Seasonal pattern of food habits of large herbivores in riverine alluvial grasslands of Brahmaputra floodplains, Assam
1.Krebs, C. J. Ecological Methodology 2nd edn. (Addison Welsey Educational Publishers Inc, 1999).
Google Scholar
2.Tewari, R. & Rawat, G. S. Studies on the food and feeding habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel conservation reserve, Haridwar, Uttarakhand, India. ISRN Zool. 2013, 1–6. https://doi.org/10.1155/2013/278213 (2013).Article
Google Scholar
3.Brodeur, R. D., Smith, B. E., McBride, R. S., Heintz, R. & Farley, E. New perspectives on the feeding ecology and trophic dynamics of fishes. Environ. Biol. Fishes. 100, 293–297. https://doi.org/10.1007/s10641-017-0594-1 (2017).Article
Google Scholar
4.Vesey-FitzGerald, D. F. Grazing succession among East African game animals. J. Mammal. 41, 161–172. https://doi.org/10.2307/1376351 (1960).Article
Google Scholar
5.Lamprey, H. F. Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. Afr. J. Ecol. 1, 63–92. https://doi.org/10.1111/j.1365-2028.1963.tb00179.x (1963).Article
Google Scholar
6.Ahrestani, F. S. Asian Eden Large Herbivore Ecology in India (Wageningen University, 2009).
Google Scholar
7.Bell, R. H. V. The use of herb layer by grazing ungulates in the Serengeti. In Animal Populations in Relation to their Food Resources (eds. Watson, A.) 111–124 (Blackwell Science, 1970).8.Jarman, P. The social organisation of antelopes in relation to their ecology. Behaviour 48, 215–267. https://doi.org/10.1163/156853974X00345 (1974).Article
Google Scholar
9.Hofmann, R. R. & Stewart, D. R. M. Grazer of browser: A classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36, 226–240 (1972).Article
Google Scholar
10.Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).ADS
Article
Google Scholar
11.Kleiber, M. The Fire of Life. An Introduction to Animal Energetics (Krieger, 1932).
Google Scholar
12.Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125, 641–672. https://doi.org/10.1086/284369 (1985).Article
Google Scholar
13.Hofmann, R. R. The Ruminant Stomach: Stomach Structure and Feeding Habits of East African Game Ruminants. East African Monograph in Biology, vol. 2, 1–364 (E.A. Lit. Bureau, 1973).14.Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. Grazing and browsing by large herbivores in South and Southeast Asia. In The Ecology of Large Herbivores in South and Southeast Asia, (eds. Ahrestani, F. S. & Sankaran, M.) 99–120. (Springer, 2016).15.Geist, V. On the relationship of social evolution and ecology in Ungulates. Am. Zool. 14, 205–220. https://doi.org/10.1093/icb/14.1.205 (1974).Article
Google Scholar
16.Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: Allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8, e68714. https://doi.org/10.1371/journal.pone.0068714 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
17.Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol. 28, 385–394. https://doi.org/10.1017/S0266467412000302 (2012).Article
Google Scholar
18.Pradhan, N. M., Wegge, P., Moe, S. R. & Shrestha, A. K. Feeding ecology of two endangered sympatric mega-herbivores: Asian elephant Elephas maximus and greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal. Wildl. Biol. 14, 147–154. https://doi.org/10.2981/0909-6396(2008)14[147:feotes]2.0.co;2 (2008).Article
Google Scholar
19.McNaughton, S. J. & Georgiadis, N. J. Ecology of African grazing and browsing mammals. Annu. Rev. Ecol. Syst. 17, 39–66. https://doi.org/10.1146/annurev.es.17.110186.000351 (1986).Article
Google Scholar
20.Owen-Smith, R. N. Adaptive Herbivore Ecology: From Resources to Populations in Variable Environments. Adaptive Herbivore Ecology (Cambridge University Press, 2002). https://doi.org/10.1017/CBO9780511525605.21.Olff, H., Ritchie, M. E. & Prins, H. H. T. Global environmental controls of diversity in large herbivores. Nature 415, 901–904. https://doi.org/10.1038/415901a (2002).ADS
CAS
Article
PubMed
Google Scholar
