More stories

  • in

    Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

    1.Fahmi, A. I., Nagaty, H. H., Eissa, R. A. & Hassan, M. M. Effects of salt stress on some nitrogen fixation parameters in faba bean. Pak. J. Biol. Sci. 14, 385–391 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Munns, R. & Tester, M. Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).CAS 
    PubMed 

    Google Scholar 
    3.Chinnusamy, V., Jagendorf, A. & Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437–448 (2005).CAS 

    Google Scholar 
    4.Chaum, S., Pokasombat, Y. & Kirdmanee, C. Remediation of salt-affected soil by gypsum and farm yard manure—Importance for the production of Jasmine rice. Austr. J. Crop Sci. 5(4), 458–465 (2011).
    Google Scholar 
    5.Sarwar, M., Amjad, M. & Ayyub, C. M. Alleviation of salt stress in cucumber (Cucumis sativus L.) through seed priming with triacontanol. Int. J. Agric. Biol. 19, 771–778 (2017).CAS 

    Google Scholar 
    6.Afzal, I., Basra, S. M. A., Ahmad, N. & Farooq, M. Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (Triticum aestivum L.). Caderno de Pesquisa Série Biologia 17(1), 95–109 (2005).
    Google Scholar 
    7.Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M. & Allahdadi, I. The role of phytohormones in alleviating salt stress in crop plants. AJCS 5(6), 726–734 (2011).CAS 

    Google Scholar 
    8.Ahmad, P. et al. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 7, 513 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    9.Mittova, V., Guy, M., Tal, M. & Volokita, M. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55(399), 1105–1113 (2004).CAS 
    PubMed 

    Google Scholar 
    10.Liu, P. et al. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ. Exp. Bot. 111, 42–51 (2015).CAS 

    Google Scholar 
    11.Kumaravelu, G., Livingstone, M. D. & Ramanujam, M. P. Triacontanol- induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram. Biol. Plant 43, 287–290 (2000).CAS 

    Google Scholar 
    12.Khan, M. M. A. et al. Triacontanol-induced changes in the growth, yield and quality of tomato (Lycopersicon esculentum Mill). Electron. J. Environ. Agric. Food Chem. 5, 1492–1499 (2006).CAS 

    Google Scholar 
    13.Ries, S. K., Wert, V. F., Sweeley, C. C. & Leavitt, R. A. Triacontanol: A new naturally occurring plant growth regulator. Science 195, 1339–1341 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Muthuchelian, K., Murugan, C., Harigovindan, R., Nedunchezhian, N. & Kulandaivelu, G. Ameliorating effect of triacontanol on salt stressed Erythrina variegate seedlings. Changes in growth, biomass, pigments and solute accumulation. Biol. Plant 38, 133–136 (1996).CAS 

    Google Scholar 
    15.Verma, A., Malik, C. P., Gupta, V. K. & Bajaj, B. K. Effects of in vitro triacontanol on growth, antioxidant enzymes, and photosynthetic characteristics in Arachis hypogaea hypogea L. Braz. J. Plant Physiol. 23, 271–277 (2011).CAS 

    Google Scholar 
    16.Kilic, N. K., Duygu, E. & Donmez, G. Triacontanol hormone stimulates population, growth and Brilliant Blue R dye removal by common duckweed from culture media. J. Hazard. Mater. 182, 525–530 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Naeem, M., Khan, M. M. A., Moinuddin, M., Idrees, K. & Aftab, T. Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regul. 11, 9588–9598 (2011).
    Google Scholar 
    18.Chen, X. et al. Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): Possible role of triacontanol as plant growth stimulator. Plant Cell Physiol. 43(8), 869–876 (2002).CAS 
    PubMed 

    Google Scholar 
    19.Chen, X., Yuan, H., Chen, R., Zhu, L. & He, G. Biochemical and photochemical changes in response to triacontanol in rice (Oryza sativa L.). Plant Growth Regul. 40, 249–256 (2003).CAS 

    Google Scholar 
    20.Reddy, B. O., Giridhar, P. & Ravishankar, G. A. The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W&A. Plant Cell Tissue Organ Cult. 71, 253–258 (2002).
    Google Scholar 
    21.Tantos, A., Meszaros, A., Farkas, T., Szalai, J. & Horvath, G. Triacontanol supported the micropropagation of woody plants. Plant Cell Rep. 20, 16–21 (2001).CAS 
    PubMed 

    Google Scholar 
    22.Cavusoglu, K., Kilic, S. & Kabar, K. Effects of triacontanol pretreatment on seed germination, seedling growth and leaf anatomy under saline (NaCl) conditions. Sdu. Fen. Edebiyat Fakultesi Fen Dergisi (E-Dergi) 2(2), 136–145 (2007).
    Google Scholar 
    23.Noreen, Z. & Ashraf, M. Assessment of variation in antioxidative defense system in salt- treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166, 1764–1774 (2009).CAS 
    PubMed 

    Google Scholar 
    24.FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk (Food and Agriculture Organization of the United Nations, 2012).
    Google Scholar 
    25.Yamaguchi, T. & Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10(12), 616–619 (2005).
    Google Scholar 
    26.Stepien, P. & Klobus, G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant 50, 610–616 (2006).CAS 

    Google Scholar 
    27.Ayers, R. S. & Westcot, D. W. Water quality for agriculture FAO irrigation and drainage. UN Rome 29, 1 (1985).
    Google Scholar 
    28.Dorota, Z. Irrigating with High Salinity Water Bulletin 322 Agricultural and Biological Engineering Dep (Florida Cooperative Extension service Institute of Food and Agriculture Sciences University of Florida, 1997).
    Google Scholar 
    29.Wang, X. J. Analysis of secondary salination in protected soils. North. Hortic. 3(4), 12–13 (1998).
    Google Scholar 
    30.Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161, 111–117 (2013).CAS 

    Google Scholar 
    31.Sarwar, M. et al. Evaluation of cucumber germplasm for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Transylv. Rev. 24(11), 1077–1086 (2016).
    Google Scholar 
    32.Zekri, M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47, 305–315 (1991).CAS 

    Google Scholar 
    33.Moya, J. L., Gomez-Cademas, A., Primo-Millo, E. & Talon, M. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleapatra mandarian citrus rootstocks is linked to water use. J. Experi. Bot. 54, 825–833 (2003).CAS 

    Google Scholar 
    34.Giannopolitis, C. N. & Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Chance, B. & Maehly, A. C. Assay of catalase and peroxidase. Methods Enzymol. 2, 764–775 (1955).
    Google Scholar 
    36.Khan, W., Prithiviraj, B. & Smith, P. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5), 485–492 (2003).CAS 
    PubMed 

    Google Scholar 
    37.Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).CAS 

    Google Scholar 
    38.Bates, L. S., Waldron, R. P. & Teaxe, I. W. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207 (1972).
    Google Scholar 
    39.Grieve, C. M. & Gratan, S. R. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303–307 (1983).CAS 

    Google Scholar 
    40.Julkenen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Agric. Food Chem. 33(2), 213–217 (1985).
    Google Scholar 
    41.Wheatherly, P. E. & Barrs, C. A reexamination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).
    Google Scholar 
    42.Dadzie, B. K. & Orchard, J. E. Routine Postharvest Screening of Banana/Plantain Hybrids: Criteria and Methods. INIBAP Technical Guidelines 2 9–11 (International Plant Genetic Resources Institute, 1997).
    Google Scholar 
    43.Delfine, S., Alvino, A., Villani, M. C. & Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress. Plant Physiol. 119, 101–106 (1999).
    Google Scholar 
    44.Chen, S. F., Zhu, Y. L., Liu, Y. L., Hu, C. M. & Zhang, G. W. Effects of NaCl stress on ABA and polyamine contents in leaves of grafted tomato seedlings. Acta Hortic. Sin. 33(1), 58–62 (2006).
    Google Scholar 
    45.Eriksen, A. B., Haugstad, M. K. & Nilsen, S. Yield of tomato and maize in response to foliar and root applications of triacontanol. Plant Growth Regul. 1, 11–14 (1982).CAS 

    Google Scholar 
    46.Misra, A. & Srivastava, N. K. Effects of the triacontanol formulations ‘“Miraculan”’ on photosynthesis, growth, nutrient uptake, and essential oil yield of lemongrass (Cymbopogon flexuosus) Steud, Watts. Plant Growth Regul. 10, 57–63 (1991).CAS 

    Google Scholar 
    47.Ivanov, A. G. & Angelov, M. N. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. Plant Growth Regul. 21, 145–152 (1997).CAS 

    Google Scholar 
    48.Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317–322 (2003).CAS 

    Google Scholar 
    49.Aziz, R., Shahbaz, M. & Ashraf, M. Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pak. J. Bot. 45(6), 1913–1918 (2013).CAS 

