More stories

  • in

    Effectiveness assessment of using riverine water eDNA to simultaneously monitor the riverine and riparian biodiversity information

    Driven by the land-to-river and upstream-to-downstream WBIF, biodiversity information across terrestrial and aquatic biomes could be detected in riverine water eDNA6,16, and the monitoring effectiveness of riverine water eDNA relies on the transportation effectiveness of corresponding WBIF6,17,18,19,20. The transportation effectiveness of WBIF mainly relies on the transport capacity, degradation rate, and environmental filtration of WBIF15,21,22,23, which can vary with different seasons and weather conditions26. We hypothesized that the monitoring effectiveness would vary with the seasons and weather conditions. In the present case, the bacterial community richness in riparian soil did not vary with season, whereas the bacterial community composition in riverine water was richest in the autumn, followed by the summer (Figs. 2, 3). The transportation effectiveness of riparian-to-river and upstream-to-downstream WBIF in spring frozen days was significantly lower than in summer rainy days and autumn cloudy days (Tables 1, 2, Supplementary Tables S3, S4). Considering the insufficient read depth on the riverine water samples of summer and autumn groups (Supplementary Fig. S1), the riverine water bacterial community richness and the riparian-to-river transportation effectiveness on summer and autumn were already underestimated. It indicates that the monitoring effectiveness varied with different seasons and weather conditions, and summer and autumn were the optimal seasons, along with rainy days being the optimal weather condition, for using riverine water eDNA to simultaneously monitor the holistic biodiversity information in riverine sites and riparian sites.The biodiversity information detected by water eDNA could originate from living and dead organisms23,26. The detection of biodiversity information that originates from a living organism mainly depends on the dispersal of this living organism11,20. The detection of biodiversity information that originates from a dead organism mainly depends on its transport capacity and degradation rate12,22,29. In summer and autumn, as driven by active organisms, more eDNA was input into the river system. In particular, the surface runoff caused by rain can input more eDNA from terrestrial soil into the river system and can preserve them in soil aggregates30. In the present study, the highest proportion of bacteria in riparian soil was detected in riverine water in summer and autumn, and the rain promoted this phenomenon (Fig. 3 and Table 1, Supplementary Table S3). The proportion of effective upstream-to-downstream WBIF was significantly higher in summer and autumn than in spring, as well as being higher on rainy days than on cloudy days (Table 2). eDNA (originated from dead organisms) degrades over time in a logistic manner (a half-life time)12,22,27,31, which was described in this study as degrading by half-life distance in a lotic system, which integrates the transport capacity and the degradation rate. In the present work, as driven by runoff discharge and flow velocity (Supplementary Table S1), the half-life distance of noneffective WBIF was significantly farther in the summer than in autumn and in spring (Table 2).The biodiversity information monitoring effectiveness of riverine water eDNA, as approximated by the transportation effectiveness of WBIF, was impacted by the eDNA degradation rate in WBIF, and there were taxonomy-specific eDNA degradation rates27, species-specific eDNA degradation rates17, and form-specific eDNA degradation rates28. We hypothesized that the monitoring effectiveness of riverine water eDNA would vary with taxonomic communities. In the present case, the results revealed the detection of a significantly higher monitoring effectiveness of riverine water eDNA (both riparian-to-river and downstream-to-upstream) for bacterial communities than for eukaryotic communities (Tables 3, 4). Considering the insufficient read depth on the bacterial community (16S rRNA gene, Supplementary Fig. S2), the detection capacity on bacterial group was already underestimated. A significantly higher monitoring effectiveness of riverine water eDNA was found for micro-eukaryotic communities (fungi) than for overall eukaryotic communities (including micro- and macro-organisms) (Tables 3, 4). This indicates that the monitoring effectiveness varied with different taxonomic communities, and the effectiveness of monitoring eukaryotic communities was significantly lower than for monitoring bacterial communities; in addition, the effectiveness of monitoring macrobe communities was significantly lower than for monitoring microbe communities.eDNA surveys that are based on metabarcoding can actually acquire information across the taxonomic tree of life5,6,11,32,33. However, eDNA that originates from different taxonomic groups has a different probability of being left in the environment and input into water6,8,9,34. van Bochove et al. inferred that the eDNA contained inside of cells and mitochondria is especially resilient against degradation (i.e., intracellular vs. extracellular effects)28. In the present case, more bacteria than eukaryotes and more microorganisms than macroorganisms (both OTU and species levels) in riparian soil could be detected in riverine water (Table 3). The half-life distance of noneffective WBIF for bacteria (detected by the 16 s RNA gene) was much farther than that for unicellular eukaryotes (detected by the ITS gene, which is mainly unicellular), than that for multicellular eukaryotes (as detected by the CO1 gene, which is mainly multicellular) (Table 4). We inferred that the eDNA contained inside of bacterial cells was more resilient against degradation than that contained inside of unicellular eukaryotic cells (i.e., prokaryotic cells vs. eukaryotic cells), as well as compared to the eDNA contained inside of multicellular eukaryotic cells or extracellular mitochondria (i.e., unicellular eukaryotic cells vs. multicellular eukaryotic cells or extracellular mitochondria).In previous studies, the effectiveness of using water eDNA to monitor terrestrial organisms was indicated by the detection probability8,9,34, and the effectiveness of using downstream water eDNA to monitor upstream organisms was indicated by the detectable distance7,12,17,19,20,35. In this study, we approximated the biodiversity information monitoring effectiveness by the WBIF transportation effectiveness and proposed its assessment framework, in which we described the riparian-to-river monitoring effectiveness with the proportion of biodiversity information in riparian soil that was detected by using riverine water eDNA samples. Additionally, we described the downstream-to-upstream monitoring effectiveness with the proportion of biodiversity information in upstream site water eDNA samples that was detected by 1-km downstream site water eDNA samples, and the runoff distance of that 50% of dead bioinformation (i.e., the bioinformation labeling the biological material that lacked life activity and fertility) could be monitored. These indicators provided new usable assessment tools for designing monitoring projects and for evaluating monitoring results.In the optimal monitoring season and weather condition (a summer rainy day) in the Shaliu river basin on the Qinghai–Tibet Plateau, by using riverine water eDNA, we were able to monitor as much as 87.95% of bacterial species, 76.18% of fungal species, and 53.52% of eukaryotic species from riparian soil, along with as much as 98.69% of bacterial species, 95.71% of fungal species, and 92.41% of eukaryotic species from 1 km upstream (Table 4). The half-life distance of the noneffective WBIF was respectively 17.82 km, 5.96 km, and 5.02 km for bacteria, fungi, and metazoans at the species level (Table 4). When considering the fact that the monitoring effectiveness of eDNA can not only vary with season, weather, and taxonomic communities, but can also vary with rivers and watersheds with different environmental conditions12,17,19,23, more studies on the monitoring effectiveness for each taxonomic community in other watersheds with different environmental conditions are needed.eDNA metabarcoding surveys are relatively cheaper, more efficient, and more accurate than traditional surveys in aquatic systems10,13, although this is certainly not true in all circumstances36. Sales et al. show that the detection probability of using riverine water eDNA to monitor the semi-aquatic and terrestrial mammals in natural lotic ecosystems in the UK was 40–67%, which provided comparable results to conventional survey methods per unit of survey effort for three species (water vole, field vole and red deer); in other words, the results from 3 to 6 water replicates would be equivalent to the results from 3 to 5 latrine surveys and 5–30 weeks of single camera deployment9. In the current case, the riverine water eDNA samples detected 53.52% of eukaryotic species from riparian soil samples. As the bioinformation in WBIF includes the biodiversity information of all taxonomic communities, the information of all taxonomic communities could be monitored by using riverine water eDNA, although variability in monitoring effectiveness exists among different taxonomic communities. We anticipate that, in future biodiversity research, conservation, and management, we will be able to efficiently monitor and assess the aquatic and terrestrial biodiversity by simply using riverine water eDNA samples.In summary, to test the idea of using riverine water eDNA to simultaneously monitor aquatic and terrestrial biodiversity, we proposed a monitoring effectiveness assessment framework, in which the land-to-river monitoring effectiveness was indicated by detection probability, and the upstream-to-downstream monitoring effectiveness was described by the detection probability per kilometer runoff distance and by the half-life distance of dead bioinformation. In our case study, in the Shaliu River watershed on the Qinghai-Tibet Plateau, and on summer rainy days, 43–76% of species information in riparian sites could be detected in adjacent riverine water eDNA samples, 92–99% of species information from upstream sites could be detected in a 1-km downstream eDNA sample, and the half-life distances of dead bioinformation for bacteria was approximately 13–19 km and was approximately 4–6 km for eukaryotes. The indicators in the assessment framework that describe the monitoring effectiveness provide usable assessment tools for designing monitoring projects and for evaluating monitoring results. In future ecological research, biodiversity conservation, and ecosystem management, riverine water eDNA may be a general diagnostic procedure for routine watershed biodiversity monitoring and assessment. More

