More stories

  • in

    Towards circular plastics within planetary boundaries

    Goal and scope of the studyThe goal of this study was to assess the planetary footprints of GHG mitigation strategies for the global production of plastics. To calculate planetary footprints, we apply LCA in combination with the planetary boundaries framework as proposed by ref. 22. As GHG mitigation strategies, we consider recycling, bio-based production and production via CCU, and compare their planetary footprints to the planetary footprints of fossil-based plastics. We use a bottom-up model covering >90% of global plastic production for 2030 (and 2050, Supplementary Information, section 3). The bottom-up model builds on the plastic production system from ref. 10 and includes plastic production, the supply chain and the disposal of plastics at the end of life.Functional unitIn LCA, the functional unit quantifies the functions of the investigated product system. In this study, the function of the product system is the production and disposal of >90% of global plastics. To cover >90% of global plastics, we define the functional unit as the yearly global production and disposal of 14 large-volume plastics (summarized in Supplementary Table 5). We estimated the yearly production volumes for 2030 and 2050 based on the production volumes in 2015 and the annual growth rates shown in Supplementary Table 5.Our assessment includes plastic disposal. However, the production and disposal of plastics do not necessarily occur in the same year. For instance, while polyolefins used for plastic packaging have an average lifetime of 6 months, the average lifetime of polyurethane used in construction is 35 years11. Including the lifetime of plastics, and hence, the temporal difference between production and disposal, would lead to an increasing plastic stock. An increasing stock, in turn, represents a carbon sink during the production year that appears to enable the production of net-negative GHG emission plastics based on biomass or CCU. However, the plastic stock is not a permanent carbon sink, which would be required for producing net-negative GHG emission plastics55. To avoid misleading conclusions about net-negative bio- and CCU-based plastics, we assign the planetary footprints from disposal to the year of plastic production. Thereby, we conservatively assess the planetary footprints of plastics.In addition, we address the challenge highlighted in ref. 56 that the increasing demand for plastics renders determining the absolute sustainability of plastics difficult. We meet this challenge by assuming a steady-state production system with a recurring functional unit in the same amount every year. We thereby analyse discrete scenarios with constant consumption levels for plastics. Therefore, our conclusions depend on the accuracy of the demand forecasts and apply only to the production volumes considered.System boundariesWe use cradle-to-grave system boundaries, including plastic production and supply chain, potential recycling and final disposal at the end of life. Assessing the use phase of plastics is not possible because of a lack of data. The versatile properties of plastics result in a wide range of applications that cannot be represented in a single study. Furthermore, it would be necessary to consider not only the emissions of the use phase (probably relatively small) but also the system-wide environmental consequences of using plastics in each application compared to other materials. Thus, a consequential assessment of the plastic use phase is desirable but beyond the scope of this study.The plastics supply chain includes several intermediate chemicals such as monomers, solvents or other reactants. The bottom-up model covers the production of all intermediate chemicals in the foreground system. As a background system, we use aggregated datasets from the LCA database ecoinvent. A list of all intermediate chemicals and all aggregated datasets can be found in Supplementary Information, section 1. In addition, the foreground system of the bottom-up model does not include environmental impacts from infrastructure and transportation because of a lack of data. However, we consider the environmental impacts of infrastructure and transportation from other industrial sectors by aggregated datasets, for example, from electricity generation and biomass cultivation.The bottom-up model includes the best available fossil-based technologies and the following technologies for plastic disposal and virgin production based on biomass and CCU.Plastic waste disposalThe bottom-up model includes three options for plastic waste disposal: landfilling, incineration with energy recovery and recycling. Plastic waste can occur in several forms: as sorted fraction of municipal solid waste, as mixed plastics and residues from sorting, and as residues from mechanical recycling. For all fractions, we include waste incineration with energy recovery and landfilling.Landfilled plastic waste is assumed to degrade by approximately 1% of the contained carbon, which is in line with the ecoinvent database45. Mechanical recycling is only modelled for sorted fractions of packaging waste owing to impurities of mixed and non-packaging wastes. In contrast, chemical recycling can be applied to all plastic fractions. In this study, we model chemical recycling as pyrolysis to refinery feedstock, that is, naphtha. The pyrolysis has yields of 29 to 69% depending on the type of plastic (details in Supplementary Information, section 1). Furthermore, we include options for chemical recycling of plastic waste to monomers, which are still early-stage technologies. To derive the minimal necessary recycling rate in Fig. 5, we apply an optimistic scenario with a 95% yield of chemical recycling processes following common modelling in life-cycle inventories of chemicals (Supplementary Information, section 3)57. All calculations are constrained to maximum recycling rates of 94% as the remaining 6% are assumed to be the minimal landfilling rate until the middle of the century11. The assumption is based on historical trends in end-of-life treatment of plastics.Bio-based productionBio-based GHG mitigation is frequently discussed in the literature and is often associated with competition with the food industry58. To avoid competition with the food industry, the bottom-up model is restricted to lignocellulosic biomass as feedstock, that is, energy crops, forest residues and by-products from other industrial biomass processes (for example, bagasse). In this study, unless mentioned otherwise, we model biomass as energy crops because of their potential for large-scale application (Supplementary Information, section 3). However, we conduct a sensitivity analysis for other lignocellulosic biomass sources to assess the sustainability of bio-based plastics in more detail.For each biomass type, we account for the carbon uptake during the biomass growth phase by giving a credit corresponding to the biomass carbon content. We do not consider land use change emissions as current literature lacks an assessment of land use change effects on other Earth-system processes besides climate change.For biomass processing, we include the following high-maturity processes: gasification to syngas and fermentation to ethanol, and the subsequent conversion to methanol and ethylene (Supplementary Table 1). Methanol and ethylene can be further converted to propylene and aromatics, which all together represent the building blocks for all plastics in this study.CCU-based productionCCU-based plastic production particularly requires CO2 and hydrogen. For CO2 supply, we consider CO2 capture from highly concentrated point sources within the plastics supply chain. Highly concentrated point sources include the conventional fossil-based processes, ammonia production, steam methane reforming, ethylene oxide production, the bio-based processes for ethanol and syngas, and plastic waste incineration. Capturing from processes within the plastics supply chain is limited by the amount of CO2 emitted by these processes and avoids the corresponding emissions. For these processes, we considered the energy demand for compressing the CO2 with 0.4 MJ of electricity59. For waste incineration, we consider a decrease in energy output when capturing CO2. All further CO2 sources are conservatively approximated by direct air capture. For 1 kg CO2 captured via direct air capture, we include an uptake of 1 kg of CO2 equivalent while considering the energy demand of 1.29 MJ electricity and 4.19 MJ heat60.Hydrogen for CCU is produced by water electrolysis, with an overall efficiency of 67%61. Previous studies have already shown that renewable electricity is required for CCU to be environmentally beneficial13. Thus, we conduct a sensitivity analysis for multiple electricity technologies to assess their influence on the sustainability of CCU-based plastics (Supplementary Information).For CCU-based production, we include high-maturity technologies, such as CO2-based methanol and methane, as well as subsequent production of olefins and aromatics (Supplementary Table 1). We do not consider CCS as an additional scenario, as fossil resources and storage capacities are ultimately limited. Therefore, CCS may serve as an interim solution for GHG mitigation but stands in contrast to long-term sustainability as the goal of this study.Pathway definitionWe assess nine pathways for the plastics industry towards sustainability. Pathway 1 is fossil-based plastic production (current recycling rate of 23%) that serves as a reference. We also include two pathways that combine all circular technologies: Pathway 2, which minimizes the climate change impact (climate-optimal), and pathway 3, which minimizes the maximal transgression of the share of SOS of the plastics industry (balanced) (Fig. 2). To assess the impact of switching from fossil to renewable feedstocks, we introduce pathway 4, which is bio-based, and pathway 5, which is CCU-based (Fig. 3). Pathways 4 and 5 include the current recycling rate of 23%. In addition, we introduce three pathways with the maximum recycling rates of 94%: pathway 6, in which the remaining virgin production is based on fossil resources; pathway 7, in which it is based on biomass; and pathway 8, in which it is based on CO2 (Fig. 3). Pathway 9 combines biomass, CCU and recycling, and additionally includes chemical recycling of polymers to monomers to calculate the minimal recycling rate to achieve sustainable plastics (Fig. 5).The planetary boundaries frameworkWe follow the recommendations for absolute environmental sustainability assessment in ref. 29 and choose the planetary boundaries framework for the assessment. The planetary boundaries framework suits the goal of the study best because of its precautionary principles for the definition of environmental thresholds, the SOS. We assess eight of the nine Earth-system processes suggested in ref. 21, namely, climate change, ocean acidification, changes in biosphere integrity, the biogeochemical flow of nitrogen and phosphorus (referred to as N cycle and P cycle), aerosol loading, freshwater use, stratospheric ozone depletion, and land-system change. We do not assess the Earth-system process of novel entities since neither control variables nor the boundary itself is yet adequately defined22. We consider the global boundaries for the Earth-system processes in line with the scope of this study. These global boundaries and the corresponding calculation of planetary footprints are subject to assumptions and thus incorporate uncertainty (Supplementary Information, section 2).For the two subprocesses for climate change (namely, atmospheric CO2 concentration and energy imbalance at the top-of-atmosphere), we only consider the energy imbalance at the top-of-atmosphere quantified by radiative forcing. We focus on radiative forcing, as the control variable is more inclusive and fundamental, and the global limits are stricter than for atmospheric CO2 concentration21. Thereby, we conservatively assess climate change.Biosphere integrity is divided into functional and genetic diversity of species. Preserving functional diversity ensures a stable ecosystem by maintaining all ecosystem services. We assess the functional diversity of species using the method proposed in ref. 18. The method covers the mean species abundance loss caused by the two main stressors, direct land use and GHG emissions, as a proxy for the biodiversity intactness index. Genetic diversity provides the long-term ability of the biosphere to persist under and adapt to gradual changes of the environment21. Genetic diversity is often approximated by the global extinction rate. However, using the global extinction rate does not fully cover variation of genetic composition, resulting in high uncertainties when quantifying genetic diversity18. Thus, we focus on functional diversity.Downscaling of the safe operating spaceAs the plastics industry accounts for only a fraction of all human activities, we assign a share of the SOS to plastics. The plastics industry should operate within its assigned share to be considered environmentally sustainable. To assign a share of SOS to the plastics industry, we apply utilitarian downscaling principles. Utilitarian downscaling principles are tailored to maximize welfare in society29. We approximate welfare by consumption expenditure on plastics as an economic indicator for consumer preferences and human needs62. An extensive discussion on the other downscaling principles and their implications can be found in Supplementary Information.Although the final consumption expenditures on plastics are negligible, the industry consumes plastics to produce other goods and services. Accordingly, plastics are produced mostly in the upstream supply chain to support the final consumption of other goods and services. Thus, consuming other goods and services induces plastic production. To account for this inducement of plastic production, we used the total global plastic production xplastics to represent the global intermediate and final consumption expenditure on plastics. For this purpose, we use the gross output vector x of the product-by-product input–output table of EXIOBASE for the year 2020 (ref. 63). To calculate the share of SOS of the plastics industry, we divide the total global plastic production xplastics by the gross world product. The gross world product equals the total global final consumption expenditure. Analogously, we also consider the end-of-life treatment of plastics to be consistent with the system boundaries of the environmental assessment.We estimate the share of SOS for the plastics industry for 2030 and 2050 based on data for the year 2020. Accordingly, we assume that the market share of the plastics industry and, therefore, its share of SOS do not change in the coming years despite the increasing production volume of plastics. Thereby, we implicitly assume that all industries grow equally economically. Alternatively, economic forecasting models could estimate future market shares of plastics. However, applying economic forecasting models is complex, and the results would still be highly uncertain, especially if industry pursues low-carbon technology pathways. Therefore, estimating future market shares is beyond the scope of this study.Technology choice modelTo calculate the planetary footprint of plastics, we use a bottom-up model of the plastics industry. The model builds on the technology choice model (TCM) that allows for linear optimization of production systems27. The TCM represents the production system based on the following elements: technologies, intermediate flows, elementary flows and final demands. Ref. 27 describes each element in detail.The TCM is based on the established computational structure of LCA64. This structure arranges the data that represent the physical production system in the technology matrix A and the elementary flow matrix B. In the technology matrix A, columns represent technologies, and rows represent intermediate flows. Therefore, the coefficient aij of the A matrix corresponds to an intermediate flow i that is either produced (aij  > 0) or consumed (aij  More