    Google Scholar 
    50.Shao, H. B. et al. Phenol by Synechocystis sp. in media including triacontanol hormone. Water Environ. J. 26, 1747–6585 (2006).
    Google Scholar 
    51.Moghaieb, R. E. A., Saneoka, H. & Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci. 166(5), 1345–1349 (2004).CAS 

    Google Scholar 
    52.Munns, R. Gene and salt tolerance: Bringing them together. New Phytol. 167(3), 645–663 (2005).CAS 
    PubMed 

    Google Scholar 
    53.Gucci, R., Lombardini, L. & Tattini, M. Analysis of leaf water relations in two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17, 13–21 (1997).CAS 
    PubMed 

    Google Scholar 
    54.Khandaker, M. M., Faruq, G., Motior, R. M., Sofian-Azirun, M. & Nasrulhaq, B. A. The influence of 1-triacontanol on the growth, flowering, and quality of potted bougainvillea plants (Bougainvillea glabra var. ‘‘Elizabeth Angus’’) under natural conditions. Sci. World J. 10, 1–12 (2013).
    Google Scholar 
    55.Gatica, A. M., Arrieta, G. & Espinosa, A. M. Direct somatic embryogenesis in Coffea arabica L cvs catura and catuai: Effect of triacontanol, light condition, and medium consistence. Agron. Costarric. 32(1), 139–147 (2008).
    Google Scholar 
    56.Naeem, M., Khan, M. M. A., Moinuddin, M. & Siddiqui, M. H. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci. Hortic. 121, 389–396 (2009).CAS 

    Google Scholar 
    57.Zhu, J. K. Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6, 66–72 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Dos-Reis, S. P., Lima, A. M. & De-Souza, C. R. B. Recent molecular advances on down stream plant responses to abiotic stress. Int. J. Mol. Sci. 13(7), 8628–8647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    59.Shahbaz, M., Ashraf, M., Al-Qurainy, F. & Harris, P. J. C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 31, 303–320 (2012).CAS 

    Google Scholar 
    60.Mahboob, W. et al. Seed priming improves the performance of late sown spring maiz (Zea mays) through better crop stand and physiological attributes. Int. J. Agric. Biol. 17(3), 491–498 (2015).CAS 

    Google Scholar 
    61.Sarwar, M. et al. Improving the salt stress tolerance in cucumber (Cucumis sativus L.) using by triacontanol. J. Hortic. Sci. Technol. 2(1), 20–26 (2019).
    Google Scholar 
    62.Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant derived bio stimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2012).
    Google Scholar 
    63.Miniraj, N. & Shanmugavelu, K. G. Studies on the effect of triacontanol on growth, flowering, yield, quality and nutrient uptake in chillies. South Indian Hortic. 35, 362–366 (1987).
    Google Scholar 
    64.Aftab, T. et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 4, 273–481 (2010).
    Google Scholar 
    65.Borowski, E. & Blamowski, Z. K. The effect of triacontanol ‘TRIA’ and Asahi-SL on the development and metabolic activity of sweet basil (Ocimum basilicum L.) plants treated with chilling. Folia Hortic. 21(1), 39–48 (2009).
    Google Scholar 
    66.Chaudhary, B. R., Sharma, M. D., Shakya, S. M. & Gautam, D. M. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annum L.) at Rampur Chitwan. J. Inst. Agric. Anim. Sci. 27, 65–68 (2006).
    Google Scholar 
    67.Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 29(3), 162–190 (2010).CAS 

    Google Scholar 
    68.Hangarter, R., Ries, S. K. & Carlson, P. Effect of triacontanol on plant cell cultures in vitro. Plant Physiol. 61, 855–857 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Kapitsimadi, C. & Vioryl, S. A. Effect of a long chain aliphatic alcohol (triacontanol) on growth and yield of different horticultural crops. Acta Hortic. 379, 237–243 (1995).CAS 

    Google Scholar 
    70.Muthuchelian, K., Velayutham, M. & Nedunchezhian, N. Ameliorating effect of triacontanol on acidic mist-treated Erythrina variegata seedlings. Changes in growth and photosynthetic activities. Plant Sci. 165, 1253–1257 (2003).CAS 

    Google Scholar 
    71.Khan, N., Nazar, R. & Anjum, N. Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci. Hortic. 122, 455–460 (2009).CAS 

    Google Scholar  More

  • in

    A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic

    Combining agent mobility patterns and SIR modelTo take into account agent mobility19 in a scenario compatible with a SIR model, we developed the model pictorially illustrated in Fig. 1. As explained in details in the Methods Section, the agents can move on a lattice through jumps processes, modelled using a Lévy walk of jump parameter (beta)36,37,38. When (beta) becomes large, i.e., for (beta rightarrow 2), agents tend to perform a Brownian random walk with very short jumps. As (beta rightarrow 1), agents can travel long distances in just one step. There are no constraints on the number of agents that can occupy a single cell. In each cells, agents can be infected by neighbours according to the SIR rules. Thus, the parameters that control the model are the jump parameter (beta) plus the standard SIR parameters, infection rate (alpha) and removal rate (gamma). The agent-based lattice model considered here reduces to a standard SIR model when the well-mixed population condition is satisfied, i. e. when large jumps dominate the dynamics (Fig. 2).Figure 1Agent-based SIR model on a lattice. (a) Agents of different colors, representing the SIR states, move on a lattice. White cells represent empty sites. Green cells are occupied by susceptible (S) agents, blue cells contain only removed (R) agents. Red cells contain only infected (I) agents. Shaded cells contain agents in a mixture of states. Agents can move among cells performing jumps (black arrows) whose length follows Lévy statistics. The letters i and j, with (i=1,..,N_b) and (j=1,…,N_b) define the location of the cell (i, j). (b,c) Agents in the same cell undergo a SIR dynamics: (b) S become I at a rate (alpha); (c) I become R at rate (gamma). (d) The jump dynamics allows an agent to move from the cell (i, j) to ((i+k,j+l)). The probability to perform a large/small jump is controlled by the parameter (beta in [1.0,1.99]). Large (beta) values correspond to small jumps, i. e., a random walk that gives rise to Brownian motion. Small (beta) values correspond to large jumps.Full size imageFor reproducing the kinetics of real data we made the following assumptions:

    In the absence of containing strategies, the infection is characterized by a high infection rate (we take (alpha =0.9)) and a low removal rate ((gamma =0.025) or 0.05). Using as a unit of time the update of all agent positions (see Methods for details), the removal rate introduce a time scale (tau _I = gamma ^{-1}=40) or (20). This characteristic time scale represents the average time an agent remains infected and can thus spread the infection. This condition ensures that we are in an epidemic regime, i. e., the mean-field value is (R_t gg 1). We stress that, since the SIR dynamics with only three sub-populations is a simplification of the real chain of epidemic transmission, the parameters we choose for the epidemic spreading are not strictly related to those of Covid-19. Because we are interested in the effect of mobility restriction on epidemic spreading, we fix the epidemic parameters in a way that, without mobility restrictions, we are sure to stay in the worst-case scenario with an exponentially fast spreading of the infection.

    The parameter (beta in [1,1.99]) tunes the intensity of mobility restrictions. The higher its value, the stricter the limitations. (beta) is one of the fitting parameters.

    Other interventions that mitigate the epidemic spreading tend to increase the removal rate (gamma). We thus assume that (gamma) is another fitting parameter. This is because typical measures, for instance, quarantine, remove infected agents from the system. In this way, we reabsorb the presence of many hidden sub-populations into an effective value of (gamma).

    We define the parameter (delta), i. e., the fraction of infected agents at the epidemic peak with respect to the entire population, that provides a quantitative measure of the reduction of the epidemic peak. In other words, the parameter (delta) represents the efficiency of a given containing strategy compared to the uncontrolled situation where all the agents turn out to contract the infection (which is the case of our model for (gamma ll alpha), (alpha =0.9), and (beta =1)).