  • in

    Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits

    1.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Phil. Trans. R. Soc. B 365, 3947–3958. https://doi.org/10.1098/rstb.2010.0221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Wolf, M., van Doorn, G., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584. https://doi.org/10.1038/nature05835 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sih, A. & Bell, A. M. Insights for behavioral ecology from behavioral syndromes. Adv. Study Behav. 38, 227–281. https://doi.org/10.1016/S0065-3454(08)00005-3 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Sih, A., Bell, A. M. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378. https://doi.org/10.1016/j.tree.2004.04.009 (2004).Article 
    PubMed 

    Google Scholar 
    6.Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B. 270, 45–51. https://doi.org/10.1098/rspb.2002.2168 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Sol, D., Griffin, A. S., Bartomeus, I. & Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 6, e19535. https://doi.org/10.1371/journal.pone.0019535 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dammhahn, M., Mazza, V., Schirmer, A., Göttsche, C. & Eccard, J. C. Of city and village mice: Behavioural adjustments of striped field mice to urban environments. Sci. Rep. 10, 13056. https://doi.org/10.1038/s41598-020-69998-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecological perspective. Phil. Trans. R. Soc. B 367, 2762–2772. https://doi.org/10.1098/rstb.2012.0216 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Stoewe, M. & Kotrschal, K. Behavioural phenotypes may determine whether social context facilitates or delays novel object exploration in ravens (Corvus corax). J. Ornithol. 148, S179–S184. https://doi.org/10.1007/s10336-007-0145-1 (2007).Article 

    Google Scholar 
    11.Guillette, L. M., Reddon, A. R., Hoeschele, M. & Sturdy, C. B. Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proc. R. Soc. B 278, 767–773. https://doi.org/10.1098/rspb.2010.1669 (2011).Article 
    PubMed 

    Google Scholar 
    12.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B 282, 20142201. https://doi.org/10.1098/rspb.2014.2201 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206. https://doi.org/10.1163/156853905774539364 (2005).Article 

    Google Scholar 
    14.Van Oers, K. & Mueller, J. C. Evolutionary genomics of animal personality. Phil. Trans. R. Soc. B 365, 3991–4000. https://doi.org/10.1098/rstb.2010.0178 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459. https://doi.org/10.1093/beheco/arv088 (2015).Article 

    Google Scholar 
    16.Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Phil. Trans. R. Soc. B 371, 20150184. https://doi.org/10.1098/rstb.2015.0184 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595. https://doi.org/10.1111/j.1439-0310.2010.01771.x (2010).Article 

    Google Scholar 
    18.Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, 36639. https://doi.org/10.1371/journal.pone.0036639 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Charmantier, A., Deyeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00053 (2017).Article 

    Google Scholar 
    20.Isaksson, C., Rodewald, A. D. & Gil, D. Editorial: Behavioural and ecological consequences of urban life in birds. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00050 (2018).Article 

    Google Scholar 
    21.Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644. https://doi.org/10.1093/beheco/arv201 (2016).Article 

    Google Scholar 
    22.Miranda, A. C., Schielzeth, H., Sonntag, T. & Partecke, J. Urbanization and its effects on personality traits: A result of microevolution or phenotypic plasticity. Glob. Change Biol. 19, 2634–2644. https://doi.org/10.1111/gcb.12258 (2013).ADS 
    Article 

    Google Scholar 
    23.Riyahi, S., Björklund, M., Mateos-Gonzalez, F. & Senar, J. C. Personality and urbanization: Behavioural traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. J. Ethol. 35, 101–108. https://doi.org/10.1007/s10164-016-0496-2 (2017).Article 

    Google Scholar 
    24.Schinka, J. A., Letsch, E. A. & Crawford, F. C. DRD4 and novelty seeking: Results of meta-analyses. Am. J. Med. Genet. 114, 643–648. https://doi.org/10.1002/ajmg.10649 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Chen, C. S., Burton, M., Greenberger, E. & Dmitrieva, J. Population migration and the variation of Dopamine D4 Receptor (DRD4) allele frequencies around the globe. Evol. Hum. Behav. 20, 309–324. https://doi.org/10.1016/S1090-5138(99)00015-X (1999).Article 

