More stories

  • in

    Conserving evolutionarily distinct species is critical to safeguard human well-being

    Dataset of beneficial plantsI collated a species-level dataset of plant benefits (presence/absence data) starting from the information gathered by Kleunen et al.32. These authors extracted data from the WEP database (National Plant Germplasm System GRIN-GLOBAL; https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearcheco.aspx, Accessed 7 Jan 2016), which is based on the book by Wiersema and León20. Their dataset included 84 categories and subcategories of plant benefits pertaining human and animal nutrition, materials, fuels, medicine, useful poisons, social and environmental benefits. Subcategories of benefits, which often included very few records, were merged here into 25 standard and major categories following the guidelines in the Economic Botany Data Collection Standard33 as in Molina-Venegas et al.13, namely ornamental plants, soil improvers, hedging/shelter, human food, human-food additives, vertebrate food, invertebrate food, fuelwood, charcoal, other biofuels, timber, cane/stems, fibres, tannins/dyestuffs, beads, gums/resins, lipids, waxes, essential oils/scents, latex/rubber, medicines, invertebrate poison, vertebrate poison, smoking materials/drugs and symbolic/inspirational plants (Fig. 1). A few records (n = 93) that could not be assigned to any of the above categories were disregarded, and so was the category ‘gene source’ because unlike other benefits, any species is intrinsically a potential gene donor and hence there is not a clear link between the benefit and species features. Note that this is not to say that preserving genetic diversity, which indeed is the underlying message of this research, is a meaningless goal. Infraspecific taxa were collapsed at the species level, and the very few fern taxa in the original database32 were excluded. In total, I gathered 15,834 plant-benefit records sorted in a matrix of 25 types of benefits and 9521 species of seed plants. Most species (83.74%) provided only one or two benefits representing 62.83% of the records in the dataset, and the maximum number of benefits per species was 10 (only three species). Although the WEP database is the largest species-level database on plant benefits32, it does not claim to be comprehensive20. Yet, the size of the dataset I gathered here represented 76.19% of the total seed-plant genus-level records collated for the same types of benefits in a more comprehensive survey by Molina-Venegas et al.13 that based on Mabberley’s Plant-book34. Moreover, the total number of records per category (at the genus-level) strongly correlated between the datasets (Pearson r = 0.94, p  More

  • in

    Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions

    1.Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hofmann, G. E. et al. High-frequency dynamics of ocean ph: A multi-ecosystem comparison. PLoS ONE 6(12), e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    4.Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603. https://doi.org/10.1029/2010GL046324 (2011).ADS 
    Article 

    Google Scholar 
    5.Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026. https://doi.org/10.1029/2011JG001731 (2011).ADS 
    Article 

    Google Scholar 
    6.Lagos, N. A., Castilla, J. C. & Broitman, B. Spatial Environmental correlates of intertidal recruitment: A test using barnacles in northern Chile. Ecol. Monogr. 78, 245–261 (2008).
    Google Scholar 
    7.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 84. https://doi.org/10.1038/s41559-017-0084 (2017).Article 
    PubMed 

    Google Scholar 
    8.Broitman, B. R. et al. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 00, 1–12. https://doi.org/10.1111/1365-2656.13514 (2021).Article 

    Google Scholar 
    9.Ramajo, L. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci. 76, 1836e1849 (2019).
    Google Scholar 
    10.Saavedra, L. M., Saldías, G., Broitman, B. & Vargas, C. Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: Natural ranges and biological implications. ICES J. Mar. Sci. 78, 323–339 (2021).
    Google Scholar 
    11.Lardies, M. A. et al. Physiological and histopathological impacts of increased carbon dioxide and temperature on the scallops Argopecten purpuratus cultured under upwelling influences in northern Chile. Aquaculture 479, 455–466 (2017).
    Google Scholar 
    12.Ramajo, L. et al. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 745, 140949 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Wang, D. et al. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS 

    Google Scholar 
    16.Ramajo, L. et al. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol. Prog. Ser. 553, 93–109 (2016).ADS 

