1.Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS
Google Scholar
2.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
3.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Google Scholar
4.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Google Scholar
5.Musavi, T. et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 6, 7352–7366 (2016).PubMed
PubMed Central
Google Scholar
6.Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
Google Scholar
7.Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed
PubMed Central
Google Scholar
8.Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
Google Scholar
9.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Google Scholar
10.Díaz, S. et al. The global spectrum of plant form and function. Nature 529,167–171 (2015).
Google Scholar
11.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS
PubMed
PubMed Central
Google Scholar
12.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed
PubMed Central
Google Scholar
13.Thomas, H. J. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).14.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).15.Schimper, A. Plant-Geography Upon A Physiological Basis (Clarendon Press, 1903).16.Warming, E. Oecology Of Plants (Oxford, 1909).17.Raunkiær, C. in Life Forms of Plants and Statistical Plant Geography, 4-16 (Clarendon Press, 1934).18.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
Google Scholar
19.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS
PubMed
PubMed Central
Google Scholar
20.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS
PubMed
PubMed Central
Google Scholar
21.Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
Google Scholar
22.Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
Google Scholar
23.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
Google Scholar
24.Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).CAS
Google Scholar
25.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS
Google Scholar
26.Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).CAS
PubMed
PubMed Central
Google Scholar
27.Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
Google Scholar
28.Blume, H.-P. et al. Soil Science 1st edn.(Springer, Berlin-Heidelberg, 2016).29.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).CAS
Google Scholar
30.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
Google Scholar
31.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2008).32.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
Google Scholar
33.Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).CAS
PubMed
PubMed Central
Google Scholar
34.Corner, E. J. H. The Durian theory or the origin of the modern tree. Ann. Bot. XIII, 367–414 (1949).
Google Scholar
35.Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).
Google Scholar
36.FloresâMoreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019).
Google Scholar
37.Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).CAS
Google Scholar
38.Vitousek, P. Nutrient Cycling and Limitation: Hawai’i as a Model System (Princeton Univ. Press, 2004).39.Shipley, B., Vile, D., Garnier, E., Wright, I. J. & Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct. Ecol. 19, 602–615 (2005).
Google Scholar
40.He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
Google Scholar
41.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).
Google Scholar
42.Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).CAS
Google Scholar
43.Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).
Google Scholar
44.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).
Google Scholar
45.Legay, N. et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot 114, 1011–1021 (2014).CAS
PubMed
PubMed Central
Google Scholar
46.Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
Google Scholar
47.Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).CAS
Google Scholar
48.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS
PubMed
PubMed Central
Google Scholar
49.Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).
Google Scholar
50.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).
Google Scholar
51.Zech, W., Schad, P. & Hintermaier-Erhard, G. Böden der Welt—Ein Bildatlas (Springer Spectrum, 2014).52.Rosenberg, E. et al. (eds) The Prokaryotes: Prokaryotic Communities and Ecophysiology 4th edn. (Springer-Verlag, 2013).53.Niinemets, Ã. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129, 313–338 (2016).PubMed
PubMed Central
Google Scholar
54.Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).CAS
PubMed
PubMed Central
Google Scholar
55.Freschet, G. T. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol. Biogeogr. 20, 755–765 (2011).
Google Scholar
56.Yemefack, M., Rossiter, D. G. & Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 125, 117–143 (2005).
Google Scholar
57.Oldeman, L., Hakkeling, R. & Sombroek, W. Global Assessment of Soil Degradation (GLASOD): World Map of the Status of Human-induced Soil Degradation (United Nations Environment Programme, 1991).58.Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).CAS
Google Scholar
59.Adler, P. B. A Comparison of Livestock Grazing Effects on Sagebrush Steppe, USA, and Patagonian Steppe, Argentina. PhD thesis (Colorado State University, 2003).60.Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).
Google Scholar
61.Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent Univ. (2012).62.Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999).
