected by pathogen variant y acquires perfect cross immunity with probability σ(x−y), but fails to acquire any cross immunity with probability 1−σ(x−y) (this is called polarized cross immunity by Gog and Grenfell25). The degree σ(x−y) of cross immunity is assumed to be a decreasing function of the distance |x−y| between variants x and y. When a new variant with antigenicity x = 0 is introduced at time t = 0, the initial host population is assumed to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1. In equation (6), (D = mu sigma _mathrm{m}^2/2) is one half of the mutation variance for the change in antigenicity, representing random mutation in the continuous antigenic space.Susceptibility profile moulded by the primary outbreakWe first analysed the dynamics of the primary outbreak of a pathogen and derived the resulting susceptibility profile, which can be viewed as the fitness landscape subsequently experienced by the pathogen. For simplicity, we assumed that mutation can be ignored during the first epidemic initiated with antigenicity strain x = 0. The density ({{{S}}}_0left( {{{t}}} right) = {{{S}}}({{{t}}},0)) of hosts that are susceptible to the currently prevailing antigenicity variant x = 0, as well as the density ({{{I}}}_0left( {{{t}}} right) = {{{I}}}({{{t}}},0)) of hosts that are currently infected by the focal variant change with time as$$frac{{dS_0}}{{dt}} = – S_0beta I_0,$$
    (7)
    $$frac{{dI_0}}{{dt}} = S_0beta I_0 – left( {gamma + alpha } right)I_0,$$
    (8)
    $$frac{{dR_0}}{{dt}} = gamma I_0,$$
    (9)
    with (S_0left( 0 right) = 1), (I_0left( 0 right) approx 0) and (R_0left( 0 right) = 0). The final size of the primary outbreak,$$psi _0 = R_0left( infty right) = 1 – S_0left( infty right) = exp left[ { – beta mathop {int}limits_0^infty {I_0} left( t right)dt} right],$$is determined as the unique positive root of$$begin{array}{*{20}{c}} {psi _0 = 1 – e^{ – rho _0psi _0},} end{array}$$
    (10)
    where (rho _0 = beta /left( {gamma + alpha } right) > 1) is the basic reproductive number6. Associated with this epidemiological change, the susceptibility profile (S_xleft( t right) = S(t,x)) against antigenicity x ((x ne 0)) other than the currently circulating variant (x = 0) changes by cross immunity as$$begin{array}{*{20}{c}} {frac{{dS_x}}{{dt}} = – S_xbeta sigma left( x right)I_0,quad left( {x ne 0} right).} end{array}$$
    (11)
    Integrating both sides of equation (11) from t = 0 to (t = infty), we see that the susceptibility profile (sleft( x right) = S_x(infty )) after the primary outbreak at x = 0 is$$begin{array}{*{20}{c}} {sleft( x right) = exp left[ { – beta sigma left( x right)mathop {int}limits_0^infty {I_0} left( t right)dt} right] = left( {1 – psi _0} right)^{sigma left( x right)} = e^{ – rho _0sigma left( x right)psi _0},} end{array}$$
    (12)
    where the last equality follows from equation (10). The susceptibility can be effectively reduced by cross immunity when the primary variant has a large impact (that is, when the fraction of hosts remaining uninfected, 1−ψ0, is small) and when the degree of cross immunity is strong (that is, when σ(x) is close to 1). With a variant antigenically very close to the primary variant (x ≈ 0), the cross immunity is very strong ((sigma left( x right) approx 1)) so that the susceptibility against variant x is nearly maximally reduced: (s(x) approx 1 – psi _0). With a variant antigenically distant from the primary variant, σ(x) becomes substantially smaller than 1, making the host more susceptible to the variant. For example, if the cross immunity is halved ((sigma left( x right) = 0.5)) from its maximum value 1, then the susceptibility to that variant is as large as (left( {1 – psi _0} right)^{0.5}). If a variant is antigenically very distant from the primary variant, then (sigma left( x right) approx 0), and the host is nearly fully susceptible to the variant ((sleft( x right) approx 1)).Threshold antigenic distance for escaping immunity raised by primary outbreakOf particular interest is the threshold antigenicity distance xc that allows for antigenic escape, that is, any antigenicity variant more distant than this threshold from the primary variant (x > xc) can increase when introduced after the primary outbreak. Such a threshold is determined from$$frac{{beta sleft( {x_c} right)}}{{gamma + alpha }} = rho _0sleft( {x_c} right) = 1$$or$$begin{array}{*{20}{c}} {sleft( {x_c} right) = left( {1 – psi _0} right)^{sigma left( {x_c} right)} = e^{ – rho _0sigma left( {x_c} right)psi _0} = frac{1}{{rho _0}},} end{array}$$
    (13)
    where we used equation (12). With a specific choice of cross-immunity profile,$$begin{array}{*{20}{c}} {sigma left( x right) = exp left[ { – frac{{x^2}}{{2omega ^2}}} right],} end{array}$$
    (14)
    the threshold antigenicity beyond which the virus can increase in the susceptibility profile s(x) after the primary outbreak is obtained, by substituting equation (14) into equation (13)$$exp left[ { – rho _0psi _0exp left[ { – frac{{x_c^2}}{{2omega ^2}}} right]} right] = frac{1}{{rho _0}},$$and taking the logarithm of both sides twice:$$begin{array}{*{20}{c}} {x_c = omega sqrt {2log frac{{rho _0psi _0}}{{log rho _0}}} .} end{array}$$
    (15)
    OMDIntegrating both sides of equation (6) over the whole space, we obtained the dynamics for the total density of infected hosts, ({{{bar{ I}}}}left( {{{t}}} right) = {int}_{ – infty }^infty {{{{I}}}left( {{{{t}}},{{{x}}}} right){{{dx}}}}):$$begin{array}{*{20}{c}} {frac{{dbar I}}{{dt}} = left[ {beta mathop {smallint }limits_{ – infty }^infty Sleft( {t,x} right)phi left( {t,x} right)dx – left( {gamma + alpha } right)} right]bar Ileft( t right) = left[ {beta bar Sleft( t right) – left( {gamma + alpha } right)} right]bar Ileft( t right)} end{array},$$
    (16)
    where$$phi left( {t,x} right) = Ileft( {t,x} right)/bar Ileft( t right)$$is the relative frequency of antigenicity variant x in the pathogen population circulating at time t, and$$begin{array}{*{20}{c}} {bar Sleft( t right) = mathop {int}limits_{ – infty }^infty S left( {t,x} right)phi left( {t,x} right)dx} end{array}$$
    (17)
    is the mean susceptibility experienced by currently circulating pathogens. The dynamics for the relative frequency (phi left( {t,x} right)) of pathogen antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S(t)} right}phi left( {t,x} right) + Dfrac{{partial ^2phi }}{{partial x^2}}.} end{array}$$
    (18)
    As in Sasaki and Dieckmann27, we decomposed the frequency distribution to the sum of several morph distributions (oligomorphic decomposition) as$$begin{array}{*{20}{c}} {phi left( {t,x} right) = mathop {sum }limits_i p_iphi _ileft( {t,x} right)} end{array},$$
    (19)
    where pi(t) is the frequency of morph i and (phi _i(t,x)) is the within-morph distribution of antigenicity. By definition, and ({int}_{ – infty }^infty {phi _i} (t,x)dx = 1). Let$$begin{array}{*{20}{c}} {bar x_i = mathop {int}limits_{ – infty }^infty {xphi _ileft( {t,x} right)dx} } end{array}$$
    (20)
    be the mean antigenicity of a morph and$$begin{array}{*{20}{c}} {V_i = mathop {smallint }limits_{ – infty }^infty left( {x – bar x_i} right)^2phi _ileft( {t,x} right)dx = Oleft( {{it{epsilon }}^2} right)} end{array}$$
    (21)
    where O is order be the within-morph variance of each morph, which is assumed to be small, of the order of ({it{epsilon }}^2). We denoted the mean susceptibility of host population for viral morph (i) by (bar S_i = {int}_{ – infty }^infty {Sleft( {t,x} right)phi _i(t,x)dx}). As shown in Sasaki and Dieckmann27, the dynamics for viral morph frequency is expressed as$$begin{array}{*{20}{c}} {frac{{dp_i}}{{dt}} = beta left( {bar S_i – bar S} right)p_i + Oleft( {it{epsilon }} right),} end{array}$$
    (22)
    while the dynamics for the within-morph distribution of antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi _i}}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S_i} right}phi _ileft( {t,x} right) + Dfrac{{partial ^2phi _i}}{{partial x^2}}.} end{array}$$
    (23)
    From this, the dynamics for the mean antigenicity of a morph,$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = V_ibeta left. {frac{{partial S}}{{partial x}}} right|_{x = bar x_i} + Oleft( {{it{epsilon }}^3} right)} end{array}$$
    (24)
    and the dynamics for the within-morph variance of a morph$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = frac{1}{2}beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}left{ {Eleft[ {xi _i^4} right] – V_i^2} right} + 2D + Oleft( {{it{epsilon }}^5} right)} end{array}$$
    (25)
    are derived, where (xi _i = x – bar x_i) and (Eleft[ {xi _i^4} right] = {int}_{ – infty }^infty {left( {x – bar x_i} right)^4phi _ileft( {t,x} right)dx}) are the fourth central moments of antigenicity around the morph mean. Assuming that the within-morph distribution is normal (Gaussian closure), (Eleft[ {xi _i^4} right] = 3V_i^2), and hence equation (25) becomes$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}V_i^2 + 2D + Oleft( {{it{epsilon }}^5} right).} end{array}$$
    (26)