    Google Scholar 
    26.Shimada, M. K. et al. Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochem. Biophys. Res. Commun. 316, 1186–1190. https://doi.org/10.1016/j.bbrc.2004.03.006 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Fidler, A. E. et al. Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc. R. Soc. B. 274, 1685–1691. https://doi.org/10.1098/rspb.2007.0337 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809. https://doi.org/10.1111/mec.12282 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843. https://doi.org/10.1111/j.1365-294X.2009.04518.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Jiang, W., Shang, S. & Su, Y. Genetic influences on insight problem solving: The role of catechol-O-methyltransferase polymorphisms. Front. Psychol. 6, 1569. https://doi.org/10.3389/fpsyg.2015.01569 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hopkins, W. et al. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci. Rep. 4, 3774. https://doi.org/10.1038/srep03774 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104. https://doi.org/10.1016/j.tree.2004.11.017 (2005).Article 
    PubMed 

    Google Scholar 
    33.Munafo, M. R., Brown, S. M. & Harkless, K. C. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biol. Psychiatry 63, 852–857. https://doi.org/10.1016/j.biopsych.2007.08.016 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Staes, N. et al. Serotonin receptor 1A variation is associated with anxiety and agonistic behavior in chimpanzees. Mol. Biol. Evol. 36, 1418–1429. https://doi.org/10.1093/molbev/msz061 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mueller, J. C. et al. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol. Ecol. 23, 2876–2885. https://doi.org/10.1111/mec.12763 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Timm, K., Tilgar, V. & Saag, P. DRD4 gene polymorphism in great tits: Gender-specific association with behavioural variation in the wild. Behav. Ecol. Sociobiol. 69, 729–735. https://doi.org/10.1007/s00265-015-1887-z (2015).Article 

    Google Scholar 
    37.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behaviour in great tit Parus major. Epigenetics 10, 516–525. https://doi.org/10.1080/15592294.2015.1046027 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722. https://doi.org/10.1111/mec.13514 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Krause, E. T., Kjaer, J. B., Lüders, C. & van Phi, L. A polymorphism in the 5′-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav. Brain Res. 14, 92–96. https://doi.org/10.1016/j.bbr.2017.04.051 (2017).CAS 
    Article 

    Google Scholar 
    40.Timm, K., van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595. https://doi.org/10.1242/jeb.171595 (2018).Article 
    PubMed 

    Google Scholar 
    41.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227. https://doi.org/10.1007/s10164-019-00593-7 (2019).Article 

    Google Scholar 
    42.Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    Article 

    Google Scholar 
    44.Duke, A. A., Bègue, L., Bell, R. & Eisenlohr-Moul, T. Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol. Bull. 139, 1148–1172. https://doi.org/10.1037/a0031544 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ferrari, P. F., Palanza, P., Parmigiani, S., de Almeida, R. M. & Miczek, K. A. Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. Eur. J. Pharmacol. 526, 259–273. https://doi.org/10.1016/j.ejphar.2005.10.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1649. https://doi.org/10.3390/ijms21051649 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    47.Walker, S. C. et al. Selective prefrontal serotonin depletion impairs acquisition of a detour-reaching task. Eur. J. Neurosci. 23, 3119–3123. https://doi.org/10.1111/j.1460-9568.2006.04826.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Cools, R., Roberts, A. C. & Robbins, T. W. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40. https://doi.org/10.1016/j.tics.2007.10.011 (2008).Article 
    PubMed 

    Google Scholar 
    49.Rudnick, G. & Sandtner, W. Serotonin transport in the 21st century. J. Gen. Physiol. 151, 1248–1264. https://doi.org/10.1085/jgp.201812066 (2018).CAS 
    Article 

    Google Scholar 
    50.Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531. https://doi.org/10.1126/science.274.5292.1527 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Sen, S., Burmeister, M. & Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5- HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. 127, 85–89. https://doi.org/10.1002/ajmg.b.20158 (2004).Article 

    Google Scholar 
    52.Karg, K., Burmeister, M., Shedden, K. & Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 68, 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Beversdorf, D. Q. et al. Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: An exploratory pilot study. Cogn. Behav. Neurol. 31, 79–85. https://doi.org/10.1097/WNN.0000000000000153 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Canli, T. & Lesch, P.-K. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 10, 1103–1109. https://doi.org/10.1038/nn1964 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Jarrell, H. et al. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol. Behav. 93, 807–819. https://doi.org/10.1016/j.physbeh.2007.11.042 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bennett, A. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122. https://doi.org/10.1038/sj.mp.4000949 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Golebiowska, J. et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci. Rep. 9, 20283. https://doi.org/10.1038/s41598-019-56629-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Thys, B. et al. The serotonin transporter gene and female personality variation in a free-living passerine. Sci. Rep. 11, 8577. https://doi.org/10.1038/s41598-021-88225-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Audet, J.-N. et al. Divergence in problem-solving skills is associated with differential expression of glutamate receptors in wild finches. Sci. Adv. 4, eaao6369. https://doi.org/10.1126/sciadv.aao6369 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Personality and plasticity in neophobia levels vary with anthropogenic disturbance but not toxic metal exposure in urban great tits. Sci. Total Environ. 656, 997–1009. https://doi.org/10.1016/j.scitotenv.2018.11.383 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Sources of individual variation in problem-solving performance in urban great tits (Parus major): Exploring effects of metal pollution, urban disturbance and personality. Sci. Tot. Environ. 749, 141436. https://doi.org/10.1016/j.scitotenv.2020.141436 (2020).CAS 
    Article 

    Google Scholar 
    62.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behavior. Sci. Rep. 7, 7656. https://doi.org/10.1038/s41598-017-08001-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Grunst, A. S. et al. An important personality trait varies with blood and plumage metal concentrations in a free-living songbird. Environ. Sci. Technol. 53, 10487–10496. https://doi.org/10.1021/acs.est.9b03548 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678. https://doi.org/10.1016/j.scitotenv.2018.02.19 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Laucht, M. et al. Interaction between the 5-HTTLPR serotonin transporter polymorphism and environmental adversity for mood and anxiety psychopathology: Evidence from a high-risk community sample of young adults. Int. J. Neuropharmacol. 12, 737–747. https://doi.org/10.1017/S1461145708009875 (2009).CAS 
    Article 

    Google Scholar 
    66.Wang, Z. et al. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ. Health 16, 81. https://doi.org/10.1186/s12940-017-0288-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. Environ. Pollut. 256, 113373. https://doi.org/10.1016/j.envpol.2019.113373 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Dingemanse, N. J. et al. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–937. https://doi.org/10.1006/anbe.2002.2006 (2002).Article 

