More stories

  • in

    Environmental drivers of plant form and function

    1.Funk, J. L. et al. Biol. Rev. 92, 1156–1173 (2017).Article 

    Google Scholar 
    2.Hutchinson, G. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    3.Díaz, S. et al. Nature 529, 1–17 (2015).
    Google Scholar 
    4.Westoby, M. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    6.Thomas, H. J. D. et al. Nat. Commun. 11, 1351 (2020).CAS 
    Article 

    Google Scholar 
    7.Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    8.Blonder, B. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    9.Bjorkman, A. D. et al. Global Ecol. Biogeogr. 27, 1402–1411 (2018).Article 

    Google Scholar 
    10.Bjorkman, A. D. et al. Nature 562, 57–62 (2018).CAS 
    Article 

    Google Scholar 
    11.Cornwell, W. K. & Ackerly, D. D. Ecol. Monogr. 79, 109–126 (2009).Article 

    Google Scholar 
    12.Dong, N. et al. New Phytol. 228, 82–94 (2020).CAS 
    Article 

    Google Scholar 
    13.Harrison, S., Damschen, E., Fernandez-Going, B., Eskelinen, A. & Copeland, S. Ann. Bot. 116, 1017–1022 (2015).Article 

    Google Scholar 
    14.Yang, J., Cao, M. & Swenson, N. G. Trends Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    15.Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. New Phytol. 193, 673–682 (2012).Article 

    Google Scholar 
    16.Bardgett, R. D., Mommer, L. & De Vries, F. T. Trends Ecol. Evol. 29, 692–699 (2014).Article 

    Google Scholar 
    17.Messier, J., McGill, B. J. & Lechowicz, M. J. Ecol. Lett. 13, 838–848 (2010).Article 

    Google Scholar 
    18.Arrouays, D. et al. Adv. Agron. 125, 93–134 (2014).Article 

    Google Scholar 
    19.Diaz, S. et al. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    20.Suding, K. N. et al. Global Change Biol. 14, 1125–1140 (2008).Article 

    Google Scholar  More

  • in

    Natural selection for imprecise vertical transmission in host–microbiota systems

    1.Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).PubMed 

    Google Scholar 
    6.Matsuoka, K. & Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37, 47–55 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Berg, M. & Koskella, B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28, 2487–2492 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015).10.Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & William, W. J. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Camarinha-Silva, A. et al. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics 206, 1637–1644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 14, e1007580 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).15.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 

    Google Scholar 
    17.Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 

    Google Scholar 
    18.Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).
    Google Scholar 
    19.Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68, 389–396 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).CAS 
    PubMed 

    Google Scholar 
    21.Jahnes, B. C., Herrmann, M. & Sabree, Z. L. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7, e6914 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    22.Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8, e79061 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    24.Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).25.Björk, J. R., Diez-Vives, C., Astudillo-Garcia, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    26.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Phil. Trans. R. Soc. B 374, 20190068 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Metcalf, C. J. E., Henry, L. P., Rebolleda-Gomez, M. & Koskella, B. Why evolve reliance on the microbiome for timing of ontogeny?. mBio 10, e01496-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–23 (2020).PubMed 

    Google Scholar 
    30.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315 (1987).CAS 
    PubMed 

    Google Scholar 
    31.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).CAS 
    PubMed 

    Google Scholar 
    32.Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).
    Google Scholar 
    33.Halley, J. M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996).CAS 
    PubMed 

    Google Scholar 
    34.Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).CAS 
    PubMed 

    Google Scholar 
    35.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    36.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    37.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    38.Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).CAS 
    PubMed 

    Google Scholar 
    40.Zapién-Campos, R., Sieber, M. & Traulsen, A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput. Biol. 16, e1008392 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    41.De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J. & Breeuwer, J. A. J. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc. R. Soc. Lond. B 271, 2171–2178 (2004).
    Google Scholar 
    42.Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. N. Phytol. 135, 575–585 (1997).
    Google Scholar 
    43.Cheney, K. L. & Côté, I. M. Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol. Lett. 1, 162–165 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    44.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    45.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).PubMed 

    Google Scholar 
    48.Ives, A. R. et al. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat. Ecol. Evol. 4, 702–711 (2020).PubMed 

    Google Scholar 
    49.Chen, D.-Q., Montllor, C. B. & Purcell, A. H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol. Exp. Appl. 95, 315–323 (2000).
    Google Scholar 
    50.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    51.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed 

    Google Scholar 
    55.Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation (Sinauer Associates, 2001).56.Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 

    Google Scholar 
    60.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Ibáñez, F., Tonelli, M. L., Muñoz, V., Figueredo, M. S. & Fabra, A. in Endophytes: Biology and Biotechnology (ed. Maheshwari, D.) 25–40 (Springer, 2017).62.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 

    Google Scholar 
    63.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 

    Google Scholar 
    64.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Ravel, C., Michalakis, Y. & Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80, 18–24 (1997).
    Google Scholar 
    67.Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of nontransitive fitness in yeast. eLife 9, e62238 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Clune, J. et al. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput. Biol. 4, e1000187 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    69.King, O. D. & Masel, J. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, X.-D., Lei, H.-X. & Chen, F.-F. Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci. Rep. 9, 4013 (2019).71.Oyserman, B. O. et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11, 3444 (2021).
    Google Scholar 
    72.Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).PubMed 

    Google Scholar 
    73.Osaka, R., Nomura, M., Watada, M. & Kageyama, D. Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr. Microbiol. 57, 335–339 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Gundel, P. E. et al. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb. Ecol. 57, 740 (2009).PubMed 

    Google Scholar 
    75.Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 

    Google Scholar 
    77.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    79.Scheuring, I. & Yu, D. W. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15, 1300–1307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Roughgarden, J. Holobiont evolution: Mathematical model with vertical vs. horizontal microbiome transmission. Phil. Theory Pract. Biol. 12, 002 (2020).81.Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    82.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    83.Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).
    Google Scholar 
    84.Bruijning, M. Code for: Natural selection for imprecise vertical transmission in host-microbiota systems. Zenodo https://doi.org/10.5281/zenodo.5534317 (2021).85.Sauer, C., Dudaczek, D., Hölldobler, B. & Gross, R. Tissue localization of the endosymbiotic bacterium “Candidatus Blochmannia floridanus” in adults and larvae of the carpenter ant Camponotus floridanus. Appl. Environ. Microbiol. 68, 4187–4193 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Brentassi, M. E. et al. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. Protoplasma 254, 1421–1429 (2017).CAS 
    PubMed 

    Google Scholar 
    88.Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).
    Google Scholar 
    89.Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    92.Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    93.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    94.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).CAS 
    PubMed 