    Google Scholar 
    17.Leung, J. Y., Connell, S. D., Nagelkerken, I. & Russell, B. D. Impacts of near-future ocean acidification and warming on the shell mechanical and geochemical properties of gastropods from intertidal to subtidal zones. Environ. Sci. Technol. 51, 12097–12103 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Findlay, H. et al. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss. 6, 2267–2284 (2009).ADS 

    Google Scholar 
    19.Waldbusser, G. et al. Saturation-state sensitivity of marine bivalves larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 

    Google Scholar 
    20.Tunnicliffe, V. et al. Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–348 (2009).ADS 
    CAS 

    Google Scholar 
    21.Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 

    Google Scholar 
    22.Leung, J. Y., Russell, B. D. & Connell, S. D. Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification. Environ. Sci. Technol. 51, 2652–2659 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Duarte, C. et al. The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios. Environ. Pollut. 242, 156–163 (2018).CAS 
    PubMed 

    Google Scholar 
    24.Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change. 1, 308–312 (2011).ADS 
    CAS 

    Google Scholar 
    25.Waldbusser, G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).ADS 

    Google Scholar 
    26.Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?. Ecol. Evol. 5, 4875–4884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralization. Sci. Rep. 28, 6218 (2014).
    Google Scholar 
    28.Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Fitzer, S. C. et al. Biomineral shell formation under ocean acidification: A shift from order to chaos. Sci. Rep. 6, 21076 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lagos, N. A. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8, 357–370 (2016).
    Google Scholar 
    31.Ramajo, L. et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 22, 2025–2203 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Osores, S. J. et al. Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol. 490, 1–12 (2017).
    Google Scholar 
    33.Telesca, L. et al. Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation species to future change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14758 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Grenier, C. et al. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 263, 114555 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    36.Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 9(1), e86764 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    38.Rodríguez-Navarro, A. B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. Br. Poult. Sci. 48, 133–144 (2007).PubMed 

    Google Scholar 
    39.Rodríguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909 (2006).
    Google Scholar 
    40.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).PubMed 

    Google Scholar 
    41.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. 474, 116–125 (2016).
    Google Scholar 
    43.Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E. & Olabarria, C. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018).
    Google Scholar 
    44.Barthelat, F., Rim, J. E. & Espinosa, H. D. A review on the structure and mechanical properties of mollusk shells: Perspectives on synthetic biomimetic materials. In Applied Scanning Probe Methods XIII (eds Bhushan, B. & Fuchs, H.) 17–44 (Springer, 2009).
    Google Scholar 
    45.Leung, J. Y. et al. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 16, 2003186 (2020).CAS 

    Google Scholar 
    46.Chatzinikolaou, E., Grigoriou, P., Keklikoglou, K., Faulwetter, S. & Papageorgiou, N. The combined effects of reduced pH and elevated temperature on the shell density of two gastropod species measured using micro-CT imaging. ICES J. Mar. Sci. 74, 1135–1149 (2017).
    Google Scholar 
    47.Nienhuis, S., Palmer, R. & Harley, C. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. Lond. B Biol. Sci. 277, 2553–2558 (2010).CAS 

    Google Scholar 
    48.Bourdeau, P. E. Prioritized phenotypic responses to combined predators in a marine snail. Ecology 90, 1659–1669 (2009).PubMed 

    Google Scholar 
    49.Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Sci. 41, 21–40 (2011).ADS 
    CAS 

    Google Scholar 
    50.Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation (In Seminars in cell & developmental biology), 2–10 (Academic Press, 2015).51.Harper, E. M., Checa, A. G. & Rodríguez-Navarro, A. B. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicular (Bivalvia: Mollusca). Acta Zool. 90, 132e141 (2009).
    Google Scholar 
    52.Pennington, B. J. & Currey, J. D. A mathematical model for the mechanical properties of scallop shells. J. Zool. 202, 239–263 (1984).
    Google Scholar 
    53.Yevenes, M. A., Lagos, N. A., Farías, L. & Vargas, C. A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 669, 49–61 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Dickinson, G. H. et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29–43 (2012).CAS 
    PubMed 