    Google Scholar 
    69.Solé, X. et al. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929. https://doi.org/10.1093/bioinformatics/bti283 (2005).Article 

    Google Scholar 
    70.Hecht, M., Bromberg, Y. & Rost, B. Better prediction of functional effects for sequence variants from VarI-SIG 2014: Identification and annotation of genetic variants in the context of structure, function and disease. BMC Genom. 16, S1. https://doi.org/10.1186/1471-2164-16-S8-S1 (2015).CAS 
    Article 

    Google Scholar 
    71.Choi, Y. & Chan, A. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. https://doi.org/10.1093/bioinformatics/btv195 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). URL https://www.R-project.org/.74.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).Article 

    Google Scholar 
    75.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    76.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    77.Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616. https://doi.org/10.7717/peerj.616 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01 (2019). https://CRAN.R-project.org/package=emmeans.79.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300. https://doi.org/10.2307/2346101 (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    80.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    81.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of Regression Models Performance. R package version 0.4.6 (2020). https://CRAN.R-project.org/package=performance.82.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.6 (2019). https://CRAN.R-project.org/package=DHARMa.83.Mikros, E. & Diallinas, G. Tales of tails in transporters. Open Biol. 9, 190083. https://doi.org/10.1098/rsob.190083 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kern, C. et al. The N teminus specifies the switch between transporter modes of the human serotonin transporter. J. Biol. Chem. 292, 3603–3613. https://doi.org/10.1074/jbc.M116.771360 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).Article 
    PubMed Central 

    Google Scholar 
    86.Hunt, R., Sauna, Z. E., Ambudkar, S. V., Gottesman, M. M. & Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should we care about them? In Single Nucleotide Polymorphisms Methods in Molecular Biology (Methods and Protocols) Vol. 578 (ed. Komar, A.) (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-411-1_2.Chapter 

    Google Scholar 
    87.Grunst, A.S., Grunst, M.L. & Staes, N., Bert, T., Pinxten, R., Eens, M. Data for: Serotonin Transporter (SERT) Polymorphisms, Personality and Problem-Solving in Urban Great Tits. (Dryad Digital Repository, 2021). More

  • in

    The belowground growing season

    1.Piao, S. et al. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    2.Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    3.Ma, H. et al. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 

    Google Scholar 
    4.Mokany, K., Raison, R. J. & Prokushkin, A. S. Glob. Change Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    5.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. J. Exp. Bot. 67, 3617–3628 (2016).CAS 
    Article 

    Google Scholar 
    6.Liu, H. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01244-x (2021).7.Freschet, G. T. et al. New Phytol. 232, 1123–1158 (2021).Article 

    Google Scholar 
    8.Clemmensen, K. E. et al. Science 339, 1615–1618 (2013).CAS 
    Article 

    Google Scholar 
    9.Sokol, N. W. & Bradford, M. A. Nat. Geosci. 12, 46–53 (2019).CAS 
    Article 

    Google Scholar 
    10.Jones, D. L., Nguyen, C. & Finlay, R. D. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    11.Abramoff, R. Z. & Finzi, A. C. New Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    12.Warren, J. M. et al. New Phytol. 205, 59–78 (2015).Article 

    Google Scholar 
    13.Blume-Werry, G., Wilson, S. D., Kreyling, J. & Milbau, A. New Phytol. 209, 978–986 (2016).CAS 
    Article 

    Google Scholar 
    14.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. J. Ecol. 104, 239–248 (2016).CAS 
    Article 

    Google Scholar 
    15.Fu, Y. H. et al. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Phenological mismatches between above- and belowground plant responses to climate warming

    1.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    2.Forrest, J. & Miller-Rushing, A. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).
    Google Scholar 
    3.Lane, J. E., Kruuk, L., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).CAS 

    Google Scholar 
    4.Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).CAS 

    Google Scholar 
    5.Abramoff, R. Z. & Finzi, A. C. Are above- and below-ground phenology in sync? New Phytol. 205, 1054–1061 (2015).
    Google Scholar 
    6.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    7.Smithwick, E., Lucash, M. S., Mccormack, M. L. & Sivandran, G. Improving the representation of roots in terrestrial models. Ecol. Model. 291, 193–204 (2014).CAS 

    Google Scholar 
    8.Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol. 205, 59–78 (2015).
    Google Scholar 
    9.Ma, H., Mo, L., Crowther, T. W., Maynard, D. S. & Zohner, C. M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).
    Google Scholar 
    10.Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).
    Google Scholar 
    11.Lucas, M., Schlueter, S., Vogel, H.-J. & Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 9, 16236 (2019).
    Google Scholar 
    12.Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).
    Google Scholar 
    13.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 

    Google Scholar 
    14.Roslin, T., Anto, L., Hllfors, M., Meyke, E. & Ovaskainen, O. Phenological shifts of abiotic events, producers and consumers across a continent. Nat. Clim. Change 11, 241–248 (2021).
    Google Scholar 
    15.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).CAS 

    Google Scholar 
    16.Blume-Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).
    Google Scholar 
    17.Wilson, J. B. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61, 433–449 (1988).
    Google Scholar 
    18.Schwieger, S., Kreyling, J., Milbau, A. & Blume-Werry, G. Autumnal warming does not change root phenology in two contrasting vegetation types of subarctic tundra. Plant Soil 424, 145–156 (2018).CAS 

    Google Scholar 
    19.Liu, H., Lu, C., Wang, S., Ren, F. & Wang, H. Climate warming extends growing season but not reproductive phase of terrestrial plants. Glob. Ecol. Biogeogr. 30, 950–960 (2021).
    Google Scholar 
    20.Steinaker, D. F., Wilson, S. D. & Peltzer, D. A. Asynchronicity in root and shoot phenology in grasses and woody plants. Glob. Change Biol. 16, 2241–2251 (2010).
    Google Scholar 
    21.Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    22.Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).
    Google Scholar 
    23.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).
    Google Scholar 
    24.Chuine, I. A united model for budburst of trees. J. Theor. Biol. 2007, 337–347 (2000).
    Google Scholar 
    25.Lim, P. O., Kim, H. J. & Gil Nam, H. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).CAS 

    Google Scholar 
    26.Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).
    Google Scholar 
    27.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    28.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    29.Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).CAS 

    Google Scholar 
    30.López-Bucio, J., Cruz-Ramírez, A. & Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287 (2003).
    Google Scholar 
    31.Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).
    Google Scholar 
    32.Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).
    Google Scholar 
    33.Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).
    Google Scholar 
    34.Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
    Google Scholar 
    35.Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. https://doi.org/10.1038/s41467-021-23841-2 (2021).36.Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–267 (2014).CAS 