  • in

    Climate drives global functional trait variation in lizards

    Higham, T. E. et al. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends Ecol. Evol. 36, 860–873 (2021).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. & Chown, S. L. Where do functional traits come from? The role of theory and models. Funct. Ecol. 35, 1385–1396 (2021).Article 
    CAS 

    Google Scholar 
    Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).Article 

    Google Scholar 
    Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. R. Soc. B 275, 1469–1478 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubalcaba, J. G. & Jimeno, B. Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian species. Funct. Ecol. 36, 64–72 (2022).Article 
    CAS 

    Google Scholar 
    Anderson, R. O., White, C. R., Chapple, D. G. & Kearney, M. R. A hierarchical approach to understanding physiological associations with climate. Glob. Ecol. Biogeogr. 31, 332–346 (2022).Article 

    Google Scholar 
    Angilletta, M. J. Jr, Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).Article 

    Google Scholar 
    Olalla‐Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad‐scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33, 781–793 (2006).Article 

    Google Scholar 
    Amado, T., Moreno Pinto, M. G. & Olalla‐Tárraga, M. Á. Anuran 3D models reveal the relationship between surface area‐to‐volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).
    Google Scholar 
    Castro, K. M. S. A. et al. Water constraints drive allometric patterns in the body shape of tree frogs. Sci. Rep. 11, 1218 (2021).Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 
    PubMed 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2021).Article 
    PubMed 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2017).Article 

    Google Scholar 
    Ricklefs, R. E. & Schluter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives (Univ. Chicago Press, 1993).Angilletta, M. J. Jr, Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).Article 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D. The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory Biosci. 129, 247–253 (2010).Article 
    PubMed 

    Google Scholar 
    Slavenko, A. et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Glob. Ecol. Biogeogr. 28, 471–483 (2019).Article 

    Google Scholar 
    Stevenson, R. D. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am. Nat. 125, 102–117 (1985).Article 

    Google Scholar 
    Rubalcaba, J. G., Gouveia, S. F. & Olalla‐Tárraga, M. A. A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Glob. Ecol. Biogeogr. 28, 793–803 (2019).Article 

    Google Scholar 
    Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).Article 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol. Biol. 8, 68 (2008).Jablonski, D. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62, 715–739 (2008).Article 
    PubMed 

    Google Scholar 
    Kearney, M. R., Porter, W. P. & Huey, R. B. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods Ecol. Evol. 12, 458–467 (2021).Article 

    Google Scholar 
    Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boretto, J. M., Fernández, J. B., Cabezas-Cartes, F., Medina, M. S. & Ibargüengoytía, N. R. in Lizards of Patagonia (eds Morando, M. & Avila, L. J.) 335–371 (Springer, 2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 
    PubMed 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Chown, S. L. & Clusella‐Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article 

    Google Scholar 
    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology. Oecologia 13, 1–54 (1973).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).Article 

    Google Scholar 
    Martin, T. L. & Huey, R. B. Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).Article 
    PubMed 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics 2nd edn (Springer-Verlag, 1998).Mao, J. & Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015 (ORNL DAAC, 2019).Meiri, S. et al. Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeogr. 22, 834–845 (2013).Article 

    Google Scholar 
    Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renardy, M., Hult, C., Evans, S., Linderman, J. J. & Kirschner, D. E. Global sensitivity analysis of biological multiscale models. Curr. Opin. Biomed. Eng. 11, 109–116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carnell, R. lhs: Latin hypercube samples. R package version 1.1.1 (2020).Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).Article 

