West Nile virus transmission potential in Portugal
1.Granwehr, B. P. et al. West Nile virus: Where are we now? Lancet. Infect. Dis. 4, 547–556 (2004).PubMed
Google Scholar
2.Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. West Nile virus. Lancet. Infect. Dis. 2, 519–529 (2002).PubMed
Google Scholar
3.Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: Review of the literature. JAMA. 310, 308–315 (2013).CAS
PubMed
PubMed Central
Google Scholar
4.Gamino, V. & Höfle, U. Pathology and tissue tropism of natural West Nile virus infection in birds: A review. Vet. Res. 44, 39 (2013).CAS
PubMed
PubMed Central
Google Scholar
5.Bunning, M. L. et al. Experimental infection of horses with West Nile virus. Emerg. Infect. Dis. 8, 380-386 (2002).PubMed
PubMed Central
Google Scholar
6.Hayes, E. B. et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 11, 1174–1179 (2005).PubMed
PubMed Central
Google Scholar
7.Saiz, J.-C. Animal and Human Vaccines against West Nile Virus. Pathogens. 9, 1073 (2020).PubMed
PubMed Central
Google Scholar
8.Rizzoli, A. et al. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int. J. Parasitology: Parasites. Wildl. 9, 394–401 (2019).
Google Scholar
9.Wang, Y., Yim, S. H. L., Yang, Y. & Morin, C. W. The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. Int. J. Biometeorol. 64, 501–512 (2020).PubMed
Google Scholar
10.Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R. & de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites. Vectors. 11, 29 (2018).PubMed
PubMed Central
Google Scholar
11.Johnson, N. et al. Emerging mosquito-borne threats and the response from european and eastern mediterranean countries. Int. J. Environ. Res. Public. Health. 15, 2775 (2018).PubMed Central
Google Scholar
12.Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. Elife. 6, e29820 (2017).PubMed
PubMed Central
Google Scholar
13.Giovanetti, M. et al. Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Rep. 30, 2275–2283.e7 (2020).CAS
PubMed
Google Scholar
14.Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science. 361, 894–899 (2018).CAS
PubMed
PubMed Central
Google Scholar
15.Wu, J. T., Peak, C. M., Leung, G. M. & Lipsitch, M. Fractional dosing of yellow fever vaccine to extend supply: a modelling study. Lancet. 388, 2904–2911 (2016).PubMed
PubMed Central
Google Scholar
16.Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe, and Asia. Curr. Top. Microbiol. Immunol. 267, 195–221 (2002).CAS
PubMed
Google Scholar
17.Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).CAS
PubMed
PubMed Central
Google Scholar
18.Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 1–11 (2020).
Google Scholar
19.Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. Elife. 9, e58511 (2020).CAS
PubMed
PubMed Central
Google Scholar
20.Haussig, J. M. et al. Early start of the West Nile fever transmission season 2018 in Europe. Euro. Surveill. 23, 1800428 (2018).PubMed Central
Google Scholar
21.Riccardo, F. et al. West Nile virus in Europe: after action reviews of preparedness and response to the 2018 transmission season in Italy, Slovenia, Serbia and Greece. Glob. Health. 16, 47 (2020).