    Google Scholar 
    37.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    38.Wingler, A. & Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 7, 1130 (2016).
    Google Scholar 
    39.Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).
    Google Scholar 
    40.Wang, P., Huang, K. & Hu, S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytol. 225, 1491–1499 (2020).
    Google Scholar 
    41.Arft, A. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    42.Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).CAS 

    Google Scholar 
    43.Seastedt, T. & Knapp, A. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 

    Google Scholar 
    44.Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).
    Google Scholar 
    45.Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress (Springer‐Verlag, 1987).46.Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 

    Google Scholar 
    47.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).
    Google Scholar 
    48.Hijmans, R. J., Ca Meron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2010).
    Google Scholar 
    49.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).CAS 

    Google Scholar 
    50.Kou, L. et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytol. 218, 1450–1461 (2018).
    Google Scholar 
    51.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
    Google Scholar 
    52.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Soft. 36, 1–48 (2010).
    Google Scholar 
    53.Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    54.De Martonne, E. Une nouvelle fonction climatologique: l’indice d’aridité. La MétéOrol. 2, 449–458 (1926).
    Google Scholar 
    55.Breiman, L. Classification and Regression Trees (Routledge, 2017).56.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2/3, 18–22 (2002).
    Google Scholar 
    57.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 10, 696–697 (2020).
    Google Scholar 
    58.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).59.Liu, H. et al. Supporting data for ‘Phenological mismatches between above- and belowground plant responses to climate warming’. Figshare https://figshare.com/s/1f086364114021cd80d9 (2021). More

  • in

    Air temperature drives the evolution of mid-infrared optical properties of butterfly wings

    1.Kinoshita, S., Structural Colors in the Realm of Nature (World Scientific, 2008).2.Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).CAS 
    ADS 

    Google Scholar 
    3.Whitney, H. M. et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133 (2009).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Whitney, H. M., Kolle, M., Alvarez-Fernandez, R., Steiner, U. & Glover, B. J. Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2, 230–232 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    5.Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    6.Mason, C. W. Structural colors in feathers. II. J. Phys. Chem. 27, 401–448 (2005).
    Google Scholar 
    7.Mason, C. W. Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872 (2005).
    Google Scholar 
    8.Roberts, N. W., Marshall, N. J. & Cronin, T. W. High levels of reflectivity and pointillist structural color in fish, cephalopods, and beetles. Proc. Natl. Acad. Sci. 109, E3387–E3387 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    9.Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. 100, 12576–12578 (2003).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1–8 (2018).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 
    12.Cooper, K. M., Hanlon, R. T. & Budelmann, B. U. Physiological color change in squid iridophores. Cell Tissue Res. 259, 15–24 (1990).CAS 
    PubMed 

    Google Scholar 
    13.Glover, B. J. & Whitney, H. M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 105, 505–511 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Shi, N. N. et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Preciado, J. A. et al. Radiative properties of polar bear hair. Am. Soc. Mech. Eng. Bioeng. Div. 54, 57–58 (2002).
    Google Scholar 
    16.Bosi, S. G., Hayes, J., Large, M. C. J. & Poladian, L. Color, iridescence, and thermoregulation in Lepidoptera. Appl. Opt. 47, 5235–5241 (2008).PubMed 
    ADS 

    Google Scholar 
    17.Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma-Tokyo 17, 103–121 (2002).
    Google Scholar 
    18.Tabata, H., Kumazawa, K., Funakawa, M., Takimoto, J. I. & Akimoto, M. Microstructures and optical properties of scales of butterfly wings. Opt. Rev. 3, 139–145 (1996).
    Google Scholar 
    19.Krishna, A. et al. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA 117, 1566–1572 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 1–14 (2020).ADS 

    Google Scholar 
    21.Wilts, B. D., Vey, A. J. M., Briscoe, A. D. & Stavenga, D. G. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol. Biol. 17, 1–12 (2017).
    Google Scholar 
    22.Berthier, S. Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: A remarkable example of temperature auto-regulation. Appl. Phys. A Mater. Sci. Process. 80, 1397–1400 (2005).CAS 
    ADS 

    Google Scholar 
    23.Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    24.Siddique, R. H., Diewald, S., Leuthold, J. & Hölscher, H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Opt. Express 21, 14351–14361 (2013).PubMed 
    ADS 

    Google Scholar 
    25.Steindorfer, M. A., Schmidt, V., Belegratis, M., Stadlober, B. & Krenn, J. R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Opt. Express 20, 21485–21494 (2012).PubMed 
    ADS 

    Google Scholar 
    26.Munro, J. T. et al. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc. R. Soc. B Biol. Sci. 286, 20190234 (2019).
    Google Scholar 
    27.Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2006).28.DeWitt, D. P., Incropera, F. P. “Physics of thermal radiation” in Theory and Practice of Radiation Thermometry, (1988), pp. 19–89.29.Howell, J. R., Menguc, M. P., Siegel, R. Thermal Radiation Heat Transfer (CRC Press, 2016).30.Lord, S. D. A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation. NASA Tech. Memo. 103957 (1992).31.Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    32.Krishna, A. & Lee, J. Morphology-driven emissivity of microscale tree-like structures for radiative thermal management. Nanoscale Microscale Thermophys. Eng. 22, 124–136 (2018).CAS 
    ADS 

    Google Scholar 
    33.Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    34.Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 623, 1–15 (2019).
    Google Scholar 
    35.Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    36.Xie, D. et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles: Goliathus goliatus. Soft Matter 15, 4294–4300 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    37.Heinrich, B. Thermoregulation in endothermic insects. Science 185, 747–756 (1974).CAS 
    PubMed 
    ADS 

    Google Scholar 
    38.Kingsolver, J. G. Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64, 534–545 (1983).
    Google Scholar 
    39.Rawlins, J. E. Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). Ecology 61, 345–357 (1980).
    Google Scholar 
    40.Clench, H. K. Behavioral thermoregulation in butterflies. Ecology 47, 1021–1034 (1966).
    Google Scholar 
    41.Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A. & Ehrlich, P. R. From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proc. R. Soc. B Biol. Sci. 281, 20141264 (2014).
    Google Scholar 
    42.Nève, G. & Hall, C. Variation of thorax flight temperature among twenty Australian butterflies (Lepidoptera: Papilionidae, Nymphalidae, Pieridae, Hesperiidae, Lycaenidae). Eur. J. Entomol. 113, 571–578 (2016).
    Google Scholar 
    43.MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).
    Google Scholar 
    44.Tsai, C. C., et al., Butterflies regulate wing temperatures using radiative cooling in 2017 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2017), p. 9.45.Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48–L50 (2005).CAS 
    ADS 