    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).Article 
    PubMed 

    Google Scholar 
    Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).Article 

    Google Scholar 
    Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLLMs. Syst. Biol. 68, 234–251 (2019).Article 
    PubMed 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2020).Article 

    Google Scholar 
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    Koenker, R. et al. Package ‘quantreg’ (R-CRAN, 2018); https://cran.r-project.org/web/packages/quantreg/quantreg.pdfGriffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).Article 
    PubMed 

    Google Scholar 
    Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).Article 

    Google Scholar 
    Rubalcaba, J. G. et al. Data: ‘Climate drives global functional trait variation in lizards’. figshare https://doi.org/10.6084/m9.figshare.19949315 (2022). More

  • in

    Strong temporal variation of consumer δ13C value in an oligotrophic reservoir is related to water level fluctuation

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    Fry, B. Stable Isotope Ecology (Springer, 2007).
    Google Scholar 
    Boon, P. I. & Bunn, S. E. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquat. Bot. 48, 99–108 (1994).Article 

    Google Scholar 
    Kling, G. W., Fry, B. & O’Brien, W. J. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73, 561–566 (1992).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).Article 

    Google Scholar 
    Coulter, A. A., Swanson, H. K. & Goforth, R. R. Seasonal variation in resource overlap of invasive and native fishes revealed by stable isotopes. Biol. Invasions 21, 315–321 (2019).Article 

    Google Scholar 
    Jung, A. S., Van Der Veer, H. W., Van Der Meer, M. T. & Philippart, C. J. Seasonal variation in the diet of estuarine bivalves. PLoS One 14, e0217003 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Devlin, S. P., Vander Zanden, M. J. & Vadeboncoeur, Y. Depth-specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshw. Biol. 58, 2389–2400 (2013).CAS 

    Google Scholar 
    Possamai, B., Vieira, J. P., Grimm, A. M. & Garcia, A. M. Temporal variability (1997–2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary. Estuar. Coast. Shelf Sci. 202, 145–154 (2018).Article 
    ADS 

    Google Scholar 
    Syvaranta, J., Hamalainen, H. & Jones, R. I. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw. Biol. 51, 1090–1102 (2006).Article 
    CAS 

    Google Scholar 
    Janbu, A. D., Paasche, Ø. & Talbot, M. R. Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway. J. Paleolimnol. 46, 29 (2011).Article 
    ADS 

    Google Scholar 
    Leng, M. et al. Late quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences 7, 3109–3122 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, Q., Shen, J., Liu, X., Zhang, E. & Xiao, X. A high-resolution climatic change since holocene inferred from multi-proxy of lake sediment in westerly area of China. Chin. Sci. Bull. 52, 1970–1979 (2007).Article 

    Google Scholar 
    Finlay, J. C. & Kendall, C. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Stable Isot. Ecol. Environ. Sci. 2, 283–333 (2007).Article 

    Google Scholar 
    Harvey, C. J. & Kitchell, J. F. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. Can. J. Fish. Aquat. Sci. 57, 1395–1403 (2000).Article 
    CAS 

    Google Scholar 
    Xu, D. et al. Spatial heterogeneity of food web structure in a large shallow eutrophic lake (Lake Taihu, China): Implications for eutrophication process and management. J. Freshw. Ecol. 34, 229–245 (2019).Article 
    CAS 

    Google Scholar 
    Ruokonen, T., Kiljunen, M., Karjalainen, J. & Hämäläinen, H. Invasive crayfish increase habitat connectivity: A case study in a large boreal lake. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2013034 (2012).Article 

    Google Scholar 
    Veselý, L. et al. The crayfish distribution, feeding plasticity, seasonal isotopic variation and trophic role across ontogeny and habitat in a canyon-shaped reservoir. Aquat. Ecol. 54, 1169–1183 (2020).Article 

    Google Scholar 
    Kalff, J. Limnology: Inland Water Ecosystems Vol. 592 (Prentice Hall, 2002).
    Google Scholar 
    Polačik, M., Harrod, C., Blažek, R. & Reichard, M. Trophic niche partitioning in communities of African annual fish: Evidence from stable isotopes. Hydrobiologia 721, 99–106 (2014).Article 

    Google Scholar 
    Costalago, D., Navarro, J., Álvarez-Calleja, I. & Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460, 169–181 (2012).Article 
    ADS 

    Google Scholar 
    Matthews, B. & Mazumder, A. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnol. Oceanogr. 50, 1404–1414 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Taipale, S., Kankaala, P., Tiirola, M. & Jones, R. I. Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89, 463–474 (2008).Article 
    PubMed 

    Google Scholar 
    Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Stenroth, P. et al. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): The influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci. 63, 821–831 (2006).Article 
    CAS 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).Article 
    PubMed 

    Google Scholar 
    Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).Article 
    PubMed 

    Google Scholar 
    Irz, P., Laurent, A., Messad, S., Pronier, O. & Argillier, C. Influence of site characteristics on fish community patterns in French reservoirs. Ecol. Freshw. Fish 11, 123–136 (2002).Article 

    Google Scholar 
    Sutela, T., Aroviita, J. & Keto, A. Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecol. Indic. 24, 185–192 (2013).Article 

    Google Scholar 
    Hunt, P. & Jones, J. The effect of water level fluctuations on a littoral fauna. J. Fish Biol. 4, 385–394 (1972).Article 

    Google Scholar 
    Kaster, J. & Jacobi, G. Benthic macroinvertebrates of a fluctuating reservoir. Freshw. Biol. 8, 283–290 (1978).Article 

    Google Scholar 
    Kraft, K. The effect of unnatural water level fluctuations on benthic invertebrates in Voyageurs National Park. Research⁄Resources Management Report MWR-12. US Department of the Interior, National Park Service. International Falls, Minnesota (1988).Glon, M., Larson, E. R. & Pangle, K. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61 (2016).Article 
    CAS 

    Google Scholar 
    Hesslein, R. H., Hallard, K. & Ramlal, P. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50, 2071–2076 (1993).Article 
    CAS 

    Google Scholar  More

  • in

    Denser forests across the USA experience more damage from insects and pathogens

    Teale, S. A. & Castello, J. D. The past as key to the future: a new perspective on forest health. In Forest Health: An Integrated Perspective (eds Castello, J. D. & Teale, S. A.) 3–16 (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511974977.002.Chapter 

    Google Scholar 
    Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).Article 
    PubMed 

    Google Scholar 
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    North, M. P. et al. Operational resilience in western US frequent-fire forests. For. Ecol. Manag. 507, 120004 (2022).Article 

    Google Scholar 
    Raffa, K. F. et al. A literal use of “forest health” safeguards against misuse and misapplication. J. For. 107, 276–277 (2009).
    Google Scholar 
    Kolb, T. E., Wagner, M. R. & Covington, W. W. Concepts of forest health: Utilitarian and ecosystem perspectives. J. For. 92, 10–15 (1994).
    Google Scholar 
    Cale, J. A. et al. A quantitative index of forest structural sustainability. Forests 5, 1618–1634 (2014).Article 

    Google Scholar 
    Lintz, H. E. et al. Quantifying density-independent mortality of temperate tree species. Ecol. Indic. 66, 1–9 (2016).Article 

    Google Scholar 
    Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bettinger, P., Boston, K., Siry, J. P. & Grebner, D. L. Chapter 2—Valuing and Characterizing Forest Conditions. In Forest Management and Planning (eds Bettinger, P. et al.) 21–63 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-809476-1.00002-3.Chapter 

    Google Scholar 
    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fettig, C. J. et al. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 238, 24–53 (2007).Article 

    Google Scholar 
    Morin, R. S. & Liebhold, A. M. Invasions by two non-native insects alter regional forest species composition and successional trajectories. For. Ecol. Manag. 341, 67–74 (2015).Article 