22.Bailey, D. W. & Provenza, F. D. Mechanisms determining large-herbivore distribution. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 7–28 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_2.23.Prins, H. H. T. & Van Langevelde, F. Assembling a diet from different places. In Resource Ecology, vol. 23 (eds. Prins, H. H. T. & Van Langevelde, F.) 129–155 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6850-8_12.24.Fryxell, J. M. et al. Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol. Lett. 8, 328–335. https://doi.org/10.1111/j.1461-0248.2005.00727.x (2005).Article
Google Scholar
25.Du Toit, J., Rogers, K. & Biggs, H. The Kruger Experience: Ecology and Management of Savanna Heterogeneity, vol. 29 (Island Press, 2003).26.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103. https://doi.org/10.1126/sciadv.1400103 (2015).ADS
Article
PubMed
PubMed Central
Google Scholar
27.Menon, V. Indian Mammals: A Field Guide. (Hachette India, 2014).28.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777. https://doi.org/10.1007/s10661-015-4990-8 (2015).CAS
Article
PubMed
Google Scholar
29.Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: Competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706. https://doi.org/10.1007/s11284-006-0177-7 (2006).Article
Google Scholar
30.WWF. Living Planet: Report 2016. Risk and Resilience in a New Era. (World Wide Fund for Nature International, 2016).31.Gebremedhin, B. et al. DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats: Implications for conservation. PLoS One 11, e0159133. https://doi.org/10.1371/journal.pone.0159133 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Spooner, F. E., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531. https://doi.org/10.1111/gcb.14361 (2018).ADS
Article
Google Scholar
33.Texeira, M., Baldi, G. & Paruelo, J. An exploration of direct and indirect drivers of herbivore reproductive performance in arid and semi-arid rangelands by means of structural equation models. J. Arid Environ. 81, 26–34. https://doi.org/10.1016/j.jaridenv.2012.01.017 (2012).ADS
Article
Google Scholar
34.Kupika, O. L., Gandiwa, E., Kativu, S. & Nhamo, G. Impacts of climate change and climate variability on wildlife resources in southern Africa: Experience from selected protected areas in Zimbabwe. In Selected Studies in Biodiversity, (eds. Şen, B. & Grillo, O.) 1–23 (IntechOpen, 2018). https://doi.org/10.5772/intechopen.70470.35.Joyce, C. B., Simpson, M. & Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2, e01240. https://doi.org/10.1002/ehs2.1240 (2016).Article
Google Scholar
36.Vasu, N. K., & Singh, G. Grasslands of Kaziranga National Park: Problems and approaches for management. In Ecology and Management of Grassland Habitats in India, vol. 17 (eds. Rawat, G. S., Adhikari, B. S.) 104–113 (Wildlife Institute of India, 2015).37.Dublin, H. T. Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 71–90 (University of Chicago Press, 1995).38.Sinclair, A. R. E. Equilibria in plant–herbivore interactions. In Serengeti II: Dynamics, Management, and Conservation of an Ecosystem, (eds. Sinclair, A. R. E. & Arcese, P.) 91–113 (University of Chicago Press, 1995).39.Augustine, D. J. & McNaughton, S. J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wildl. Manag. 62, 1165. https://doi.org/10.2307/3801981 (1998).Article
Google Scholar
40.Schmitt, M. H. & Shrader, A. M. Browser population-woody vegetation relationships in Savannas. In Savanna Woody Plants and Large Herbivores (eds. Scogings, F. P. & Sankaran, M.) 245–278 (Wiley, 2020). https://doi.org/10.1002/9781119081111.ch9.41.Konwar, P., Saikia, M. K. & Saikia, P. K. Abundance of food plant species and food habits of Rhinoceros unicornis Linn. in Pobitora Wildlife Sanctuary, Assam, India. J. Threat. Taxa. 1, 457–460. https://doi.org/10.11609/jott.o1640.457-60 (2009).Article
Google Scholar
42.Bhatta, R. Ecology and Conservation of Great Indian One-horned Rhino (Rhinoceros unicornis) in Pobitora Wildlife Sanctuary, Assam, India (Gauhati University, 2011).