    Second outbreak predicted by OMDEquations (22), (24) and (26) are general, but they rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). To make further progress, we used an additional approximation by substituting equation (13), the susceptibility profile, over viral antigenicity space after the primary outbreak at x = 0 and before the onset of the second outbreak at a distant position. We kept track of two morphs at positions x0(t) and x1(t), where the first morph is that caused by the primary outbreak at x = 0, and the second morph is that emerged in the range x > xc beyond the threshold antigenicity xc defined in equation (13) (and equation (15) for a specific form of σ(x)) as the source of the next outbreak.As (sleft( x right) = left( {1 – psi _0} right)^{sigma (x)} = exp [sigma left( x right)log (1 – psi _0)]), we have$$frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right]sleft( {bar x_i} right),$$and$$frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}^2sigma }}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right)log left( {1 – psi _0} right) + left{ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right}^2} right]sleft( {bar x_i} right).$$Therefore, the frequency, mean antigenicity and variance of antigenicity of an emerging morph (i = 1) change respectively as$$begin{array}{*{20}{l}} {frac{{dp_1}}{{dt}} = beta left[ {sleft( {bar x_1} right) – sleft( {bar x_0} right)} right]p_1left( {1 – p_1} right),} hfill \ {frac{{dbar x_1}}{{dt}} = V_1beta frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_1} right),} hfill \ {frac{{dV_1}}{{dt}} = beta frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_1} right)V_1^2 + 2D}. hfill end{array}$$
    (27)
    The predicted change in the mean antigenicity was plotted by integrating equation (27). As initial condition, we chose the time when a seed of second peak in the range x > xc first appeared, and then computed the mean trait as$$begin{array}{*{20}{c}} {bar xleft( t right) = x_0left( {1 – p_1left( t right)} right) + bar x_1p_1left( t right).} end{array}$$
    (28)
    In the case of Fig. 2, where β = 2, γ + α = 0.6, D = 0.001 and ω = 2, the final size of epidemic for the primary outbreak, defined as equation (7), was ψ = 0.959, and the critical antigenic distance for the increase of pathogen variant obtained from equation (26) was xc = 2.795. The initial conditions for the oligomorphic dynamics (equation 27) for the second morph were then (p_1left( {t_0} right) = 1.6 times 10^{ – 8}), (bar x_1left( {t_0} right) = 3.239), (V_1left( {t_0} right) = 0.2675) at t0 = 41. In Fig. 2, the predicted trajectory for the mean antigenicity (equation 28) is plotted as a red curve, together with the mean antigenicity change observed in simulation (blue curve).Accuracy of predicting the antigenicity with OMD and the timing of the second outbreakHere we describe how we defined the initial conditions for oligomorphic dynamics, that is, the frequency, the mean antigenicity and the variance in antigenicity of the morph that caused the primary outbreak and the morph that may cause the second outbreak. We then show how the accuracy in prediction of the second outbreak depends on the timing of the prediction.We divided the antigenicity space into two at x = xc, above which the pathogen can increase under the given susceptibility profile after the primary outbreak, but below which the pathogen cannot increase. We then took the relative frequencies of pathogens above xc and below xc, and the conditional mean and variance in these separated regions to set the initial frequencies, means and variances of the morphs at time t0 when we started integrating the oligomorphic dynamics to predict the second outbreak:$$begin{array}{*{20}{c}} {begin{array}{*{20}{l}} {p_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill & {p_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill \ {bar x_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {bar x_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}},} hfill \ {V_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} left( {x – bar x_0left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {V_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty left( {x – bar x_1left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}.} hfill end{array}} end{array}$$
    (29)
    We then compared the trajectory for mean antigenicity change observed in simulation (blue curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (equation 28) by integrating oligomorphic dynamics (equation 27) with the initial condition (equation 29) at time t = t0. Extended Data Fig. 2 shows how the accuracy of prediction, measured by the Kullback–Leibler divergence between these two trajectories, depends on the timing t0 chosen for the prediction. The second outbreak occurs around t = 54.6, where mean antigenicity jumps from around 0 to around 5. The prediction with OMD is accurate if it is made for t0 > 40. Figure 2 is drawn for t0 = 41 where the second peak is about to emerge (see Extended Data Fig. 2). Even for the latest prediction for t0 = 51 in Extended Data Fig. 2, the morph frequency of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to make.Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a wiggle) for (5 < t_0 < 30) (the predicted timings are 10–15% longer than actual timing for (5 < t_0 < 30)), and steadily improved for t0 > 30. When the prediction was made very early (t0 < 5), the deviations were larger.OMD for the joint evolution of antigenicity and virulenceLet s(x) be the susceptibility of the host population against antigenicity x. A specific susceptibility profile is given by equation (12), with cross-immunity function σ(x) and the final size ψ0 of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is, in general, a function of time. The density (I(x,alpha )) of hosts infected by a pathogen of antigenicity x and virulence α changes with time, when rare, as$$begin{array}{*{20}{c}} {frac{{partial Ileft( {x,alpha } right)}}{{partial t}} = beta sleft( x right)Ileft( {x,alpha } right) - left( {gamma + alpha } right)Ileft( {x,alpha } right) + D_xfrac{{partial ^2I}}{{partial x^2}} + D_alpha frac{{partial ^2I}}{{partial alpha ^2}}.} end{array}$$ (30) The change in the frequency (phi left( {x,alpha } right) = Ileft( {x,alpha } right)/{int!!!!!int} I left( {x,alpha } right)dxdalpha) of a pathogen with antigenicity x and virulence α follows$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = left{ {wleft( {x,alpha } right) - bar w} right}phi + D_xfrac{{partial ^2phi }}{{partial x^2}} + D_alpha frac{{partial ^2phi }}{{partial alpha ^2}},} end{array}$$ (31) where$$begin{array}{*{20}{c}} {wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - alpha } end{array}$$ (32) is the fitness of a pathogen with antigenicity x and virulence α and (bar w = {int!!!!!int} w left( {x,alpha } right)dxdalpha) is the mean fitness.We decomposed the joint frequency distribution ϕ(x, α) of the viral quasi-species as (oligomorphic decomposition):$$begin{array}{*{20}{c}} {phi left( {x,alpha } right) = mathop {sum }limits_i phi _ileft( {x,alpha } right)p_i,} end{array}$$ (33) where ϕi(x, α) is the joint frequency distribution of antigenicity x and virulence α in morph i (({int!!!!!int} {phi _idxdalpha = 1})) and pi is the relative frequency of morph i ((mathop {sum}nolimits_i {p_i = 1})). The frequency of morph i then changes as$$begin{array}{l}frac{{dp_i}}{{dt}} = left( {bar w_i - mathop {sum }limits_j bar w_jp_j} right)p_i,\ frac{{partial phi _i}}{{partial t}} = left( {wleft( {x,alpha } right) - bar w_i} right)phi _ileft( {x,alpha } right) + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}},end{array}$$ (34) where (bar w_i = {int!!!!!int} w left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) is the mean fitness of morph i.Assuming that the traits are distributed narrowly around the morph means (bar x_i = {int!!!!!int} x phi _ileft( {x,alpha } right)dxdalpha) and (bar alpha _i = {int!!!!!int} alpha phi _i(x,alpha )dxdalpha), so that (xi _i = x - bar x_i = O({it{epsilon }})) and (zeta _i = alpha - bar alpha _i = O({it{epsilon }})) where ({it{epsilon }}) is a small constant, we expanded the fitness w(x, α) around the means (bar x_i) and (bar alpha _i) of morph i,$$begin{array}{*{20}{l}} {wleft( {x,alpha } right)} hfill & = hfill & {wleft( {bar x_i,bar alpha _i} right) + left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ixi _i^2 + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ixi _izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_izeta _i^2 + Oleft( {{it{epsilon }}^3} right).} hfill end{array}$$Substituting this and$$bar w_i = wleft( {bar x_i,bar alpha _i} right) + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^{xx} + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^{xalpha } + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iV_i^{alpha alpha } + Oleft( {{it{epsilon }}^3} right)$$into equation (34), we obtained$$frac{{dp_i}}{{dt}} = left[ {w_i - mathop {sum }limits_j w_jp_j} right]p_i + Oleft( {it{epsilon }} right),$$ (35) $$begin{array}{*{20}{l}} {frac{{partial phi _i}}{{partial t}}} hfill & = hfill & {left[ {left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {xi _i^2 - V_i^x} right) + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft( {xi _izeta _i - C_i} right)} right.