Google Scholar
63.Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness (a comparison of slow- and fast-growing Poa species). Plant Physiol. 113, 961–965 (1997).CAS
PubMed
PubMed Central
Google Scholar
64.Auger, S. L’Importance de la Variabilité Interspécifique des Traits Fonctionnels par Rapport à la Variabilité Intraspécifique Chez les Jeunes Arbres en Forêt Mature. MSc thesis (Université de Sherbrooke, 2012).65.Bahn, M. et al. in Land-Use Changes in European Mountain Ecosystems. ECOMONT—Concept and Results (eds Cernusca, A. et al.) 247–255 (Blackwell Wissenschaft, 1999).66.Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297–307 (2009).CAS
Google Scholar
67.Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water table and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).
Google Scholar
68.Bakker, C., Rodenburg, J. & van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005).CAS
Google Scholar
69.Baraloto, C. et al. Decoupled leaf and stem economics in rainforest trees. Ecol. Lett. 13, 1338–1347 (2010).
Google Scholar
70.Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. 24, 208–216 (2010).
Google Scholar
71.Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—a comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012).
Google Scholar
72.Blanco, C. C., Sosinski, E. E., dos Santos, B. R. C., da Silva, M. A. & Pillar, V. D. On the overlap between effect and response plant functional types linked to grazing. Community Ecol. 8, 57–65 (2007).
Google Scholar
73.Blonder, B. et al. The shrinkage effect biases estimates of paleoclimate. Am. J. Bot. 99, 1756–1763 (2012).
Google Scholar
74.Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).
Google Scholar
75.Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015).PubMed
PubMed Central
Google Scholar
76.Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).
Google Scholar
77.Bocanegra-González K.T., Fernández-Méndez, F. & David Galvis-Jiménez, J. Funtional groups of tres in secondary forests of the bajo calima region (Buenaventura, Colombia) Boletín CientífiCo Centro de Museos Museo de Historia natura 19, (2015).78.Bodegom, P. M. V., Kanter, M. D. & Aerts, C. B. R. Radial oxygen loss, a plastic property of dune slack plant species. Plant Soil 271, 351–364 (2005).
Google Scholar
79.Bond-Lamberty, C. W. B. & Gower, S. T. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002).
Google Scholar
80.Bond-Lamberty, C. W. B. & Gower, S. T. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002).
Google Scholar
81.Bond-Lamberty, C. W. B. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003).
Google Scholar
82.Bond-Lamberty, C. W. B. & Gower, S. Net primary production and net ecosystem production of a boreal black spruce fire chronosequence. Glob. Change Biol. 10, 473–487 (2004).
Google Scholar
83.Bragazza, L. Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009).
Google Scholar
84.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS
Google Scholar
85.Briemle, G., Nitsche, S. & Nitsche, L. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 203–225 (Bundesamt für Naturschutz, 2002).86.Brown, K. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS ONE https://doi.org/10.1371/journal.pone.0024107 (2011).87.Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).
Google Scholar
88.Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011).
Google Scholar
89.Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).
Google Scholar
90.Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007).CAS
Google Scholar
91.Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
Google Scholar
92.Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000).
Google Scholar
93.Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador., P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).CAS
Google Scholar
94.Castro-Diez, P., Puyravaud, J. P. & Cornelissen, J. H. C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476–486 (2000).CAS
Google Scholar
95.Cavender-Bares, A. K. J. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).
Google Scholar
96.Cavender-Bares, L. S. J. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 522–620 (2007).
Google Scholar
97.Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).
Google Scholar
98.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
99.Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2011).
Google Scholar
100.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS
Google Scholar
101.Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698 (2007).
Google Scholar
102.Coomes, D. A., Heathcote, S., Godfrey, E. R. & Shepherd, J. J. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008).PubMed
PubMed Central
Google Scholar
103.Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS
Google Scholar
104.Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996).
Google Scholar
105.Cornelissen, J. H. C., Diez, P. C. & Hunt., R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).
Google Scholar
106.Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rheenen, J. W. A., & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).CAS
Google Scholar
107.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
Google Scholar
108.Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999).CAS
Google Scholar
109.Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & van der Heijden., M. G. A. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS
Google Scholar
110.Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
Google Scholar
111.Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322 (2003).
Google Scholar
112.Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).
Google Scholar
113.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
Google Scholar
114.Schwilk, D. W., Cornwell, W. K. & Ackerly., D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed
PubMed Central
Google Scholar
115.Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
Google Scholar
116.Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).