    Google Scholar 
    55.Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).CAS 
    PubMed 

    Google Scholar 
    56.O’Toole-Howes, M. et al. Deconvolution of the elastic properties of bivalve shell nanocomposites from direct measurement and finite element analysis. J. Mater. Res. 34, 2869–2880 (2019).ADS 

    Google Scholar 
    57.Auzoux-Bordenave, S. et al. Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata). Mar. Biol. 167, 11 (2020).CAS 

    Google Scholar 
    58.Torres, R. et al. Evaluation of a semiautomatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).
    Google Scholar 
    59.IPCC. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou). Cambridge University Press. In Press. (2021).60.DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2 (eds. Dickson, A.G. & Goyet, C.), (ORNL/CDIAC, 74, 1994).61.Meinshausen, M. et al. The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change. 109, 213–241 (2011).ADS 
    CAS 

    Google Scholar 
    62.Rahn, D. A., Rosenblüth, B. & Rutllant, J. A. Detecting subtle seasonal transitions of upwelling in North-Central Chile. J. Phys. Oceanogr. 45, 854–867 (2015).ADS 

    Google Scholar 
    63.Meng, Y., Guo, Z., Yao, H., Yeung, K. W. & Thiyagarajan, V. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Rasband, W. S. ImageJ U.S. National Institute of Health, Maryland, USA (1997–2020). More

  • in

    An intergenerational androgenic mechanism of female intrasexual competition in the cooperatively breeding meerkat

    Study populationWe studied wild meerkats at the Kuruman River Reserve (a ~63 km2 area comprising dry riverbeds, herbaceous flats and grassy dunes) in the Kalahari region of South Africa (26°58′S, 21°49′E)28,48. Our study period (Nov 2011–Apr 2015) included an extended drought, during which female reproductive success tracked rainfall22 (Supplementary Fig. 1). The annual mean population size was 270 animals, in 22 established clans of 4–39 animals15,22. Habituated to close observation ( More

  • in

    Diel investments in metabolite production and consumption in a model microbial system

    1.Baines SB, Pace ML. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr. 1991;36:1078–90.
    Google Scholar 
    2.Williams PJLeB. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman DL (ed). Microbial Ecology of the Oceans, 1st edn. New York: Wiley-Liss; 2000. p. 153–200.3.Thornton DCO. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol. 2014;49:20–46.CAS 

    Google Scholar 
    4.Nagata T. Organic matter-bacteria interactions in seawater. In: Kirchman DL, (ed). Microbial Ecology of the Oceans. Hoboken: John Wiley and Sons, Inc; 2008. p. 207–41.
    Google Scholar 
    5.Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci. 2011;3:567–99.PubMed 

    Google Scholar 
    6.Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.
    Google Scholar 
    7.Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems – a cross-system overview. Mar Ecol Prog Ser. 1988;43:1–10.
    Google Scholar 
    8.Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Nat Acad Sci. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Comm. 2018;9:5179.
    Google Scholar 
    10.Boysen AK, Carlson LT, Durham BP, Groussman RD, Aylward FO, Ribalet F, et al. Diel oscillations of particulate metabolites reflect synchronized microbial activity in the North Pacific Subtropical Gyre. bioRxiv. 2020: 2020.05.09.086173.11.Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.CAS 
    PubMed 

    Google Scholar 
    12.Burney CM, Davis PG, Johnson KM, Sieburth JM. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar Biol. 1982;67:311–22.CAS 

    Google Scholar 
    13.Gasol JM, Doval MD, Pinhassi J, Calderon-Paz JI, Guixa-Boixareu N, Vaque D, et al. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Mar Ecol Prog Ser. 1998;164:107–24.
    Google Scholar 
    14.Kuipers B, van Noort GJ, Vosjan J, Herndl GJ. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar Ecol Prog Ser. 2000;201:13–25.
    Google Scholar 
    15.Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 2014;345:207–12.CAS 
    PubMed 

    Google Scholar 
    16.Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Frischkorn KR, Haley ST, Dyhrman ST. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J 2018;12:997–1007.PubMed 
    PubMed Central 