    Google Scholar 
    Nowak, J. T., Meeker, J. R., Coyle, D. R., Steiner, C. A. & Brownie, C. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: Evaluation of the southern pine beetle prevention program. J. For. 113, 454–462 (2015).
    Google Scholar 
    Asaro, C. & Chamberlin, L. A. Outbreak history (1953–2014) of spring defoliators impacting oak-dominated forests in Virginia, with emphasis on gypsy moth (Lymantria dispar L.) and fall cankerworm (Alsophila pometaria Harris). Am. Entomol. 61, 174–185 (2015).Article 

    Google Scholar 
    Negrón, J. F. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range. For. Ecol. Manag. 107, 71–85 (1998).Article 

    Google Scholar 
    Negrón, J. F. & Popp, J. B. Probability of ponderosa pine infestation by mountain pine beetle in the Colorado Front Range. For. Ecol. Manag. 191, 17–27 (2004).Article 

    Google Scholar 
    Schmid, J. M. & Frye, R. H. Spruce Beetle in the Rockies. Gen. Tech. Rep. RM-49 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1977).
    Google Scholar 
    Krivak-Tetley, F. E. et al. Aggressive tree killer or natural thinning agent? Assessing the impacts of a globally important forest insect. For. Ecol. Manag. 483, 118728 (2021).Article 

    Google Scholar 
    Bradford, J. B. et al. Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance. J. Appl. Ecol. 59, 549–559 (2022).Article 

    Google Scholar 
    Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).Article 
    PubMed 

    Google Scholar 
    Furniss, T. J., Das, A. J., van Mantgem, P. J., Stephenson, N. L. & Lutz, J. A. Crowding, climate, and the case for social distancing among trees. Ecol. Appl. 32, e2507 (2022).Article 
    PubMed 

    Google Scholar 
    Woodall, C. W. & Weiskittel, A. R. Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Gandhi, K. J. K., Campbell, F. & Abrams, J. Current status of forest health policy in the United States. Insects 10, 1–14 (2019).Article 

    Google Scholar 
    Ciesla, W. M. The role of human activities on forest insect outbreaks worldwide. Int. For. Rev. 17, 269–281 (2015).
    Google Scholar 
    Jactel, H. & Brockerhoff, E. G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848 (2007).Article 
    PubMed 

    Google Scholar 
    Marini, L., Ayres, M. P. & Jactel, H. Impact of stand and landscape management on forest pest damage. Annu. Rev. Entomol. 67, 181–199 (2022).Article 
    PubMed 

    Google Scholar 
    Guyot, V., Castagneyrol, B., Vialatte, A., Deconchat, M. & Jactel, H. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 20151037 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kneeshaw, D. D. et al. The vision of managing for pest-resistant landscapes: Realistic or utopic? Curr. For. Rep. 7, 97–113 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Chisholm, P. J., Stevens-Rumann, C. S. & Davis, T. S. Interactions between climate and stand conditions predict pine mortality during a bark beetle outbreak. Forests 12, 360 (2021).Article 

    Google Scholar 
    Ferrell, G. T., Otrosina, W. J. & Demars, C. J. Predicting susceptibility of white fir during a drought-associated outbreak of the fir engraver, Scolytus ventralis in California. Can. J. For. Res. 24, 302–305 (1994).Article 

    Google Scholar 
    Asaro, C., Nowak, J. T. & Elledge, A. Why have southern pine beetle outbreaks declined in the southeastern U.S. with the expansion of intensive pine silviculture? A brief review of hypotheses. For. Ecol. Manag. 391, 338–348 (2017).Article 

    Google Scholar 
    Nowak, J. T., Klepzig, K. D., Coyle, D. R., Carothers, W. A. & Gandhi, K. J. K. Southern pine beetles in central hardwood forests: Frequency, spatial extent, and changes to forest structure. In Managing Forest Ecosystems Volume 32: Natural Disturbances and Historic Range of Variation (eds Greenberg, C. H. & Collins, B. S.) 73–88 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-21527-3_4.Chapter 

    Google Scholar 
    Crocker, S. J., Liknes, G. C., McKee, F. R., Albers, J. S. & Aukema, B. H. Stand-level factors associated with resurging mortality from eastern larch beetle (Dendroctonus simplex LeConte). For. Ecol. Manag. 375, 27–34 (2016).Article 

    Google Scholar 
    Mattson, W. J. & Addy, N. D. Phytophagous insects as regulators of forest primary production. Science 190, 515–522 (1975).Article 
    ADS 

    Google Scholar 
    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).Article 
    PubMed 

    Google Scholar 
    Grégoire, J. C., Raffa, K. F. & Lindgren, B. S. Economics and politics of bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F. E. & Hofstetter, R. W.) 585–613 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-417156-5.00015-0.Chapter 

    Google Scholar 
    Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380, 321–334 (2016).Article 

    Google Scholar 
    Fettig, C. J. et al. Changing climates, changing forests: A western North American perspective. J. For. 111, 214–228 (2013).
    Google Scholar 
    Liebhold, A. M. et al. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 19, 1208–1216 (2013).Article 

    Google Scholar 
    Siegert, N. W., Mccullough, D. G., Liebhold, A. M. & Telewski, F. W. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 20, 847–858 (2014).Article 

    Google Scholar 
    Smith, A., Herms, D. A., Long, R. P. & Gandhi, K. J. K. Community composition and structure had no effect on forest susceptibility to invasion by the emerald ash borer (Coleoptera: Buprestidae). Can. Entomol. 147, 318–328 (2015).Article 

    Google Scholar 
    Aukema, J. E. et al. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60, 886–897 (2010).Article 

    Google Scholar 
    Hicke, J. A. et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Chang. Biol. 18, 7–34 (2012).Article 
    ADS 

    Google Scholar 
    Feeny, P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 (1970).Article 

    Google Scholar 
    Schowalter, T. D., Hargrove, W. W. & Crossley, D. A. Herbivory in forested ecosystems. Annu. Rev. Entomol. 31, 177–196 (1986).Article 

    Google Scholar 
    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).Article 

    Google Scholar 
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article 

    Google Scholar 
    Guyot, V. et al. Tree diversity limits the impact of an invasive forest pest. PLoS One 10, 1–16 (2015).Article 

    Google Scholar 
    Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Acker, S. A., Boetsch, J. R., Fallon, B. & Denn, M. Stable background tree mortality in mature and old-growth forests in western Washington (NW USA). For. Ecol. Manag. 532, 120817 (2023).Article 

    Google Scholar 
    Shive, K. L. et al. Ancient trees and modern wildfires: Declining resilience to wildfire in the highly fire-adapted giant sequoia. For. Ecol. Manag. 511, 120110 (2022).Article 

    Google Scholar 
    Searle, E. B., Chen, H. Y. H. & Paquette, A. Higher tree diversity is linked to higher tree mortality. Proc. Natl. Acad. Sci. U.S.A. 119, 1–7 (2022).Article 

    Google Scholar 
    Hart, S. J., Veblen, T. T., Eisenhart, K. S., Jarvis, D. & Kulakowski, D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 95, 930–939 (2014).Article 
    PubMed 

    Google Scholar 
    Hart, S. J., Veblen, T. T. & Kulakowski, D. Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century? For. Ecol. Manag. 318, 44–53 (2014).Article 

    Google Scholar 
    Temperli, C. et al. Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? For. Ecol. Manag. 334, 53–63 (2014).Article 

    Google Scholar 
    Six, D. L., Biber, E. & Long, E. Management for mountain pine beetle outbreak suppression: Does relevant science support current policy? Forests 5, 103–133 (2014).Article 

    Google Scholar 
    Black, S. H., Kulakowski, D., Noon, B. R. & Dellasala, D. A. Do bark beetle outbreaks increase wildfire risks in the central U.S. rocky mountains? Implications from recent research. Nat. Areas J. 33, 59–65 (2013).Article 

    Google Scholar 
    Oswalt, S. N., Smith, W. B., Miles, P. D. & Pugh, S. A. Forest Resources of the United States, 2017: A Technical Document Supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97 (US Department of Agriculture, Forest Service, 2019). https://doi.org/10.2737/WO-GTR-97.Book 