} hfill \ {} hfill & {} hfill & {left. { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {zeta _i^2 - V_i^alpha } right)} right]phi _i + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}} + Oleft( {{it{epsilon }}^3} right),} hfill end{array}$$ (36) where (w_i = wleft( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial x}}} right)_i = frac{{partial w}}{{partial x}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = frac{{partial w}}{{partial alpha }}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = frac{{partial ^2w}}{{partial x^2}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = frac{{partial ^2w}}{{partial xpartial alpha }}left( {bar x_i,bar alpha _i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = frac{{partial ^2w}}{{partial alpha ^2}}left( {bar x_i,bar alpha _i} right)) are fitness and its first and second derivatives evaluated at the mean traits of morph i, and$$begin{array}{l}V_i^x = E_ileft[ {left( {x - bar x_i} right)^2} right],\ C_i = E_ileft[ {left( {x - bar x_i} right)left( {alpha - bar alpha _i} right)} right], \ V_i^alpha = E_ileft[ {left( {alpha - bar alpha _i} right)^2} right]end{array}$$ (37) are within-morph variances and covariance of the traits of morph i. Here (E_ileft[ {fleft( {x,alpha } right)} right] = {int!!!!!int} f left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) denotes taking expectation of a function f with respect to the joint trait distribution (phi _i(x,alpha )) of morph i.Substituting equation (36) into the change in the mean antigenicity of morph i$$frac{{dbar x_i}}{{dt}} = frac{d}{{dt}}{int!!!!!int} x phi _i(x,alpha )dxdalpha = {int!!!!!int} x frac{{partial phi _i}}{{partial t}}dxdalpha = {int!!!!!int} {(bar x_i + xi _i)} frac{{partial phi _i}}{{partial t}}dxi _idzeta _i,$$we obtained$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iV_i^x + left( {frac{{partial w}}{{partial alpha }}} right)_iC_i + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (38) Similarly, the change in the mean virulence of morph i was expressed as$$begin{array}{*{20}{c}} {frac{{dbar alpha _i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iC_i + left( {frac{{partial w}}{{partial alpha }}} right)_iV_i^alpha + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (39) Equations (38) and (39) from the mean trait change was summarized in a matrix form as$$begin{array}{*{20}{c}} {frac{d}{{dt}}left( {begin{array}{*{20}{c}} {bar x_i} \ {bar alpha _i} end{array}} right) = {{{boldsymbol{G}}}}_{{{boldsymbol{i}}}}left( {begin{array}{*{20}{c}} {left( {frac{{partial w}}{{partial x}}} right)_i} \ {left( {frac{{partial w}}{{partial alpha }}} right)_i} end{array}} right) + O({it{epsilon }}^3),} end{array}$$ (40) where$$begin{array}{*{20}{c}} {{{{boldsymbol{G}}}}_{{{boldsymbol{i}}}} = left( {begin{array}{*{20}{c}} {V_i^x} & {C_i} \ {C_i} & {V_i^alpha } end{array}} right)} end{array}$$ (41) is the variance-covariance matrix of the morph i.Substituting equation (36) into the right-hand side of the change in variance of antigenicity of morph i,$$frac{{dV_i^x}}{{dt}} = frac{d}{{dt}}{int!!!!!int} {xi _i^2phi _idxi _idzeta _i} = {int!!!!!int} {xi _i^2frac{{partial phi _i}}{{partial t}}dxi _idzeta _i}$$and those in the change in the other variance and covariance, we obtained$$begin{array}{*{20}{l}} {frac{{dV_i^x}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^4} right) - left( {V_i^x} right)^2} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + 2D_x + O({it{epsilon }}^5),} hfill \ {frac{{dC_i}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - C_i^2} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right] + O({it{epsilon }}^5),} hfill \ {frac{{dV_i^alpha }}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {zeta _i^4} right) - left( {V_i^alpha } right)^2} right] + 2D_alpha + O({it{epsilon }}^5).} hfill end{array}$$ (42) If we assume that antigenicity and virulence within a morph follow a 2D Gaussian distribution for given means, variances and covariance, we should have (E_i(xi _i^4) = 3left( {V_i^x} right)^2,E_i(xi _i^3zeta _i) = 3V_i^xC_i), (E_i(xi _i^2zeta _i^2) = V_i^xV_i^alpha + 2C_i^2), (E_i(xi _izeta _i^3) = 3V_i^alpha C_i) and (E_i(zeta _i^4) = 3left( {V_i^alpha } right)^2), and hence$$frac{{dV_i^x}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {V_i^x} right)^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_i^2 + 2D_x + O({it{epsilon }}^5),$$ (43) $$frac{{dC_i}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft{ {V_i^xV_i^alpha - C_i^2} right} + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_iV_i^alpha + O({it{epsilon }}^5),$$ (44) $$frac{{dV_i^alpha }}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iC_i^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^alpha C_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {V_i^alpha } right)^2 + 2D_alpha + O({it{epsilon }}^5).$$ (45) Equations (43) and (44) were rewritten in a matrix form as$$begin{array}{*{20}{c}} {frac{{dG_i}}{{dt}} = G_iH_iG_i + left( {begin{array}{*{20}{c}} {2D_xV_i^x} & 0 \ 0 & {2D_alpha V_i^alpha } end{array}} right) + O({it{epsilon }}^5),} end{array}$$ (46) where$$begin{array}{*{20}{c}} {H_i = left( {begin{array}{*{20}{c}} {left( {frac{{partial ^2w}}{{partial x^2}}} right)_i} & {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} \ {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} & {left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i} end{array}} right),} end{array}$$ (47) is the Hessian of the fitness function of morph i.In our equation (30) of the joint evolution of antigenicity and virulence of a pathogen after its primary outbreak, the fitness function is given by (w(x,alpha ) = beta (alpha )s(x) - alpha ,) and hence (w_i = beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i), (left( {frac{{partial w}}{{partial x}}} right)_i = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)), where a prime on β(α) and s(x) denotes differentiation by α and x, respectively. Substituting these into the dynamics for morph frequencies (equation 35), for morph means (equations 38 and 39), and for within-morph variance and covariance (equations 43–45), we obtained$$frac{{dp_i}}{{dt}} = left[ {beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i - mathop {sum }limits_j left( {beta left( {bar alpha _j} right)sleft( {bar x_j} right) - bar alpha _j} right)p_j} right]p_i,$$ (48) $$frac{{dbar x_i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^x + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}C_i,$$ (49) $$frac{{dbar alpha _i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)C_i + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}V_i^alpha ,$$ (50) $$frac{{dV_i^x}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)left( {V_i^x} right)^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^xC_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_i^2 + 2D_x,$$ (51) $$frac{{dC_i}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)V_i^xC_i + beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)left{ {V_i^xV_i^alpha - C_i^2} right} + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_iV_i^alpha ,$$ (52) $$frac{{dV_i^alpha }}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)C_i^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^alpha C_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)left( {V_i^alpha } right)^2 + 2D_alpha .$$ (53) Equations (48)–(53) describe the oligomorphic dynamics of the joint evolution of antigenicity and virulence of a pathogen for a given host susceptibility profile s(x) over pathogen antigenicity.Of particular interest is whether antigenicity or virulence evolve faster when they jointly evolve than when they evolve alone. After the primary outbreak at a given antigenicity, for example x = 0, the susceptibility s(x) of the host population increases due to cross immunity as the distance x > 0 from the antigenicity at the primary outbreak increases. Hence, (sprime left( {bar x_i} right) > 0.) Combining this with the positive trade-off between transmission rate and virulence, we see that (left( {partial ^2w/partial xpartial alpha } right)_i = beta prime (bar alpha _i)sprime (bar x_i) > 0), and then from equation (52), we see that the within-morph covariance between antigenicity and virulence becomes positive starting from a zero initial value:$$begin{array}{*{20}{c}} {left. {frac{{dC_i}}{{dt}}} right|_{C_i = 0} = left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xV_i^alpha > 0.} end{array}$$
    (54)
    If all second moments are initially sufficiently small for an emerging morph, a quick look at the linearization of equations (51)–(53) around ((V_i^x,C_i,V_i^alpha ) = (0,0,0)) indicates that both (V_i^x) and (V_i^alpha) become positive due to the random generation of variance by mutation, Dx > 0 and Dα > 0, while the covariance stays close to zero. Then, equation (54) guarantees that the first move of the covariance is from zero to positive, which then guarantees that Ci > 0 for all t. Therefore, the second term in equation (38) is positive until the mean virulence reaches its optimum ((beta prime (alpha )s(x) = 1)). This means that joint evolution with virulence accelerates the evolution of antigenicity. The same is true for virulence evolution: the first term in equation (39) (which denotes the associated change in virulence due to the selection in antigenicity through genetic covariance between them) is positive, indicating that joint evolution with antigenicity accelerates virulence evolution.Numerical exampleFigure 5 shows the oligomorphic dynamics prediction of the emergence of the next variant in antigenicity–virulence coevolution. To make progress numerically, we assumed s(x) to be constant in the following analysis because we are interested in the process between the end of the primary outbreak and the emergence of the next antigenicity–virulence morph. The partial differential equations for the density of host S(t,x) susceptible to the antigenicity variant x at time t, and the density of hosts infected by the pathogen variant with antigenicity x and virulence α are$$begin{array}{l}frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{alpha _{{{{mathrm{min}}}}}}^{alpha _{{{{mathrm{max}}}}}} mathop {smallint }limits_0^{x_{{{{mathrm{max}}}}}} beta left( alpha right)sigma left( {x – y} right)Ileft( {t,y,alpha } right)dydalpha ,\ frac{{partial Ileft( {t,x,alpha } right)}}{{partial t}} = left[ {beta left( alpha right)Sleft( {t,x} right) – left( {gamma + alpha } right)} right]Ileft( {t,x,alpha } right) + left( {D_xfrac{{partial ^2}}{{partial x^2}} + D_alpha frac{{partial ^2}}{{partial alpha ^2}}} right)Ileft( {t,x,alpha } right),end{array}$$
    (55)