Google Scholar
43.Hazarika, B. C. & Saikia, P. K. Food habit and feeding patterns of great indian one-horned rhinoceros (Rhinoceros unicornis) in Rajiv Gandhi Orang National Park, Assam, India. ISRN Zool. 2012, 1–11. https://doi.org/10.5402/2012/259695 (2012).Article
Google Scholar
44.Dutta, D. K., Bora, P. J., Mahanta, R., Sharma, A. & Swargowari, A. Seasonal variations in food plant preferences of reintroduced Rhinos Rhinoceros unicornis (Mammalia: Perrissodactyla: Rhinocerotidae) in Manas National Park, Assam, India. J. Threat. Taxa. 8, 9525–9536. https://doi.org/10.11609/jott.2486.8.13.9525-9536 (2016).Article
Google Scholar
45.Brahmachary, R. L., Rakshit, B. & Mallik, B. Further attempts to determine the food habits of the Indian Rhinoceros at Kaziranga. J. Bombay Nat. Hist. Soc. 71, 295–299 (1974).
Google Scholar
46.Banerjee, G. Habitat Use by the Great Indian Rhinoceros (Rhinoceros Unicornis) and Other Sympatric Large Herbivores in Kaziranga National Park, Assam, India (Wildlife Institute of India, 2001).
Google Scholar
47.Patar, K. C. Behavioural Patterns of the One Horned Indian Rhinoceros (Spectrum Publication Guwahati, 2005).
Google Scholar
48.Bawri, M. & Saikia, P. K. Preliminary study on the food plant species of Endangered Asiatic wild water buffalo Bubalus arnee Kerr in Kaziranga National Park, Assam India. NeBIO. 5, 49–55 (2014).
Google Scholar
49.Sukumar, R. Ecology of the Asian elephant in southern India. I. Movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18. https://doi.org/10.1017/S0266467400003175 (1989).Article
Google Scholar
50.Schaller, G. B. The Deer and the Tiger. A Study of Wildlife in India, (University of Chicago Press, 1967). https://doi.org/10.7208/chicago/9780226736570.001.0001.51.Dhungel, S. K. & O’Gara, B. W. Ecology of the Hog Deer in Royal Chitwan National Park, Nepal. Wildl. Monogr. 119, 3–40. https://doi.org/10.2307/3830632 (1991).Article
Google Scholar
52.Johnsingh, A. J. T. & Manjrekar, N. Mammals of South Asia, 2 (Universities Press, 2016).
Google Scholar
53.Sukumar, R. Ecology of the Asian elephant in southern India. II. Feeding habits and crop raiding patterns. J. Trop. Ecol. 6, 33–53. https://doi.org/10.1017/S0266467400004004 (1990).Article
Google Scholar
54.Baskaran, N., Balasubramanian, M., Swaminathan, S. & Desai, A. A. Feeding ecology of the Asian elephant Elephas maximus Linnaeus in the Nilgiri Biosphere Reserve, southern India. J. Bombay Nat. Hist. Soc. 107, 3–13 (2010).
Google Scholar
55.Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin Basin of North-east India. Mamm. Biol. 81, 53–60. https://doi.org/10.1016/j.mambio.2014.10.006 (2016).Article
Google Scholar
56.Kelton, S. D. & Skipworth, J. P. Food of sambar deer (Cervus unicolor) in a Manawatu (New Zealand) flax swamp. N. Z. J. Ecol. 10, 149–152 (1987).
Google Scholar
57.Semiadi, G., Barry, T. N., Muir, P. D. & Hodgson, J. Dietary preferences of sambar (Cervus unicolor) and red deer (Cervus elaphus) offered browse, forage legume and grass species. J. Agric. Sci. 125, 99–107. https://doi.org/10.1017/S0021859600074554 (1995).Article
Google Scholar
58.Johnsingh, A. J. T. & Sankar, K. Food plants of chital, sambar and cattle on Mundanthurai Plateau, Tamil Nadu, south India. Mammalia 55, 57–66. https://doi.org/10.1515/mamm.1991.55.1.57 (1991).Article
Google Scholar
59.Steinheim, G., Wegge, P., Fjellstad, J. I., Jnawali, S. R. & Weladji, R. B. Dry season diets and habitat use of sympatric Asian elephants (Elephas maximus) and greater one-horned rhinoceros (Rhinocerus unicornis) in Nepal. J. Zool. 265, 377–385. https://doi.org/10.1017/S0952836905006448 (2005).Article
Google Scholar
60.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x (2006).Article
PubMed
Google Scholar
61.Edwards, G. R. & Crawley, M. J. Herbivores, seed banks and seedling recruitment in mesic grassland. J. Ecol. 87, 423–435. https://doi.org/10.1046/j.1365-2745.1999.00363.x (1999).Article
Google Scholar
62.Marquis, R. J. The role of herbivores in terrestrial trophic cascades. In: Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature, (eds. Terborgh, J. & Estes, J. A.) 109–123, (Island Press, 2010).63.Parikh, G. L. et al. The influence of plant defensive chemicals, diet composition, and winter severity on the nutritional condition of a free-ranging, generalist herbivore. Oikos 126, 1–8. https://doi.org/10.1111/oik.03359 (2017).Article
Google Scholar
64.Yadava, M. K. Kaziranga National Park: Detailed Report on Issues and Possible Solutions of Long-Term Protection of the Greater One-horned Rhinoceros in Kaziranga National Park Pursuant to the Order of the Hon’ble Guwahati High Court. 1–402 (Government of Assam, India, 2014).65.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Govt. of India Press, 1968).