Google Scholar
22.Bakonyi, T. & Haussig, J. M. West Nile virus keeps on moving up in Europe. Eurosurveillance. 25, 2001938 (2020).PubMed Central
Google Scholar
23.Vlaskamp, D. R. M. et al. First autochthonous human West Nile virus infections in the Netherlands, July to August 2020. Eurosurveillance. 25, 2001904 (2020).24.West Nile virus in Europe in 2020 – human cases compared to previous seasons, updated 8 October 2020. https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-europe-2020-human-cases-compared-previous-seasons-updated-8 (2020).25.Weekly updates: 2020 West Nile virus transmission season. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc.26.Council Directive 82/894/EEC of 21 December 1982 on the notification of animal diseases within the Community. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31982L0894.27.European Food Safety Authority. https://www.efsa.europa.eu/en.28.European Centre for Disease Prevention and Control – West Nile virus. https://www.ecdc.europa.eu/en/west-nile-virus-infection.29.REVIVE – Rede de Vigilância de Vetores. http://www2.insa.pt/sites/INSA/Portugues/AreasCientificas/DoencasInfecciosas/AreasTrabalho/EstVectDoencasInfecciosas/Paginas/Revive.aspx.30.Osório, H. C., Zé-Zé, L., Amaro, F. & Alves, M. J. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal – 2008-2014. Int. J. Environ. Res. Public. Health. 11, 11583–11596 (2014).PubMed
PubMed Central
Google Scholar
31.European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (VectorNet). https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/vector-net.32.Filipe, A. R. Anticorpos contra virus transmitidos por artropodos-arbovirus do grupo B em animais do Sul de Portugal: inquérito serológico preliminar com o vírus West Nile, estirpe Egypt 101. Ann. Esc. Nacional de. Saúde. Pública de. Med. Tropical 1, 197–204 (1967).CAS
Google Scholar
33.Filipe, A. R. & Pinto, M. R. Survey for antibodies to arboviruses in serum of animals from southern Portugal. Am. J. Trop. Med. Hyg. 18, 423–426 (1969).CAS
PubMed
Google Scholar
34.Filipe, A. R. & Campaniço, M. Encefalomielite equina por arbovírus. A propósito de uma epizootia presuntiva causada pelo vírus West Nile. Revista Portuguesa de Ciências Veterinárias LXVIII, (1973).35.Filipe, A. R. Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta Virol. 16, 361 (1972).CAS
PubMed
Google Scholar
36.Filipe, A. R. Anticorpos contra arbovírus na população de Portugal. Separata de O Médico. LXVII, 731–732 (1973).37.Formosinho, P. et al. O vírus West Nile em Portugal – estudos de vigilância epidemiológica. Rev. Portuguesa de. Ciências Veterinárias 101, 61–68 (2006).
Google Scholar
38.Barros, S. C. et al. Serological evidence of West Nile virus circulation in Portugal. Vet. Microbiol. 152, 407–410 (2011).PubMed
Google Scholar
39.Almeida, A. P. G. et al. Potential mosquito vectors of arboviruses in Portugal: Species, distribution, abundance and West Nile infection. Trans. R. Soc. Trop. Med. Hyg. 102, 823–832 (2008).CAS
PubMed
Google Scholar
40.Esteves, A. et al. West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 5, 410–413 (2005).PubMed
Google Scholar
41.Barros, S. C. et al. West Nile virus in horses during the summer and autumn seasons of 2015 and 2016, Portugal. Vet. Microbiol. 212, 75–79 (2017).PubMed
Google Scholar
42.World Organization for Animal Health (OIE) – West Nile reports. Information received on 03/09/2015 from Prof. Dr Álvaro Mendonça, Director General, Direcção Geral de Alimentação e Veterinária, Ministério da Agricultura E do Mar, Lisboa, Portugal https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=18585 (2015).43.Connell, J. et al. Two linked cases of West Nile virus (WNV) acquired by Irish tourists in the Algarve, Portugal. Weekly releases (1997–2007) 8, 2517 (2004).44.Alves, M. J. et al. Infecção por vírus West Nile [Flavivírus] em Portugal. Considerações acerca de. um. caso cl.ínico de. s.índrome febril com. exantema 8, 46–51 (2012).
Google Scholar
45.Zé-Zé, L. et al. Human case of West Nile neuroinvasive disease in Portugal, summer 2015. Eurosurveillance 20, 30024 (2015).