    To detail how mobility restrictions induce deviations from the SIR model, we calculate, via numerical simulations, the epidemic curves as a function of time for different values of (beta) as illustrated in Fig. 2a. Here, the SIR parameters are (alpha =0.9) and (gamma =0.025), i. e., the corresponding SIR model is in the fully blown epidemic regime. For small (beta) the epidemic growth is well captured by the exponential function, indicating that we are in the epidemic regime. As (beta) increases the curve turns out to be flattened and the peak reduces to (80%). Moreover, the growth of the epidemic for the largest (beta) examined is well described by the power law (I(t) sim t^{2}). The value of the exponent is comparable with those measured in different countries during the COVID(-19) epidemic wave23. The model considered here suggests that the crossover from exponential growth to power-law might be related to changes of the mobility patterns that, in our picture, shift from being dominated by large jumps to small ones. This finding is consistent with the observation that a sub-exponential growth in the number of infected people is a consequence of containing strategies23. Moreover, in the microscopic description adopted here, the crossover in the kinetics of I(t) is driven by just one parameter.Figure 2Agent dynamics impacts the epidemic spreading process. (a) The graph shows the dependency of the epidemic curves on (beta =1.20,1.50,1.75,1.80,1.85,1.87,1.90,1.92,1.95,1.97,1.99) (increasing values of (beta) from yellow to violet). As (beta) decreases, the epidemic grows exponentially fast (dotted black curve) and approaches the evolution of SIR model in well-mixed population (dashed red curve). The dash-dot blue curve is a power law (sim t^2). The parameters of the SIR reactions are (alpha =0.9) and (gamma =0.025). (b–g) Typical configurations taken at the same fraction of infected agents (I/N sim 0.25) for increasing values of (beta =1.0,1.2,1.4,1.6,1.8,1.9) (red are infected sites, green the susceptible ones, we keep white the sites populated by removed agents). (h) The probability distribution function of the local density of infected sites. (i) Radius of the cluster of infected agents ((beta =1.99)) as a function of time. The red dashed line is a linear fit.Full size imageThe crossover from exponential to power-law growth reflects the drastic change in the structure of clusters of infected agents, as illustrated in Fig. 2b–g, where typical configurations with the same fraction of infected agents are shown ((I/N=0.25, alpha =0.9, gamma =0.025)). As one can see, in the high mobility region ((beta = 1)), infected agents are spread almost everywhere in the system. As (beta) increases, infected sites tend to form a single cluster. This phenomenology is consistent with the literature of mobile agents undergoing SIR dynamics39,40. This structural change is quantitatively documented by the density distribution of infected sites shown in panel (h) of the same figure (see section Methods for details). As one can appreciate, the distribution becomes double-peaked as (beta) increases. The first peak around zero indicates the presence of an extended region of susceptible agents. The peak at high values is due to the growing cluster of infected agents. As highlighted in panel (i), the cluster grows linearly in time and thus the number of infected grows with (t^2).Another interesting aspect to understand with this model is the trade off between mobility restrictions and and other kind of interventions that have the effect of increasing the removal rate. In particular in Asian countries41, NPIs applied during the COVID-19 waves have relied mostly on contact tracing and/or preventive quarantine, with little mobility reduction, leading to effective and durable control of epidemic spreading, as reviewed by Ref.21. To understand if there is an optimal balance between containing strategies (characterized by (beta)) and efficiency in removing infected agents (denoted by (gamma)), we calculate the fraction of infected population at the epidemic peak (the maximum of I(t)) as a function of the jump parameter (beta) and of the removal rate (gamma). As above, the initial occupation number of each site is, on average, one. The infection rate is (alpha =0.9). The resulting phase diagram is shown in Fig. 3. The color indicates the fraction of infected population: in the violet region, this fraction goes to zero (epidemic is suppressed) while in the yellow region such a value goes to one, indicating an epidemic regime. The phase diagram fully recapitulates the effectiveness of the two strategies used to mitigate the infection spread, a strong lockdown with limited contact tracing, or an efficient contact tracing a moderate reduction of the mobility.Figure 3Effect of different containment strategies. The phase diagram is obtained considering as control parameters (beta), that represents mobility restrictions, and (gamma), the efficiency in removing infected agents. The color scale represents the fraction of the initial susceptible population that becomes infected, ranging between 0 (epidemic suppression, violet region) and 1 (fully-blown epidemic, yellow region). Containment is achieved as (beta) increases (corresponding to increasing mobility restrictions) even with low removal rate, or increasing (gamma) (effective removal of infected agents), even with limited mobility restrictions.Full size imageHowever, even under the strictest lockdown, several activities could not be stopped (hospitals, food supply chain, …), meaning that a single mobility parameter cannot fully describe this varied situation. To understand what could be the impact of heterogeneous motility patterns on the evolution of the epidemic, we introduce in the model some regions characterized by a high mobility (jump parameter, (beta _2)), while the majority of the the cells have restricted mobility, with a jump parameter (beta _1=1.99) (see Methods for more details). By varying (beta _2) and the density of more mobile cells (parameter (rho)) we are able to draw the phase diagram shown in Fig. 4.Figure 4Sites of different mobility affect epidemic spreading. (a) Each cell labelled by (i, j) is characterized by its own mobility parameter (beta _{ij}). We consider the special case of a binary mixture ((beta _{ij} = beta _{1,2})) of high and low mobility regions. Changing the density (rho) of (beta _2) sites and the value of (beta _2), we obtain the the phase diagram presented in panel (b), obtained for (beta _1=1.99), (alpha =0.9), and (gamma =0.05), conditions that grant contained epidemic spreading thanks to the low-mobility group. A small amount of sites with small values of (beta _2) can trigger the epidemic spreading.Full size imageAs in the previous case, in the violet area the epidemic spreading is stopped, while in the yellow area the epidemic peak reaches the entire population. Epidemic spreading takes place above a critical curve: for a given value of mobility (beta _2 More

  • in

    Assessing the influence of the amount of reachable habitat on genetic structure using landscape and genetic graphs

    Andersson E, Bodin Ö (2009) Practical tool for landscape planning? an empirical investigation of network-based models of habitat fragmentation. Ecography 32(1):123–132
    Google Scholar 
    Angelone S, Kienast F, Holderegger R (2011) Where movement happens—scale-dependent landscape effects on genetic differentiation in the European tree frog. Ecography 34(5):714–722
    Google Scholar 
    Arnaud J-F (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landsc Ecol 18(3):333–346
    Google Scholar 
    Awade M, Boscolo D, Metzger JP (2012) Using binary and probabilistic habitat availability indices derived from graph theory to model bird occurrence in fragmented forests. Landsc Ecol 27(2):185–198
    Google Scholar 
    Balkenhol N, Pardini R, Cornelius C, Fernandes F, Sommer S (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv Genet 14(2):355–367
    Google Scholar 
    Baranyi G, Saura S, Podani J, Jordán F (2011) Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol Indic 11(5):1301–1310
    Google Scholar 
    Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the Cactus Wren (Campylorhynchus brunneicapillus). Mol Ecol 24(10):2349–2363PubMed 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soci Series B (Methodological) 57(1):289–300
    Google Scholar 
    Bergés L, Avon C, Bezombes L, Clauzel C, Duflot R, Foltête J-C, Gaucherand S, Girardet X, Spiegelberger T (2020) Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J Environ Manag 256:1–10
    Google Scholar 
    Bertin A, Gouin N, Baumel A, Gianoli E, Serratosa J, Osorio R, Manel S (2017) Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol Ecol 26(2):431–443PubMed 

    Google Scholar 
    Bönsel AB, Sonneck A-G (2011) Habitat use and dispersal characteristic by Stethophyma grossum: the role of habitat isolation and stable habitat conditions towards low dispersal. J Insect Conserv 15(3):455–463
    Google Scholar 
    Boulanger E, Dalongeville A, Andrello M, Mouillot D, Manel S (2020) Spatial graphs highlight how multi-generational dispersal shapes landscape genetic patterns. Ecography 15(1):1–13
    Google Scholar 
    Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457PubMed 

    Google Scholar 
    Capurucho JMG, Cornelius C, Borges SH, Cohn-Haft M, Aleixo A, Metzger JP, Ribas CC (2013) Combining phylogeography and landscape genetics of Xenopipo atronitens (Aves: Pipridae), a white sand campina specialist, to understand Pleistocene landscape evolution in Amazonia. Biol J Linnean Soc 110(1):60–76
    Google Scholar 
    Carrascal LM, Galván I, Gordo O (2009) Partial Least Squares regression as an alternative to current regression methods used in ecology. Oikos 118(5):681–690
    Google Scholar 
    Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27(3):369–380
    Google Scholar 
    Díaz SM, Settele J, Brondízio E, Ngo H, Guèze M, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, et al. (2019). The global assessment report on biodiversity and ecosystem services: summary for policy makers. Technical report, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem ServicesDidham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121(2):161–170
    Google Scholar 
    DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1(3):115–126
    Google Scholar 
    Dyer RJ (2015) Population graphs and landscape genetics. Annu Rev Ecol, Evolut Syst 46:327–342
    Google Scholar 
    Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663
    Google Scholar 
    Flavenot T, Fellous S, Abdelkrim J, Baguette M, Coulon A (2015) Impact of quarrying on genetic diversity: an approach across landscapes and over time. Conserv Genet 16(1):181–194
    Google Scholar 
    Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327
    Google Scholar 
    Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, Sahraoui Y, Vuidel G, Garnier S (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol 35(5):1035–1052
    Google Scholar 
    Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131–140
    Google Scholar 
    Frankham R (2015) Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618PubMed 

    Google Scholar 
    Frankham R, Ballou JD, and Briscoe DA (2004) A primer of conservation genetics. Cambridge University PressGaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Resour 10(5):821–830PubMed 