Google Scholar
66.Sharma, G. Studies on the mammalian diversity of Kaziranga National Park, Assam, India with their conservation status. J. New Biol. Rep. 7, 15–19 (2018).CAS
Google Scholar
67.Shrestha, R., Wegge, P. & Koirala, R. A. Summer diets of wild and domestic ungulates in Nepal Himalaya. J. Zool. 266, 111–119. https://doi.org/10.1017/S0952836905006527 (2005).Article
Google Scholar
68.Sparks, D. R. & Malechek, J. C. Estimating percentage dry weight in diets using a microscopic technique. J. Range Manag. 21, 264–265. https://doi.org/10.2307/3895829 (1968).Article
Google Scholar
69.Satkopan, S. Key to identification of plant remains in animal dropping. J. Bombay Nat. Hist. Soc. 69, 139–150 (1972).
Google Scholar
70.Johnson, M. K., Wofford, H. H. & Pearson, H. A. Microhistological Techniques for Food Habits Analyses (U.S. Department of Agriculture, 1983).Book
Google Scholar
71.Jain, S. K. & Hajra, P. K. On the botany of Manas Wild Life Sanctuary in Assam. Bull. Bot. Surv. Ind. 17, 75–86 (1975).
Google Scholar
72.Hajra, P. K. & Jain, S. K. Botany of Kaziranga and Manas (Surya International Publications, 1994).
Google Scholar
73.Rahmani, A. R., Kasambe, R., Prabhu, S., Khot, R. & Bajaru, S. Biodiversity Studies at Kaziranga National Park. (2016).74.Vila, A. R., Galende, G. I. & Pastore, H. Feeding ecology of the endangered huemul (Hippocamelus bisulcus) in Los Alerces National Park, Argentina. Mastozool. Neotrop. 16, 423–431 (2009).
Google Scholar
75.Borah, S. B., Sivasankar, T., Ramya, M. N. S. & Raju, P. L. N. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. https://doi.org/10.1007/s10661-018-6893-y (2018).Article
PubMed
Google Scholar
76.De Barba, M. et al. Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J. Appl. Ecol. 47, 172–181. https://doi.org/10.1111/j.1365-2664.2009.01752 (2010).Article
Google Scholar
77.Jachmann, H. & Bell, R. H. V. The use of elephant droppings in assessing numbers, occupance and age structure: A refinement of the method. Afr. J. Ecol. 22, 127–141. https://doi.org/10.1111/j.1365-2028.1984.tb00686.x (1984).Article
Google Scholar
78.Chaturvedi, R. K. & Sankar, K. Laboratory Manual for the Physico-Chemical Analysis of Soil, Water and Plant (Wildlife Institute of India, 2006).
Google Scholar
79.Colwell, R. K. & Elsensohn, J. E. EstimateS turns 20: Statistical estimation of species richness and shared species from samples, with non-parametric extrapolation. Ecography 37, 609–613. https://doi.org/10.1111/ecog.00814 (2014).Article
Google Scholar
80.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article
Google Scholar
81.Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 8, 8–11 (2008).
Google Scholar
82.Barton, K. & Barton, M. K. Package ‘MuMIn’. R package version, 1 (2019).83.Harrell Jr, F. E. & Harrell Jr, M. F. E. Package ‘Hmisc’. CRAN2018, 2019, 235–236 (2019).84.Wei, T. et al. Package ‘corrplot’: Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
Google Scholar More