    with the boundary conditions (left( {partial S/partial x} right)left( {t,0} right) = left( {partial S/partial x} right)left( {t,x_{{{{mathrm{max}}}}}} right) = 0), (left( {partial I/partial x} right)left( {t,0,alpha } right) = left( {partial I/partial x} right)left( {t,x_{{{{mathrm{max}}}}},0} right) = 0), (left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{min}}}}}} right) = left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{max}}}}}} right) = 0), and the initial conditions (Sleft( {0,x} right) = 1) and (Ileft( {0,x,alpha } right) = {it{epsilon }}delta left( x right)delta left( alpha right)), where (delta ( cdot )) is the delta function and ({it{epsilon }} = 0.01). The trait space is restricted in a rectangular region: (0 < x < x_{{{{mathrm{max}}}}} = 300) and (alpha _{{{{mathrm{min}}}}} = 0.025 < alpha < 10 = alpha _{{{{mathrm{max}}}}}). Oligomorphic dynamics prediction for the joint evolution of antigenicity and virulence was applied for the next outbreak after the outbreak with the mean antigenicity around x = 108 at time t = 102. The susceptibility of the host to antigenicity variant x at t0 = 104.8 after the previous outbreak peaked around time t = 102 came to an end is$$sleft( x right) = Sleft( {t_0,x} right).$$This susceptibility profile remained unchanged until the next outbreak started, and hence the fitness of a pathogen variant with antigenicity x and virulence α is given by$$wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - (gamma + alpha ).$$We bundled the pathogen variants into two morphs at time t0 at the threshold antigenicity xc, above which the net growth rate of the pathogen variant under the given susceptibility profile s(x) and the mean antigenicity become positive:$$wleft( {x_c,bar alpha left( {t_0} right)} right) = beta left( {bar alpha (t_0)} right)sleft( {x_c} right) - left( {gamma + bar alpha left( {t_0} right)} right) = 0.$$The initial frequency and the moments of the two morphs, the variant 0 with (x < x_c) and the variant 1 with (x > x_c) were then calculated respectively from the joint distribution (I(t_0,x,alpha )) in the restricted region (left{ {left( {x,alpha } right);0 < x < x_c,alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}) and that in the restricted region (left{ {left( {x,alpha } right);x_c < x < x_{{{{mathrm{max}}}}},alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}). The frequency p1 of morph 1 (the frequency of morph 0 is given by (p_0 = 1 - p_1)), the mean antigenicity (bar x_i) and mean virulence (bar alpha _i) of morph i, and the variances and covariance, (V_i^x), and (V_i^alpha) Ci of morph i (i = 0,1) follow equations (48)–(53), where the dynamics for the morph frequency (equation 48) is simplified in this two-morph situation as$$frac{{dp_1}}{{dt}} = left[ {beta left( {bar alpha _1} right)sleft( {bar x_1} right) - beta left( {bar alpha _0} right)sleft( {bar x_0} right) - left( {bar alpha _1 - bar alpha _0} right)} right]p_1left( {1 - p_1} right),$$with (p_0left( t right) = 1 - p_1(t)). This is iterated from (t = t_0 = 104.8) to (t_e = 107). The frequency p1 of the new morph, the population mean antigenicity (bar x = p_0bar x_0 + p_1bar x_1), virulence (bar alpha = p_0bar alpha _0 + p_1bar alpha _1), variance in antigenicity (V_x = p_0V_0^x + p_1V_1^x), covariance between antigenicity and virulence (C = p_0C_0 + p_1C_1), and variance in virulence (V_alpha = p_0V_0^alpha + p_1V_1^alpha) are overlayed by red thick curves on the trajectories of moments observed in the full dynamics (equation 55).In Fig. 5a, the dashed vertical line represents the threshold antigenicity xc, above which (R_0 = beta s(x)/(gamma + bar alpha ) > 1) at (t = t_s = 104.8), where oligomorphic dynamics prediction was attempted. Two morphs were then defined according to whether or not the antigenicity exceeded a threshold x = xc: the resident morph (morph 1) is represented as the dense cloud to the left of x = xc and the second morph (morph 2) consisting of all the genotypes to the right of x = xc with their R0 greater than one. The within-morph means and variances were then calculated in each region. The relative total densities of infected hosts in the left and right regions defined the initial frequency of two morphs in OMD. A 2D Gaussian distribution was assumed for within-morph trait distributions to have the closed moment equations as previously explained. Using these as the initial means, variances, covariances of the two morphs at t = ts, the oligomorphic dynamics for 11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in antigenicity and virulence and their covariance in morphs 0 and 1) was integrated up to t = te. The results are shown as red curves in Fig. 5c–h, which are compared with the simulation results (blue curves).Fig. 5c–e respectively show the change in total infected density, mean antigenicity and mean virulence. Red curves show the predictions by oligomorphic dynamics from the initial moments of each morph at t = ts to the susceptibility distribution (s(x) = S(t_s,x)), which are compared with the simulation results (blue curves). The OMD-predicted mean antigenicity, for example, is defined as$$bar xleft( t right) = left( {1 – p_1left( t right)} right)bar x_0left( t right) + p_1left( t right)bar x_1left( t right),$$where p1(t) is the frequency of morph 1, (bar x_0) and (bar x_1) are the mean antigenicities of morphs 0 and 1.The red curves in Fig. 5f–h show the OMD-predicted changes in the variance in antigenicity, variance in virulence and covariance between antigenicity and virulence, which are compared with the simulation results (blue curves). The OMD-predicted covariance, for example, is defined as$$begin{array}{rcl}Cleft( t right) & = & left( {1 – p_1(t)} right)C_0left( t right) + p_1left( t right)C_1left( t right) + p_1left( t right)left( {1 – p_1left( t right)} right)\ && left( {bar x_0left( t right) – bar x_1left( t right)} right)left( {bar alpha _0left( t right) – bar alpha _1left( t right)} right),end{array}$$where (C_0(t)) and (C_1(t)) are the antigenicity–virulence covariances in morphs 0 and 1, and (bar alpha _0(t)) and (bar alpha _1(t)) are the mean virulence of morphs 0 and 1.Selection for maximum growth rateWe next show that a pathogen that has the strategy of maximizing growth rate in a fully susceptible population is evolutionarily stable in the presence of antigenic escape.At stationarity, the travelling wave profiles of (hat I(z)) and (hat S(z)) along the moving coordinate, (z = x – vt), that drifts constantly to the right with the speed v are defined as$$begin{array}{l}0 = Dfrac{{d^2hat Ileft( z right)}}{{dz^2}} + vfrac{{dhat Ileft( z right)}}{{dz}} + beta hat Sleft( z right)hat Ileft( z right) – left( {gamma + alpha } right)hat Ileft( z right),\ 0 = vfrac{{dhat Sleft( z right)}}{{dz}} – beta hat Sleft( z right)mathop {smallint }limits_{ – infty }^infty sigma left( {z – xi } right)hat Ileft( xi right)dxi ,end{array}$$
    (56)
    with (hat Ileft( { – infty } right) = hat Ileft( infty right) = 0), (hat Sleft( infty right) = 1).Let j(t,x) be the density of a mutant pathogen variant, with virulence α′ and transmission rate β′, that is introduced in the host population where the resident variant is already established (equation 50). For the initial transient phase in which the density of mutants is sufficiently small, we have an equation for the change in (Jleft( {t,z} right) = j(t,x)):$$begin{array}{*{20}{c}} {frac{partial }{{partial t}}Jleft( {t,z} right) = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime hat Sleft( z right) – left( {gamma + alpha prime } right)} right}Jleft( {t,z} right),} end{array}$$
    (57)
    with the initial condition (Jleft( {0,z} right) = {it{epsilon }}delta (z)), where ({it{epsilon }}) is a small constant and (delta ( cdot )) is Dirac’s function.Consider a system$$begin{array}{*{20}{c}} {frac{{partial w}}{{partial t}} = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime – left( {gamma + alpha prime } right)} right}w,} end{array}$$
    (58)
    with (wleft( {0,z} right) = Jleft( {0,z} right) = {it{epsilon }}delta (z)). Noting that (hat Sleft( z right) < 1), we have (Jleft( {t,z} right) le w(t,z)) for any (t > 0) and (z in {Bbb R}) from the comparison theorem. The solution to equation (52) is$$begin{array}{*{20}{c}} {wleft( {t,z} right) = frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {rprime t – frac{{left( {z + vt} right)^2}}{{4Dt}}} right]} end{array},$$
    (59)
    where (rprime = beta prime – left( {gamma + alpha prime } right)). This follows by noting that (wleft( {t,x} right)e^{ – rprime t}) follows a simple diffusion equation (partial w/partial t = Dpartial ^2w/partial x^2). By rearranging the exponents of equation (53),$$begin{array}{*{20}{l}} {wleft( {t,z} right)} hfill & = hfill & {exp left[ {at – kz} right]frac{{it{epsilon }}}{{sqrt {4pi Dt} }}e^{ – z^2/4Dt}} hfill \ {} hfill & {} hfill & { < frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {at - kz} right],} hfill end{array}$$ (60) where$$a = frac{{v^{prime 2} - v^2}}{{4D}},$$ (61) $$k = frac{v}{{2D}}.$$ (62) Here (vprime = 2sqrt {rprime D}) is the asymptotic wave speed if the mutant variant monopolizes the host population. Therefore, if (vprime < v), then (a < 0), and hence (w(t,z)) for a fixed z converges to zero as t goes to infinity; this, in turn, implies that (J(t,z)) converges to zero because (Jleft( {t,z} right) le wleft( {t,z} right)) for all t and z. Therefore, we conclude that any mutant that has a slower wave speed than the resident can never invade the population, implying that a variant that has the maximum wave speed (v = 2sqrt {rD}) is locally evolutionarily stable.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    1.Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 