    Google Scholar  More

  • in

    Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century

    Cropland-mapping extent and time intervalsThe global boundaries for the cropland mapping were informed by the US Geological Survey (USGS) Global Food Security-Support Analysis Data at 30 m (GFSAD)11. The cropland mapping extent was defined using the geographic 1° × 1° grid. We included every 1° × 1° grid cell that contains cropland area according to the GFSAD. Small islands were excluded due to the absence of Landsat geometrically corrected data (Supplementary Fig. 1).The cropland mapping was performed at 4-year intervals (2000–2003, 2004–2007, 2008–2011, 2012–2015 and 2016–2019). Use of a long interval (rather than a single year) increased the number of clear-sky satellite observations in the time-series, which improves representation of land-surface phenology and the accuracy of cropland detection. For each 4-year interval, we mapped an area as cropland if a growing crop was detected during any of these years. In this way, we implemented the criterion of the maximum fallow length: if an area was not used as cropland for >4 years, it was not included in the cropland map for the corresponding time interval.Landsat dataWe employed the global 16-day normalized surface reflectance Landsat Analysis Ready Data (Landsat ARD19) as input data for cropland mapping. The Landsat ARD were generated from the entire Landsat archive from 1997 to 2019. The Landsat top-of-atmosphere reflectance was normalized using globally consistent MODIS surface reflectance as a normalization target. Individual Landsat images were aggregated into 16-day composites by prioritizing clear-sky observations.For each 4-year interval, we created a single annualized gap-free 16-day observation time-series. For each 16-day interval, we selected the observation with the highest near-infrared reflectance value (to prioritize observations with the highest vegetation cover) from 4 years of Landsat data. Observations contaminated by haze, clouds and cloud shadows, as indicated by the Landsat ARD quality layer, were removed from the analysis. If no clear-sky data were available for a 16-day interval, we filled the missing reflectance values using linear interpolation.The annualized, 16-day time-series within each 4-year interval were transformed into a set of multitemporal metrics that provide consistent land-surface phenology inputs for global cropland mapping. Metrics include selected ranks, inter-rank averages and amplitudes of surface reflectance and vegetation index values, and surface reflectance averages for selected land-surface phenology stages defined by vegetation indices (that is, surface reflectance for the maximum and minimum greenness periods). The multitemporal metrics methodology is provided in detail19,38. The Landsat metrics were augmented with elevation data39. In this way, we created spatially consistent inputs for each of the 4-year intervals. The complete list of input metrics is presented in Supplementary Table 1.Global cropland mappingGlobal cropland mapping included three stages that enabled extrapolation of visually delineated cropland training data to a temporally consistent, global cropland map time-series using machine learning. At all three stages, we employed bagged decision tree ensembles40 as a supervised classification algorithm that used class presence and absence data as the dependent variables, and a set of multitemporal metrics as independent variables at a Landsat ARD pixel scale. The bagged decision tree results in a per-pixel cropland probability layer, which has a threshold of 0.5 to obtain a cropland map.The first stage consisted of performing individual cropland classifications for a set of 924 Landsat ARD 1° × 1° tiles for the 2016–2019 interval (Supplementary Fig. 1). The tiles were chosen to represent diverse global agriculture landscapes. Classification training data (cropland class presence and absence) were manually selected through visual interpretation of Landsat metric composites and high-resolution data from Google Earth. An individual supervised classification model (bagged decision trees) was calibrated and applied to each tile.At the second stage, we used the 924 tiles that had been classified as cropland/other land and the 2016–2019 metric set to train a series of regional cropland mapping models. The classification was iterated by adding training tiles and assessing the results until the resulting map was satisfactory. We then applied the regional models to each of the preceding 4-year intervals, thus creating a preliminary time-series of global cropland maps.At the third stage, we used the preliminary global cropland maps as training data to generate temporally consistent global cropland data. As the regional models applied at the second stage were calibrated using 2016–2019 data alone, classification errors may arise due to Landsat data inconsistencies before 2016. The goal of this third stage was to create a robust spatiotemporally consistent set of locally calibrated cropland detection models. For each 1° × 1° Landsat ARD tile (13,451 tiles total), we collected training data for each 4-year interval from the preliminary cropland extent maps within a 3° radius of the target tile, with preference to select stable cropland and non-cropland pixels as training. Training data from all intervals were used to calibrate a single decision tree ensemble for each ARD tile. The per-tile models were then applied to each time interval, and the results were post-processed to remove single cropland class detections and omissions within time-series and eliminate cropland patches More

  • in

    Fire effects on the persistence of soil organic matter and long-term carbon storage

    1.Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 
    2.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
    Google Scholar 
    3.Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184 (2003).
    Google Scholar 
    4.Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Chang. Biol. 4, 229–233 (1998).
    Google Scholar 
    5.Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    Google Scholar 
    6.Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    7.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 
    8.Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).
    Google Scholar 
    9.Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).
    Google Scholar 
    10.Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. & Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168, 148–155 (2011).
    Google Scholar 
    11.Jiménez-Morillo, N. T. et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145, 266–273 (2016).
    Google Scholar 
    12.Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
    Google Scholar 
    13.Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).
    Google Scholar 
    14.Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).
    Google Scholar 
    15.Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).16.Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).
    Google Scholar 
    17.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).18.Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
    Google Scholar 
    19.Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
    Google Scholar 
    20.Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
    Google Scholar 
    21.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    Google Scholar 
    22.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
    Google Scholar 
    23.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    24.Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).
    Google Scholar 
    25.McKee, W. H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites Research Paper-RE-234 (US Department of Agriculture, 1982).26.Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).
    Google Scholar 
    27.Roscoe, R., Buurman, P., Velthorst, E. J. & Pereira, J. A. A. Effects of fire on soil organic matter in a “cerrado sensu-stricto” from southeast Brazil as revealed by changes in δ13C. Geoderma 95, 141–160 (2000).
    Google Scholar 
    28.Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M. & FitzPatrick, E. A. Response of surface horizons in an oak forest to prescribed burning. Soil Sci. Soc. Am. J. 64, 754–760 (2000).
    Google Scholar 
    29.Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 10, 1130–1136 (2020).
    Google Scholar 
    30.Hartford, R. & Frandsen, W. When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2, 139–144 (1992).
    Google Scholar 
    31.Pellegrini, A. F. A. et al. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 108, 1426–1441 (2020).
    Google Scholar 
    32.Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).
    Google Scholar 
    33.Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
    Google Scholar 
    34.Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    Google Scholar 
    35.Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage. 140, 227–238 (2001).
    Google Scholar 
    36.González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).
    Google Scholar 
    37.Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Google Scholar 
    38.Boyer, W. D. & Miller, J. H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manage. 70, 311–318 (1994).
    Google Scholar 
    39.Martin, A., Mariotti, A., balesdent, J., Lavelle, P. & Vuattoux, R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22, 517–523 (1990).
    Google Scholar 
    40.McKee, W. H. & Lewis, C. E. Influence of burning and grazing on soil nutrient properties and tree growth on a Georgia coastal plain site after 40 years. In Proc. Second Biennial Southern Silvicultural Research Station Conference (Ed. Jones, E. P. J.) 79–86 (US Department of Agriculture, 1983).41.Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manage. 250, 234–243 (2007).
    Google Scholar 
    42.Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Google Scholar 
    43.Guinto, D. F., Xu, Z. H., House, A. P. N. & Saffigna, P. G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31, 170–187 (2001).
    Google Scholar 
    44.Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82 (2014).
    Google Scholar 
    45.O’Donnell, J. A. et al. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob. Chang. Biol. 17, 1461–1474 (2011).
    Google Scholar 
    46.Butnor, J. R. et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manage. 390, 15–26 (2017).
    Google Scholar 
    47.Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996).
    Google Scholar 
    48.Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
    Google Scholar 
    49.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
    Google Scholar 
    50.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    Google Scholar 
    51.Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).
    Google Scholar 
    52.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
    Google Scholar 
    53.Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Google Scholar 
    54.Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: a review. Earth Sci. Rev. 109, 44–60 (2011).
    Google Scholar 
    55.Chen, H. Y. H. & Shrestha, B. M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 50, 149–157 (2012).
    Google Scholar 
    56.Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).
    Google Scholar 
    57.Jian, M., Berhe, A. A., Berli, M. & Ghezzehei, T. A. Vulnerability of physically protected soil organic carbon to loss under low severity fires. Front. Environ. Sci. 6, 66 (2018).
    Google Scholar 
    58.Debano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206 (2000).
    Google Scholar 
    59.Hallett, P. D. et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314, 183–196 (2009).
    Google Scholar 
    60.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    Google Scholar 
    61.Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).
    Google Scholar 
    62.Eom, A.-H., Hartnett, D. C., Wilson, G. W. T. & Figge, D. A. H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midl. Nat. 142, 55–70 (1999).
    Google Scholar 
    63.Sankey, J. B. et al. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 44, 8884–8892 (2017).
    Google Scholar 
    64.Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).
    Google Scholar 
    65.Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130, 1–140 (2015).
    Google Scholar 
    66.Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).
    Google Scholar 
    67.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697–710 (2000).
    Google Scholar 
    68.Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).
    Google Scholar 
    69.Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).
    Google Scholar 
    70.Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).
    Google Scholar 
    71.Ulery, A. L., Graham, R. C. & Bowen, L. H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am. J. 60, 309–315 (1996).
    Google Scholar 
    72.Fernández, I., Cabaneiro, A. & Carballas, T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11 (1997).
    Google Scholar 
    73.Heckman, K., Campbell, J., Powers, H., Law, B. & Swanston, C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 9, 40–56 (2013).
    Google Scholar 
    74.Knicker, H., González-Vila, F. J. & González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39 (2013).
    Google Scholar 
    75.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).
    Google Scholar 
    76.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    77.Neff, J., Harden, J. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. 35, 2178–2187 (2005).
    Google Scholar 
    78.Harden, J. W. et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002194 (2004).79.DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).
    Google Scholar 
    80.Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci. Discuss. 3, 211–271 (2006).
    Google Scholar 
    81.Krishnaraj, S. J., Baker, T. G., Polglase, P. J., Volkova, L. & Weston, C. J. Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland Eucalyptus forests of south-eastern Australia. For. Ecol. Manage. 366, 98–105 (2016).
    Google Scholar 
    82.Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).
    Google Scholar 
    83.Knicker, H., Almendros, G., González-Vila, F. J., Martin, F. & Lüdemann, H. D. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060 (1996).
    Google Scholar 
    84.Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).
    Google Scholar 
    85.Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Google Scholar 
    86.Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97 (2012).
    Google Scholar 
    87.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
    Google Scholar 
    88.Beringer, J. et al. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340 (2003).
    Google Scholar 
    89.Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    90.Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    91.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).
    Google Scholar 
    92.Gongalsky, K. B. et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 24, 438–450 (2021).
    Google Scholar 
    93.Wardle, D. A., Nilsson, M.-C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320, 629 (2008).
    Google Scholar 
    94.Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).
    Google Scholar 
    95.Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184 (2000).
    Google Scholar 
    96.Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).
    Google Scholar 
    97.Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).
    Google Scholar 
    98.Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).
    Google Scholar 
    99.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    Google Scholar 
    100.Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Google Scholar 
    101.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 6497 (2020).
    Google Scholar 
    102.Walker, R. B., Coop, J. D., Parks, S. A. & Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9, e02182 (2018).
    Google Scholar 
    103.Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2 (Oak Ridge National Laboratory, 2014); https://doi.org/10.3334/ORNLDAAC/1247104.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    Google Scholar 
    105.Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire 22, 368–380 (2013).
    Google Scholar 
    106.Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. For. Res. 30, 274–282 (2000).
    Google Scholar 
    107.Bormann, B. T., Homann, P. S., Darbyshire, R. L. & Morrissette, B. A. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can. J. For. Res. 38, 2771–2783 (2008).
    Google Scholar 
    108.Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 
    109.O’Neill, K. P., Richter, D. D. & Kasischke, E. S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006).
    Google Scholar 
    110.Köster, E. et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manage. 228, 405–415 (2018).
    Google Scholar 
    111.Zhao, H., Tong, D. Q., Lin, Q., Lu, X. & Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189–190, 532–539 (2012).
    Google Scholar 
    112.Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
    Google Scholar 
    113.Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).
    Google Scholar 
    114.Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021).
    Google Scholar 
    115.Peterson, D. W., Reich, P. B., Wrage, K. J. & Franklin, J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Veg. Sci. 18, 3–12 (2007).
    Google Scholar 
    116.Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).
    Google Scholar 
    117.Loades, K. W., Bengough, A. G., Bransby, M. F. & Hallett, P. D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 36, 276–284 (2010).
    Google Scholar 
    118.Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112, G02029 (2007).
    Google Scholar 
    119.Aaltonen, H. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143, 257–274 (2019).
    Google Scholar 
    120.Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).
    Google Scholar 
    121.Kelly, J. et al. Boreal forest soil carbon fluxes one year after a wildfire: effects of burn severity and management. Glob. Chang. Biol. 27, 4181–4195 (2021).
    Google Scholar 
    122.Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644 (2019).
    Google Scholar  More