    Google Scholar 
    Cleland, D. et al. Terrestrial condition assessment for national forests of the USDA Forest Service in the continental US. Sustainability 9, 1–19 (2017).Article 

    Google Scholar 
    USDA Forest Service Forest Health Protection. Insect and Disease Detection Survey (IDS) data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-surveys.shtml (2021). Accessed on 9 October 2021.Spruce, J. P. et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 115, 427–437 (2011).Article 
    ADS 

    Google Scholar 
    Gomez, D. F., Ritger, H. M. W., Pearce, C., Eickwort, J. & Hulcr, J. Ability of remote sensing systems to detect bark beetle spots in the southeastern US. Forests 11, 1–10 (2020).Article 

    Google Scholar 
    Hanavan, R. P. et al. Supplementing the forest health national aerial survey program with remote sensing during the COVID-19 pandemic: Lessons learned from a collaborative approach. J. For. 120, 125–132 (2021).
    Google Scholar 
    Johnson, E. W. & Wittwer, D. Aerial detection surveys in the United States. Aust. For. 71, 212–215 (2008).Article 

    Google Scholar 
    Bright, B. C. et al. Using satellite imagery to evaluate bark beetle-caused tree mortality reported in aerial surveys in a mixed conifer forest in Northern Idaho, USA. Forests 11, 1–19 (2020).Article 

    Google Scholar 
    Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–336 (2018).Article 

    Google Scholar 
    Hicke, J. A., Xu, B., Meddens, A. J. H. & Egan, J. M. Characterizing recent bark beetle-caused tree mortality in the western United States from aerial surveys. For. Ecol. Manag. 475, 118402 (2020).Article 

    Google Scholar 
    Kosiba, A. M. et al. Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016. For. Ecol. Manag. 430, 94–104 (2018).Article 

    Google Scholar 
    Meigs, G. W., Kennedy, R. E., Gray, A. N. & Gregory, M. J. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region USA. For. Ecol. Manag. 339, 71–86 (2015).Article 

    Google Scholar 
    Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures. Gen. Tech. Rep. SRS-80 (US Department of Agriculture, Forest Service, Southern Research Station, 2005). https://doi.org/10.2737/SRS-GTR-80.Book 

    Google Scholar 
    Randolph, K. D. C. et al. Past and present individual-tree damage assessments of the US national forest inventory. Environ. Monit. Assess. 193, 116 (2021).Article 
    PubMed 

    Google Scholar 
    Kromroy, K. W., Juzwik, J., Castillo, P. & Hansen, M. H. Using forest service forest inventory and analysis data to estimate regional oak decline and oak mortality. North. J. Appl. For. 25, 17–24 (2008).Article 

    Google Scholar 
    Coulston, J. W., Edgar, C. B., Westfall, J. A. & Taylor, M. E. Estimation of forest disturbance from retrospective observations in a broad-scale inventory. Forests 11, 1298 (2020).Article 

    Google Scholar 
    Wilson, B. T., Lister, A. J. & Riemann, R. I. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For. Ecol. Manag. 271, 182–198 (2012).Article 

    Google Scholar 
    Blackard, J. A. et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008).Article 
    ADS 

    Google Scholar 
    Brosofske, K. D., Froese, R. E., Falkowski, M. J. & Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 60, 733–756 (2014).Article 

    Google Scholar 
    Lister, A. J. et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the United States national forest inventory. Forests 11, 1–41 (2020).Article 

    Google Scholar 
    USDA Forest Service Forest Health Protection. Individual Tree Species Parameter (ITSP) maps – GIS data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml (2021). Accessed on 9 October 2021.Ellenwood, J. R., Krist, F. J. & Romero, S. A. National Individual Tree Species Atlas. FHTET-15-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2015).
    Google Scholar 
    Krist, F. J. et al. National Insect and Disease Forest Risk Assessment. FHTET-14-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2014).
    Google Scholar 
    Rulequest Inc. Cubist, release 2.07. https://www.rulequest.com/cubist-info.html (2011). Accessed on 15 July 2022.R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2021). Accessed on 4 March 2022.Esri Inc. ArcGIS Pro 2.8.0. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2021). Accessed on 4 March 2022. More

  • in

    Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression

    Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019;8:e46497.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 2008;320:1081–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Rivas LR. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal for the additional terms “syntopic” and “allotopic”. Syst Zool. 1964;13:42–3.Article 

    Google Scholar 
    Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiene RP, Nowinski B, Esson K, Preston C, Marin R III, Birch J, et al. Unprecedented DMSP concentrations in a massive dinoflagellate bloom in Monterey Bay. Ca Geophys Res Lett. 2019;46:12279–88.Article 

    Google Scholar 
    Scholin CA, Birch J, Jensen S, Marin R, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography. 2017;30:100–13.Article 

    Google Scholar 
    Nowinski B, Smith CB, Thomas CM, Esson K, Marin R, Preston CM, et al. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Sci Data. 2019;6:1–7.Article 
    CAS 

    Google Scholar 
    Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.Article 
    CAS 
    PubMed 

    Google Scholar 
    Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 2021;15:3576–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Belas R, Schell M, González J, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki MT, Preston CM, Béjà O, De La Torre J, Steward G, DeLong EF. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Micro Ecol. 2004;48:473–88.Article 
    CAS 

    Google Scholar 
    Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 2011;5:8–19.Article 
    PubMed 

    Google Scholar 
    Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol. 2016;82:2100–11.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Nat Acad Sci. 2013;110:E488–E97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowinski B, Motard‐Côté J, Landa M, Preston CM, Scholin CA, Birch JM, et al. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol. 2019;21:1687–701.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res. 2021;49:D723–D33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D77.Article 
    CAS 
    PubMed 

    Google Scholar 
    Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF, editor. Methods in Enzymology 531: Elsevier; 2013. p. 237–50.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Internal genomic DNA standard for quantitative metagenome analysis V3. protocols io 2017; https://doi.org/10.17504/protocols.io.jxdcpi6p.Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Preparation of custom synthesized RNAtranscript standard V3. protocols io. 2017; https://doi.org/10.17504/protocols.io.jxccpiwp.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016. Report No.: 2167–9843Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2007;57:1653–8.Article 
    PubMed 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); 2014.Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 2010;38:D382–D90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pfaffel O. ClustImpute: An R package for K-means clustering with build-in missing data imputation. https://www.researchgate.net/publication/341881683.Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 
    PubMed 

    Google Scholar 
    Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, et al. Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol. 2020;11:575194.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rich VI, Pham VD, Eppley J, Shi Y, DeLong EF. Time‐series analyses of Monterey Bay coastal microbial picoplankton using a ‘genome proxy’microarray. Environ Microbiol. 2011;13:116–34.Article 
    CAS 
    PubMed 

    Google Scholar 
    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012;335:587–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010;468:60–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.Article 
    PubMed 

    Google Scholar 
    West NJ, Obernosterer I, Zemb O, Lebaron P. Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol. 2008;10:738–56.Article 
    CAS 
    PubMed 

    Google Scholar 
    Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017;11:1483–99.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Comm. 2018;9:1–8.Article 

    Google Scholar 
    Caro‐Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.Article 
    PubMed 

    Google Scholar 
    Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cohan FM. What are bacterial species? Ann Rev Microbiol. 2002;56:457–87.Article 
    CAS 

    Google Scholar 
    Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Meth. 2013;10:881–4.Article 
    CAS 

    Google Scholar 
    Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020;5:e00731–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10:504–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Delmont TO, Eren EM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018;2018:e4320–e.Article 

    Google Scholar 
    Neidhardt F, Umbarger H Chemical composition of Escherichia coli. In: FC N, Curtiss R III, JL I, ECC L, KB L, B M, et al., editors. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: ASM Press; 1996. p. 13-6.Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front Microbiol. 2022;12:761869.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem. 2004;279:25544–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114:377–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 2022;16:1306–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–12.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Environmental data from CTD during the Fall 2016 ESP deployment in Monterey Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756376.1.Environmental data from Niskin bottle sampling during the Fall 2016 ESP deployment in Monterey Bay. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756413.1. More