    Google Scholar 
    46.Wilts, B. D., Giraldo, M. A. & Stavenga, D. G. Unique wing scale photonics of male Rajah Brooke’s birdwing butterflies. Front. Zool. 13, 1–12 (2016).
    Google Scholar 
    47.De Keyser, R., Breuker, C. J., Hails, R. S., Dennis, R. L. H. & Shreeve, T. G. Why small is beautiful: Wing colour is free from thermoregulatory constraint in the small lycaenid butterfly, Polyommatus icarus. PLoS One 10, e0122663 (2015).
    Google Scholar 
    48.Biró, L. P. et al., Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair. Phys. Rev. E Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 67, 7 (2003).49.Sala-Casanovas, M., Krishna, A., Yu, Z. & Lee, J. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management. Nanoscale Microscale Thermophys. Eng. 23, 173–187 (2019).CAS 
    ADS 

    Google Scholar 
    50.Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Pris, A. D. et al. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photonics 6, 564–564 (2012).CAS 
    ADS 

    Google Scholar 
    52.Krishna, A. et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086–5092 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    53.Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811 (1981).ADS 

    Google Scholar 
    54.Moharam, M. G. Coupled-wave analysis of two-dimensional dielectric gratings in Holographic Optics: Design and Applications, (1988), p. 8.55.Peng, S. & Morris, G. M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A 12, 1087 (1995).ADS 

    Google Scholar 
    56.Moharam, M. G., Gaylord, T. K., Grann, E. B. & Pommet, D. A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).ADS 

    Google Scholar 
    57.Taflove, A., Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).58.Fang, J. et al. Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Appl. Surf. Sci. 427, 807–812 (2018).CAS 
    ADS 

    Google Scholar 
    59.Wilts, B. D., Leertouwer, H. L. & Stavenga, D. G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 6, S185–S192 (2009).PubMed 

    Google Scholar 
    60.Aideo, S. N., Mohanta, D. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation. J. Phys: Confer. Ser. 765, 012019 (2016).61.Guan, Y. et al. Ordering of hollow Ag-Au nanospheres with butterfly wings as a biotemplate. Sci. Rep. 8, 1–7 (2018).
    Google Scholar 
    62.Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).PubMed 

    Google Scholar 
    63.Wilts, B. D., Pirih, P., Arikawa, K. & Stavenga, D. G. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta. Biol. J. Linn. Soc. 109, 279–289 (2013).
    Google Scholar 
    64.Wu, L., Han, Z., Qiu, Z., Guan, H. & Ren, L. The microstructures of butterfly wing scales in northeast of China. J. Bionic Eng. 4, 47–52 (2007).CAS 

    Google Scholar 
    65.Azofeifa, D. E., Arguedas, H. J. & Vargas, W. E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. (Amst) 35, 175–183 (2012).CAS 
    ADS 

    Google Scholar 
    66.Vargas, W. E., Azofeifa, D. E. & Arguedas, H. J. Índices de refracción de la quitina, el quitosano y el ácido úrico con aplicación en análisis de color estructural. Opt. Pura y Apl. 46, 55–72 (2013).
    Google Scholar 
    67.Herman, A., Vandenbem, C., Deparis, O., Simonis, P. & Vigneron, J. P. Nanoarchitecture in the black wings of Troides magellanus : A natural case of absorption enhancement in photonic materials. Nanophotonic Mater. VIII 8094, 80940H (2011).
    Google Scholar 
    68.Yoshioka, S. & Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 271, 581–587 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    69.Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).ADS 

    Google Scholar 
    70.Long Kou, J., Jurado, Z., Chen, Z., Fan, S. & Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017).
    Google Scholar 
    71.Wasserthal, L. T. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21, 1921–1930 (1975).
    Google Scholar 
    72.Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 

    Google Scholar 
    73.New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).
    Google Scholar 
    74.Weather Spark Weather Data. https://weatherspark.com (July 10, 2019).75.Weather Underground Historical Weather. https://www.wunderground.com/history/ (August 2, 2018).76.Liu, F. et al. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Opt. Commun. 284, 2376–2381 (2011).CAS 
    ADS 

    Google Scholar 
    77.Chen, T., Cong, Q., Qi, Y., Jin, J. & Choy, K. L. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces. PLoS ONE 13, e0188775 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Fang, Y., Sun, G., Wang, T. Q., Cong, Q. & Ren, L. Q. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin. Sci. Bull. 52, 711–716 (2007).
    Google Scholar 
    79.Garland, T., Harvey, P. H. & Ives, A. R. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992).
    Google Scholar 
    80.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Google Scholar 
    81.Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471 (1988).
    Google Scholar 
    82.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778.e5 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. 2010. Version 2, 73 (2008).
    Google Scholar 
    84.Cai, W., Shalaev, V. M. Optical Metamaterials, 10th Ed. (Springer, 2010).85.Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    86.Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 1–5 (2016).
    Google Scholar 
    87.Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    88.Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    89.Quintiere, J. Radiative characteristics of fire fighters’ coat fabrics. Fire Technol. 10, 153–161 (1974).CAS 

    Google Scholar 
    90.Energy Sector Management Assistance Program (ESMAP). Global Solar Atlas 2.1: Technical Report. https://globalsolaratlas.info (World Bank, December 2019).91.Yoshioka, S. & Kinoshita, S. Direct determination of the refractive index of natural multilayer systems. Phys. Rev. E 83, 051917 (2011).ADS 

    Google Scholar 
    92.Leertouwer, H. L., Wilts, B. D. & Stavenga, D. G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 19, 24061–24066 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species

    1.Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS 

    Google Scholar 
    3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).CAS 
    PubMed Central 

    Google Scholar 
    6.Lacroix, A. et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect. Genet. Evol. 48, 10–18 (2017).CAS 
    PubMed 