  • in

    Was the kateretid beetle Pelretes really a Cretaceous angiosperm pollinator?

    1.Tihelka et al. Angiosperm pollinivory in a Cretaceous beetle. Nat. Plants. 7, 445–451 (2021).Article 

    Google Scholar 
    2.Halbritter et al. Illustrated Pollen Terminology (Springer, 2018).3.Friis, E. M., Pedersen, K. R. & Crane, P. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).4.Seyfullah et al. Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil. BMC Evol. Biol. 20, 107 (2020).Article 

    Google Scholar 
    5.Nation, L. Insect Physiology and Biochemistry (CRC Press, 2002).6.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, USA. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    7.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).Article 

    Google Scholar 
    8.Shanker, C., Mohan, M., Sampathkumar, M., Lydia, C. & Katti, G. Functional significance of Micraspis discolor (F.) (Coccinellidae: Coleoptera) in the rice ecosystem. J. Appl. Entomol. 137, 601–609 (2013).Article 

    Google Scholar 
    9.Lehane, M. J. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525–550 (1997).CAS 
    Article 

    Google Scholar 
    10.Hegedus, D., Erlandson, M., Gillott, C. & Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54, 285–302 (2009).CAS 
    Article 

    Google Scholar 
    11.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    12.Friis, E. M., Pedersen, K. R. & Crane, P. R. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Garden 86, 259–296 (1999).Article 

    Google Scholar 
    13.Brenner, G. J. The Spores and Pollen of the Potomac Group of Maryland (Waverly Press, 1963).14.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    15.Peris et al. False Blister Beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    SARS-CoV-2 infection in free-ranging white-tailed deer

    Humans have infected a wide range of animals with SARS-CoV-2 viruses1–5, but the establishment of a new natural animal reservoir has not been observed. Here, we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2 virus, are exposed to a range of viral diversity from humans, and are capable of sustaining transmission in nature. SARS-CoV-2 virus was detected by rRT-PCR in more than one-third (129/360, 35.8%) of nasal swabs obtained from Odocoileus virginianus in northeast Ohio (USA) during January-March 2021. Deer in 6 locations were infected with 3 SARS-CoV-2 lineages (B.1.2, B.1.582, B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. Probable deer-to-deer transmission of B.1.2, B.1.582, and B.1.596 viruses was observed, allowing the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are infrequently seen in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have the capacity to transmit in US wildlife, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive “One Health” programs to monitor deer, the environment, and other wildlife hosts globally. More

  • in

    Short-term changes related to autotetraploidy in essential oil composition of Eucalyptus benthamii Maiden & Cambage and its applications in different bioassays

    1.Ladiges, P. Y., Udovicic, F. & Nelson, G. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J. Biogeogr. 30, 989–998 (2003).
    Google Scholar 
    2.Goodger, J. Q. D., Senaratne, S. L., Nicolle, D. & Di Woodrow, I. E. ff erential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae ). Tree Physiol. 00, 1–10 (2018).
    Google Scholar 
    3.Doran, J. C. & Brophy, J. J. Importance of the tropical red gums. New For. 4, 157–178 (1990).
    Google Scholar 
    4.Doughty, R. W. The Eucalyptus. A Natural and Commercial History of the Gum Tree. (The John Hopkins University Press, 2000).5.Silva, P. H. M. da, Brito, J. O. & Junior, F. G. da S. Potential of eleven Eucalyptus species for the production of essential oils. Sci. Agric. 63, 85–89 (2006).6.Coppen, J. J. W. Eucalyptus: the genus Eucalyptus. (Taylor & Francis, 2002).7.Barbosa, L. C. A., Filomeno, C. A. & Teixeira, R. R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 21, 1–33 (2016).
    Google Scholar 
    8.Lucia, A., Licastro, S., Zerba, E., Gonzalez, P. & Masuh, H. Bioresource technology sensitivity of Aedes aegypti adults (Diptera : Culicidae ) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 100, 6083–6087 (2009).CAS 
    PubMed 

    Google Scholar 
    9.Batista-Pereira, L. G. et al. Electrophysiological Responses of Atta sexdens rubropilosa workers. Z. Naturforsch. 61c, 749–755 (2006).
    Google Scholar 
    10.Döll-Boscardin, P. M. et al. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-based Complement. Altern. Med. 2012, 1–8 (2012).
    Google Scholar 
    11.Lin, H. et al. Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. Afr. J. Biotechnol. 9, 2252–2255 (2010).CAS 

    Google Scholar 
    12.Silva, A. J., Carvalho, C. R. & Clarindo, W. R. Chromosome set doubling and ploidy stability in synthetic auto- and allotetraploid of Eucalyptus: from in vitro condition to the field. Plant Cell. Tissue Organ Cult. 138, 387–394 (2019).
    Google Scholar 
    13.Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).CAS 
    PubMed 

    Google Scholar 
    14.Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 26, 271–279 (2020).CAS 
    PubMed 

    Google Scholar 
    15.Lavania, U. C. et al. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549 (2012).CAS 
    PubMed 

    Google Scholar 
    16.Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).
    Google Scholar 
    17.Marfil, C. F., Duarte, P. F. & Masuelli, R. W. Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Sci. Hortic. (Amsterdam) 234, 101–109 (2018).
    Google Scholar 
    18.Fernando, S. C., Goodger, J. Q. D., Chew, B. L., Cohen, T. J. & Woodrow, I. E. Induction and characterisation of tetraploidy in Eucalyptus polybractea R.T. Baker. Ind. Crops Prod. 140, 111633 (2019).CAS 

    Google Scholar 
    19.da Silva Souza, T. et al. Polyploidy as a strategy to improve the industrial quality of eucalypt wood. Wood Sci. Technol. 55, 181 (2020).
    Google Scholar 
    20.Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).CAS 
    PubMed 

    Google Scholar 
    21.Naidoo, S. et al. Uncovering the defence responses of eucalyptus to pests and pathogens in the genomics age. Tree Physiol. 34, 931–943 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Rasmussen, J. J. et al. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquat. Toxicol. 140–141, 340–345 (2013).PubMed 

    Google Scholar 
    23.Estep, A. S., Sanscrainte, N. D., Waits, C. M., Louton, J. E. & Becnel, J. J. Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico. J. Med. Entomol. 54, 1643–1648 (2017).CAS 
    PubMed 