    Google Scholar 
    2.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    3.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    Google Scholar 
    4.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    5.Musavi, T. et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 6, 7352–7366 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    Google Scholar 
    7.Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    8.Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    9.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    10.Díaz, S. et al. The global spectrum of plant form and function. Nature 529,167–171 (2015).
    Google Scholar 
    11.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Thomas, H. J. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).14.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).15.Schimper, A. Plant-Geography Upon A Physiological Basis (Clarendon Press, 1903).16.Warming, E. Oecology Of Plants (Oxford, 1909).17.Raunkiær, C. in Life Forms of Plants and Statistical Plant Geography, 4-16 (Clarendon Press, 1934).18.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
    Google Scholar 
    19.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    22.Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Google Scholar 
    23.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
    Google Scholar 
    24.Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).CAS 

    Google Scholar 
    25.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 

    Google Scholar 
    26.Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
    Google Scholar 
    28.Blume, H.-P. et al. Soil Science 1st edn.(Springer, Berlin-Heidelberg, 2016).29.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    30.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    31.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2008).32.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    33.Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Corner, E. J. H. The Durian theory or the origin of the modern tree. Ann. Bot. XIII, 367–414 (1949).
    Google Scholar 
    35.Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).
    Google Scholar 
    36.FloresâMoreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019).
    Google Scholar 
    37.Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).CAS 