    Google Scholar 
    18.Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 

    Google Scholar 
    19.Bjornsen PK. Phytoplankton exudation of organic-matter – why do healthy cells do it. Limnol Oceanogr. 1988;33:151–4.
    Google Scholar 
    20.Fogg GE. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar. 1983;26:3–14.CAS 

    Google Scholar 
    21.Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    22.Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 

    Google Scholar 
    23.Guerrini F, Mazzotti A, Boni L, Pistocchi R. Bacterial-algal interactions in polysaccharide production. Aquat Micro Ecol. 1998;15:247–53.
    Google Scholar 
    24.Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86.CAS 
    PubMed 

    Google Scholar 
    25.Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 2004;432:910–3.CAS 
    PubMed 

    Google Scholar 
    26.Uitz J, Claustre H, Gentili B, Stramski D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem Cycles. 2010;24.27.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 

    Google Scholar 
    28.Luo HW, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 

    Google Scholar 
    29.Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524.CAS 
    PubMed 

    Google Scholar 
    30.Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology 2011;157:2983–91.CAS 
    PubMed 

    Google Scholar 
    31.Schulz A, Stoveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: a substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol. 2017;19:926–46.CAS 
    PubMed 

    Google Scholar 
    32.Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K. Metagenomic quantification of genes with internal standards. mBio. 2021;12:e03173-20.PubMed 
    PubMed Central 

    Google Scholar 
    33.Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. Quantitative transcriptomics reveals the growth-and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio. 2016;7:e01279-16.PubMed 
    PubMed Central 

    Google Scholar 
    34.Moran MA, Satinsky B, Gifford SM, Luo HW, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    35.Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chyrsophyte. Phycologia 1993;32:234–6.
    Google Scholar 
    36.Uchimiya M, Tsuboi Y, Ito K, Date Y, Kikuchi J. Bacterial substrate transformation tracked by stable-isotope-guided NMR metabolomics: application in a natural aquatic microbial community. Metabolites 2017;7:52.PubMed Central 

    Google Scholar 
    37.Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Mag Res Chem. 2009;47:S123–S6.CAS 

    Google Scholar 
    38.Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, et al. HMDB 3.0-the human metabolome database in 2013. Nuc Acids Res 2013;41:D801–D7.CAS 

    Google Scholar 
    39.Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank Nuc Acids Res. 2008;36:D402–D8.CAS 

    Google Scholar 
    40.Toukach PV, Egorova KS. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nuclic Acids Res. 2016;44:D1229–D36.CAS 

    Google Scholar 
    41.Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME J. 2019;13:2536–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Boroujerdi AFB, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.CAS 
    PubMed 

    Google Scholar 
    43.Walejko JM, Chelliah A, Keller-Wood M, Gregg A, Edison AS. Global metabolomics of the placenta reveals distinct metabolic profiles between maternal and fetal placental tissues following delivery in non-labored women. Metabolites 2018;8:10.PubMed Central 

    Google Scholar 
    44.Schwämmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics 2018;34:2965–72.PubMed 

    Google Scholar 
    45.Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29:391–400.PubMed 
    PubMed Central 

    Google Scholar 
    46.Welsh J (2020). CirHeatmap. Available from: https://github.com/joadwe/cirheatmap.47.Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Satinsky BM, Gifford SM, Crump BC, Moran MA Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF (ed). Methods in Enzymology. 2013. 531: p. 237-50.49.Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    51.Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Nat Acad Sci. 2020;117:6599–607.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Neidhardt F, Ingraham J, Schaechter S Physiology of the bacterial cell: a molecular approach. Massachusetts: Sinauer Associates Inc.; 1990.53.Lidbury I, Murrell JC, Chen Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Nat Acad Sci. 2014;111:2710–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology 2010;156:1556–64.CAS 
    PubMed 