    Google Scholar 
    24.Braga, I. A., Lima, J. B. P., Da Silva Soares, S. & Valle, D. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas. Brazil. Mem. Inst. Oswaldo Cruz 99, 199–203 (2004).PubMed 

    Google Scholar 
    25.Mendes, L. A. et al. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod. 108, 684–689 (2017).CAS 

    Google Scholar 
    26.Dutra, Q. P. et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep. 10, 12213 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Mendes, L. A. et al. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. Sci. Hortic. (Amsterdam) 238, 295–302 (2018).CAS 

    Google Scholar 
    28.Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crop. Prod. 109, 374–383 (2017).CAS 

    Google Scholar 
    29.de Souza, S. et al. Essential oil of Psidium guajava : Influence of genotypes and environment. Sci. Hortic. (Amsterdam) 216, 38–44 (2017).
    Google Scholar 
    30.Adams, R. P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry (Allured Publishing Corporation, 2007).31.Fox, J. et al. Package ‘effects’: Effect displays for linear, generalised linear, and other models. Version 4(2–0), 1–35 (2020).
    Google Scholar 
    32.R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2020).33.Aragão, F. B. et al. Phytotoxic and cytotoxic effects of eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 35, 259–272 (2015).
    Google Scholar 
    34.de Assis Alves, T. et al. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 114, 59–67 (2018).35.Silva, T. C. R., Abreu, I. S. & Carvalho, C. R. Improved and reproducible flow cytometry methodology for nuclei isolation from single root meristem. J. Bot. 2010, 1–7 (2010).
    Google Scholar 
    36.Otto, F. DAPI staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).CAS 
    PubMed 

    Google Scholar 
    37.Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K. & Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 130, 543–551 (2017).
    Google Scholar 
    38.Iannicelli, J. et al. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. (Amsterdam). 260, 108854 (2020).39.Dhooghe, E., Laere, K. V., Eeckhaut, T., Leus, L. & Huylenbroeck, J. V. Mitotic chromosome doubling of plant tissues in vitro. 104, 359–373 (2011).
    Google Scholar 
    40.Aharoni, A., Jongsma, M. A. & Bouwmeester, H. J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bouvier, F. et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 24, 241–252 (2000).CAS 

    Google Scholar 
    42.Külheim, C. et al. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol. 191, 1041–1053 (2011).PubMed 

    Google Scholar 
    43.Mossi, A. J. et al. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). 91, 273–277 (2011).44.Henery, M. L., Moran, G. F., Wallis, I. R., Foley, W. J. & Henery, M. L. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. 176, 82–95 (2007).45.Kainer, D., Lanfear, R., Foley, W. J. & Külheim, C. Genomic approaches to selection in outcrossing perennials : focus on essential oil crops. Theor. Appl. Genet. 128, 2351–2365 (2015).PubMed 

    Google Scholar 
    46.Lucia, A., Licastro, S., Zerba, E. & Masuh, H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. 129, 107–114 (2008).47.Hantao, L. W. et al. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116, 1079–1084 (2013).CAS 
    PubMed 

    Google Scholar 
    48.Batish, D. R., Singh, H. P., Setia, N., Kaur, S. & Kohli, R. K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. – Sect. Biosci. 61, 465–471 (2006).CAS 

    Google Scholar 
    49.Arminante, F. et al. Allelopathic activity of essential oils from mediterranean labiatae. Acta Hort. 723, 347–352 (2006).CAS 

    Google Scholar 
    50.Batish, D. R. et al. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27, 171–177 (2007).CAS 

    Google Scholar 
    51.Vasconcelos, L. C. et al. Phytochemical analysis and effect of the essential oil of Psidium L . species on the initial development and mitotic activity of plants. Env. Sci. Poll. Res. 26, 26216–26228 (2019).52.Prates, H. T., Paes, J. M. V., Pires, N. de M., Filho, I. A. P. & Magalhães, P. C. Efeito do extrato aquoso de leucena na germinação e no desenvolvimento do milho. Pesq. Agropec. Bras. 1, 909–914 (2000).53.Fernandes, T. C. C., Mazzeo, D. E. C. & Marin-morales, M. A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to tri-X-uralin herbicide. Pest. Bioch. Phys. 88, 252–259 (2007).CAS 

    Google Scholar 
    54.Andrade, L. F., Davide, L. C. & Gedraite, L. S. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 73, 626–631 (2010).CAS 
    PubMed 

    Google Scholar  More

  • in

    Antigenic escape selects for the evolution of higher pathogen transmission and virulence