    Google Scholar 
    38.Vitousek, P. Nutrient Cycling and Limitation: Hawai’i as a Model System (Princeton Univ. Press, 2004).39.Shipley, B., Vile, D., Garnier, E., Wright, I. J. & Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct. Ecol. 19, 602–615 (2005).
    Google Scholar 
    40.He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
    Google Scholar 
    41.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).
    Google Scholar 
    42.Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).CAS 

    Google Scholar 
    43.Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).
    Google Scholar 
    44.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).
    Google Scholar 
    45.Legay, N. et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot 114, 1011–1021 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
    Google Scholar 
    47.Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).CAS 

    Google Scholar 
    48.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).
    Google Scholar 
    50.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).
    Google Scholar 
    51.Zech, W., Schad, P. & Hintermaier-Erhard, G. Böden der Welt—Ein Bildatlas (Springer Spectrum, 2014).52.Rosenberg, E. et al. (eds) The Prokaryotes: Prokaryotic Communities and Ecophysiology 4th edn. (Springer-Verlag, 2013).53.Niinemets, Ã. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129, 313–338 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Freschet, G. T. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol. Biogeogr. 20, 755–765 (2011).
    Google Scholar 
    56.Yemefack, M., Rossiter, D. G. & Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 125, 117–143 (2005).
    Google Scholar 
    57.Oldeman, L., Hakkeling, R. & Sombroek, W. Global Assessment of Soil Degradation (GLASOD): World Map of the Status of Human-induced Soil Degradation (United Nations Environment Programme, 1991).58.Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).CAS 

    Google Scholar 
    59.Adler, P. B. A Comparison of Livestock Grazing Effects on Sagebrush Steppe, USA, and Patagonian Steppe, Argentina. PhD thesis (Colorado State University, 2003).60.Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).
    Google Scholar 
    61.Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent Univ. (2012).62.Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999).
    Google Scholar 
    63.Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness (a comparison of slow- and fast-growing Poa species). Plant Physiol. 113, 961–965 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Auger, S. L’Importance de la Variabilité Interspécifique des Traits Fonctionnels par Rapport à la Variabilité Intraspécifique Chez les Jeunes Arbres en Forêt Mature. MSc thesis (Université de Sherbrooke, 2012).65.Bahn, M. et al. in Land-Use Changes in European Mountain Ecosystems. ECOMONT—Concept and Results (eds Cernusca, A. et al.) 247–255 (Blackwell Wissenschaft, 1999).66.Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297–307 (2009).CAS 

    Google Scholar 
    67.Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water table and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).
    Google Scholar 
    68.Bakker, C., Rodenburg, J. & van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005).CAS 

    Google Scholar 
    69.Baraloto, C. et al. Decoupled leaf and stem economics in rainforest trees. Ecol. Lett. 13, 1338–1347 (2010).
    Google Scholar 
    70.Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. 24, 208–216 (2010).
    Google Scholar 
    71.Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—a comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012).
    Google Scholar 
    72.Blanco, C. C., Sosinski, E. E., dos Santos, B. R. C., da Silva, M. A. & Pillar, V. D. On the overlap between effect and response plant functional types linked to grazing. Community Ecol. 8, 57–65 (2007).
    Google Scholar 
    73.Blonder, B. et al. The shrinkage effect biases estimates of paleoclimate. Am. J. Bot. 99, 1756–1763 (2012).
    Google Scholar 
    74.Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).
    Google Scholar 
    75.Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    76.Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).
    Google Scholar 
    77.Bocanegra-González K.T., Fernández-Méndez, F. & David Galvis-Jiménez, J. Funtional groups of tres in secondary forests of the bajo calima region (Buenaventura, Colombia) Boletín CientífiCo Centro de Museos Museo de Historia natura 19, (2015).78.Bodegom, P. M. V., Kanter, M. D. & Aerts, C. B. R. Radial oxygen loss, a plastic property of dune slack plant species. Plant Soil 271, 351–364 (2005).
    Google Scholar 
    79.Bond-Lamberty, C. W. B. & Gower, S. T. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002).
    Google Scholar 
    80.Bond-Lamberty, C. W. B. & Gower, S. T. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002).
    Google Scholar 
    81.Bond-Lamberty, C. W. B. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003).
    Google Scholar 
    82.Bond-Lamberty, C. W. B. & Gower, S. Net primary production and net ecosystem production of a boreal black spruce fire chronosequence. Glob. Change Biol. 10, 473–487 (2004).
    Google Scholar 
    83.Bragazza, L. Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009).
    Google Scholar 
    84.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    85.Briemle, G., Nitsche, S. & Nitsche, L. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 203–225 (Bundesamt für Naturschutz, 2002).86.Brown, K. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS ONE https://doi.org/10.1371/journal.pone.0024107 (2011).87.Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).
    Google Scholar 
    88.Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011).
    Google Scholar 
    89.Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).
    Google Scholar 
    90.Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007).CAS 

    Google Scholar 
    91.Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
    Google Scholar 
    92.Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000).
    Google Scholar 
    93.Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador., P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).CAS 

    Google Scholar 
    94.Castro-Diez, P., Puyravaud, J. P. & Cornelissen, J. H. C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476–486 (2000).CAS 

    Google Scholar 
    95.Cavender-Bares, A. K. J. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).
    Google Scholar 
    96.Cavender-Bares, L. S. J. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 522–620 (2007).
    Google Scholar 
    97.Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).
    Google Scholar 
    98.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    Google Scholar 
    99.Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2011).
    Google Scholar 
    100.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    101.Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698 (2007).
    Google Scholar 
    102.Coomes, D. A., Heathcote, S., Godfrey, E. R. & Shepherd, J. J. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    103.Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    104.Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996).
    Google Scholar 
    105.Cornelissen, J. H. C., Diez, P. C. & Hunt., R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).
    Google Scholar 
    106.Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rheenen, J. W. A., & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).CAS 

    Google Scholar 
    107.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    108.Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999).CAS 

    Google Scholar 
    109.Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & van der Heijden., M. G. A. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    110.Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
    Google Scholar 
    111.Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322 (2003).
    Google Scholar 
    112.Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).
    Google Scholar 
    113.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    114.Schwilk, D. W., Cornwell, W. K. & Ackerly., D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    115.Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    116.Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).
    Google Scholar 
    117.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    118.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    119.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).
    Google Scholar 
    120.Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    121.Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).
    Google Scholar 
    122.Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manag. 238, 335–346 (2007).
    Google Scholar 
    123.Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. For. Ecol. Manag. 261, 1643–1653 (2011).
    Google Scholar 
    124.Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian alps: a comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).
    Google Scholar 
    125.de Araujo, A. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil (ORNL DAAC, 2012); http://daac.ornl.gov126.de Vries, F. T. & Bardgett, R. D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    127.Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013).CAS 

    Google Scholar 
    128.Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Google Scholar 
    129.Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interact. https://doi.org/10.1175/EI149.1 (2005).130.Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 193, 101–112 (2007).
    Google Scholar 
    131.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland–forest mosaic. J. Veg. Sci. 18, 847–858 (2007).
    Google Scholar 
    133.DunbarâCo, S., Sporck, M. J. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009).
    Google Scholar 
    134.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 75–91 (Bundesamt für Naturschutz, 2002).135.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 57–74 (Bundesamt für Naturschutz, 2002).136.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 133–175 (Bundesamt für Naturschutz, 2002).137.Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecol. Model. 124, 69–83 (1999).CAS 

    Google Scholar 
    138.Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems 17, 1095–1108 (2014).CAS 