    Google Scholar 
    7.Tsuda, S. et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 157, 2349–2355 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. 10, 20 (2019).
    Google Scholar 
    9.Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Chen, Y.-N. et al. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health 63, 608–615 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Amman, B. R. et al. Seasonal pulses of marburg virus circulation in Juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, 25 (2012).
    Google Scholar 
    15.Peel, A. J. et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132962 (2014).
    Google Scholar 
    16.Hayman, D. T. S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142591 (2015).
    Google Scholar 
    17.Gloza-Rausch, F. et al. Detection and prevalence patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    18.Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    19.Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 25 (2017).
    Google Scholar 
    20.Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2, 2 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    21.Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    23.Wacharapluesadee, S. et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector-Borne Zoonot. Dis. 10, 183–190 (2010).
    Google Scholar 
    24.Cappelle, J. et al. Nipah virus circulation at human-bat interfaces, Cambodia. Bull. World Health Organ. 98, 539–547 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thavry, H., Cappelle, J., Bumrungsri, S., Thona, L. & Furey, N. M. The diet of the cave nectar bat (#Eonycteris spelaea# Dobson) suggests it pollinates economically and ecologically significant plants in Southern Cambodia. Zool. Stud. 56, 25 (2017).
    Google Scholar 
    26.Lim, T., Cappelle, J., Hoem, T. & Furey, N. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?. PLoS One 13, e0196554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    28.Anthony, E. L. P. Age determination in bats. In Ecological and Behavioral Methods for the Study of Bats 47–58 (Smithsonian Press, 1988).
    Google Scholar 
    29.Racey, P. A. Reproductive assessment. In Behavioural and Ecological Methods for the Study of Bats 249–264 (Johns Hopkins University Press, 2009).
    Google Scholar 
    30.Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Quan, P.-L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1, 25 (2010).
    Google Scholar 
    32.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    34.Burgin, C. Family Rhinolophidae, horseshoe bats. In Handbook of the Mammals of the World Vol. 9 260–332 (Lynx Edicions, 2019).
    Google Scholar 
    35.Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018).
    Google Scholar 
    36.Racey, P. A. & Entwistle, E. Life history and reproductive strategies of bats. Reprod. Biol. Bats 20, 363–468 (2000).
    Google Scholar 
    37.Furey, N. M., Mackie, I. J. & Racey, P. A. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterol. 13, 341–354 (2011).
    Google Scholar 
    38.Sterling, E. J., Hurley, M. M. & Le, D. M. Vietnam: A Natural History (Yale University Press, 2006).
    Google Scholar 
    39.Van, N. K., Hzien, N. T., Loc, P. K. & Hiep, N. T. Bioclimatic Diagrams of Vietnam (Vietnam National University Publishing House, 2000).
    Google Scholar 
    40.Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 10, 0004796 (2016).
    Google Scholar 
    41.Peel, A. J. et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci. Rep. 8, 3859 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.-M. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171, 220–223 (2014).
    Google Scholar 
    43.Furey, N. M., Racey, P. A., Ith, S., Touch, V. & Cappelle, J. Reproductive ecology of wrinkle-lipped free-tailed bats Chaerephon plicatus (Buchannan, 1800) in relation to Guano production in Cambodia. Diversity 10, 91 (2018).
    Google Scholar 
    44.Ades, G. W. J. & Dudgeon, D. Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics (1999).45.Kai, K. H. & Corlett, R. T. Seasonality of forest invertebrates in Hong Kong, South China. J. Trop. Ecol. 18, 637–644 (2002).
    Google Scholar 
    46.Kingston, T., Lim, B. L. & Zubaid, A. Bats of Krau Wildlife Reserve (Universiti Kebangsaan Malaysia, 2006).
    Google Scholar 
    47.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).
    Google Scholar 
    48.Fleming, T. H., Hooper, E. T. & Wilson, D. E. Three Central American Bat Communities: Structure, reproductive cycles, and movement patterns. Ecology 53, 555–569 (1972).
    Google Scholar 
    49.Bernard, R. T. & Cumming, G. S. African bats: Evolution of reproductive patterns and delays. Q. Rev. Biol. 72, 253–274 (1997).CAS 
    PubMed 

    Google Scholar 
    50.Nguyen, S. T. et al. Bats (Chiroptera) of Bidoup Nui Ba National Park, Dalat Plateau, Vietnam. Mammal Stud. 46, 53–68 (2021).
    Google Scholar 
    51.Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. R. Soc. B Biol. Sci. 278, 3703–3712 (2011).
    Google Scholar 
    52.Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Conserving evolutionarily distinct species is critical to safeguard human well-being

    Dataset of beneficial plantsI collated a species-level dataset of plant benefits (presence/absence data) starting from the information gathered by Kleunen et al.32. These authors extracted data from the WEP database (National Plant Germplasm System GRIN-GLOBAL; https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearcheco.aspx, Accessed 7 Jan 2016), which is based on the book by Wiersema and León20. Their dataset included 84 categories and subcategories of plant benefits pertaining human and animal nutrition, materials, fuels, medicine, useful poisons, social and environmental benefits. Subcategories of benefits, which often included very few records, were merged here into 25 standard and major categories following the guidelines in the Economic Botany Data Collection Standard33 as in Molina-Venegas et al.13, namely ornamental plants, soil improvers, hedging/shelter, human food, human-food additives, vertebrate food, invertebrate food, fuelwood, charcoal, other biofuels, timber, cane/stems, fibres, tannins/dyestuffs, beads, gums/resins, lipids, waxes, essential oils/scents, latex/rubber, medicines, invertebrate poison, vertebrate poison, smoking materials/drugs and symbolic/inspirational plants (Fig. 1). A few records (n = 93) that could not be assigned to any of the above categories were disregarded, and so was the category ‘gene source’ because unlike other benefits, any species is intrinsically a potential gene donor and hence there is not a clear link between the benefit and species features. Note that this is not to say that preserving genetic diversity, which indeed is the underlying message of this research, is a meaningless goal. Infraspecific taxa were collapsed at the species level, and the very few fern taxa in the original database32 were excluded. In total, I gathered 15,834 plant-benefit records sorted in a matrix of 25 types of benefits and 9521 species of seed plants. Most species (83.74%) provided only one or two benefits representing 62.83% of the records in the dataset, and the maximum number of benefits per species was 10 (only three species). Although the WEP database is the largest species-level database on plant benefits32, it does not claim to be comprehensive20. Yet, the size of the dataset I gathered here represented 76.19% of the total seed-plant genus-level records collated for the same types of benefits in a more comprehensive survey by Molina-Venegas et al.13 that based on Mabberley’s Plant-book34. Moreover, the total number of records per category (at the genus-level) strongly correlated between the datasets (Pearson r = 0.94, p  More

  • in

    Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions

    1.Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hofmann, G. E. et al. High-frequency dynamics of ocean ph: A multi-ecosystem comparison. PLoS ONE 6(12), e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    4.Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603. https://doi.org/10.1029/2010GL046324 (2011).ADS 
    Article 

    Google Scholar 
    5.Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026. https://doi.org/10.1029/2011JG001731 (2011).ADS 
    Article 