    Oligomorphic dynamics (OMD) of antigenic escapeWe considered a model of the antigenic escape of a pathogen from host herd immunity on a one-dimensional antigenicity space (x). We tracked the changes in the density (S(t,x)) of hosts that are susceptible to antigenicity variant x of pathogen at time t, and the density (I(t,x)) of hosts that are currently infected and infectious with antigenicity variant x of pathogen at time t:$$frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{ – infty }^infty beta sigma left( {x – y} right)Ileft( {t,y} right)dy,$$
    (5)
    $$frac{{partial Ileft( {t,x} right)}}{{partial t}} = beta Sleft( {t,x} right)Ileft( {t,x} right) – left( {gamma + alpha } right)Ileft( {t,x} right) + Dfrac{{partial ^2Ileft( {t,x} right)}}{{partial x^2}},$$
    (6)
    where β, α and γ are the transmission rate, virulence (additional mortality due to infection) and recovery rate of pathogens, which are independent of antigenicity. The function σ(x−y) denotes the degree of cross immunity: a host infected by pathogen variant y acquires perfect cross immunity with probability σ(x−y), but fails to acquire any cross immunity with probability 1−σ(x−y) (this is called polarized cross immunity by Gog and Grenfell25). The degree σ(x−y) of cross immunity is assumed to be a decreasing function of the distance |x−y| between variants x and y. When a new variant with antigenicity x = 0 is introduced at time t = 0, the initial host population is assumed to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1. In equation (6), (D = mu sigma _mathrm{m}^2/2) is one half of the mutation variance for the change in antigenicity, representing random mutation in the continuous antigenic space.Susceptibility profile moulded by the primary outbreakWe first analysed the dynamics of the primary outbreak of a pathogen and derived the resulting susceptibility profile, which can be viewed as the fitness landscape subsequently experienced by the pathogen. For simplicity, we assumed that mutation can be ignored during the first epidemic initiated with antigenicity strain x = 0. The density ({{{S}}}_0left( {{{t}}} right) = {{{S}}}({{{t}}},0)) of hosts that are susceptible to the currently prevailing antigenicity variant x = 0, as well as the density ({{{I}}}_0left( {{{t}}} right) = {{{I}}}({{{t}}},0)) of hosts that are currently infected by the focal variant change with time as$$frac{{dS_0}}{{dt}} = – S_0beta I_0,$$
    (7)
    $$frac{{dI_0}}{{dt}} = S_0beta I_0 – left( {gamma + alpha } right)I_0,$$
    (8)
    $$frac{{dR_0}}{{dt}} = gamma I_0,$$
    (9)
    with (S_0left( 0 right) = 1), (I_0left( 0 right) approx 0) and (R_0left( 0 right) = 0). The final size of the primary outbreak,$$psi _0 = R_0left( infty right) = 1 – S_0left( infty right) = exp left[ { – beta mathop {int}limits_0^infty {I_0} left( t right)dt} right],$$is determined as the unique positive root of$$begin{array}{*{20}{c}} {psi _0 = 1 – e^{ – rho _0psi _0},} end{array}$$
    (10)
    where (rho _0 = beta /left( {gamma + alpha } right) > 1) is the basic reproductive number6. Associated with this epidemiological change, the susceptibility profile (S_xleft( t right) = S(t,x)) against antigenicity x ((x ne 0)) other than the currently circulating variant (x = 0) changes by cross immunity as$$begin{array}{*{20}{c}} {frac{{dS_x}}{{dt}} = – S_xbeta sigma left( x right)I_0,quad left( {x ne 0} right).} end{array}$$
    (11)
    Integrating both sides of equation (11) from t = 0 to (t = infty), we see that the susceptibility profile (sleft( x right) = S_x(infty )) after the primary outbreak at x = 0 is$$begin{array}{*{20}{c}} {sleft( x right) = exp left[ { – beta sigma left( x right)mathop {int}limits_0^infty {I_0} left( t right)dt} right] = left( {1 – psi _0} right)^{sigma left( x right)} = e^{ – rho _0sigma left( x right)psi _0},} end{array}$$
    (12)
    where the last equality follows from equation (10). The susceptibility can be effectively reduced by cross immunity when the primary variant has a large impact (that is, when the fraction of hosts remaining uninfected, 1−ψ0, is small) and when the degree of cross immunity is strong (that is, when σ(x) is close to 1). With a variant antigenically very close to the primary variant (x ≈ 0), the cross immunity is very strong ((sigma left( x right) approx 1)) so that the susceptibility against variant x is nearly maximally reduced: (s(x) approx 1 – psi _0). With a variant antigenically distant from the primary variant, σ(x) becomes substantially smaller than 1, making the host more susceptible to the variant. For example, if the cross immunity is halved ((sigma left( x right) = 0.5)) from its maximum value 1, then the susceptibility to that variant is as large as (left( {1 – psi _0} right)^{0.5}). If a variant is antigenically very distant from the primary variant, then (sigma left( x right) approx 0), and the host is nearly fully susceptible to the variant ((sleft( x right) approx 1)).Threshold antigenic distance for escaping immunity raised by primary outbreakOf particular interest is the threshold antigenicity distance xc that allows for antigenic escape, that is, any antigenicity variant more distant than this threshold from the primary variant (x > xc) can increase when introduced after the primary outbreak. Such a threshold is determined from$$frac{{beta sleft( {x_c} right)}}{{gamma + alpha }} = rho _0sleft( {x_c} right) = 1$$or$$begin{array}{*{20}{c}} {sleft( {x_c} right) = left( {1 – psi _0} right)^{sigma left( {x_c} right)} = e^{ – rho _0sigma left( {x_c} right)psi _0} = frac{1}{{rho _0}},} end{array}$$
    (13)
    where we used equation (12). With a specific choice of cross-immunity profile,$$begin{array}{*{20}{c}} {sigma left( x right) = exp left[ { – frac{{x^2}}{{2omega ^2}}} right],} end{array}$$
    (14)
    the threshold antigenicity beyond which the virus can increase in the susceptibility profile s(x) after the primary outbreak is obtained, by substituting equation (14) into equation (13)$$exp left[ { – rho _0psi _0exp left[ { – frac{{x_c^2}}{{2omega ^2}}} right]} right] = frac{1}{{rho _0}},$$and taking the logarithm of both sides twice:$$begin{array}{*{20}{c}} {x_c = omega sqrt {2log frac{{rho _0psi _0}}{{log rho _0}}} .} end{array}$$
    (15)
    OMDIntegrating both sides of equation (6) over the whole space, we obtained the dynamics for the total density of infected hosts, ({{{bar{ I}}}}left( {{{t}}} right) = {int}_{ – infty }^infty {{{{I}}}left( {{{{t}}},{{{x}}}} right){{{dx}}}}):$$begin{array}{*{20}{c}} {frac{{dbar I}}{{dt}} = left[ {beta mathop {smallint }limits_{ – infty }^infty Sleft( {t,x} right)phi left( {t,x} right)dx – left( {gamma + alpha } right)} right]bar Ileft( t right) = left[ {beta bar Sleft( t right) – left( {gamma + alpha } right)} right]bar Ileft( t right)} end{array},$$
    (16)
    where$$phi left( {t,x} right) = Ileft( {t,x} right)/bar Ileft( t right)$$is the relative frequency of antigenicity variant x in the pathogen population circulating at time t, and$$begin{array}{*{20}{c}} {bar Sleft( t right) = mathop {int}limits_{ – infty }^infty S left( {t,x} right)phi left( {t,x} right)dx} end{array}$$
    (17)
    is the mean susceptibility experienced by currently circulating pathogens. The dynamics for the relative frequency (phi left( {t,x} right)) of pathogen antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S(t)} right}phi left( {t,x} right) + Dfrac{{partial ^2phi }}{{partial x^2}}.} end{array}$$
    (18)
    As in Sasaki and Dieckmann27, we decomposed the frequency distribution to the sum of several morph distributions (oligomorphic decomposition) as$$begin{array}{*{20}{c}} {phi left( {t,x} right) = mathop {sum }limits_i p_iphi _ileft( {t,x} right)} end{array},$$
    (19)
    where pi(t) is the frequency of morph i and (phi _i(t,x)) is the within-morph distribution of antigenicity. By definition, and ({int}_{ – infty }^infty {phi _i} (t,x)dx = 1). Let$$begin{array}{*{20}{c}} {bar x_i = mathop {int}limits_{ – infty }^infty {xphi _ileft( {t,x} right)dx} } end{array}$$
    (20)
    be the mean antigenicity of a morph and$$begin{array}{*{20}{c}} {V_i = mathop {smallint }limits_{ – infty }^infty left( {x – bar x_i} right)^2phi _ileft( {t,x} right)dx = Oleft( {{it{epsilon }}^2} right)} end{array}$$
    (21)
    where O is order be the within-morph variance of each morph, which is assumed to be small, of the order of ({it{epsilon }}^2). We denoted the mean susceptibility of host population for viral morph (i) by (bar S_i = {int}_{ – infty }^infty {Sleft( {t,x} right)phi _i(t,x)dx}). As shown in Sasaki and Dieckmann27, the dynamics for viral morph frequency is expressed as$$begin{array}{*{20}{c}} {frac{{dp_i}}{{dt}} = beta left( {bar S_i – bar S} right)p_i + Oleft( {it{epsilon }} right),} end{array}$$
    (22)
    while the dynamics for the within-morph distribution of antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi _i}}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S_i} right}phi _ileft( {t,x} right) + Dfrac{{partial ^2phi _i}}{{partial x^2}}.} end{array}$$
    (23)
    From this, the dynamics for the mean antigenicity of a morph,$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = V_ibeta left. {frac{{partial S}}{{partial x}}} right|_{x = bar x_i} + Oleft( {{it{epsilon }}^3} right)} end{array}$$
    (24)
    and the dynamics for the within-morph variance of a morph$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = frac{1}{2}beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}left{ {Eleft[ {xi _i^4} right] – V_i^2} right} + 2D + Oleft( {{it{epsilon }}^5} right)} end{array}$$
    (25)
    are derived, where (xi _i = x – bar x_i) and (Eleft[ {xi _i^4} right] = {int}_{ – infty }^infty {left( {x – bar x_i} right)^4phi _ileft( {t,x} right)dx}) are the fourth central moments of antigenicity around the morph mean. Assuming that the within-morph distribution is normal (Gaussian closure), (Eleft[ {xi _i^4} right] = 3V_i^2), and hence equation (25) becomes$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}V_i^2 + 2D + Oleft( {{it{epsilon }}^5} right).} end{array}$$