    Google Scholar 
    139.Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th International Conference on Machine Learning and Applications (eds Ferri, C. et al.) 312–317 (International Conference on Machine Learning and Applications (ICMLA), 2014).140.Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Bot. Gall. 157, 45–54 (2010).
    Google Scholar 
    141.Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).
    Google Scholar 
    142.Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    143.Frainer, A. & McKie, B. G. Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Adv. Ecol. Res. 52, 169–200 (2015).
    Google Scholar 
    144.Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 23, 208–222 (2011).
    Google Scholar 
    145.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the plant economics spectrum in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Google Scholar 
    146.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol. 186, 879–889 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    147.Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2013).
    Google Scholar 
    148.Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
    Google Scholar 
    149.Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005).
    Google Scholar 
    150.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).
    Google Scholar 
    151.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    152.Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    154.Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012).
    Google Scholar 
    155.Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca sand dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).
    Google Scholar 
    156.Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2011).
    Google Scholar 
    157.Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010).
    Google Scholar 
    159.He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan plateau. New Phytol. 170, 835–848 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    160.Hickler, T. Plant Functional Types and Community Characteristics along Environmental Gradients on Öland’s Great Alvar (Sweden). Masters thesis (University of Lund, 1999).161.Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008).162.Husson, A. F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’ (CRAN, 2017).163.Jacobs, B. et al. Unraveling the Phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An Interdisciplinary Approach. Syst. Bot. 36, 231–252 (2011).
    Google Scholar 
    164.Jansen, S., Decraene, L. P. R. & Smets, E. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). Syst. Geogr. Plants 70, 171 (2000).
    Google Scholar 
    165.Jansen, S. et al. Contributions to the wood anatomy of the Rubioideae (Rubiaceae). J. Plant Res. 114, 269–289 (2001).
    Google Scholar 
    166.Jansen, S., Piesschaert, F. & Smets, E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am. J. Bot. 87, 20 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    167.Jansen, S., Robbrecht, E., Beeckman, H. & Smets, E. Gaertnera and Pagamea: genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Bot. Acta 109, 466–476 (1996).
    Google Scholar 
    168.S., J., E., R., H., B. & Smets, E. Comparative wood anatomy of African Coffeae (Rubiaceae-Rubioideae). Belg. J. Bot. 130, 47–58 (1997).
    Google Scholar 
    169.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).
    Google Scholar 
    170.Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).
    Google Scholar 
    171.Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    172.Kew, R. B. G. Seed Information Database—SID (Kew, 2008); http://data.kew.org/sid/173.Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
    Google Scholar 
    174.Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
    Google Scholar 
    175.Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457 (2005).
    Google Scholar 
    176.Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).
    Google Scholar 
    177.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 119-126 (Bundesamt für Naturschutz, 2002).178.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 241–246 (Bundesamt für Naturschutz,2002).179.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 273–281 (Bundesamt für Naturschutz, 2002).180.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 197–201 (Bundesamt für Naturschutz, 2002).181.Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001).
    Google Scholar 
    182.Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).
    Google Scholar 
    183.Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).CAS 

    Google Scholar 
    184.Krumbiegel, A. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 93–118 (Bundesamt für Naturschutz, 2002).185.Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 47–56 (Bundesamt für Naturschutz, 2002).186.Kuhn, I., Durka, W. & Klotz, S. Biolflor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).
    Google Scholar 
    187.Kühn, I. & Klotz, S. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 227–239 (Bundesamt für Naturschutz, 2002).188.Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008).
    Google Scholar 
    189.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).
    Google Scholar 
    190.Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2009).
    Google Scholar 
    191.Lens, F. Comparative wood anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Ann. Bot. 91, 835–856 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    192.Lens, F., Baas, P., Jansen, S. & Smets, E. A search for phylogenetically informative wood characters within Lecythidaceae s.l. Am. J. Bot. 94, 483–502 (2007).
    Google Scholar 
    193.Lens, F., Dressler, S., Jansen, S., van Evelghem, L. & Smets, E. Relationships within balsaminoid Ericales: a wood anatomical approach. Am. J. Bot. 92, 941–953 (2005).
    Google Scholar 
    194.Lens, F., Eeckhout, S., Zwartjes, R., Smets, E. & Janssens, S. B. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach: where do we draw the line? Ann. Bot. 109, 783–799 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    195.Lens, F., Endress, M. E., Baas, P., Jansen, S. & Smets, E. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Am. J. Bot. 96, 2168–2183 (2009).
    Google Scholar 
    196.Lens, F., Groeninckx, I., Smets, E. & Dessein, S. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann. Bot. 103, 1049–1064 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    197.Lens, F., Jansen, S., Caris, P., Serlet, L. & Smets, E. Comparative wood anatomy of the primuloid clade (Ericales s.l.). Syst. Bot. 30, 163–183 (2005).
    Google Scholar 
    198.Lens, F., Jansen, S., Robbrecht, E. & Smets, E. Wood anatomy of the Vangueriaea (Ixoroideae-Rubuaceae), with special emphasis on some geofrutices. IAWA J. 21, 443–455 (2000).
    Google Scholar 
    199.Lens, F. et al. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57, 525–552 (2008).
    Google Scholar 
    200.Lens, F., Kron, K. A., Luteyn, J. L., Smets, E. & Jansen, S. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s.l). Ann. Missouri Bot. Gard. 91, 566–592 (2004).
    Google Scholar 
    201.Lens, F., Smets, E. & Jansen, S. Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s.l.). Bot. J. Linn. Soc. 144, 161–179 (2004).
    Google Scholar 
    202.Lens, F., Smets, E. & Melzer, S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 193, 12–17 (2011).
    Google Scholar 
    203.Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2010).
    Google Scholar 
    204.Li, H., Liang, Y., Xu, Q. & Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).CAS 

    Google Scholar 
    205.Louault, F., Pillar, V. D., Aufrèère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16, 151–160 (2005).
    Google Scholar 
    206.Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
    Google Scholar 
    207.Malhado, A. C. M. et al. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44, 728–737 (2012).
    Google Scholar 
    208.Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009).
    Google Scholar 
    209.Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590 (2009).
    Google Scholar 
    210.Malhado, A. C. M. et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Glob. Ecol. Biogeogr. 19, 852–862 (2010).
    Google Scholar 
    211.Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009).CAS 

    Google Scholar 
    212.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
    Google Scholar 
    213.Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400 (2007).
    Google Scholar 
    214.McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).
    Google Scholar 
    215.McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: empirical patterns and a theoretical explanation. Écoscience 6, 286–296 (1999).
    Google Scholar 
    216.Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).CAS 

    Google Scholar 
    217.Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).CAS 