Google Scholar
117.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed
PubMed Central
Google Scholar
118.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS
PubMed
PubMed Central
Google Scholar
119.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).
Google Scholar
120.Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).PubMed
PubMed Central
Google Scholar
121.Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).
Google Scholar
122.Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manag. 238, 335–346 (2007).
Google Scholar
123.Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. For. Ecol. Manag. 261, 1643–1653 (2011).
Google Scholar
124.Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian alps: a comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).
Google Scholar
125.de Araujo, A. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil (ORNL DAAC, 2012); http://daac.ornl.gov126.de Vries, F. T. & Bardgett, R. D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).PubMed
PubMed Central
Google Scholar
127.Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013).CAS
Google Scholar
128.Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
Google Scholar
129.Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interact. https://doi.org/10.1175/EI149.1 (2005).130.Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 193, 101–112 (2007).
Google Scholar
131.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS
PubMed
PubMed Central
Google Scholar
132.Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland–forest mosaic. J. Veg. Sci. 18, 847–858 (2007).
Google Scholar
133.DunbarâCo, S., Sporck, M. J. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009).
Google Scholar
134.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 75–91 (Bundesamt für Naturschutz, 2002).135.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 57–74 (Bundesamt für Naturschutz, 2002).136.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 133–175 (Bundesamt für Naturschutz, 2002).137.Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecol. Model. 124, 69–83 (1999).CAS
Google Scholar
138.Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems 17, 1095–1108 (2014).CAS
Google Scholar
139.Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th International Conference on Machine Learning and Applications (eds Ferri, C. et al.) 312–317 (International Conference on Machine Learning and Applications (ICMLA), 2014).140.Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Bot. Gall. 157, 45–54 (2010).
Google Scholar
141.Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).
Google Scholar
142.Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed
PubMed Central
Google Scholar
143.Frainer, A. & McKie, B. G. Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Adv. Ecol. Res. 52, 169–200 (2015).
Google Scholar
144.Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 23, 208–222 (2011).
Google Scholar
145.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the plant economics spectrum in a subarctic flora. J. Ecol. 98, 362–373 (2010).
Google Scholar
146.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol. 186, 879–889 (2010).CAS
PubMed
PubMed Central
Google Scholar
147.Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2013).
Google Scholar
148.Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
Google Scholar
149.Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005).
Google Scholar
150.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).
Google Scholar
151.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed
PubMed Central
Google Scholar
152.Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).CAS
PubMed
PubMed Central
Google Scholar
153.Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012).PubMed
PubMed Central
Google Scholar
154.Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012).
Google Scholar
155.Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca sand dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).
Google Scholar
156.Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2011).
Google Scholar
157.Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005).CAS
PubMed
PubMed Central
Google Scholar
158.Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010).
Google Scholar
159.He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan plateau. New Phytol. 170, 835–848 (2006).PubMed
PubMed Central
Google Scholar
160.Hickler, T. Plant Functional Types and Community Characteristics along Environmental Gradients on Öland’s Great Alvar (Sweden). Masters thesis (University of Lund, 1999).161.Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008).162.Husson, A. F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’ (CRAN, 2017).163.Jacobs, B. et al. Unraveling the Phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An Interdisciplinary Approach. Syst. Bot. 36, 231–252 (2011).
Google Scholar
164.Jansen, S., Decraene, L. P. R. & Smets, E. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). Syst. Geogr. Plants 70, 171 (2000).
Google Scholar
165.Jansen, S. et al. Contributions to the wood anatomy of the Rubioideae (Rubiaceae). J. Plant Res. 114, 269–289 (2001).
Google Scholar
166.Jansen, S., Piesschaert, F. & Smets, E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am. J. Bot. 87, 20 (2000).CAS
PubMed
PubMed Central
Google Scholar
167.Jansen, S., Robbrecht, E., Beeckman, H. & Smets, E. Gaertnera and Pagamea: genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Bot. Acta 109, 466–476 (1996).
Google Scholar
168.S., J., E., R., H., B. & Smets, E. Comparative wood anatomy of African Coffeae (Rubiaceae-Rubioideae). Belg. J. Bot. 130, 47–58 (1997).