    (26)
    Second outbreak predicted by OMDEquations (22), (24) and (26) are general, but they rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). To make further progress, we used an additional approximation by substituting equation (13), the susceptibility profile, over viral antigenicity space after the primary outbreak at x = 0 and before the onset of the second outbreak at a distant position. We kept track of two morphs at positions x0(t) and x1(t), where the first morph is that caused by the primary outbreak at x = 0, and the second morph is that emerged in the range x > xc beyond the threshold antigenicity xc defined in equation (13) (and equation (15) for a specific form of σ(x)) as the source of the next outbreak.As (sleft( x right) = left( {1 – psi _0} right)^{sigma (x)} = exp [sigma left( x right)log (1 – psi _0)]), we have$$frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right]sleft( {bar x_i} right),$$and$$frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}^2sigma }}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right)log left( {1 – psi _0} right) + left{ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right}^2} right]sleft( {bar x_i} right).$$Therefore, the frequency, mean antigenicity and variance of antigenicity of an emerging morph (i = 1) change respectively as$$begin{array}{*{20}{l}} {frac{{dp_1}}{{dt}} = beta left[ {sleft( {bar x_1} right) – sleft( {bar x_0} right)} right]p_1left( {1 – p_1} right),} hfill \ {frac{{dbar x_1}}{{dt}} = V_1beta frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_1} right),} hfill \ {frac{{dV_1}}{{dt}} = beta frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_1} right)V_1^2 + 2D}. hfill end{array}$$
    (27)
    The predicted change in the mean antigenicity was plotted by integrating equation (27). As initial condition, we chose the time when a seed of second peak in the range x > xc first appeared, and then computed the mean trait as$$begin{array}{*{20}{c}} {bar xleft( t right) = x_0left( {1 – p_1left( t right)} right) + bar x_1p_1left( t right).} end{array}$$
    (28)
    In the case of Fig. 2, where β = 2, γ + α = 0.6, D = 0.001 and ω = 2, the final size of epidemic for the primary outbreak, defined as equation (7), was ψ = 0.959, and the critical antigenic distance for the increase of pathogen variant obtained from equation (26) was xc = 2.795. The initial conditions for the oligomorphic dynamics (equation 27) for the second morph were then (p_1left( {t_0} right) = 1.6 times 10^{ – 8}), (bar x_1left( {t_0} right) = 3.239), (V_1left( {t_0} right) = 0.2675) at t0 = 41. In Fig. 2, the predicted trajectory for the mean antigenicity (equation 28) is plotted as a red curve, together with the mean antigenicity change observed in simulation (blue curve).Accuracy of predicting the antigenicity with OMD and the timing of the second outbreakHere we describe how we defined the initial conditions for oligomorphic dynamics, that is, the frequency, the mean antigenicity and the variance in antigenicity of the morph that caused the primary outbreak and the morph that may cause the second outbreak. We then show how the accuracy in prediction of the second outbreak depends on the timing of the prediction.We divided the antigenicity space into two at x = xc, above which the pathogen can increase under the given susceptibility profile after the primary outbreak, but below which the pathogen cannot increase. We then took the relative frequencies of pathogens above xc and below xc, and the conditional mean and variance in these separated regions to set the initial frequencies, means and variances of the morphs at time t0 when we started integrating the oligomorphic dynamics to predict the second outbreak:$$begin{array}{*{20}{c}} {begin{array}{*{20}{l}} {p_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill & {p_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill \ {bar x_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {bar x_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}},} hfill \ {V_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} left( {x – bar x_0left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {V_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty left( {x – bar x_1left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}.} hfill end{array}} end{array}$$
    (29)
    We then compared the trajectory for mean antigenicity change observed in simulation (blue curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (equation 28) by integrating oligomorphic dynamics (equation 27) with the initial condition (equation 29) at time t = t0. Extended Data Fig. 2 shows how the accuracy of prediction, measured by the Kullback–Leibler divergence between these two trajectories, depends on the timing t0 chosen for the prediction. The second outbreak occurs around t = 54.6, where mean antigenicity jumps from around 0 to around 5. The prediction with OMD is accurate if it is made for t0 > 40. Figure 2 is drawn for t0 = 41 where the second peak is about to emerge (see Extended Data Fig. 2). Even for the latest prediction for t0 = 51 in Extended Data Fig. 2, the morph frequency of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to make.Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a wiggle) for (5 < t_0 < 30) (the predicted timings are 10–15% longer than actual timing for (5 < t_0 < 30)), and steadily improved for t0 > 30. When the prediction was made very early (t0 < 5), the deviations were larger.OMD for the joint evolution of antigenicity and virulenceLet s(x) be the susceptibility of the host population against antigenicity x. A specific susceptibility profile is given by equation (12), with cross-immunity function σ(x) and the final size ψ0 of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is, in general, a function of time. The density (I(x,alpha )) of hosts infected by a pathogen of antigenicity x and virulence α changes with time, when rare, as$$begin{array}{*{20}{c}} {frac{{partial Ileft( {x,alpha } right)}}{{partial t}} = beta sleft( x right)Ileft( {x,alpha } right) - left( {gamma + alpha } right)Ileft( {x,alpha } right) + D_xfrac{{partial ^2I}}{{partial x^2}} + D_alpha frac{{partial ^2I}}{{partial alpha ^2}}.} end{array}$$ (30) The change in the frequency (phi left( {x,alpha } right) = Ileft( {x,alpha } right)/{int!!!!!int} I left( {x,alpha } right)dxdalpha) of a pathogen with antigenicity x and virulence α follows$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = left{ {wleft( {x,alpha } right) - bar w} right}phi + D_xfrac{{partial ^2phi }}{{partial x^2}} + D_alpha frac{{partial ^2phi }}{{partial alpha ^2}},} end{array}$$ (31) where$$begin{array}{*{20}{c}} {wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - alpha } end{array}$$ (32) is the fitness of a pathogen with antigenicity x and virulence α and (bar w = {int!!!!!int} w left( {x,alpha } right)dxdalpha) is the mean fitness.We decomposed the joint frequency distribution ϕ(x, α) of the viral quasi-species as (oligomorphic decomposition):$$begin{array}{*{20}{c}} {phi left( {x,alpha } right) = mathop {sum }limits_i phi _ileft( {x,alpha } right)p_i,} end{array}$$ (33) where ϕi(x, α) is the joint frequency distribution of antigenicity x and virulence α in morph i (({int!!!!!int} {phi _idxdalpha = 1})) and pi is the relative frequency of morph i ((mathop {sum}nolimits_i {p_i = 1})). The frequency of morph i then changes as$$begin{array}{l}frac{{dp_i}}{{dt}} = left( {bar w_i - mathop {sum }limits_j bar w_jp_j} right)p_i,\ frac{{partial phi _i}}{{partial t}} = left( {wleft( {x,alpha } right) - bar w_i} right)phi _ileft( {x,alpha } right) + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}},end{array}$$ (34) where (bar w_i = {int!!!!!int} w left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) is the mean fitness of morph i.Assuming that the traits are distributed narrowly around the morph means (bar x_i = {int!!!!!int} x phi _ileft( {x,alpha } right)dxdalpha) and (bar alpha _i = {int!!!!!int} alpha phi _i(x,alpha )dxdalpha), so that (xi _i = x - bar x_i = O({it{epsilon }})) and (zeta _i = alpha - bar alpha _i = O({it{epsilon }})) where ({it{epsilon }}) is a small constant, we expanded the fitness w(x, α) around the means (bar x_i) and (bar alpha _i) of morph i,$$begin{array}{*{20}{l}} {wleft( {x,alpha } right)} hfill & = hfill & {wleft( {bar x_i,bar alpha _i} right) + left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ixi _i^2 + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ixi _izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_izeta _i^2 + Oleft( {{it{epsilon }}^3} right).} hfill end{array}$$Substituting this and$$bar w_i = wleft( {bar x_i,bar alpha _i} right) + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^{xx} + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^{xalpha } + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iV_i^{alpha alpha } + Oleft( {{it{epsilon }}^3} right)$$into equation (34), we obtained$$frac{{dp_i}}{{dt}} = left[ {w_i - mathop {sum }limits_j w_jp_j} right]p_i + Oleft( {it{epsilon }} right),$$ (35) $$begin{array}{*{20}{l}} {frac{{partial phi _i}}{{partial t}}} hfill & = hfill & {left[ {left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {xi _i^2 - V_i^x} right) + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft( {xi _izeta _i - C_i} right)} right.