Google Scholar
46.Direcção-Geral de Veterinária (Directorate-General of Veterinary). National statistics on official number of equines in subregions of Portugal. http://srvbamid.dgv.min-agricultura.pt/portal/page/portal/DGV/genericos?actualmenu=23555&generico=33698230&cboui=33698230.47.Osório, H. C., Zé-Zé, L., Amaro, F., Nunes, A. & Alves, M. J. Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med. Vet. Entomol. 28, 103–109 (2014).PubMed
Google Scholar
48.Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: A review of the evidence. Ecohealth. 11, 619–632 (2014).PubMed
Google Scholar
49.Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia–a review. Int. J. Environ. Res. Public. Health. 10, 3543–3562 (2013).PubMed
PubMed Central
Google Scholar
50.Eisen, L. et al. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado. J. Med. Entomol. 47, 939–951 (2010).PubMed
Google Scholar
51.Gates, M. C. & Boston, R. C. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Prev. Vet. Med 89, 134–137 (2009).PubMed
Google Scholar
52.Kovach, T. J. & Kilpatrick, A. M. Increased human incidence of West Nile virus disease near rice fields in California but Not in Southern United States. Am. J. Trop. Med. Hyg. 99, 222–228 (2018).PubMed
PubMed Central
Google Scholar
53.Rocheleau, J. P. et al. Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiol. Infect. 145, 2797–2807 (2017).CAS
PubMed
Google Scholar
54.Lourenço, J., Thompson, R. N., Thézé, J. & Obolski, U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. Euro Surveill. 25, 1900629 (2020).PubMed Central
Google Scholar
55.Obolski, U. et al. MVSE: An R-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).PubMed
PubMed Central
Google Scholar
56.Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat. Commun. 12, 151 (2021).CAS
PubMed
PubMed Central
Google Scholar
57.Hansen, B. B., Grøtan, V., Herfindal, I. & Lee, A. M. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43, 1591–1602 (2020).
Google Scholar
58.Arizaga, J. et al. Migratory Connectivity in European Bird Populations: Feather stable isotope values correlate with biometrics of breeding and wintering BluethroatsLuscinia svecica. Ardeola. 62, 255–267 (2015).
Google Scholar
59.Pakanen, V.-M. et al. Migration strategies of the Baltic dunlin: Rapid jump migration in the autumn but slower skipping type spring migration. J. Avian Biol. 49, jav–01513 (2018).
Google Scholar
60.Pardal, S. et al. Shorebird low spillover risk of mosquito-borne pathogens on Iberian wetlands. J. Ornithol. 155, 549–554 (2013).
Google Scholar
61.Rizzoli, A. et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit. Vectors. 8, 1–13 (2015).
Google Scholar
62.Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, e82 (2006).PubMed
PubMed Central
Google Scholar
63.Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).PubMed
PubMed Central
Google Scholar
64.Vogels, C. B. F., Fros, J. J., Göertz, G. P., Pijlman, G. P. & Koenraadt, C. J. M. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit. Vectors 9, 393 (2016).PubMed
PubMed Central
Google Scholar
65.Chuang, T.-W., Hockett, C. W., Kightlinger, L. & Wimberly, M. C. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am. J. Trop. Med. Hyg. 86, 724–731 (2012).PubMed
PubMed Central
Google Scholar
66.Crowder, D. W. et al. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One 8, e55006 (2013).CAS
PubMed
PubMed Central
Google Scholar
67.García-Bocanegra, I. et al. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 65, 567–577 (2018).PubMed
Google Scholar
68.Lourenco, J. MVSE – WNV related files for Portugal. https://doi.org/10.6084/m9.figshare.c.5281664.v1 (2021).69.Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. Biol. Sci. 277, 3601–3608 (2010).PubMed
PubMed Central
Google Scholar
70.Cator, L. J. et al. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol. Evol. 8, 189 (2020).PubMed
PubMed Central
Google Scholar
71.Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).PubMed
PubMed Central
Google Scholar
72.Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).PubMed
PubMed Central
Google Scholar
73.Thézé, J. et al. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host. Microbe. 23, 855–864.e7 (2018).PubMed
PubMed Central
Google Scholar
74.Perez-Guzman, P. N. et al. Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLoS Curr. 10, (2018).75.Pereira Gusmão Maia, Z. et al. Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases. Emerg. Microbes Infect. 9, 53–57 (2020).PubMed
Google Scholar
76.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-climate-change?tab=overview.77.Lourenço, J. & Obolski, U. MVSE R-package official page. https://sourceforge.net/projects/mvse/.78.R-Forge: Circular Statistics: Project Home. https://r-forge.r-project.org/projects/circular/.79.Geraci, M. Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression. J. Stat. Softw. 57, 1–29 (2014).