    Google Scholar 
    Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55
    Google Scholar 
    Greenbaum G, Fefferman NH (2017) Application of network methods for understanding evolutionary dynamics in discrete habitats. Mol Ecol 26(11):2850–2863PubMed 

    Google Scholar 
    Griffioen R (1996) Over het dispersievermogen van de moerassprinkhaan. Nieuwsbrief Saltabel 15(1):39–41
    Google Scholar 
    Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in mountain clover Trifolium montanum L. J Heredity 104(6):842–852
    Google Scholar 
    Hedrick P (2011) Genetics of populations. Jones & Bartlett LearningHolzhauer SI, Ekschmitt K, Sander A-C, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21(6):891–899
    Google Scholar 
    Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6):1898–1914PubMed 

    Google Scholar 
    Ingvarsson PK (2001) Restoration of genetic variation lost-the genetic rescue hypothesis. Trends Ecol Evol 16(2):62–63PubMed 

    Google Scholar 
    Jackson ND, Fahrig L (2015) Habitat amount—not habitat configuration—best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31(5):951–968
    Google Scholar 
    Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian atlantic forest: ecological findings and conservation initiatives. New Phytol 204(3):459–473PubMed 

    Google Scholar 
    Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5(4):539–543
    Google Scholar 
    Keller D, Holderegger R, Strien MJ (2013) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22(9):2467–2482PubMed 

    Google Scholar 
    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85(10):1049–1064
    Google Scholar 
    Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc B 272(1562):553–560PubMed 
    PubMed Central 

    Google Scholar 
    Kierepka EM, Anderson SJ, Swihart RK, Rhodes OE (2020) Differing, multiscale landscape effects on genetic diversity and differentiation in eastern chipmunks. Heredity 124(3):457–468PubMed 
    PubMed Central 

    Google Scholar 
    Koen EL, Bowman J, Wilson PJ (2016) Node-based measures of connectivity in genetic networks. Mol Ecol Resour 16(1):69–79PubMed 

    Google Scholar 
    Koschuh A (2004) Verbreitung, lebensräume und gefährdung der sumpfschrecke (stethophyma grossum, l., 1758)(saltatoria) in der steiermark. Joannea, Zool 6:223–246
    Google Scholar 
    Krause S (1996) Populationsstruktur, Habitatbindung und Mobilität der Larven von Stethophyma grossum (Linné, 1758). Articulata 11(2):77–89
    Google Scholar 
    Latta RG (2006) Integrating patterns across multiple genetic markers to infer spatial processes. Landsc Ecol21(6):809–820
    Google Scholar 
    Lehnen L, Jan P-L, Besnard A-L, Fourcy D, Kerth G, Biedermann M, Nyssen P, Schorcht W, Petit E, and Puechmaille S (2021) Genetic diversity in a long-lived mammal is explained by the past’s demographic shadow and current connectivity. Mol Ecol, 00(1)Long FH (2013) Multivariate analysis for metabolomics and proteomics data. In Proteomic and metabolomic approaches to biomarker discovery, pages 299–311. ElsevierMalkus J (1997) Habitatpräferenzen und mobilität der sumpfschrecke (stethophyma grossum l. 1758) unter besonderer berücksichtigung der mahd. Articulata 12(1):1–18
    Google Scholar 
    Marzelli M (1994) Ausbreitung von mecostethus grossus auf einer ausgleichs-und renaturierungsfläche. Articulata 9(1):25–32
    Google Scholar 
    Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8(12):1717–1724
    Google Scholar 
    Millette KL, Keyghobadi N (2015) The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales. Ecol Evol 5(1):73–86PubMed 

    Google Scholar 
    Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145
    Google Scholar 
    Mony C, Abadie J, Gil-Tena A, Burel F, Ernoult A (2018) Effects of connectivity on animal-dispersed forest plant communities in agriculture-dominated landscapes. J Veg. Sci. 29(2):167–178
    Google Scholar 
    Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(1):252–261PubMed 

    Google Scholar 
    Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21(7):959–967
    Google Scholar 
    Pasinelli G, Meichtry-Stier K, Birrer S, Baur B, Duss M (2013) Habitat quality and geometry affect patch occupancy of two Orthopteran species. PLoS One 8(5):e65850PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Rodríguez A, Khimoun A, Ollivier A, Eraud C, Faivre B, Garnier S (2018) Habitat fragmentation, not habitat loss, drives the prevalence of blood parasites in a Caribbean passerine. Ecography 41(11):1835–1849
    Google Scholar 
    Peterman WE, Anderson TL, Ousterhout BH, Drake DL, Semlitsch RD, Eggert LS (2015) Differential dispersal shapes population structure and patterns of genetic differentiation in two sympatric pond breeding salamanders. Conserv Genet 16(1):59–69
    Google Scholar 
    Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858PubMed 

    Google Scholar 
    Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28(5):593–602
    Google Scholar 
    Roy K, Kar S, and Das RN (2015) Statistical methods in QSAR/QSPR. In A primer on QSAR/QSPR modeling, pages 37–59. SpringerRozenfeld AF, Arnaud-Haond S, Hernández-Garcia E, Eguíluz VM, Serrão EA, Duarte CM (2008) Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci 105(48):18824–18829PubMed 
    PubMed Central 

    Google Scholar 
    Saura S (2018) The amount of reachable habitat—jointly measuring habitat amount and connectivity in space and time. In Proceedings of international conference of ecological sciences of the French Society for Ecology and EvolutionSaura S (2021) The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. J Biogeogr 48(1):11–22
    Google Scholar 
    Saura S, Bodin Ö, Fortin M-J (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182
    Google Scholar 
    Saura S and de la Fuente B (2017) Connectivity as the amount of reachable habitat: conservation priorities and the roles of habitat patches in landscape networks. In Gergel, SE and Turner, MG, editors, Learning landscape ecology: a practical guide to concepts and techniques, pages 229–254. SpringerSaura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537
    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021a) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21(4):1167–1185PubMed 

    Google Scholar 
    Savary P, Foltête J-C, Moal H, Vuidel G, Garnier S (2021b) graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods Ecol Evol 12(3):539–547
    Google Scholar 
    Schoville SD, Dalongeville A, Viennois G, Gugerli F, Taberlet P, Lequette B, Alvarez N, Manel S (2018) Preserving genetic connectivity in the European Alps protected area network. Biol Conserv 218:99–109
    Google Scholar 
    Shirk A, Cushman S (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11(5):922–934PubMed 

    Google Scholar 
    Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47(1):264–279PubMed 

    Google Scholar 
    Sonneck A-G, Bönsel A, Matthes J (2008) Der einfluss von landnutzung auf die habitate von stethophyma grossum (linnaeus, 1758) an beispielen aus mecklenburg-vorpommern. Articulata 23:15–30
    Google Scholar 
    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci 101(42):15261–15264PubMed 
    PubMed Central 

    Google Scholar 
    Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514PubMed 

    Google Scholar 
    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21):2498–2504PubMed 
    PubMed Central 

    Google Scholar 
    Taylor Z, Hoffman S (2014) Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus). Heredity 112(6):588–595PubMed 
    PubMed Central 

    Google Scholar 
    Tenenhaus M (1998) La régression PLS: théorie et pratique. Editions TECHNIPToma Y, Imanishi J, Yokogawa M, Hashimoto H, Imanishi A, Morimoto Y, Hatanaka Y, Isagi Y, Shibata S (2015) Factors affecting the genetic diversity of a perennial herb Viola grypoceras A. Gray var. grypoceras in urban fragmented forests. Landsc Ecol 30(8):1435–1447
    Google Scholar 
    Tournant P, Afonso E, Roué S, Giraudoux P, Foltête J-C (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49
    Google Scholar 
    Trautner J, Hermann G (2008) Die Sumpfschrecke (Stethophyma grossum L., 1758) im Aufwind-Erkenntnisse aus dem zentralen Baden-Württemberg. Articulata 23(2):37–52
    Google Scholar 
    Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218
    Google Scholar 
    van Strien MJ (2017) Consequences of population topology for studying gene flow using link-based landscape genetic methods. Ecol Evol 7(14):5070–5081van Strien MJ, Keller D, Holderegger R, Ghazoul J, Kienast F, Bolliger J (2014) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow Ecol Appl 24(2):327–339PubMed 

    Google Scholar 
    Varvio S-L, Chakraborty R, Nei M (1986) Genetic variation in subdivided populations and conservation genetics. Heredity 57(2):189–198PubMed 

    Google Scholar 
    Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318
    Google Scholar 
    Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14(2):253–261
    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370PubMed 

    Google Scholar 
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intellig Lab Syst 58(2):109–130
    Google Scholar 
    Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95(4):181–191
    Google Scholar  More

  • in

    Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations

    1.Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447 (2018).Article 

    Google Scholar 
    2.Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    3.Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157 (2007).Article 
    PubMed 
    ADS 