  • in

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U.S.A. 110, 3229–3236 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Griffiths, S. M. et al. Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J. Anim. Ecol. 88, 1684–1695 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coleman-Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marzinelli, E. M. et al. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environ. Microbiol. 17, 4078–4088 (2015).Article 
    PubMed 

    Google Scholar 
    Wang, L., English, M. K., Tomas, F. & Mueller, R. S. Recovery and community succession of the Zostera marina Rhizobiome after transplantation. bioRxiv https://doi.org/10.1101/2020.04.20.052357 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe. Interact. 28, 274–285 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6, e00746 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A., McManus, P. S. & Handelsman, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4, e00602 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1753 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Glasl, B., Smith, C. E., Bourne, D. G. & Webster, N. S. Disentangling the effect of host-genotype and environment on the microbiome of the coral Acropora tenuis. PeerJ 7, e6377 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weigel, B. L. & Erwin, P. M. Effects of reciprocal transplantation on the microbiome and putative nitrogen cycling functions of the intertidal sponge, Hymeniacidon heliophila. Sci. Rep. 7, 43247 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    Weiher, E. & Keddy, P. A. The assembly of experimental wetland plant communities. Oikos 73, 323–335 (1995).Article 

    Google Scholar 
    Cavender-Bares, J., Kitajima, K. & Bazzaz, F. A. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monogr. 74, 635–662 (2004).Article 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Webb, C. O. Exploring the Phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat. 156, 145–155 (2000).Article 
    PubMed 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. U.S.A. 111, 13715–13720 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. U.S.A. 108, 14288–14293 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: A phylogenetic perspective. Science https://doi.org/10.1126/science.aac9323 (2015).Article 
    PubMed 

    Google Scholar 
    Goberna, M. & Verdú, M. Predicting microbial traits with phylogenies. ISME J. 10, 959–967 (2016).Article 
    PubMed 

    Google Scholar 
    Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).Article 

    Google Scholar 
    Fonseca, M. S., Fisher, J. S., Zieman, J. C. & Thayer, G. W. Influence of the seagrass, Zostera marina L., on current flow. Estuar. Coast. Shelf Sci. 15, 351–364 (1982).Article 
    ADS 

    Google Scholar 
    Fonseca, M. S., Kenworthy, W. J. & Thayer, G. W. A low cost transplanting procedure for sediment stabilization and habitat development using eelgrass (Zostera marina). Wetlands 2, 138–151 (1982).Article 

    Google Scholar 
    Moore, K. A. & Short, F. T. Zostera: Biology, ecology, and management. In Seagrasses: Biology, ecology and conservation (eds Larkum, A. W. D. et al.) 361–386 (Springer, 2006).
    Google Scholar 
    Fahimipour, A. K. et al. Global-scale structure of the eelgrass microbiome. Appl. Environ. Microbiol. 83, e03391-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bengtsson, M. M. et al. Eelgrass leaf surface microbiomes are locally variable and highly correlated with epibiotic eukaryotes. Front. Microbiol. 8, 1312 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cúcio, C., Engelen, A. H., Costa, R. & Muyzer, G. Rhizosphere microbiomes of European + seagrasses are selected by the plant, but are not species specific. Front. Microbiol. 7, 440 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schenck, F. R., DuBois, K., Kardish, M. R., Stachowicz, J. J. & Hughes, A. R. The effect of warming on seagrass wasting disease depends on host genotypic identity and diversity. Ecology e3959 (2022).Beatty, D. S. et al. Predictable changes in eelgrass microbiomes with increasing wasting disease prevalence across 23° latitude in the Northeastern Pacific. mSystems 7, e0022422 (2022).Article 
    PubMed 

    Google Scholar 
    Hughes, A. R., Stachowicz, J. J. & Williams, S. L. Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia 159, 725–733 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Randall Hughes, A. & Stachowicz, J. J. Seagrass genotypic diversity increases disturbance response via complementarity and dominance. J. Ecol. 99, 445–453 (2010).
    Google Scholar 
    Kamel, S. J., Hughes, A. R., Grosberg, R. K. & Stachowicz, J. J. Fine-scale genetic structure and relatedness in the eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 447, 127–137 (2012).Article 
    ADS 

    Google Scholar 
    Abbott, J. M., DuBois, K., Grosberg, R. K., Williams, S. L. & Stachowicz, J. J. Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass Zostera marina. Ecol. Evol. 8, 7476–7489 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sand-Jensen, K. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellerup Vig, Denmark. Ophelia 14, 185–201 (1975).Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Miazaki, A. S., Gastauer, M. & Meira-Neto, J. A. A. Environmental severity promotes phylogenetic clustering in campo rupestre vegetation. Acta Bot. Brasilica 29, 561–566 (2015).Article 

    Google Scholar 
    DuBois, K., Williams, S. L. & Stachowicz, J. J. Previous exposure mediates the response of eelgrass to future warming via clonal transgenerational plasticity. Ecology 101, e03169 (2020).Article 
    PubMed 

    Google Scholar 
    Rüger, L. et al. Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Front. Microbiol. 12, 614501 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. U.S.A. 115, E1157–E1165 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fitzgerald, D. B., Winemiller, K. O., Sabaj Pérez, M. H. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31 (2017).Article 
    PubMed 

    Google Scholar 
    Campbell, A. H., Marzinelli, E. M., Gelber, J. & Steinberg, P. D. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front. Microbiol. 6, 230 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eriander, L., Infantes, E., Olofsson, M., Olsen, J. L. & Moksnes, P.-O. Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region. J. Exp. Mar. Bio. Ecol. 479, 76–88 (2016).Article 

    Google Scholar 
    Zhou, Y. et al. Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. PLoS ONE 9, e92982 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galushko, A. & Kuever, J. Desulfocapsaceae. Bergey’s Manual of Systematics of Archaea and Bacteria 1–6 Preprint at https://doi.org/10.1002/9781118960608.fbm00332 (2021).Waite, D. W. et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. Microbiol. 70, 5972–6016 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Knoblauch, C., Sahm, K. & Jørgensen, B. B. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov.. Int. J. Syst. Bacteriol. 49 Pt 4, 1631–1643 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Isaksen, M. F. & Teske, A. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166, 160–168 (1996).Article 
    CAS 

    Google Scholar 
    Song, J., Hwang, J., Kang, I. & Cho, J.-C. A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments. Sci. Rep. 11, 19978 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Christian, N., Whitaker, B. K. & Clay, K. Microbiomes: Unifying animal and plant systems through the lens of community ecology theory. Front. Microbiol. 6, 869 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zieman, J. C. Productivity in seagrasses: Methods and rates. In Handbook of Seagrass Biology: An ecosystem perspective (eds Phillips, R. C. & McRoy, C. P.) 87–116 (Garland STPM Press, 1980).
    Google Scholar 
    Dennison, W. C. Leaf production. Seagrass research methods, UNESCO, Paris 77–79 (1990).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Article 
    PubMed 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome Helper: A custom and streamlined workflow for microbiome research. mSystems 2, e00127-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wright, E. S. DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinform. 16, 322 (2015).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).Article 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 50: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 6, 1–20 (2017).Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Russel, J. Russel88/MicEco: v0.9.15. (2021). 10.5281/zenodo.4733747.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahle, D. & Wickham, H. Ggmap: Spatial visualization with ggplot2. R J. 5, 144 (2013).Article 

    Google Scholar  More

  • in

    Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms

    Jayathilake PG, Jana S, Rushton S, Swailes D, Bridgens B, Curtis T, et al. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms. Front Microbiol. 2017;8:1865.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flemming H-C, Neu TR, Wingender J (eds). The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). IWA Publishing, London, 2016.Morales-García AL, Bailey RG, Jana S, Burgess JG. The role of polymers in cross-kingdom bioadhesion. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190192.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davey ME, O’Toole GA. Microbial biofilms: From ecology to molecular genetics. Microbiol Mol. 2000;64:847–67.Article 
    CAS 