Google Scholar
169.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).
Google Scholar
170.Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).
Google Scholar
171.Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed
PubMed Central
Google Scholar
172.Kew, R. B. G. Seed Information Database—SID (Kew, 2008); http://data.kew.org/sid/173.Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
Google Scholar
174.Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
Google Scholar
175.Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457 (2005).
Google Scholar
176.Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).
Google Scholar
177.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 119-126 (Bundesamt für Naturschutz, 2002).178.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 241–246 (Bundesamt für Naturschutz,2002).179.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 273–281 (Bundesamt für Naturschutz, 2002).180.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 197–201 (Bundesamt für Naturschutz, 2002).181.Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001).
Google Scholar
182.Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).
Google Scholar
183.Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).CAS
Google Scholar
184.Krumbiegel, A. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 93–118 (Bundesamt für Naturschutz, 2002).185.Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 47–56 (Bundesamt für Naturschutz, 2002).186.Kuhn, I., Durka, W. & Klotz, S. Biolflor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).
Google Scholar
187.Kühn, I. & Klotz, S. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 227–239 (Bundesamt für Naturschutz, 2002).188.Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008).
Google Scholar
189.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).
Google Scholar
190.Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2009).
Google Scholar
191.Lens, F. Comparative wood anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Ann. Bot. 91, 835–856 (2003).PubMed
PubMed Central
Google Scholar
192.Lens, F., Baas, P., Jansen, S. & Smets, E. A search for phylogenetically informative wood characters within Lecythidaceae s.l. Am. J. Bot. 94, 483–502 (2007).
Google Scholar
193.Lens, F., Dressler, S., Jansen, S., van Evelghem, L. & Smets, E. Relationships within balsaminoid Ericales: a wood anatomical approach. Am. J. Bot. 92, 941–953 (2005).
Google Scholar
194.Lens, F., Eeckhout, S., Zwartjes, R., Smets, E. & Janssens, S. B. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach: where do we draw the line? Ann. Bot. 109, 783–799 (2011).PubMed
PubMed Central
Google Scholar
195.Lens, F., Endress, M. E., Baas, P., Jansen, S. & Smets, E. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Am. J. Bot. 96, 2168–2183 (2009).
Google Scholar
196.Lens, F., Groeninckx, I., Smets, E. & Dessein, S. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann. Bot. 103, 1049–1064 (2009).PubMed
PubMed Central
Google Scholar
197.Lens, F., Jansen, S., Caris, P., Serlet, L. & Smets, E. Comparative wood anatomy of the primuloid clade (Ericales s.l.). Syst. Bot. 30, 163–183 (2005).
Google Scholar
198.Lens, F., Jansen, S., Robbrecht, E. & Smets, E. Wood anatomy of the Vangueriaea (Ixoroideae-Rubuaceae), with special emphasis on some geofrutices. IAWA J. 21, 443–455 (2000).
Google Scholar
199.Lens, F. et al. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57, 525–552 (2008).
Google Scholar
200.Lens, F., Kron, K. A., Luteyn, J. L., Smets, E. & Jansen, S. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s.l). Ann. Missouri Bot. Gard. 91, 566–592 (2004).
Google Scholar
201.Lens, F., Smets, E. & Jansen, S. Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s.l.). Bot. J. Linn. Soc. 144, 161–179 (2004).
Google Scholar
202.Lens, F., Smets, E. & Melzer, S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 193, 12–17 (2011).
Google Scholar
203.Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2010).
Google Scholar
204.Li, H., Liang, Y., Xu, Q. & Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).CAS
Google Scholar
205.Louault, F., Pillar, V. D., Aufrèère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16, 151–160 (2005).
Google Scholar
206.Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
Google Scholar
207.Malhado, A. C. M. et al. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44, 728–737 (2012).
Google Scholar
208.Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009).
Google Scholar
209.Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590 (2009).
Google Scholar
210.Malhado, A. C. M. et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Glob. Ecol. Biogeogr. 19, 852–862 (2010).