    Google Scholar 
    55.Mou XZ, Sun SL, Rayapati P, Moran MA. Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Micro Ecol. 2010;58:311–21.
    Google Scholar 
    56.Biller SJ, Coe A, Roggensack SE, Chisholm SW Heterotroph interactions alter Prochlorococcus transcriptome dynamics during extended periods of darkness. mSystems. 2018; 3 https://doi.org/10.1128/mSystems.00040-18.57.Harding L, Meeson B, Prézelin B, Sweeney B. Diel periodicity of photosynthesis in marine phytoplankton. Mar Biol. 1981;61:95–105.
    Google Scholar 
    58.Harding L, Prezelin B, Sweeney B, Cox J. Diel oscillations of the photosynthesis-irradiance (PI) relationship in natural assemblages of phytoplankton. Mar Biol. 1982;67:167–78.
    Google Scholar 
    59.Blough NV, Zepp RG Reactive oxygen species in natural waters. Active oxygen in chemistry. Dordrecht: Springer; 1995. p. 280–333.60.Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG. Photochemistry of natural waters. Environ Sci Technol. 1984;18:358A–71A.CAS 

    Google Scholar 
    61.Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT. Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of Caulobacter crescentus. J Bacteriol. 2016;198:187–200.CAS 
    PubMed 

    Google Scholar 
    63.Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, et al. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. Plos One. 2012;7:e47314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hsieh YJ, Wanner BL. Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol. 2010;13:198–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, Coesel SN, et al. Community-scale synchronization and temporal partitioning of gene expression, metabolism, and lipid biosynthesis in oligotrophic ocean surface waters. bioRxiv. 2020: 2020.05.15.098020.66.Giedroc DP. Hydrogen peroxide sensing in Bacillus subtilis: it is all about the (metallo)regulator. Mol Microbiol. 2009;73:1–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS 
    PubMed 

    Google Scholar 
    68.Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits TH. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol. 2010;76:618–21.CAS 
    PubMed 

    Google Scholar 
    69.Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Hellebust JA. Excretion of some organic compounds by marine phytoplankton 1. Limnol Oceanogr. 1965;10:192–206.
    Google Scholar 
    71.Behrenfeld MJ, Halsey KH, Milligan AJ. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc B: Biol Sci. 2008;363:2687–703.CAS 

    Google Scholar 
    72.Kiene RP, Linn LJ, Bruton JA. New and important roles for DMSP in marine microbial communities. J Sea Res. 2000;43:209–24.CAS 

    Google Scholar 
    73.Fredrickson KA, Strom SL. The algal osmolyte DMSP as a microzooplankton grazing deterrent in laboratory and field studies. J Plankton Res. 2009;31:135–52.
    Google Scholar 
    74.Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature 2002;418:317–20.CAS 
    PubMed 

    Google Scholar 
    75.Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Cunliffe M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3. FEMS Microbiol Ecol. 2016;92:fiv150.PubMed 

    Google Scholar 
    77.Durham BP, Sharma S, Luo HW, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Nat Acad Sci. 2015;112:453–7.CAS 
    PubMed 

    Google Scholar  More

  • in

    Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids

    1.Beissinger, S. R. & Westphal, M. I. On the use of demographic models of population viability in endangered species management. J. Wildl. Manag. 62, 821–841 (1998).
    Google Scholar 
    2.Campana, S. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).
    Google Scholar 
    3.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Jarman, S. N. et al. Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 24, 4826–4847 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    8.Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 

    Google Scholar 
    10.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 e956 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 

    Google Scholar 
    14.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    15.Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle https://doi.org/10.1002/jcsm.12556 (2020).16.De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Resour. 19, 411–425 (2019).PubMed 

    Google Scholar 
    17.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi‐ supercentenarians and their offspring. Aging 7, 1159–1170 (2018).
    Google Scholar 
    21.Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    23.Mitchell, C., Schneper, L. M. & Notterman, D. A. DNA methylation, early life environment, and health outcomes. Pediatr. Res. 79, 212–219 (2016).CAS 
    PubMed 