    Google Scholar 
    Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: Impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193–213.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020;28:668–81.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.Article 
    CAS 
    PubMed 

    Google Scholar 
    Decho AW, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol. 2017;8:922.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boleij M, Seviour T, Wong LL, van Loosdrecht MCM, Lin Y. Solubilization and characterization of extracellular proteins from anammox granular sludge. Water Res. 2019;164:114952.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim D, Barraza JP, Arthur RA, Hara A, Lewis K, Liu Y, et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc Natl Acad Sci USA. 2020;117:12375–86.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, et al. Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol. 2021;47:338–58.Article 
    PubMed 

    Google Scholar 
    Liu W, Jacquiod S, Brejnrod A, Russel J, Burmølle M, Sørensen SJ. Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME J. 2019;13:3054–66.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bridier A, Le Coq D, Dubois-Brissonnet F, Thomas V, Aymerich S, Briandet R. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging. PLOS One. 2011;6:e16177.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.Article 
    CAS 
    PubMed 

    Google Scholar 
    Myszka K, Czaczyk K. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr Microbiol. 2009;58:541–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harimawan A, Ting YP. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloids Surf B. 2016;146:459–67.Article 
    CAS 

    Google Scholar 
    Yang X-R, Li H, Nie S-A, Su J-Q, Weng B-S, Zhu G-B, et al. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Appl Environ Microbiol. 2015;81:938–47.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal B, van Niftrik L, Keltjens JT, Op den Camp HJM, Jetten MSM Chapter 3 – Anammox—Growth physiology, cell biology, and metabolism. In: Poole RK, editor. Adv Microb Physiol. 60: Academic Press; 2012. p. 211–62.Lu Y, Natarajan G, Nguyen TQN, Thi SS, Arumugam K, Seviour TW, et al. Species level enrichment of AnAOB and associated growth morphology under the effect of key metabolites. bioRxiv. 2020. 2020.02.04.934877Gonzalez-Gil G, Sougrat R, Behzad AR, Lens PN, Saikaly PE. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Micro Ecol. 2015;70:118–31.Article 
    CAS 

    Google Scholar 
    Kindaichi T, Yuri S, Ozaki N, Ohashi A. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Sci Technol. 2012;66:2556–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Qin Y, Han B, Cao Y, Wang T. Impact of substrate concentration on anammox-UBF reactors start-up. Bioresour Technol. 2017;239:422–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen Z, Meng Y, Sheng B, Zhou Z, Jin C, Meng F. Linking exoproteome function and structure to anammox biofilm development. Environ Sci Technol. 2019;53:1490–500.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ali M, Shaw DR, Albertsen M, Saikaly PE. Comparative genome-centric analysis of freshwater and marine ANAMMOX cultures suggests functional redundancy in nitrogen removal processes. Front Microbiol. 2020;11:1637.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jia F, Yang Q, Liu X, Li X, Li B, Zhang L, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms. Environ Sci Technol. 2017;51:3260–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hou X, Liu S, Zhang Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge. Water Res. 2015;75:51–62.Article 
    CAS 
    PubMed 

    Google Scholar 
    Feng C, Lotti T, Lin Y, Malpei F. Extracellular polymeric substances extraction and recovery from anammox granules: Evaluation of methods and protocol development. Chem Eng J. 2019;374:112–22.Article 
    CAS 

    Google Scholar 
    Lotti T, Carretti E, Berti D, Montis C, Del Buffa S, Lubello C, et al. Hydrogels formed by anammox extracellular polymeric substances: Structural and mechanical insights. Sci Rep. 2019;9:11633.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontology 2000. 2021;86:32–56.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol. 2013;195:545–55.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honma K, Inagaki S, Okuda K, Kuramitsu HK, Sharma A. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Micro Pathog. 2007;42:156–66.Article 
    CAS 

    Google Scholar 
    Li X-R, Du B, Fu H-X, Wang R-F, Shi J-H, Wang Y, et al. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst Appl Microbiol. 2009;32:278–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cho S, Takahashi Y, Fujii N, Yamada Y, Satoh H, Okabe S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 2010;78:1129–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997;31:3191–4.Article 
    CAS 

    Google Scholar 
    Wong LL, Natarajan G, Boleij M, Thi SS, Winnerdy FR, Mugunthan S, et al. Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. Appl Microbiol Biotechnol. 2020;104:3643–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Law Y, Kirkegaard RH, Cokro AA, Liu X, Arumugam K, Xie C, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep. 2016;6:25719.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385.Article 

    Google Scholar 
    Liu X, Arumugam K, Natarajan G, Seviour TW, Drautz-Moses DI, Wuertz S, et al. Draft genome sequence of a Candidatus brocadia bacterium enriched from activated sludge collected in a tropical climate. Genome Announc. 2018;6:e00406–18.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PloS One. 2010;5:e9490–e.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.Article 
    CAS 
    PubMed 

    Google Scholar 
    Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seviour T, Wong LL, Lu Y, Mugunthan S, Yang Q, Shankari UDOCS, et al. Phase transitions by an abundant protein in the anammox extracellular matrix mediate cell-to-cell aggregation and biofilm formation. mBio 2020;11:e02052–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L, Rosen MK, et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 2018;22:1401–12.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fulton KM, Smith JC, Twine SM. Clinical applications of bacterial glycoproteins. Expert Rev Proteom. 2016;13:345–53.Article 
    CAS 

    Google Scholar 
    Upreti RK, Kumar M, Shankar V. Bacterial glycoproteins: Functions, biosynthesis and applications. Proteomics 2003;3:363–79.Article 
    CAS 
    PubMed 

    Google Scholar 
    van Teeseling MCF, Maresch D, Rath CB, Figl R, Altmann F, Jetten MSM, et al. The S-layer protein of the anammox bacterium Kuenenia stuttgartiensiss is heavily O-glycosylated. Front Microbiol. 2016;7:1721.PubMed 
    PubMed Central 

    Google Scholar 
    McGonigle JM, Lang SQ, Brazelton WJ, Parales RE. Genomic evidence for formate metabolism by Chloroflexi as the key to unlocking deep carbon in lost city microbial ecosystems. Appl Environ Microbiol. 2020;86:e02583–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vuillemin A, Kerrigan Z, D’Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol. 2020;96:fiaa223.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev. 2013;37:428–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Loera-Muro A, Guerrero-Barrera A, Tremblay DNY, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: A new strategy for vaccine development against infectious diseases. Expert Rev Vaccines. 2021;20:385–96.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39:649–69.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elias S, Banin E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.Article 
    CAS 
    PubMed 

    Google Scholar 
    Teeseling MCFV, Almeida NMD, Klingl A, Speth DR, Camp HJMOD, Rachel R, et al. A new addition to the cell plan of anammox bacteria: Candidatus Kuenenia stuttgartiensis has a protein surface layer as the outermost layer of the cell. J Bacteriol. 2014;196:80–9.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paula AJ, Hwang G, Koo H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat Commun. 2020;11:1354.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kragelund C, Caterina L, Borger A, Thelen K, Eikelboom D, Tandoi V, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol. 2007;59:671–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH, McIlroy SJ. The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol Ecol. 2018;95.Kragelund C, Thomsen TR, Mielczarek AT, Nielsen PH. Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi. FEMS Microbiol Ecol. 2011;76:451–62.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang J, Miao Y, Zhang Q, Sun Y, Wu L, Peng Y. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: Microbial community and EPS analysis. Bioresour Technol. 2020;297:122459.Article 
    CAS 
    PubMed 

    Google Scholar 
    Björnsson L, Hugenholtz P, Tyson GW, Blackall LL. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 2002;148:2309–18.Article 
    PubMed 

    Google Scholar 
    Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol. 2018;52:13127–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, et al. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. ISME J. 2022;16:346–57.Article 
    CAS 
    PubMed 

    Google Scholar 
    Berlanga M, Guerrero R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Micro Cell Fact. 2016;15:165.Article 