Google Scholar
80.Damineli, D. S. C., Portes, M. T. & Feijó, J. A. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J. Exp. Bot. 68, 3267–3281 (2017).CAS
PubMed
PubMed Central
Google Scholar
81.wavelets: Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses. https://CRAN.R-project.org/package=wavelets.82.biwavelet GitHub repository. https://github.com/tgouhier/biwavelet.83.Barros, S. C. et al. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J. Virol. Methods 193, 554–557 (2013).CAS
PubMed
Google Scholar
84.Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview.85.Filipe, A. R. & de Andrade, H. R. Arboviruses in the Iberian Peninsula. Acta Virol. 34, 582–591 (1990).CAS
PubMed
Google Scholar
86.Almeida, A. P. G. et al. Mosquito surveys and West Nile virus screening in two different areas of southern Portugal, 2004-2007. Vector. Borne. Zoonotic Dis. 10, 673–680 (2010).PubMed
Google Scholar
87.Freitas, F. B., Novo, M. T., Esteves, A. & de Almeida, A. P. Species Composition and WNV Screening of Mosquitoes from Lagoons in a Wetland Area of the Algarve, Portugal. Front. Physiol. 2, 122 (2012).PubMed
PubMed Central
Google Scholar
88.Parreira, R. et al. Two distinct introductions of the West Nile virus in Portugal disclosed by phylogenetic analysis of genomic sequences. Vector. Borne. Zoonotic. Dis. 7, 344–352 (2007).CAS
PubMed
Google Scholar
89.Fotakis, E. A. et al. Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance. PLoS Negl. Trop. Dis. 14, e0008284 (2020).CAS
PubMed
PubMed Central
Google Scholar
90.Mixão, V. et al. Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector, Culex univittatus, in the Iberian Peninsula. Parasit. Vectors. 9, 601 (2016).PubMed
PubMed Central
Google Scholar
91.Osório, H. C., Zé-Zé, L. & Alves, M. J. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J. Med. Entomol. 49, 717–721 (2012).PubMed
Google Scholar
92.Gomes, B. et al. The Culex pipiens complex in continental Portugal: distribution and genetic structure. J. Am. Mosq. Control. Assoc. 28, 75–80 (2012).PubMed
Google Scholar
93.Gomes, B. et al. Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol. Biol. 15, 197 (2015).PubMed
PubMed Central
Google Scholar
94.Calzolari, M. et al. Detection of mosquito-only flaviviruses in Europe. J. Gen. Virol. 93, 1215–1225 (2012).CAS
PubMed
Google Scholar
95.Hernández-Triana, L. M. et al. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? Med. Vet. Entomol. 34, 86–96 (2020).PubMed
Google Scholar
96.Alves, J. M. et al. Flavivírus transmitidos por mosquitos: um risco potencial para Portugal. Investigação em ambiente e saúde – desafios e estratégias (Universidade de Aveiro) (2009).97.Conte, A. et al. Spatio-temporal identification of areas suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS. One. 10, e0146024 (2015).PubMed
PubMed Central
Google Scholar
98.García-Carrasco, J.-M., Muñoz, A.-R., Olivero, J., Segura, M. & Real, R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl. Trop. Dis. 15, e0009022 (2021).PubMed
PubMed Central
Google Scholar
99.Marini, G., Manica, M., Delucchia, L., Pugliesed, A. & Rosa, R. Spring temperature shapes West Nile virus transmission in Europe. Acta. Trop. 215, 105796 (2021).PubMed
Google Scholar More