    Google Scholar 
    4.Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015 (2018).Article 
    PubMed 

    Google Scholar 
    6.Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325 (2006).Article 

    Google Scholar 
    8.Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009 (2011).Article 

    Google Scholar 
    9.Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (2007).Article 
    PubMed 

    Google Scholar 
    10.Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).
    Google Scholar 
    12.Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719 (2001).Article 

    Google Scholar 
    13.Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014 (2010).Article 
    ADS 

    Google Scholar 
    14.Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).15.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291 (2015).Article 

    Google Scholar 
    17.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730 (2017).Article 

    Google Scholar 
    18.Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500 (2019).Article 

    Google Scholar 
    19.Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293 (2019).Article 

    Google Scholar 
    20.Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).
    Google Scholar 
    21.Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713 (2009).Article 
    ADS 

    Google Scholar 
    23.Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com (2020).24.Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125 (2020).Article 

    Google Scholar 
    25.Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827 (2019).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786 (2010).Article 
    PubMed 

    Google Scholar 
    28.Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1 (2015).Article 

    Google Scholar 
    29.Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).30.Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384 (2015).Article 

    Google Scholar 
    31.Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001 (2010).Article 

    Google Scholar 
    36.Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021 (2014).Article 

    Google Scholar 
    38.Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391 (2018).Article 
    PubMed 

    Google Scholar 
    39.López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).40.Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 (2017).Article 
    PubMed 

    Google Scholar 
    41.Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).43.Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553 (1980).Article 

    Google Scholar 
    45.Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680 (2011).Article 
    PubMed 
    ADS 

    Google Scholar 
    48.Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234 (2007).Article 
    PubMed 

    Google Scholar 
    49.Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).50.Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).51.Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718 (1998).Article 

    Google Scholar 
    52.Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    53.Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4 (2005).Article 

    Google Scholar 
    54.Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723 (1998).Article 

    Google Scholar 
    57.Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (1993).Article 

    Google Scholar 
    58.Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014 (2013).Article 

    Google Scholar 
    60.Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    61.Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866 (2018).Article 
    PubMed 

    Google Scholar 
    62.Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).
    Google Scholar 
    63.Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822 (2008).Article 
    PubMed 

    Google Scholar 
    64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014 (2019).Article 
    ADS 

    Google Scholar 
    66.Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).67.Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).68.Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362 (2014).Article 

    Google Scholar 
    70.Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010 (2014).Article 

    Google Scholar 
    72.Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health

    SettingThis study was conducted in Cantabria, a region of the North coast of Spain.Design and patientsA cross-sectional study with prospective data collection was performed at the Allergy Services of the Marqués de Valdecilla University Hospital in Santander and the Sierrallana Hospital in Torrelavega (Cantabria, Spain).98 patients diagnosed of rhinoconjunctivitis, asthma or both, caused by sensitization to grass pollen, were included in a sequential way from October 2015 to March 2016.Written informed consent was obtained from all patients before entering the study. The study met the principles of the 1975 Helsinki declaration and was reviewed and approved by the local Research Committee of Cantabria (CEIC reference number 2015.207).A serum sample was obtained from each patient and stored at – 20 °C until used.Pollen extract preparationAll methods were performed in accordance with the relevant guidelines and regulations.Cortaderia selloana (CS) pollen was obtained commercially (Iber-Polen, Jaén, Spain) and then extracted at a 1:10 (w/v) ratio in PBS pH 6.5 with magnetic stirring for 90 min. at 5 °C. The soluble fraction was separated by centrifugation. After dialysis against PBS, the extract was filtered through 0, 22 µm filters. Protein content was determined by Bradford method (BioRad, Hercules, CA, USA). Two different batches were obtained (07 and 09) with consistent results.Part of the extract was adjusted to 0.25 mg protein/ml and formulated in PBS with 50% glycerol, phenol 0.51% (SPT buffer). The remaining extract was stored in aliquots at − 20 °C.Phleum pratense (Phl) pollen extract was made as described for CS. The origin of the pollen in this case was ALK Source Materials, Post Falls, Idaho, USA.The protein profiles of the CS or the Phl extracts were determined by polyacrylamide electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) under reducing conditions (Invitrogen-Novex tricine gels 10–20% acrylamide, Fisher Scientific, SL, Madrid Spain).Skin prick testPatients were skin prick tested (SPT) with a commercial extract (ALK-Abelló, S.A. Madrid, Spain) of Phl and the CS extract. Histamine dihydrochloride solution (10 mg/ml) and SPT buffer were used as positive and negative control (no reaction), respectively.The SPT wheal areas were measured by planimetry. A cut-off area of 7 mm2 (about 3 mm average diameter) or higher was considered a positive test result (histamine).The CS extract was tested in 10 control subjects, that were not sensitised to grass pollen, with negative result (no reaction).IgE assaysSerum samples were tested for IgE antibodies against Phleum pratense (Phl) pollen extract and the allergens Phl p 1, Phl p 5, Phl p 7 (polcalcin) and Phl p 12 (profilin) (ImmunoCap FEIA, Thermo Fisher Scientific, Barcelona, Spain).In addition, specific IgE against Phl and CS pollen extracts was determined by RAST (Radio Allergo Sorbent Test). Paper discs were activated with CNBr and sensitised with the pollen extracts as described by Ceska et al.21. Phl and CS discs were incubated overnight with 50 µL of the patient’s serum and after washing (0.1% Tween-20 in PBS), with approximately 100,000 cpm of the iodine 125–labeled anti-IgE mAb HE-2 for 3 h as described22. Finally, the discs were washed, and their radioactivity was determined in a gamma counter. sIgE values in kilounits per litre were determined by interpolating in a standard curve built up with Lolium perenne—sensitised discs and 4 dilutions of a serum pool from patients with grass allergy, which was previously calibrated in arbitrary kU/l.A cut-off value of 0.35 kU/l was considered positive for both ImmunoCap and RAST. There was a very significant correlation between the sIgE against Phl determined by both methods (r Spearman = 0.8874, p  More

  • in

    Forecasting water quality parameters using artificial neural network for irrigation purposes