} hfill \ {} hfill & {} hfill & {left. { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {zeta _i^2 - V_i^alpha } right)} right]phi _i + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}} + Oleft( {{it{epsilon }}^3} right),} hfill end{array}$$ (36) where (w_i = wleft( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial x}}} right)_i = frac{{partial w}}{{partial x}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = frac{{partial w}}{{partial alpha }}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = frac{{partial ^2w}}{{partial x^2}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = frac{{partial ^2w}}{{partial xpartial alpha }}left( {bar x_i,bar alpha _i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = frac{{partial ^2w}}{{partial alpha ^2}}left( {bar x_i,bar alpha _i} right)) are fitness and its first and second derivatives evaluated at the mean traits of morph i, and$$begin{array}{l}V_i^x = E_ileft[ {left( {x - bar x_i} right)^2} right],\ C_i = E_ileft[ {left( {x - bar x_i} right)left( {alpha - bar alpha _i} right)} right], \ V_i^alpha = E_ileft[ {left( {alpha - bar alpha _i} right)^2} right]end{array}$$ (37) are within-morph variances and covariance of the traits of morph i. Here (E_ileft[ {fleft( {x,alpha } right)} right] = {int!!!!!int} f left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) denotes taking expectation of a function f with respect to the joint trait distribution (phi _i(x,alpha )) of morph i.Substituting equation (36) into the change in the mean antigenicity of morph i$$frac{{dbar x_i}}{{dt}} = frac{d}{{dt}}{int!!!!!int} x phi _i(x,alpha )dxdalpha = {int!!!!!int} x frac{{partial phi _i}}{{partial t}}dxdalpha = {int!!!!!int} {(bar x_i + xi _i)} frac{{partial phi _i}}{{partial t}}dxi _idzeta _i,$$we obtained$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iV_i^x + left( {frac{{partial w}}{{partial alpha }}} right)_iC_i + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (38) Similarly, the change in the mean virulence of morph i was expressed as$$begin{array}{*{20}{c}} {frac{{dbar alpha _i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iC_i + left( {frac{{partial w}}{{partial alpha }}} right)_iV_i^alpha + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (39) Equations (38) and (39) from the mean trait change was summarized in a matrix form as$$begin{array}{*{20}{c}} {frac{d}{{dt}}left( {begin{array}{*{20}{c}} {bar x_i} \ {bar alpha _i} end{array}} right) = {{{boldsymbol{G}}}}_{{{boldsymbol{i}}}}left( {begin{array}{*{20}{c}} {left( {frac{{partial w}}{{partial x}}} right)_i} \ {left( {frac{{partial w}}{{partial alpha }}} right)_i} end{array}} right) + O({it{epsilon }}^3),} end{array}$$ (40) where$$begin{array}{*{20}{c}} {{{{boldsymbol{G}}}}_{{{boldsymbol{i}}}} = left( {begin{array}{*{20}{c}} {V_i^x} & {C_i} \ {C_i} & {V_i^alpha } end{array}} right)} end{array}$$ (41) is the variance-covariance matrix of the morph i.Substituting equation (36) into the right-hand side of the change in variance of antigenicity of morph i,$$frac{{dV_i^x}}{{dt}} = frac{d}{{dt}}{int!!!!!int} {xi _i^2phi _idxi _idzeta _i} = {int!!!!!int} {xi _i^2frac{{partial phi _i}}{{partial t}}dxi _idzeta _i}$$and those in the change in the other variance and covariance, we obtained$$begin{array}{*{20}{l}} {frac{{dV_i^x}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^4} right) - left( {V_i^x} right)^2} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + 2D_x + O({it{epsilon }}^5),} hfill \ {frac{{dC_i}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - C_i^2} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right] + O({it{epsilon }}^5),} hfill \ {frac{{dV_i^alpha }}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {zeta _i^4} right) - left( {V_i^alpha } right)^2} right] + 2D_alpha + O({it{epsilon }}^5).} hfill end{array}$$ (42) If we assume that antigenicity and virulence within a morph follow a 2D Gaussian distribution for given means, variances and covariance, we should have (E_i(xi _i^4) = 3left( {V_i^x} right)^2,E_i(xi _i^3zeta _i) = 3V_i^xC_i), (E_i(xi _i^2zeta _i^2) = V_i^xV_i^alpha + 2C_i^2), (E_i(xi _izeta _i^3) = 3V_i^alpha C_i) and (E_i(zeta _i^4) = 3left( {V_i^alpha } right)^2), and hence$$frac{{dV_i^x}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {V_i^x} right)^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_i^2 + 2D_x + O({it{epsilon }}^5),$$ (43) $$frac{{dC_i}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft{ {V_i^xV_i^alpha - C_i^2} right} + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_iV_i^alpha + O({it{epsilon }}^5),$$ (44) $$frac{{dV_i^alpha }}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iC_i^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^alpha C_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {V_i^alpha } right)^2 + 2D_alpha + O({it{epsilon }}^5).$$ (45) Equations (43) and (44) were rewritten in a matrix form as$$begin{array}{*{20}{c}} {frac{{dG_i}}{{dt}} = G_iH_iG_i + left( {begin{array}{*{20}{c}} {2D_xV_i^x} & 0 \ 0 & {2D_alpha V_i^alpha } end{array}} right) + O({it{epsilon }}^5),} end{array}$$ (46) where$$begin{array}{*{20}{c}} {H_i = left( {begin{array}{*{20}{c}} {left( {frac{{partial ^2w}}{{partial x^2}}} right)_i} & {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} \ {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} & {left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i} end{array}} right),} end{array}$$ (47) is the Hessian of the fitness function of morph i.In our equation (30) of the joint evolution of antigenicity and virulence of a pathogen after its primary outbreak, the fitness function is given by (w(x,alpha ) = beta (alpha )s(x) - alpha ,) and hence (w_i = beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i), (left( {frac{{partial w}}{{partial x}}} right)_i = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)), where a prime on β(α) and s(x) denotes differentiation by α and x, respectively. Substituting these into the dynamics for morph frequencies (equation 35), for morph means (equations 38 and 39), and for within-morph variance and covariance (equations 43–45), we obtained$$frac{{dp_i}}{{dt}} = left[ {beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i - mathop {sum }limits_j left( {beta left( {bar alpha _j} right)sleft( {bar x_j} right) - bar alpha _j} right)p_j} right]p_i,$$ (48) $$frac{{dbar x_i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^x + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}C_i,$$ (49) $$frac{{dbar alpha _i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)C_i + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}V_i^alpha ,$$ (50) $$frac{{dV_i^x}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)left( {V_i^x} right)^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^xC_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_i^2 + 2D_x,$$ (51) $$frac{{dC_i}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)V_i^xC_i + beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)left{ {V_i^xV_i^alpha - C_i^2} right} + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_iV_i^alpha ,$$ (52) $$frac{{dV_i^alpha }}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)C_i^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^alpha C_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)left( {V_i^alpha } right)^2 + 2D_alpha .$$ (53) Equations (48)–(53) describe the oligomorphic dynamics of the joint evolution of antigenicity and virulence of a pathogen for a given host susceptibility profile s(x) over pathogen antigenicity.Of particular interest is whether antigenicity or virulence evolve faster when they jointly evolve than when they evolve alone. After the primary outbreak at a given antigenicity, for example x = 0, the susceptibility s(x) of the host population increases due to cross immunity as the distance x > 0 from the antigenicity at the primary outbreak increases. Hence, (sprime left( {bar x_i} right) > 0.) Combining this with the positive trade-off between transmission rate and virulence, we see that (left( {partial ^2w/partial xpartial alpha } right)_i = beta prime (bar alpha _i)sprime (bar x_i) > 0), and then from equation (52), we see that the within-morph covariance between antigenicity and virulence becomes positive starting from a zero initial value:$$begin{array}{*{20}{c}} {left. {frac{{dC_i}}{{dt}}} right|_{C_i = 0} = left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xV_i^alpha > 0.} end{array}$$
    (54)
    If all second moments are initially sufficiently small for an emerging morph, a quick look at the linearization of equations (51)–(53) around ((V_i^x,C_i,V_i^alpha ) = (0,0,0)) indicates that both (V_i^x) and (V_i^alpha) become positive due to the random generation of variance by mutation, Dx > 0 and Dα > 0, while the covariance stays close to zero. Then, equation (54) guarantees that the first move of the covariance is from zero to positive, which then guarantees that Ci > 0 for all t. Therefore, the second term in equation (38) is positive until the mean virulence reaches its optimum ((beta prime (alpha )s(x) = 1)). This means that joint evolution with virulence accelerates the evolution of antigenicity. The same is true for virulence evolution: the first term in equation (39) (which denotes the associated change in virulence due to the selection in antigenicity through genetic covariance between them) is positive, indicating that joint evolution with antigenicity accelerates virulence evolution.Numerical exampleFigure 5 shows the oligomorphic dynamics prediction of the emergence of the next variant in antigenicity–virulence coevolution. To make progress numerically, we assumed s(x) to be constant in the following analysis because we are interested in the process between the end of the primary outbreak and the emergence of the next antigenicity–virulence morph. The partial differential equations for the density of host S(t,x) susceptible to the antigenicity variant x at time t, and the density of hosts infected by the pathogen variant with antigenicity x and virulence α are$$begin{array}{l}frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{alpha _{{{{mathrm{min}}}}}}^{alpha _{{{{mathrm{max}}}}}} mathop {smallint }limits_0^{x_{{{{mathrm{max}}}}}} beta left( alpha right)sigma left( {x – y} right)Ileft( {t,y,alpha } right)dydalpha ,\ frac{{partial Ileft( {t,x,alpha } right)}}{{partial t}} = left[ {beta left( alpha right)Sleft( {t,x} right) – left( {gamma + alpha } right)} right]Ileft( {t,x,alpha } right) + left( {D_xfrac{{partial ^2}}{{partial x^2}} + D_alpha frac{{partial ^2}}{{partial alpha ^2}}} right)Ileft( {t,x,alpha } right),end{array}$$