    Google Scholar 
    6.Lagos, N. A., Castilla, J. C. & Broitman, B. Spatial Environmental correlates of intertidal recruitment: A test using barnacles in northern Chile. Ecol. Monogr. 78, 245–261 (2008).
    Google Scholar 
    7.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 84. https://doi.org/10.1038/s41559-017-0084 (2017).Article 
    PubMed 

    Google Scholar 
    8.Broitman, B. R. et al. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 00, 1–12. https://doi.org/10.1111/1365-2656.13514 (2021).Article 

    Google Scholar 
    9.Ramajo, L. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci. 76, 1836e1849 (2019).
    Google Scholar 
    10.Saavedra, L. M., Saldías, G., Broitman, B. & Vargas, C. Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: Natural ranges and biological implications. ICES J. Mar. Sci. 78, 323–339 (2021).
    Google Scholar 
    11.Lardies, M. A. et al. Physiological and histopathological impacts of increased carbon dioxide and temperature on the scallops Argopecten purpuratus cultured under upwelling influences in northern Chile. Aquaculture 479, 455–466 (2017).
    Google Scholar 
    12.Ramajo, L. et al. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 745, 140949 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Wang, D. et al. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS 

    Google Scholar 
    16.Ramajo, L. et al. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol. Prog. Ser. 553, 93–109 (2016).ADS 

    Google Scholar 
    17.Leung, J. Y., Connell, S. D., Nagelkerken, I. & Russell, B. D. Impacts of near-future ocean acidification and warming on the shell mechanical and geochemical properties of gastropods from intertidal to subtidal zones. Environ. Sci. Technol. 51, 12097–12103 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Findlay, H. et al. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss. 6, 2267–2284 (2009).ADS 

    Google Scholar 
    19.Waldbusser, G. et al. Saturation-state sensitivity of marine bivalves larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 

    Google Scholar 
    20.Tunnicliffe, V. et al. Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–348 (2009).ADS 
    CAS 

    Google Scholar 
    21.Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 

    Google Scholar 
    22.Leung, J. Y., Russell, B. D. & Connell, S. D. Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification. Environ. Sci. Technol. 51, 2652–2659 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Duarte, C. et al. The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios. Environ. Pollut. 242, 156–163 (2018).CAS 
    PubMed 

    Google Scholar 
    24.Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change. 1, 308–312 (2011).ADS 
    CAS 

    Google Scholar 
    25.Waldbusser, G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).ADS 

    Google Scholar 
    26.Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?. Ecol. Evol. 5, 4875–4884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralization. Sci. Rep. 28, 6218 (2014).
    Google Scholar 
    28.Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Fitzer, S. C. et al. Biomineral shell formation under ocean acidification: A shift from order to chaos. Sci. Rep. 6, 21076 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lagos, N. A. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8, 357–370 (2016).
    Google Scholar 
    31.Ramajo, L. et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 22, 2025–2203 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Osores, S. J. et al. Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol. 490, 1–12 (2017).
    Google Scholar 
    33.Telesca, L. et al. Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation species to future change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14758 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Grenier, C. et al. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 263, 114555 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    36.Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 9(1), e86764 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    38.Rodríguez-Navarro, A. B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. Br. Poult. Sci. 48, 133–144 (2007).PubMed 

    Google Scholar 
    39.Rodríguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909 (2006).
    Google Scholar 
    40.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).PubMed 

    Google Scholar 
    41.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. 474, 116–125 (2016).
    Google Scholar 
    43.Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E. & Olabarria, C. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018).
    Google Scholar 
    44.Barthelat, F., Rim, J. E. & Espinosa, H. D. A review on the structure and mechanical properties of mollusk shells: Perspectives on synthetic biomimetic materials. In Applied Scanning Probe Methods XIII (eds Bhushan, B. & Fuchs, H.) 17–44 (Springer, 2009).
    Google Scholar 
    45.Leung, J. Y. et al. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 16, 2003186 (2020).CAS 

    Google Scholar 
    46.Chatzinikolaou, E., Grigoriou, P., Keklikoglou, K., Faulwetter, S. & Papageorgiou, N. The combined effects of reduced pH and elevated temperature on the shell density of two gastropod species measured using micro-CT imaging. ICES J. Mar. Sci. 74, 1135–1149 (2017).
    Google Scholar 
    47.Nienhuis, S., Palmer, R. & Harley, C. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. Lond. B Biol. Sci. 277, 2553–2558 (2010).CAS 

    Google Scholar 
    48.Bourdeau, P. E. Prioritized phenotypic responses to combined predators in a marine snail. Ecology 90, 1659–1669 (2009).PubMed 

    Google Scholar 
    49.Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Sci. 41, 21–40 (2011).ADS 
    CAS 

    Google Scholar 
    50.Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation (In Seminars in cell & developmental biology), 2–10 (Academic Press, 2015).51.Harper, E. M., Checa, A. G. & Rodríguez-Navarro, A. B. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicular (Bivalvia: Mollusca). Acta Zool. 90, 132e141 (2009).
    Google Scholar 
    52.Pennington, B. J. & Currey, J. D. A mathematical model for the mechanical properties of scallop shells. J. Zool. 202, 239–263 (1984).
    Google Scholar 
    53.Yevenes, M. A., Lagos, N. A., Farías, L. & Vargas, C. A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 669, 49–61 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Dickinson, G. H. et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29–43 (2012).CAS 
    PubMed 

    Google Scholar 
    55.Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).CAS 
    PubMed 

    Google Scholar 
    56.O’Toole-Howes, M. et al. Deconvolution of the elastic properties of bivalve shell nanocomposites from direct measurement and finite element analysis. J. Mater. Res. 34, 2869–2880 (2019).ADS 

    Google Scholar 
    57.Auzoux-Bordenave, S. et al. Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata). Mar. Biol. 167, 11 (2020).CAS 

    Google Scholar 
    58.Torres, R. et al. Evaluation of a semiautomatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).
    Google Scholar 
    59.IPCC. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou). Cambridge University Press. In Press. (2021).60.DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2 (eds. Dickson, A.G. & Goyet, C.), (ORNL/CDIAC, 74, 1994).61.Meinshausen, M. et al. The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change. 109, 213–241 (2011).ADS 
    CAS 

    Google Scholar 
    62.Rahn, D. A., Rosenblüth, B. & Rutllant, J. A. Detecting subtle seasonal transitions of upwelling in North-Central Chile. J. Phys. Oceanogr. 45, 854–867 (2015).ADS 

    Google Scholar 
    63.Meng, Y., Guo, Z., Yao, H., Yeung, K. W. & Thiyagarajan, V. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Rasband, W. S. ImageJ U.S. National Institute of Health, Maryland, USA (1997–2020). More