    The result of this study is presented in three categories, namely; the descriptive statistics, the water quality test result and the ANN model and the model evaluation performance, respectively.The descriptive statistics result is presented in Tables 1, 2, 3, 4. This describes the basic features of the data in this study. They provide simple summaries about the sample and the measures such as the mean, median, maximum, minimum and standard deviation, respectively.Table 1 Descriptive statistics of the analyzed water quality at point 1.Full size tableTable 2 Descriptive statistics of the analyzed water quality at point 2.Full size tableTable 3 Descriptive statistics of the analyzed water quality at point 3.Full size tableTable 4 Descriptive statistics of the analyzed water quality at point 4.Full size tableThe descriptive statistics in Tables 1,2, 3, 4 shows that the mean values of the data set ranges from 6.29 to 6.34, 1956.21 to 2458.19, 3.35 to 7.39 and 39.13 to 51.06 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The median values of the data set ranges from 6.31 to 6.39, 2010.00 to 2439.50, 3.14 to 4.24 and 39.13 to 51.06 for pH, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The Maximum values data set ranges from 6.48 to 6.64, 2286.00 to 2742.00, 2.21 to 5.82, and 64.50 to 88.45 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The minimum values dataset ranges from 6.00 to 6.09, 1367.00 to 2199.00, 2.01 to 3.18, and 21.21 to 40.24 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The standard deviation values ranges from 0.08 to 0.16, 114.47 to 213.04, 0.23 to 31.49 and 14.06 to 8.16 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The low values of standard deviation recorded in this study shows that data set were very close to the mean of the dataset.The water quality analysis test result indicates the level of concentrations of the TDS (mg/l), EC (dS/m) and Na (mg/l) in the Ele river in Nnewi, Anambra State Nigeria. The FAO standard for irrigation water quality for TDS, EC and Na are 0–2000, 0–3 and 0–40, respectively. The water quality results show that the pH values which ranges from 6.01 to 6.87 were within the FAO standard in all the points for both rainy and dry seasons, whereas the TDS (mg/l), EC (dS/m) and Na (mg/l) parametric values range from 2001 to 2506, 3.01 to 5.76, and 40.42 to 73.45 respectively, were above the FAO standard from point 1 to point 3 and falls within the FAO standard at point 4 with values ranging from 1003 to 1994, 2.01 to 2.78 and 31.24 to 39.44, respectively. However, during the dry season, the TDS, EC, and Na values range from 2002 to 2742, 3.04 to 5.82 and 40.14 to 88.45 respectively, were all above the FAO standard. Anthropogenic pollution emitted into water bodies has recently been identified as a significant source of pollutants that need immediate action in order to avoid serious environmental effects11.The results equally revealed that the concentrations decrease along the sampling points going downstream. It is noteworthy that irrigation water with a pH outside the normal range may cause a nutritional imbalance or may contain a toxic ion which is harmful to crops19. The high concentrations of TDS as observed in this study are likely to increase the salinity of the river water, change the taste of the water, and as well decrease the dissolved oxygen level of the surface water making it difficult for the survival of plants and aquatic organisms7.Moreover, these anions and cations which increase the electric conductivity in water affect irrigation adversely since salts settle at crop root zones making it difficult for infiltration, absorption of moisture and nutrients necessary for crop production.The ANN model and forecast for the water quality parameters are shown from Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Considering the water quality permissible range, River quality modeling and forecast shows different variations seasonally such that the pollution level during dry season was higher than the rainy season.Figure 4(A and B): pH model and forecast graph at point 1.Full size imageFigure 5(A and B): TDS model and forecast graph at point 1.Full size imageFigure 6(A and B): EC model and forecast graph at point 1.Full size imageFigure 7(A and B): Na model and Forecast graph at point 1.Full size imageFigure 8(A and B): Ph model and Forecast graph at point 2.Full size imageFigure 9(A and B): TDS model and Forecast graph at point 2.Full size imageFigure 10(A and B): EC model and Forecast graph at point 2.Full size imageFigure 11(A and B): Na model and Forecast graph at point 2.Full size imageFigure 12(A and B): Ph model and Forecast graph at point 3.Full size imageFigure 13(A and B): TDS model and Forecast graph at point 3.Full size imageFigure 14(A and B): EC model and Forecast graph at point 3.Full size imageFigure 15(A and B): Na model and Forecast graph at point 3.Full size imageFigure 16(A and B): pH model and Forecast graph at point 4.Full size imageFigure 17(A and B): TDS model and Forecast graph at point.Full size imageFigure 18(A and B): EC model and Forecast graph at point 4.Full size imageFigure 19(A and B): Na model and Forecast graph at point 4.Full size imageGenerally, the artificial neural network model the actual data set very well. At various sampling points, the developed ANN models descriptively show insignificant values in deviation for the actual data set. There were continues variations in the developed models and forecasts over time. The feed-forward Multilayer Neural Network (FFMNN) Model Performance Evaluation Results are shown in Table 5. The model performance evaluation was carried out based on the developed ANN model training, Testing and forecast, respectively. The model performance evaluation was carried out using the coefficient of multiple determination R2 and Root Mean Squared Error (RMSE).Table 5 Statistical measurement of the trained, test and forecast model.Full size tableThe R2 values were generally observed to have varied in the second decimal place for the training, testing and forecast model, respectively.The training performance evaluation shows that R2 values ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989 and 0981 to 0.989, for pH, TDS, EC, and Na, respectively. The training results shows that the pH model have the best performance followed by EC, and Na.Also, the testing performance shows that the R2 value ranges from 0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967 and 0.953 to 0.968, for pH, TDS, EC and Na, respectively. However, the testing performance evaluation shows that TDS had the best performance. The forecast performance evaluation shows that the R2 values ranges from 0.945 to 0.968, 0.946 to 0.968, 0.944 to 0.967 and 0.949 to 0.965 for pH, TDS, EC and Na respectively. It was however discovered that the TDS made best forecast followed by the pH. The water quality forecast performance was further evaluated using the Root Mean Squared Error (RMSE) which ranges from 0.022 to 0.088, 0.012 to 0.087, 0.015 to 0.085and 0.014 to 0.084 for pH, TDS, EC and Na, respectively. The ANN model performed very well as their coefficient of multiple determinations R2 were very close 1, which is in agreement with the study of Awu et al. (2017) and Abrahart et al., (2005). On comparing the performance of the training model to the testing model and forecast, it shows that the training set performed better than the testing set followed by the forecast as its coefficient of multiple determinations, R2, was much closer to 1. More

  • in

    Correction to: Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    AffiliationsDepartment of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, SpainFrancisco Martinez-Hernandez, Inmaculada Garcia-Heredia & Manuel Martinez-GarciaDepartment of Biology, University of North Carolina at Greensboro, Greensboro, NC, USAAwa Diop & Louis-Marie BobayAuthorsFrancisco Martinez-HernandezAwa DiopInmaculada Garcia-HerediaLouis-Marie BobayManuel Martinez-GarciaCorresponding authorCorrespondence to
    Manuel Martinez-Garcia. More

  • in

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    1.Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 

    Google Scholar 
    2.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    3.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    Google Scholar 
    4.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    5.Musavi, T. et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 6, 7352–7366 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    Google Scholar 
    7.Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    8.Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    9.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    10.Díaz, S. et al. The global spectrum of plant form and function. Nature 529,167–171 (2015).
    Google Scholar 
    11.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Thomas, H. J. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).14.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).15.Schimper, A. Plant-Geography Upon A Physiological Basis (Clarendon Press, 1903).16.Warming, E. Oecology Of Plants (Oxford, 1909).17.Raunkiær, C. in Life Forms of Plants and Statistical Plant Geography, 4-16 (Clarendon Press, 1934).18.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
    Google Scholar 
    19.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    22.Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Google Scholar 
    23.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
    Google Scholar 
    24.Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).CAS 

    Google Scholar 
    25.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 

    Google Scholar 
    26.Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
    Google Scholar 
    28.Blume, H.-P. et al. Soil Science 1st edn.(Springer, Berlin-Heidelberg, 2016).29.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    30.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    31.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2008).32.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    33.Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Corner, E. J. H. The Durian theory or the origin of the modern tree. Ann. Bot. XIII, 367–414 (1949).
    Google Scholar 
    35.Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).
    Google Scholar 
    36.FloresâMoreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019).
    Google Scholar 
    37.Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).CAS 

    Google Scholar 
    38.Vitousek, P. Nutrient Cycling and Limitation: Hawai’i as a Model System (Princeton Univ. Press, 2004).39.Shipley, B., Vile, D., Garnier, E., Wright, I. J. & Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct. Ecol. 19, 602–615 (2005).
    Google Scholar 
    40.He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
    Google Scholar 
    41.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).
    Google Scholar 
    42.Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).CAS 

    Google Scholar 
    43.Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).
    Google Scholar 
    44.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).
    Google Scholar 
    45.Legay, N. et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot 114, 1011–1021 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
    Google Scholar 
    47.Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).CAS 

    Google Scholar 
    48.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).
    Google Scholar 
    50.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).
    Google Scholar 
    51.Zech, W., Schad, P. & Hintermaier-Erhard, G. Böden der Welt—Ein Bildatlas (Springer Spectrum, 2014).52.Rosenberg, E. et al. (eds) The Prokaryotes: Prokaryotic Communities and Ecophysiology 4th edn. (Springer-Verlag, 2013).53.Niinemets, Ã. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129, 313–338 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Freschet, G. T. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol. Biogeogr. 20, 755–765 (2011).
    Google Scholar 
    56.Yemefack, M., Rossiter, D. G. & Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 125, 117–143 (2005).
    Google Scholar 
    57.Oldeman, L., Hakkeling, R. & Sombroek, W. Global Assessment of Soil Degradation (GLASOD): World Map of the Status of Human-induced Soil Degradation (United Nations Environment Programme, 1991).58.Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).CAS 

    Google Scholar 
    59.Adler, P. B. A Comparison of Livestock Grazing Effects on Sagebrush Steppe, USA, and Patagonian Steppe, Argentina. PhD thesis (Colorado State University, 2003).60.Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).
    Google Scholar 
    61.Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent Univ. (2012).62.Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999).
    Google Scholar 
    63.Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness (a comparison of slow- and fast-growing Poa species). Plant Physiol. 113, 961–965 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Auger, S. L’Importance de la Variabilité Interspécifique des Traits Fonctionnels par Rapport à la Variabilité Intraspécifique Chez les Jeunes Arbres en Forêt Mature. MSc thesis (Université de Sherbrooke, 2012).65.Bahn, M. et al. in Land-Use Changes in European Mountain Ecosystems. ECOMONT—Concept and Results (eds Cernusca, A. et al.) 247–255 (Blackwell Wissenschaft, 1999).66.Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297–307 (2009).CAS 

    Google Scholar 
    67.Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water table and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).
    Google Scholar 
    68.Bakker, C., Rodenburg, J. & van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005).CAS 