    Google Scholar 
    Liu T, Tian R, Li Q, Wu N, Quan X. Strengthened attachment of anammox bacteria on iron-based modified carrier and its effects on anammox performance in integrated floating-film activated sludge (IFFAS) process. Sci Total Environ. 2021;787:147679.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Organic carbon accumulation and aggregate formation in soils under organic and inorganic fertilizer management practices in a rice–wheat cropping system

    Zhe, W. et al. Probing the nature of soil organic matter. Crit. Rev. Environ. Sci. Technol. 52, 4072–4093 (2022).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci. 23, 481–504 (2004).Article 
    CAS 

    Google Scholar 
    Six, J., Paustian, K., Elliott, E. T. & Combrink, C. Soil structure and organic matter: I. Distribution of aggregate–size classes and aggregate–associated carbon. Soil Sci. Soc. Am. J. 64, 681–689 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).Article 

    Google Scholar 
    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 33, 141–163 (1982).Article 
    CAS 

    Google Scholar 
    Luo, Y. et al. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biol. Biochem. 160, 108345 (2021).Article 
    CAS 

    Google Scholar 
    Wang, X. et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 153, 108062 (2021).Article 
    CAS 

    Google Scholar 
    Duan, Y. et al. Long–term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales. Agric. Ecosyst. Environ. 306, 107169 (2021).Article 
    CAS 

    Google Scholar 
    Christensen, B. T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 52, 345–353 (2001).Article 
    CAS 

    Google Scholar 
    Olk, D. C. & Gregorich, E. G. Overview of the symposium proceedings, “meaningful pools in determining soil carbon and nitrogen dynamics”. Soil Sci. Soc. Am. J. 70, 967–974 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Courtier-Murias, D. et al. Unraveling the long–term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agric. Ecosyst. Environ. 171, 9–18 (2013).Article 
    CAS 

    Google Scholar 
    Rodrigues, L. A. T. et al. Short– and long–term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no–tillage. Geoderma 386, 114913 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Mao, J., Dan, C. O., Fang, X., He, Z. & Schmidt-Rohr, K. Influence of animal manure application on the chemical structures of soil organic matter as investigated by advanced solid–state NMR and FT–IR spectroscopy. Geoderma 146, 353–362 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Simonetti, G. et al. Characterization of humic carbon in soil aggregates in a long–term experiment with manure and mineral fertilization. Soil Sci. Soc. Am. J. 25, 880–890 (2012).Article 

    Google Scholar 
    Cambardella, C. A. & Elliott, E. T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783 (1992).Article 
    ADS 

    Google Scholar 
    Conant, R. T., Six, J. & Paustian, K. Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biol. Fertil. Soils 38, 386–392 (2003).Article 
    CAS 

    Google Scholar 
    Blanco-Moure, N., Gracia, R., Bielsa, A. C. & López, M. V. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil Tillage Res. 155, 381–389 (2016).Article 

    Google Scholar 
    Yu, H. et al. Accumulation of organic C components in soil and aggregates. Sci. Rep. 5, 13804 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöning, I., Morgenroth, G. & Kögel-Knabner, I. O/N–alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry 73, 475–497 (2005).Article 

    Google Scholar 
    Solomon, D., Lehmann, J., Kinyangi, J., Liang, B. & Schäfer, T. Carbon K-edge NEXAFS and FTIR–ATR spectroscopic investigation of organic carbon speciation in soils. Soil Sci. Soc. Am. J. 13, 107–119 (2005).Article 

    Google Scholar 
    Yan, H., Chen, C., Xu, Z., Williams, D. & Xu, J. Assessing management impacts on soil organic matter quality in subtropical Australian forests using physical and chemical fractionation as well as 13C NMR spectroscopy. Soil Biol. Biochem. 41, 640–650 (2009).Article 

    Google Scholar 
    Masoom, H. et al. Soil organic matter in its native state: Unravelling the most complex biomaterial on earth. Environ. Sci. Technol. 50, 1670–1680 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vogel, C. et al. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biol. Fertil. Soils 51, 427–442 (2015).Article 
    CAS 

    Google Scholar 
    Sharma, S., Singh, P., Angmo, P. & Satpute, S. Total and labile pools of organic carbon in relation to soil biological properties under contrasting land-use systems in a dry mountainous region. Carbon Manage. 13, 352–371 (2022).Article 
    CAS 

    Google Scholar 
    Six, J., Elliott, E., Paustian, K. & Doran, J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Elliott, E. T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 50, 627–633 (1986).Article 
    ADS 

    Google Scholar 
    Yu, H., Ding, W., Luo, J., Geng, R. & Cai, Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res. 124, 170–177 (2012).Article 

    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn, 230–233 (Taylor & Francis Group, CRC, 2007).
    Google Scholar 
    Lu, R. (ed.) Soil and Agro-chemistry Analytical Methods 146–149 (China Agricultural Science and Technology Press, 1999).
    Google Scholar 
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation extraction: An automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).Article 
    CAS 

    Google Scholar 
    Zhang, X., Zhu, A., Yang, W. & Zhang, J. Accumulation of organic components and its association with macroaggregation in a sandy loam soil following conservation tillage. Plant Soil. 416, 1–15 (2017).Article 
    CAS 

    Google Scholar 
    Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M. & Newman, R. H. The removal of magnetic materials from surface soils—a solid state 13C CP/MAS NMR study. Soil Res. 32, 1215–1229 (1994).Article 
    CAS 

    Google Scholar 
    Ringle, C. M., Wende, S. & Becker, J. M. SmartPLS 3.” Boenningstedt: SmartPLS GmbH. Preprint at http://www.smartpls.com (2015).Jerbi, M., Labidi, S., Lounès-Hadj Sahraoui, A., Chaar, H. & Ben Jeddi, F. Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PLoS ONE 15, e0241794 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cohen, J. Statistical power analysis for the behavioral sciences 2nd edn, 407–530 (Erlbaum Associates, Berlin, 1988).MATH 

    Google Scholar 
    Singh, P. & Benbi, D. K. Physical and chemical stabilization of soil organic matter in cropland ecosystems under rice–wheat, maize–wheat and cotton–wheat cropping systems in northwestern India. Carbon Manag. 12, 603–621 (2021).Article 
    CAS 

    Google Scholar 
    Kiem, R. & Kögel-Knabner, I. Contribution of lignin and polysaccharides to the refractory carbon pool in C–depleted arable soils. Soil Biol. Biochem. 35, 101–118 (2003).Article 
    CAS 

    Google Scholar 
    Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. Eur. J. Soil Sci. 57, 426–445 (2006).Article 

    Google Scholar 
    Yudina, A. V., Klyueva, V. V., Romanenko, K. A. & Fomin, D. S. Micro- within macro: How micro-aggregation shapes the soil pore space and water-stability. Geoderma 415, 115771 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Tisdall, J. M., Smith, S. E. & Rengasamy, P. Aggregation of soil by fungal hyphae. Soil Res. 35, 55–60 (1997).Article 

    Google Scholar 
    Li, T. et al. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. CATENA 194, 104739 (2020).Article 
    CAS 

    Google Scholar 
    Liang, Y. et al. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agric. Ecosyst. Environ. 314, 107403 (2021).Article 
    CAS 

    Google Scholar 
    Liang, C., Kästner, M. & Joergensen, R. G. Microbial necromass on the rise: The growing focus on its role in soil organic matter development. Soil Biol. Biochem. 150, 108000 (2020).Article 
    CAS 

    Google Scholar 
    Sharma, S., Singh, P. & Kumar, S. Responses of soil carbon pools, enzymatic activity, and crop yields to nitrogen and straw incorporation in a rice-wheat cropping system in North-Western India. Front. Sustain. Food Syst. 4, 532704 (2020).Article 

    Google Scholar 
    Puget, P., Chenu, C. & Balesdent, J. Dynamics of soil organic matter associated with particle–size fractions of water–stable aggregates. Eur. J. Soil Sci. 51, 595–605 (2000).Article 

    Google Scholar  More