    Google Scholar 
    24.Pérez, R. F., Santamarina, P., Fernández, A. F., & Fraga, M. F. Epigenetics and Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis. In Epigenetics and Regeneration (ed. Palacios, D.) pp. 461–489 (Academic Press, 2019).25.Szyf, M., Tang, Y. Y., Hill, K. G. & Musci, R. The dynamic epigenome and its implications for behavioral interventions: a role for epigenetics to inform disorder prevention and health promotion. Transl. Behav. Med. 6, 55–62 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lee, R. S. et al. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151, 4332–4343 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Biemont, C. Inbreeding effects in the epigenetic era. Nat. Rev. Genet. 11, 234 (2010).CAS 
    PubMed 

    Google Scholar 
    29.Venney, C. J., Johansson, M. L. & Heath, D. D. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol. Ecol. 25, 4521–4533 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Vergeer, P., Wagemaker, N. C. & Ouborg, N. J. Evidence for an epigenetic role in inbreeding depression. Biol. Lett. 8, 798–801 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    32.Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pinho, G. M. et al. Hibernation slows epigenetic aging in yellow-bellied marmots. Preprint at bioRxiv https://doi.org/10.1101/2021.03.07.434299 (2021).36.Moehlman, P. D. Equids: Zebras, Asses, and Horses Status Survey and Conservation Action Plan Vol. 37, 190 pp (IUCN/SSC Equid Specialist Group, 2002).37.Moehlman, P. D. & King, S. R. B. IUCN SSC Equid Specialist Group 2020 Report. https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid (2020).38.Rubinacci, S., Ribeiro, D. M., Hofmeister, R. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).CAS 
    PubMed 

    Google Scholar 
    39.Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum. Genet. 138, 1123–1142 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest. Sci. 166, 26–34 (2014).
    Google Scholar 
    41.Anderson, J. A. et al. The costs of competition: high social status males experience accelerated epigenetic aging in wild baboons. eLife 10, e66128 (2020).
    Google Scholar 
    42.McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. https://doi.org/10.1038/nbt.1630 (2010).43.Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    44.Robeck, T. R. et al. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun. Biol. https://doi.org/10.1038/s42003-021-02179-x (2021).45.Jonsson, H. et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl Acad. Sci. USA 111, 18655–18660 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8, e55950 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Jensen-Seaman, M. I. & Hooper-Boyd, K. A. in Encyclopedia of Life Sciences (ELS) (John Wiley & Sons, Ltd., 2008).48.Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker—modeling epigenetic states under an evolutionary framework. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa585 (2020).49.Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 

    Google Scholar 
    50.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Fox, C. W. Inbreeding depression increases with maternal age. Evolut. Ecol. Res. 12, 961–972 (2010).
    Google Scholar 
    52.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 

    Google Scholar 
    53.Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.McClain, A. T. & Faulk, C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging 10, 561–572 (2018).
    Google Scholar 
    55.Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).CAS 
    PubMed 

    Google Scholar 
    56.Kannan, M. B., Solovieva, V. & Blank, V. The small MAF transcription factors MAFF, MAFG, and MAFK: current knowledge and perspectives. Biochim. Biophys. Acta 1823, 1841–1846 (2012).CAS 
    PubMed 

    Google Scholar 
    57.Li, Z. et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 121, 1422–1431 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23, 323–328 (1999).CAS 
    PubMed 

    Google Scholar 
    59.Ding, Q., Joshi, P. S., Xie, Z. H., Xiang, M. & Gan, L. BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord. Proc. Natl Acad. Sci. USA 109, 1566–1571 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mo, Z., Li, S., Yang, X. & Xiang, M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131, 1607–1618 (2004).CAS 
    PubMed 

    Google Scholar 
    61.Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat. Commun. 6, 8479 (2015).CAS 
    PubMed 

    Google Scholar 
    62.Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).CAS 
    PubMed 

    Google Scholar 
    64.Hiraike, Y. et al. NFIA co-localizes with PPARgamma and transcriptionally controls the brown fat gene program. Nat. Cell Biol. 19, 1081–1092 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caricasole, A., Sala, C., Roncarati, R., Formenti, E. & Terstappen, G. C. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63–72 (2000).CAS 
    PubMed 