    Google Scholar 
    69.Baraloto, C. et al. Decoupled leaf and stem economics in rainforest trees. Ecol. Lett. 13, 1338–1347 (2010).
    Google Scholar 
    70.Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. 24, 208–216 (2010).
    Google Scholar 
    71.Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—a comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012).
    Google Scholar 
    72.Blanco, C. C., Sosinski, E. E., dos Santos, B. R. C., da Silva, M. A. & Pillar, V. D. On the overlap between effect and response plant functional types linked to grazing. Community Ecol. 8, 57–65 (2007).
    Google Scholar 
    73.Blonder, B. et al. The shrinkage effect biases estimates of paleoclimate. Am. J. Bot. 99, 1756–1763 (2012).
    Google Scholar 
    74.Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).
    Google Scholar 
    75.Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    76.Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).
    Google Scholar 
    77.Bocanegra-González K.T., Fernández-Méndez, F. & David Galvis-Jiménez, J. Funtional groups of tres in secondary forests of the bajo calima region (Buenaventura, Colombia) Boletín CientífiCo Centro de Museos Museo de Historia natura 19, (2015).78.Bodegom, P. M. V., Kanter, M. D. & Aerts, C. B. R. Radial oxygen loss, a plastic property of dune slack plant species. Plant Soil 271, 351–364 (2005).
    Google Scholar 
    79.Bond-Lamberty, C. W. B. & Gower, S. T. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002).
    Google Scholar 
    80.Bond-Lamberty, C. W. B. & Gower, S. T. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002).
    Google Scholar 
    81.Bond-Lamberty, C. W. B. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003).
    Google Scholar 
    82.Bond-Lamberty, C. W. B. & Gower, S. Net primary production and net ecosystem production of a boreal black spruce fire chronosequence. Glob. Change Biol. 10, 473–487 (2004).
    Google Scholar 
    83.Bragazza, L. Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009).
    Google Scholar 
    84.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    85.Briemle, G., Nitsche, S. & Nitsche, L. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 203–225 (Bundesamt für Naturschutz, 2002).86.Brown, K. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS ONE https://doi.org/10.1371/journal.pone.0024107 (2011).87.Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).
    Google Scholar 
    88.Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011).
    Google Scholar 
    89.Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).
    Google Scholar 
    90.Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007).CAS 

    Google Scholar 
    91.Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
    Google Scholar 
    92.Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000).
    Google Scholar 
    93.Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador., P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).CAS 

    Google Scholar 
    94.Castro-Diez, P., Puyravaud, J. P. & Cornelissen, J. H. C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476–486 (2000).CAS 

    Google Scholar 
    95.Cavender-Bares, A. K. J. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).
    Google Scholar 
    96.Cavender-Bares, L. S. J. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 522–620 (2007).
    Google Scholar 
    97.Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).
    Google Scholar 
    98.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    Google Scholar 
    99.Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2011).
    Google Scholar 
    100.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    101.Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698 (2007).
    Google Scholar 
    102.Coomes, D. A., Heathcote, S., Godfrey, E. R. & Shepherd, J. J. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    103.Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    104.Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996).
    Google Scholar 
    105.Cornelissen, J. H. C., Diez, P. C. & Hunt., R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).
    Google Scholar 
    106.Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rheenen, J. W. A., & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).CAS 

    Google Scholar 
    107.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    108.Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999).CAS 

    Google Scholar 
    109.Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & van der Heijden., M. G. A. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    110.Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
    Google Scholar 
    111.Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322 (2003).
    Google Scholar 
    112.Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).
    Google Scholar 
    113.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    114.Schwilk, D. W., Cornwell, W. K. & Ackerly., D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    115.Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    116.Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).
    Google Scholar 
    117.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    118.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    119.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).
    Google Scholar 
    120.Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    121.Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).
    Google Scholar 
    122.Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manag. 238, 335–346 (2007).
    Google Scholar 
    123.Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. For. Ecol. Manag. 261, 1643–1653 (2011).
    Google Scholar 
    124.Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian alps: a comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).
    Google Scholar 
    125.de Araujo, A. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil (ORNL DAAC, 2012); http://daac.ornl.gov126.de Vries, F. T. & Bardgett, R. D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    127.Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013).CAS 

    Google Scholar 
    128.Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Google Scholar 
    129.Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interact. https://doi.org/10.1175/EI149.1 (2005).130.Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 193, 101–112 (2007).
    Google Scholar 
    131.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland–forest mosaic. J. Veg. Sci. 18, 847–858 (2007).
    Google Scholar 
    133.DunbarâCo, S., Sporck, M. J. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009).
    Google Scholar 
    134.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 75–91 (Bundesamt für Naturschutz, 2002).135.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 57–74 (Bundesamt für Naturschutz, 2002).136.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 133–175 (Bundesamt für Naturschutz, 2002).137.Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecol. Model. 124, 69–83 (1999).CAS 

    Google Scholar 
    138.Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems 17, 1095–1108 (2014).CAS 

    Google Scholar 
    139.Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th International Conference on Machine Learning and Applications (eds Ferri, C. et al.) 312–317 (International Conference on Machine Learning and Applications (ICMLA), 2014).140.Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Bot. Gall. 157, 45–54 (2010).
    Google Scholar 
    141.Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).
    Google Scholar 
    142.Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    143.Frainer, A. & McKie, B. G. Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Adv. Ecol. Res. 52, 169–200 (2015).
    Google Scholar 
    144.Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 23, 208–222 (2011).
    Google Scholar 
    145.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the plant economics spectrum in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Google Scholar 
    146.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol. 186, 879–889 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    147.Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2013).
    Google Scholar 
    148.Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
    Google Scholar 
    149.Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005).
    Google Scholar 
    150.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).
    Google Scholar 
    151.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    152.Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    154.Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012).
    Google Scholar 
    155.Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca sand dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).
    Google Scholar 
    156.Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2011).
    Google Scholar 
    157.Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010).
    Google Scholar 
    159.He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan plateau. New Phytol. 170, 835–848 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    160.Hickler, T. Plant Functional Types and Community Characteristics along Environmental Gradients on Öland’s Great Alvar (Sweden). Masters thesis (University of Lund, 1999).161.Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008).162.Husson, A. F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’ (CRAN, 2017).163.Jacobs, B. et al. Unraveling the Phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An Interdisciplinary Approach. Syst. Bot. 36, 231–252 (2011).
    Google Scholar 
    164.Jansen, S., Decraene, L. P. R. & Smets, E. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). Syst. Geogr. Plants 70, 171 (2000).
    Google Scholar 
    165.Jansen, S. et al. Contributions to the wood anatomy of the Rubioideae (Rubiaceae). J. Plant Res. 114, 269–289 (2001).
    Google Scholar 
    166.Jansen, S., Piesschaert, F. & Smets, E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am. J. Bot. 87, 20 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    167.Jansen, S., Robbrecht, E., Beeckman, H. & Smets, E. Gaertnera and Pagamea: genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Bot. Acta 109, 466–476 (1996).
    Google Scholar 
    168.S., J., E., R., H., B. & Smets, E. Comparative wood anatomy of African Coffeae (Rubiaceae-Rubioideae). Belg. J. Bot. 130, 47–58 (1997).
    Google Scholar 
    169.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).
    Google Scholar 
    170.Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).
    Google Scholar 
    171.Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    172.Kew, R. B. G. Seed Information Database—SID (Kew, 2008); http://data.kew.org/sid/173.Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
    Google Scholar 
    174.Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
    Google Scholar 
    175.Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457 (2005).
    Google Scholar 
    176.Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).
    Google Scholar 
    177.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 119-126 (Bundesamt für Naturschutz, 2002).178.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 241–246 (Bundesamt für Naturschutz,2002).179.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 273–281 (Bundesamt für Naturschutz, 2002).180.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 197–201 (Bundesamt für Naturschutz, 2002).181.Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001).
    Google Scholar 
    182.Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).
    Google Scholar 
    183.Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).CAS 

    Google Scholar 
    184.Krumbiegel, A. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 93–118 (Bundesamt für Naturschutz, 2002).185.Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 47–56 (Bundesamt für Naturschutz, 2002).186.Kuhn, I., Durka, W. & Klotz, S. Biolflor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).
    Google Scholar 
    187.Kühn, I. & Klotz, S. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 227–239 (Bundesamt für Naturschutz, 2002).188.Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008).
    Google Scholar 
    189.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).
    Google Scholar 
    190.Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2009).
    Google Scholar 
    191.Lens, F. Comparative wood anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Ann. Bot. 91, 835–856 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    192.Lens, F., Baas, P., Jansen, S. & Smets, E. A search for phylogenetically informative wood characters within Lecythidaceae s.l. Am. J. Bot. 94, 483–502 (2007).
    Google Scholar 
    193.Lens, F., Dressler, S., Jansen, S., van Evelghem, L. & Smets, E. Relationships within balsaminoid Ericales: a wood anatomical approach. Am. J. Bot. 92, 941–953 (2005).
    Google Scholar 
    194.Lens, F., Eeckhout, S., Zwartjes, R., Smets, E. & Janssens, S. B. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach: where do we draw the line? Ann. Bot. 109, 783–799 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    195.Lens, F., Endress, M. E., Baas, P., Jansen, S. & Smets, E. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Am. J. Bot. 96, 2168–2183 (2009).
    Google Scholar 
    196.Lens, F., Groeninckx, I., Smets, E. & Dessein, S. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann. Bot. 103, 1049–1064 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    197.Lens, F., Jansen, S., Caris, P., Serlet, L. & Smets, E. Comparative wood anatomy of the primuloid clade (Ericales s.l.). Syst. Bot. 30, 163–183 (2005).
    Google Scholar 
    198.Lens, F., Jansen, S., Robbrecht, E. & Smets, E. Wood anatomy of the Vangueriaea (Ixoroideae-Rubuaceae), with special emphasis on some geofrutices. IAWA J. 21, 443–455 (2000).
    Google Scholar 
    199.Lens, F. et al. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57, 525–552 (2008).
    Google Scholar 
    200.Lens, F., Kron, K. A., Luteyn, J. L., Smets, E. & Jansen, S. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s.l). Ann. Missouri Bot. Gard. 91, 566–592 (2004).
    Google Scholar 
    201.Lens, F., Smets, E. & Jansen, S. Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s.l.). Bot. J. Linn. Soc. 144, 161–179 (2004).
    Google Scholar 
    202.Lens, F., Smets, E. & Melzer, S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 193, 12–17 (2011).
    Google Scholar 
    203.Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2010).
    Google Scholar 
    204.Li, H., Liang, Y., Xu, Q. & Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).CAS 