Google Scholar
211.Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009).CAS
Google Scholar
212.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
Google Scholar
213.Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400 (2007).
Google Scholar
214.McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).
Google Scholar
215.McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: empirical patterns and a theoretical explanation. Écoscience 6, 286–296 (1999).
Google Scholar
216.Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).CAS
Google Scholar
217.Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).CAS
Google Scholar
218.Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002).
Google Scholar
219.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).
Google Scholar
220.Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).
Google Scholar
221.Meng, T.-T. et al. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).
Google Scholar
222.Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2016).
Google Scholar
223.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
Google Scholar
224.Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct. Ecol. 13, 611–622 (1999).
Google Scholar
225.Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).PubMed
PubMed Central
Google Scholar
226.Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012).
Google Scholar
227.Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011).
Google Scholar
228.Mischkolz, J. M. Selecting and Evaluating Native Forage Mixtures for the Mixed Grass Prairie. Msc thesis (University of Saskatchewan, 2013).229.Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).
Google Scholar
230.Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2006).
Google Scholar
231.Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005).CAS
PubMed
PubMed Central
Google Scholar
232.Niinemets, U. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).
Google Scholar
233.Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).
Google Scholar
234.Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).
Google Scholar
235.Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 50, 373–382 (2006).
Google Scholar
236.Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291–299 (2006).
Google Scholar
237.Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).
Google Scholar
238.Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).PubMed
PubMed Central
Google Scholar
239.Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).PubMed
PubMed Central
Google Scholar
240.Otto, B. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 177–196 (Bundesamt für Naturschutz, 2002).241.Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).
Google Scholar
242.Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 27–49 (2007).
Google Scholar
243.Baas, P., Smets, E. & Jansen, S. Vegetative anatomy and effinities of Dirachma socotrana (Dirachmaceae). Syst. Bot. 26, 231–241 (2001).
Google Scholar
244.Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. J. Ecol. 96, 355–366 (2008).
Google Scholar
245.Pakeman, R. J., Lep, J., Kleyer, M., Lavorel, S. & Garnie, E. Relative climatic, edaphic and management controls of plant functional trait signatures. J. Veg. Sci. 20, 148–159 (2009).
Google Scholar
246.Papanastasis, M. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed
PubMed Central
Google Scholar
247.Patiño, S. et al. Branch xylem density variations across the Amazon basin. Biogeosciences 6, 545–568 (2009).
Google Scholar
248.Paula, S. et al. Fire-related traits for plant species of the Mediterranean basin. Ecology 90, 1420–1420 (2009).
Google Scholar
249.Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. J. Ecol. 96, 543–552 (2008).
Google Scholar
250.Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of Dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).
Google Scholar
251.Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2009).
Google Scholar
252.Peñuelas, J. et al. Higher allocation to low cost chemical defenses in invasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).PubMed
PubMed Central
Google Scholar
253.Petter, G. et al. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 30, 188–198 (2015).
Google Scholar
254.Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).PubMed
PubMed Central
Google Scholar
255.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).
Google Scholar
256.Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).
Google Scholar
257.Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).
Google Scholar
258.Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).
Google Scholar
259.Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).
Google Scholar
260.Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2010).PubMed
PubMed Central
Google Scholar
261.Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006).PubMed
PubMed Central
Google Scholar
262.Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extention of the WBE model. Ecology 88, 1132–1141 (2007).PubMed
PubMed Central
Google Scholar
263.Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proc. Natl Acad. Sci. USA 104, 13204–13209 (2007).CAS
PubMed
PubMed Central
Google Scholar
264.Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999).
Google Scholar
265.Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725 (2008).PubMed
PubMed Central
Google Scholar
266.Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).
Google Scholar
267.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed
PubMed Central
Google Scholar
268.Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).PubMed
PubMed Central
Google Scholar
269.Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2012).
Google Scholar
270.Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ’hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).
Google Scholar
271.Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).PubMed
PubMed Central
Google Scholar
272.Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006).PubMed
PubMed Central
Google Scholar
273.Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).PubMed
PubMed Central
Google Scholar
274.Sanda V., Bita-Nicolae, C. D. & Barabas, N. The Flora of Spontaneous and Cultivated Cormophytes from Romania (in Romanian) (Editura Ion Bacău, 2003).275.Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011).