    Google Scholar 
    66.McOmish, C. E., Burrows, E. L., Howard, M. & Hannan, A. J. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18, 824–834 (2008).CAS 
    PubMed 

    Google Scholar 
    67.Mittelstaedt, T., Alvarez-Baron, E. & Schoch, S. RIM proteins and their role in synapse function. Biol. Chem. 391, 599–606 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).CAS 
    PubMed 

    Google Scholar 
    69.Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).70.Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Saidak, Z., Hay, E., Marty, C., Barbara, A. & Marie, P. J. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11, 467–474 (2012).CAS 
    PubMed 

    Google Scholar 
    72.McClay, J. L. et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 23, 1175–1185 (2014).CAS 
    PubMed 

    Google Scholar 
    73.Ambeskovic, M. et al. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 12, 3828–3847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J. & Muzyczka, N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol. Learn Mem. 89, 379–396 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Horvath, S. et al. DNA methylation clocks show slower progression of aging in naked mole-rat queens. Preprint at bioRxiv https://doi.org/10.1101/2021.03.15.435536 (2021).76.Rapoport, S. I., Primiani, C. T., Chen, C. T., Ahn, K. & Ryan, V. H. Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10, e0132675 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    77.Dube, J. B. et al. Genetic determinants of “cognitive impairment, no dementia”. J. Alzheimers Dis. 33, 831–840 (2013).CAS 
    PubMed 

    Google Scholar 
    78.Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 283–293 (2014).PubMed 

    Google Scholar 
    79.Ntalla, I. et al. Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann. Hum. Genet. 77, 268–274 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    80.Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Badawi, Y. & Nishimune, H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci. Res. 127, 78–88 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Tollervey, J. R. et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 21, 1572–1582 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kim, B. H., Nho, K. & Lee, J. M., Alzheimer’s Disease Neuroimaging, I. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer’s disease. Neurobiol. Aging 102, 200 e201–200 e211 (2021).
    Google Scholar 
    85.Horvath, S. et al. DNA methylation aging and transcriptomic studies in horses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.435032 (2021).86.Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12, 206–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    89.Reed, K., Poulin, M. L., Yan, L. & Parissenti, A. M. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal. Biochem. 397, 96–106 (2010).CAS 
    PubMed 

    Google Scholar 
    90.Tost, J., Dunker, J. & Gut, I. G. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Karesh, W. B. in Zoo and Wild Animal Medicine: Current Therapy (eds Fowler Murray, E. & Eric Miller, R.) 298−308 (Saunders Elsevier, 2008).92.Chiou, K. L. & Bergey, C. M. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci. Rep. 8, 1975 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    93.Orkin, J. D. et al. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010632118 (2021).94.Snyder-Mackler, N. et al. Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203, 699–714 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Harley, E. H., Knight, M. H., Lardner, C., Wooding, B. & Gregor, M. The Quagga project: progress over 20 years of selective breeding. South African J. Wildlife Res. https://doi.org/10.3957/056.039.0206 (2009).96.Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences Preprint at bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).97.Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 1, 197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    98.Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science https://doi.org/10.1126/science.1178158 (2009).99.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    103.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).104.Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).105.Larison, B. et al. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol. Ecol. 30, 379–390 (2021).CAS 
    PubMed 

    Google Scholar 
    106.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).108.Freed, D., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics Tools—A fast and accurate solution to variant calling from next-generation sequence data. Preprint at bioRxiv https://doi.org/10.1101/115717 (2017).109.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    110.Meyermans, R., Gorssen, W., Buys, N. & Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    114.Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17 (2004).
    Google Scholar 
    115.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. 95, 1–36 (2020).
    Google Scholar 
    116.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
    Google Scholar 
    117.Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M. J. Adjustment During Army Life (Princeton University Press, 1949). More

  • in

    The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem

    1.Cornwell, W. K. et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed?. Glob. Change Biol. 15, 2431–2449 (2009).ADS 
    Article 

    Google Scholar 
    2.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).Article 

    Google Scholar 
    3.Rayner, A. D. M. & Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology 587 (Wiley, 1988).
    Google Scholar 
    4.Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The combustion of sound and rotten coarse woody debris: A review. Int. J. Wildland Fire 20, 163–174. https://doi.org/10.1071/WF09113 (2011).Article 