    Google Scholar 
    205.Louault, F., Pillar, V. D., Aufrèère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16, 151–160 (2005).
    Google Scholar 
    206.Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
    Google Scholar 
    207.Malhado, A. C. M. et al. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44, 728–737 (2012).
    Google Scholar 
    208.Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009).
    Google Scholar 
    209.Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590 (2009).
    Google Scholar 
    210.Malhado, A. C. M. et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Glob. Ecol. Biogeogr. 19, 852–862 (2010).
    Google Scholar 
    211.Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009).CAS 

    Google Scholar 
    212.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
    Google Scholar 
    213.Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400 (2007).
    Google Scholar 
    214.McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).
    Google Scholar 
    215.McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: empirical patterns and a theoretical explanation. Écoscience 6, 286–296 (1999).
    Google Scholar 
    216.Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).CAS 

    Google Scholar 
    217.Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).CAS 

    Google Scholar 
    218.Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002).
    Google Scholar 
    219.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).
    Google Scholar 
    220.Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).
    Google Scholar 
    221.Meng, T.-T. et al. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).
    Google Scholar 
    222.Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2016).
    Google Scholar 
    223.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
    Google Scholar 
    224.Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct. Ecol. 13, 611–622 (1999).
    Google Scholar 
    225.Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    226.Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012).
    Google Scholar 
    227.Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011).
    Google Scholar 
    228.Mischkolz, J. M. Selecting and Evaluating Native Forage Mixtures for the Mixed Grass Prairie. Msc thesis (University of Saskatchewan, 2013).229.Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).
    Google Scholar 
    230.Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2006).
    Google Scholar 
    231.Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    232.Niinemets, U. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).
    Google Scholar 
    233.Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).
    Google Scholar 
    234.Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).
    Google Scholar 
    235.Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 50, 373–382 (2006).
    Google Scholar 
    236.Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291–299 (2006).
    Google Scholar 
    237.Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).
    Google Scholar 
    238.Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    239.Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    240.Otto, B. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 177–196 (Bundesamt für Naturschutz, 2002).241.Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).
    Google Scholar 
    242.Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 27–49 (2007).
    Google Scholar 
    243.Baas, P., Smets, E. & Jansen, S. Vegetative anatomy and effinities of Dirachma socotrana (Dirachmaceae). Syst. Bot. 26, 231–241 (2001).
    Google Scholar 
    244.Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. J. Ecol. 96, 355–366 (2008).
    Google Scholar 
    245.Pakeman, R. J., Lep, J., Kleyer, M., Lavorel, S. & Garnie, E. Relative climatic, edaphic and management controls of plant functional trait signatures. J. Veg. Sci. 20, 148–159 (2009).
    Google Scholar 
    246.Papanastasis, M. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    247.Patiño, S. et al. Branch xylem density variations across the Amazon basin. Biogeosciences 6, 545–568 (2009).
    Google Scholar 
    248.Paula, S. et al. Fire-related traits for plant species of the Mediterranean basin. Ecology 90, 1420–1420 (2009).
    Google Scholar 
    249.Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. J. Ecol. 96, 543–552 (2008).
    Google Scholar 
    250.Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of Dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).
    Google Scholar 
    251.Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2009).
    Google Scholar 
    252.Peñuelas, J. et al. Higher allocation to low cost chemical defenses in invasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    253.Petter, G. et al. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 30, 188–198 (2015).
    Google Scholar 
    254.Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    255.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).
    Google Scholar 
    256.Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).
    Google Scholar 
    257.Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).
    Google Scholar 
    258.Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).
    Google Scholar 
    259.Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).
    Google Scholar 
    260.Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    261.Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    262.Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extention of the WBE model. Ecology 88, 1132–1141 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    263.Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proc. Natl Acad. Sci. USA 104, 13204–13209 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    264.Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999).
    Google Scholar 
    265.Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    266.Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).
    Google Scholar 
    267.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    268.Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    269.Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2012).
    Google Scholar 
    270.Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ’hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).
    Google Scholar 
    271.Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    272.Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    273.Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    274.Sanda V., Bita-Nicolae, C. D. & Barabas, N. The Flora of Spontaneous and Cultivated Cormophytes from Romania (in Romanian) (Editura Ion Bacău, 2003).275.Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011).
    Google Scholar 
    276.Sardans, J., Penuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For. Sci. 54, 513–522 (2008).
    Google Scholar 
    277.Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. https://doi.org/10.1029/2008jg000795 (2008).278.Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (biotree). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).
    Google Scholar 
    279.Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 
    280.Schwallier, R. et al. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Ann. Bot. 119, 1179–1193 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    281.Schweingruber, F. H., & Poschlod, P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc. Res. 79, 195–415 (2005).
    Google Scholar 
    282.Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    283.Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008).
    Google Scholar 
    284.Shipley, B. The use of above-ground maximum relative growth rate as an accurate predictor of whole-plant maximum relative growth rate. Funct. Ecol. 3, 771 (1989).
    Google Scholar 
    285.Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).
    Google Scholar 
    286.Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience 7, 183–194 (2000).
    Google Scholar 
    287.Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111 (1991).
    Google Scholar 
    288.Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002).
    Google Scholar 
    289.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).
    Google Scholar 
    290.Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD Thesis (University of Aberdeen, 2007).291.Trefflich, A., Klotz, S. & Kuhn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 127–131 (Bundesamt für Naturschutz, 2002).292.Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011).
    Google Scholar 
    293.Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian) (Editura Ceres, 2009).294.van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    295.Vergutz, L. et al. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1106296.Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).
    Google Scholar 
    297.Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-cultural Méditerranéenne et Generalisations. PhD thesis (University of Montpellier II, 2005).298.Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004).
    Google Scholar 
    299.Williams, M., Shimabukuro, Y. E. & Rastetter, E.B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1104300.Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010).
    Google Scholar 
    301.Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000).
    Google Scholar 
    302.Wirth, C. & Lichstein, J. W. in Old-Growth Forests: Function, Fate and Value (eds Wirth, C. et al.) 81–113 (Springer, 2009).303.Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ. 22, 1281–1296 (1999).
    Google Scholar 
    304.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).
    Google Scholar 
    305.Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012).
    Google Scholar 
    306.Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
    Google Scholar 
    307.Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).
    Google Scholar 
    308.Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011).
    Google Scholar 
    309.Zanne, A. E. et al. Global Wood Density Database (EOL, 2009); https://opendata.eol.org/dataset/dde86ffb-7741-44a1-acf2-808b3dd6bc97/resource/d1e2b018-a7ce-444b-ac8a-ac43b2355cc9/download/archive310.Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
    Google Scholar 
    311.Kattge, V. et al. TRY – a global database of plant traits. Global Change Biol 9, 2905–2935 (2011).
    Google Scholar 
    312.Shan, H. et al. Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization (ICML, 2012); http://arxiv.org/abs/1206.6439313.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).314.Salakhutdinov, R. & Mnih, A. Probabilistic matrix factorization. In Proc. 20th International Conference on Neural Information Processing Systems (eds Platt, J. C. et al.) 1257–1264 (Curran Associates Inc., 2007).315.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).316.Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    317.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Google Scholar 
    318.Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).
    Google Scholar 
    319.Chessel, D., Dufour, A.-B. & Thioulouse, J. The ade4 package—I: one-table methods. R News 4, 5–10 (2004).
    Google Scholar 
    320.Dray, S., Dufour, A.-B. & Chessel, D. The ade4 package—II: two-table and K-table methods. R News 7, 47–52 (2007).
    Google Scholar 
    321.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).322.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    323.Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    324.Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
    Google Scholar 
    325.Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    326.Arrouays, D. et al. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ 14, 1–19 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    327.Richard, P. & Pielou, E. C. Biogeography (John Wiley & Sons, 1979).328.Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World (International Union for Conservation of Nature and Natural Resources, 1975).329.Dinerstein, E. et al. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank, 1995).330.Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).331.Dasmann, R. F. A System for Defining and Classifying Natural Regions for Purposes of Conservation: A Progress Report (IUCN, 1973). More