Google Scholar
276.Sardans, J., Penuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For. Sci. 54, 513–522 (2008).
Google Scholar
277.Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. https://doi.org/10.1029/2008jg000795 (2008).278.Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (biotree). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).
Google Scholar
279.Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecol. Biogeogr. 16, 449–459 (2007).
Google Scholar
280.Schwallier, R. et al. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Ann. Bot. 119, 1179–1193 (2017).PubMed
PubMed Central
Google Scholar
281.Schweingruber, F. H., & Poschlod, P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc. Res. 79, 195–415 (2005).
Google Scholar
282.Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).PubMed
PubMed Central
Google Scholar
283.Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008).
Google Scholar
284.Shipley, B. The use of above-ground maximum relative growth rate as an accurate predictor of whole-plant maximum relative growth rate. Funct. Ecol. 3, 771 (1989).
Google Scholar
285.Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).
Google Scholar
286.Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience 7, 183–194 (2000).
Google Scholar
287.Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111 (1991).
Google Scholar
288.Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002).
Google Scholar
289.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).
Google Scholar
290.Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD Thesis (University of Aberdeen, 2007).291.Trefflich, A., Klotz, S. & Kuhn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 127–131 (Bundesamt für Naturschutz, 2002).292.Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011).
Google Scholar
293.Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian) (Editura Ceres, 2009).294.van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).PubMed
PubMed Central
Google Scholar
295.Vergutz, L. et al. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1106296.Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).
Google Scholar
297.Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-cultural Méditerranéenne et Generalisations. PhD thesis (University of Montpellier II, 2005).298.Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004).
Google Scholar
299.Williams, M., Shimabukuro, Y. E. & Rastetter, E.B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1104300.Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010).
Google Scholar
301.Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000).
Google Scholar
302.Wirth, C. & Lichstein, J. W. in Old-Growth Forests: Function, Fate and Value (eds Wirth, C. et al.) 81–113 (Springer, 2009).303.Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ. 22, 1281–1296 (1999).
Google Scholar
304.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).
Google Scholar
305.Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012).
Google Scholar
306.Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
Google Scholar
307.Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).
Google Scholar
308.Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011).
Google Scholar
309.Zanne, A. E. et al. Global Wood Density Database (EOL, 2009); https://opendata.eol.org/dataset/dde86ffb-7741-44a1-acf2-808b3dd6bc97/resource/d1e2b018-a7ce-444b-ac8a-ac43b2355cc9/download/archive310.Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
Google Scholar
311.Kattge, V. et al. TRY – a global database of plant traits. Global Change Biol 9, 2905–2935 (2011).
Google Scholar
312.Shan, H. et al. Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization (ICML, 2012); http://arxiv.org/abs/1206.6439313.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).314.Salakhutdinov, R. & Mnih, A. Probabilistic matrix factorization. In Proc. 20th International Conference on Neural Information Processing Systems (eds Platt, J. C. et al.) 1257–1264 (Curran Associates Inc., 2007).315.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).316.Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
Google Scholar
317.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
Google Scholar
318.Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).
Google Scholar
319.Chessel, D., Dufour, A.-B. & Thioulouse, J. The ade4 package—I: one-table methods. R News 4, 5–10 (2004).
Google Scholar
320.Dray, S., Dufour, A.-B. & Chessel, D. The ade4 package—II: two-table and K-table methods. R News 7, 47–52 (2007).
Google Scholar
321.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).322.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed
PubMed Central
Google Scholar
323.Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).PubMed
PubMed Central
Google Scholar
324.Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
Google Scholar
325.Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).PubMed
PubMed Central
Google Scholar
326.Arrouays, D. et al. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ 14, 1–19 (2017).PubMed
PubMed Central
Google Scholar
327.Richard, P. & Pielou, E. C. Biogeography (John Wiley & Sons, 1979).328.Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World (International Union for Conservation of Nature and Natural Resources, 1975).329.Dinerstein, E. et al. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank, 1995).330.Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).331.Dasmann, R. F. A System for Defining and Classifying Natural Regions for Purposes of Conservation: A Progress Report (IUCN, 1973). More