    (55)
    with the boundary conditions (left( {partial S/partial x} right)left( {t,0} right) = left( {partial S/partial x} right)left( {t,x_{{{{mathrm{max}}}}}} right) = 0), (left( {partial I/partial x} right)left( {t,0,alpha } right) = left( {partial I/partial x} right)left( {t,x_{{{{mathrm{max}}}}},0} right) = 0), (left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{min}}}}}} right) = left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{max}}}}}} right) = 0), and the initial conditions (Sleft( {0,x} right) = 1) and (Ileft( {0,x,alpha } right) = {it{epsilon }}delta left( x right)delta left( alpha right)), where (delta ( cdot )) is the delta function and ({it{epsilon }} = 0.01). The trait space is restricted in a rectangular region: (0 < x < x_{{{{mathrm{max}}}}} = 300) and (alpha _{{{{mathrm{min}}}}} = 0.025 < alpha < 10 = alpha _{{{{mathrm{max}}}}}). Oligomorphic dynamics prediction for the joint evolution of antigenicity and virulence was applied for the next outbreak after the outbreak with the mean antigenicity around x = 108 at time t = 102. The susceptibility of the host to antigenicity variant x at t0 = 104.8 after the previous outbreak peaked around time t = 102 came to an end is$$sleft( x right) = Sleft( {t_0,x} right).$$This susceptibility profile remained unchanged until the next outbreak started, and hence the fitness of a pathogen variant with antigenicity x and virulence α is given by$$wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - (gamma + alpha ).$$We bundled the pathogen variants into two morphs at time t0 at the threshold antigenicity xc, above which the net growth rate of the pathogen variant under the given susceptibility profile s(x) and the mean antigenicity become positive:$$wleft( {x_c,bar alpha left( {t_0} right)} right) = beta left( {bar alpha (t_0)} right)sleft( {x_c} right) - left( {gamma + bar alpha left( {t_0} right)} right) = 0.$$The initial frequency and the moments of the two morphs, the variant 0 with (x < x_c) and the variant 1 with (x > x_c) were then calculated respectively from the joint distribution (I(t_0,x,alpha )) in the restricted region (left{ {left( {x,alpha } right);0 < x < x_c,alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}) and that in the restricted region (left{ {left( {x,alpha } right);x_c < x < x_{{{{mathrm{max}}}}},alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}). The frequency p1 of morph 1 (the frequency of morph 0 is given by (p_0 = 1 - p_1)), the mean antigenicity (bar x_i) and mean virulence (bar alpha _i) of morph i, and the variances and covariance, (V_i^x), and (V_i^alpha) Ci of morph i (i = 0,1) follow equations (48)–(53), where the dynamics for the morph frequency (equation 48) is simplified in this two-morph situation as$$frac{{dp_1}}{{dt}} = left[ {beta left( {bar alpha _1} right)sleft( {bar x_1} right) - beta left( {bar alpha _0} right)sleft( {bar x_0} right) - left( {bar alpha _1 - bar alpha _0} right)} right]p_1left( {1 - p_1} right),$$with (p_0left( t right) = 1 - p_1(t)). This is iterated from (t = t_0 = 104.8) to (t_e = 107). The frequency p1 of the new morph, the population mean antigenicity (bar x = p_0bar x_0 + p_1bar x_1), virulence (bar alpha = p_0bar alpha _0 + p_1bar alpha _1), variance in antigenicity (V_x = p_0V_0^x + p_1V_1^x), covariance between antigenicity and virulence (C = p_0C_0 + p_1C_1), and variance in virulence (V_alpha = p_0V_0^alpha + p_1V_1^alpha) are overlayed by red thick curves on the trajectories of moments observed in the full dynamics (equation 55).In Fig. 5a, the dashed vertical line represents the threshold antigenicity xc, above which (R_0 = beta s(x)/(gamma + bar alpha ) > 1) at (t = t_s = 104.8), where oligomorphic dynamics prediction was attempted. Two morphs were then defined according to whether or not the antigenicity exceeded a threshold x = xc: the resident morph (morph 1) is represented as the dense cloud to the left of x = xc and the second morph (morph 2) consisting of all the genotypes to the right of x = xc with their R0 greater than one. The within-morph means and variances were then calculated in each region. The relative total densities of infected hosts in the left and right regions defined the initial frequency of two morphs in OMD. A 2D Gaussian distribution was assumed for within-morph trait distributions to have the closed moment equations as previously explained. Using these as the initial means, variances, covariances of the two morphs at t = ts, the oligomorphic dynamics for 11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in antigenicity and virulence and their covariance in morphs 0 and 1) was integrated up to t = te. The results are shown as red curves in Fig. 5c–h, which are compared with the simulation results (blue curves).Fig. 5c–e respectively show the change in total infected density, mean antigenicity and mean virulence. Red curves show the predictions by oligomorphic dynamics from the initial moments of each morph at t = ts to the susceptibility distribution (s(x) = S(t_s,x)), which are compared with the simulation results (blue curves). The OMD-predicted mean antigenicity, for example, is defined as$$bar xleft( t right) = left( {1 – p_1left( t right)} right)bar x_0left( t right) + p_1left( t right)bar x_1left( t right),$$where p1(t) is the frequency of morph 1, (bar x_0) and (bar x_1) are the mean antigenicities of morphs 0 and 1.The red curves in Fig. 5f–h show the OMD-predicted changes in the variance in antigenicity, variance in virulence and covariance between antigenicity and virulence, which are compared with the simulation results (blue curves). The OMD-predicted covariance, for example, is defined as$$begin{array}{rcl}Cleft( t right) & = & left( {1 – p_1(t)} right)C_0left( t right) + p_1left( t right)C_1left( t right) + p_1left( t right)left( {1 – p_1left( t right)} right)\ && left( {bar x_0left( t right) – bar x_1left( t right)} right)left( {bar alpha _0left( t right) – bar alpha _1left( t right)} right),end{array}$$where (C_0(t)) and (C_1(t)) are the antigenicity–virulence covariances in morphs 0 and 1, and (bar alpha _0(t)) and (bar alpha _1(t)) are the mean virulence of morphs 0 and 1.Selection for maximum growth rateWe next show that a pathogen that has the strategy of maximizing growth rate in a fully susceptible population is evolutionarily stable in the presence of antigenic escape.At stationarity, the travelling wave profiles of (hat I(z)) and (hat S(z)) along the moving coordinate, (z = x – vt), that drifts constantly to the right with the speed v are defined as$$begin{array}{l}0 = Dfrac{{d^2hat Ileft( z right)}}{{dz^2}} + vfrac{{dhat Ileft( z right)}}{{dz}} + beta hat Sleft( z right)hat Ileft( z right) – left( {gamma + alpha } right)hat Ileft( z right),\ 0 = vfrac{{dhat Sleft( z right)}}{{dz}} – beta hat Sleft( z right)mathop {smallint }limits_{ – infty }^infty sigma left( {z – xi } right)hat Ileft( xi right)dxi ,end{array}$$
    (56)
    with (hat Ileft( { – infty } right) = hat Ileft( infty right) = 0), (hat Sleft( infty right) = 1).Let j(t,x) be the density of a mutant pathogen variant, with virulence α′ and transmission rate β′, that is introduced in the host population where the resident variant is already established (equation 50). For the initial transient phase in which the density of mutants is sufficiently small, we have an equation for the change in (Jleft( {t,z} right) = j(t,x)):$$begin{array}{*{20}{c}} {frac{partial }{{partial t}}Jleft( {t,z} right) = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime hat Sleft( z right) – left( {gamma + alpha prime } right)} right}Jleft( {t,z} right),} end{array}$$
    (57)
    with the initial condition (Jleft( {0,z} right) = {it{epsilon }}delta (z)), where ({it{epsilon }}) is a small constant and (delta ( cdot )) is Dirac’s function.Consider a system$$begin{array}{*{20}{c}} {frac{{partial w}}{{partial t}} = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime – left( {gamma + alpha prime } right)} right}w,} end{array}$$
    (58)
    with (wleft( {0,z} right) = Jleft( {0,z} right) = {it{epsilon }}delta (z)). Noting that (hat Sleft( z right) < 1), we have (Jleft( {t,z} right) le w(t,z)) for any (t > 0) and (z in {Bbb R}) from the comparison theorem. The solution to equation (52) is$$begin{array}{*{20}{c}} {wleft( {t,z} right) = frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {rprime t – frac{{left( {z + vt} right)^2}}{{4Dt}}} right]} end{array},$$
    (59)
    where (rprime = beta prime – left( {gamma + alpha prime } right)). This follows by noting that (wleft( {t,x} right)e^{ – rprime t}) follows a simple diffusion equation (partial w/partial t = Dpartial ^2w/partial x^2). By rearranging the exponents of equation (53),$$begin{array}{*{20}{l}} {wleft( {t,z} right)} hfill & = hfill & {exp left[ {at – kz} right]frac{{it{epsilon }}}{{sqrt {4pi Dt} }}e^{ – z^2/4Dt}} hfill \ {} hfill & {} hfill & { < frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {at - kz} right],} hfill end{array}$$ (60) where$$a = frac{{v^{prime 2} - v^2}}{{4D}},$$ (61) $$k = frac{v}{{2D}}.$$ (62) Here (vprime = 2sqrt {rprime D}) is the asymptotic wave speed if the mutant variant monopolizes the host population. Therefore, if (vprime < v), then (a < 0), and hence (w(t,z)) for a fixed z converges to zero as t goes to infinity; this, in turn, implies that (J(t,z)) converges to zero because (Jleft( {t,z} right) le wleft( {t,z} right)) for all t and z. Therefore, we conclude that any mutant that has a slower wave speed than the resident can never invade the population, implying that a variant that has the maximum wave speed (v = 2sqrt {rD}) is locally evolutionarily stable.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More