    Google Scholar 
    218.Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002).
    Google Scholar 
    219.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).
    Google Scholar 
    220.Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).
    Google Scholar 
    221.Meng, T.-T. et al. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).
    Google Scholar 
    222.Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2016).
    Google Scholar 
    223.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
    Google Scholar 
    224.Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct. Ecol. 13, 611–622 (1999).
    Google Scholar 
    225.Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    226.Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012).
    Google Scholar 
    227.Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011).
    Google Scholar 
    228.Mischkolz, J. M. Selecting and Evaluating Native Forage Mixtures for the Mixed Grass Prairie. Msc thesis (University of Saskatchewan, 2013).229.Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).
    Google Scholar 
    230.Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2006).
    Google Scholar 
    231.Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    232.Niinemets, U. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).
    Google Scholar 
    233.Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).
    Google Scholar 
    234.Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).
    Google Scholar 
    235.Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 50, 373–382 (2006).
    Google Scholar 
    236.Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291–299 (2006).
    Google Scholar 
    237.Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).
    Google Scholar 
    238.Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    239.Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    240.Otto, B. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 177–196 (Bundesamt für Naturschutz, 2002).241.Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).
    Google Scholar 
    242.Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 27–49 (2007).
    Google Scholar 
    243.Baas, P., Smets, E. & Jansen, S. Vegetative anatomy and effinities of Dirachma socotrana (Dirachmaceae). Syst. Bot. 26, 231–241 (2001).
    Google Scholar 
    244.Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. J. Ecol. 96, 355–366 (2008).
    Google Scholar 
    245.Pakeman, R. J., Lep, J., Kleyer, M., Lavorel, S. & Garnie, E. Relative climatic, edaphic and management controls of plant functional trait signatures. J. Veg. Sci. 20, 148–159 (2009).
    Google Scholar 
    246.Papanastasis, M. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    247.Patiño, S. et al. Branch xylem density variations across the Amazon basin. Biogeosciences 6, 545–568 (2009).
    Google Scholar 
    248.Paula, S. et al. Fire-related traits for plant species of the Mediterranean basin. Ecology 90, 1420–1420 (2009).
    Google Scholar 
    249.Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. J. Ecol. 96, 543–552 (2008).
    Google Scholar 
    250.Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of Dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).
    Google Scholar 
    251.Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2009).
    Google Scholar 
    252.Peñuelas, J. et al. Higher allocation to low cost chemical defenses in invasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    253.Petter, G. et al. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 30, 188–198 (2015).
    Google Scholar 
    254.Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    255.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).
    Google Scholar 
    256.Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).
    Google Scholar 
    257.Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).
    Google Scholar 
    258.Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).
    Google Scholar 
    259.Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).
    Google Scholar 
    260.Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    261.Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    262.Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extention of the WBE model. Ecology 88, 1132–1141 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    263.Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proc. Natl Acad. Sci. USA 104, 13204–13209 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    264.Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999).
    Google Scholar 
    265.Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    266.Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).
    Google Scholar 
    267.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    268.Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    269.Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2012).
    Google Scholar 
    270.Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ’hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).
    Google Scholar 
    271.Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    272.Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    273.Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    274.Sanda V., Bita-Nicolae, C. D. & Barabas, N. The Flora of Spontaneous and Cultivated Cormophytes from Romania (in Romanian) (Editura Ion Bacău, 2003).275.Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011).
    Google Scholar 
    276.Sardans, J., Penuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For. Sci. 54, 513–522 (2008).
    Google Scholar 
    277.Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. https://doi.org/10.1029/2008jg000795 (2008).278.Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (biotree). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).
    Google Scholar 
    279.Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 
    280.Schwallier, R. et al. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Ann. Bot. 119, 1179–1193 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    281.Schweingruber, F. H., & Poschlod, P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc. Res. 79, 195–415 (2005).
    Google Scholar 
    282.Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    283.Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008).
    Google Scholar 
    284.Shipley, B. The use of above-ground maximum relative growth rate as an accurate predictor of whole-plant maximum relative growth rate. Funct. Ecol. 3, 771 (1989).
    Google Scholar 
    285.Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).
    Google Scholar 
    286.Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience 7, 183–194 (2000).
    Google Scholar 
    287.Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111 (1991).
    Google Scholar 
    288.Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002).
    Google Scholar 
    289.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).
    Google Scholar 
    290.Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD Thesis (University of Aberdeen, 2007).291.Trefflich, A., Klotz, S. & Kuhn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 127–131 (Bundesamt für Naturschutz, 2002).292.Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011).
    Google Scholar 
    293.Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian) (Editura Ceres, 2009).294.van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    295.Vergutz, L. et al. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1106296.Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).
    Google Scholar 
    297.Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-cultural Méditerranéenne et Generalisations. PhD thesis (University of Montpellier II, 2005).298.Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004).
    Google Scholar 
    299.Williams, M., Shimabukuro, Y. E. & Rastetter, E.B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1104300.Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010).
    Google Scholar 
    301.Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000).
    Google Scholar 
    302.Wirth, C. & Lichstein, J. W. in Old-Growth Forests: Function, Fate and Value (eds Wirth, C. et al.) 81–113 (Springer, 2009).303.Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ. 22, 1281–1296 (1999).
    Google Scholar 
    304.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).
    Google Scholar 
    305.Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012).
    Google Scholar 
    306.Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
    Google Scholar 
    307.Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).
    Google Scholar 
    308.Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011).
    Google Scholar 
    309.Zanne, A. E. et al. Global Wood Density Database (EOL, 2009); https://opendata.eol.org/dataset/dde86ffb-7741-44a1-acf2-808b3dd6bc97/resource/d1e2b018-a7ce-444b-ac8a-ac43b2355cc9/download/archive310.Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
    Google Scholar 
    311.Kattge, V. et al. TRY – a global database of plant traits. Global Change Biol 9, 2905–2935 (2011).
    Google Scholar 
    312.Shan, H. et al. Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization (ICML, 2012); http://arxiv.org/abs/1206.6439313.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).314.Salakhutdinov, R. & Mnih, A. Probabilistic matrix factorization. In Proc. 20th International Conference on Neural Information Processing Systems (eds Platt, J. C. et al.) 1257–1264 (Curran Associates Inc., 2007).315.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).316.Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    317.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Google Scholar 
    318.Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).
    Google Scholar 
    319.Chessel, D., Dufour, A.-B. & Thioulouse, J. The ade4 package—I: one-table methods. R News 4, 5–10 (2004).
    Google Scholar 
    320.Dray, S., Dufour, A.-B. & Chessel, D. The ade4 package—II: two-table and K-table methods. R News 7, 47–52 (2007).
    Google Scholar 
    321.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).322.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    323.Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    324.Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
    Google Scholar 
    325.Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    326.Arrouays, D. et al. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ 14, 1–19 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    327.Richard, P. & Pielou, E. C. Biogeography (John Wiley & Sons, 1979).328.Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World (International Union for Conservation of Nature and Natural Resources, 1975).329.Dinerstein, E. et al. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank, 1995).330.Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).331.Dasmann, R. F. A System for Defining and Classifying Natural Regions for Purposes of Conservation: A Progress Report (IUCN, 1973). More

  • in

    Environmental drivers of plant form and function

    1.Funk, J. L. et al. Biol. Rev. 92, 1156–1173 (2017).Article 

    Google Scholar 
    2.Hutchinson, G. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    3.Díaz, S. et al. Nature 529, 1–17 (2015).
    Google Scholar 
    4.Westoby, M. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    6.Thomas, H. J. D. et al. Nat. Commun. 11, 1351 (2020).CAS 
    Article 

    Google Scholar 
    7.Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    8.Blonder, B. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    9.Bjorkman, A. D. et al. Global Ecol. Biogeogr. 27, 1402–1411 (2018).Article 

    Google Scholar 
    10.Bjorkman, A. D. et al. Nature 562, 57–62 (2018).CAS 
    Article 

    Google Scholar 
    11.Cornwell, W. K. & Ackerly, D. D. Ecol. Monogr. 79, 109–126 (2009).Article 

    Google Scholar 
    12.Dong, N. et al. New Phytol. 228, 82–94 (2020).CAS 
    Article 

    Google Scholar 
    13.Harrison, S., Damschen, E., Fernandez-Going, B., Eskelinen, A. & Copeland, S. Ann. Bot. 116, 1017–1022 (2015).Article 

    Google Scholar 
    14.Yang, J., Cao, M. & Swenson, N. G. Trends Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    15.Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. New Phytol. 193, 673–682 (2012).Article 

    Google Scholar 
    16.Bardgett, R. D., Mommer, L. & De Vries, F. T. Trends Ecol. Evol. 29, 692–699 (2014).Article 

    Google Scholar 
    17.Messier, J., McGill, B. J. & Lechowicz, M. J. Ecol. Lett. 13, 838–848 (2010).Article 

    Google Scholar 
    18.Arrouays, D. et al. Adv. Agron. 125, 93–134 (2014).Article 

    Google Scholar 
    19.Diaz, S. et al. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    20.Suding, K. N. et al. Global Change Biol. 14, 1125–1140 (2008).Article 

    Google Scholar  More