    Google Scholar 
    5.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).Article 
    CAS 

    Google Scholar 
    6.Wu, C. et al. Stronger effects of termites than microbes on wood decomposition in a subtropical forest. For. Ecol. Manage. 493, 119263. https://doi.org/10.1016/j.foreco.2021.119263 (2021).Article 

    Google Scholar 
    7.Jacobsen, R. M., Kauserud, H., Sverdrup-Thygeson, A., Bjorbækmo, M. M. & Birkemoe, T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 29, 76–84. https://doi.org/10.1016/j.funeco.2017.06.006 (2017).Article 

    Google Scholar 
    8.Leach, J. G., Orr, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    9.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926. https://doi.org/10.1016/j.funeco.2020.100926 (2020).Article 

    Google Scholar 
    10.Wikars, L.-O. Dependence on fire in wood-living insects: An experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 6, 1–12. https://doi.org/10.1023/a:1015734630309 (2002).Article 

    Google Scholar 
    11.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46. https://doi.org/10.1007/s10021-012-9594-3 (2013).Article 
    CAS 

    Google Scholar 
    12.Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Ulyshen, M. D., Horn, S., Barnes, B. & Gandhi, K. J. K. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv. Divers. 3, 247–251 (2010).Article 

    Google Scholar 
    14.Billings, R. F. et al. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 55, 7 (2004).
    Google Scholar 
    15.Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, article 47 (2014).16.Van Lear, D. H., Carroll, W. D., Kapeluck, P. R. & Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 211, 150–165 (2005).Article 

    Google Scholar 
    17.Noss, R. F. & Scott, J. M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation. Vol. 28. (US Department of the Interior, National Biological Service, 1995).18.Folkerts, G. W., Deyrup, M. A. & Sisson, D. C. Arthropods associated with xeric longleaf pine habitats in the southeastern United States: A brief overview. Proc. Tall Timbers Fire Ecol. Conf. 18, 159–191 (1993).
    Google Scholar 
    19.Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R.-M. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335. https://doi.org/10.1007/s10021-011-9512-0 (2012).Article 

    Google Scholar 
    20.Ulyshen, M. D., Horn, S., Pokswinski, S., McHugh, J. V. & Hiers, J. K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 429, 124–132. https://doi.org/10.1016/j.foreco.2018.07.017 (2018).Article 

    Google Scholar 
    21.Hanula, J. L., Ulyshen, M. D. & Wade, D. D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests 3, 317–331 (2012).Article 

    Google Scholar 
    22.Goebel, P. C. et al. Forest Ecosystems of a Lower Gulf Coastal Plain Landscape: Multifactor Classification and Analysis. 47–75. (2001).23.Ulyshen, M. D., Müller, J. & Seibold, S. Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl. Soil. Ecol. 105, 25–30. https://doi.org/10.1016/j.apsoil.2016.03.017 (2016).Article 

    Google Scholar 
    24.Kirkman, L. K. et al. Productivity and species richness in longleaf pine woodlands: Resource-disturbance influences across an edaphic gradient. Ecology 97, 2259–2271. https://doi.org/10.1002/ecy.1456 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).Article 

    Google Scholar 
    26.R Core Team. R: A Language and Environment for Statistical Computing (Version 3.6.1). http://www.R-project.org. (R Foundation for Statistical Computing, 2019).27.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    28.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    29.Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of paired comparisons. R Package Version 0.1-7. (2015).30.Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9, e101867 (2014).31.Stoklosa, A. M. et al. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl. Ecol. 17, 463–470. https://doi.org/10.1016/j.baae.2016.03.001 (2016).Article 

    Google Scholar 
    32.Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. 84, 375–389 (2009).Article 

    Google Scholar 
    33.Mackensen, J., Bauhus, J. & Webber, E. Decomposition rates of coarse woody debris—A review with particular emphasis on Australian tree species. Aust. J. Bot. 51, 27–37 (2003).Article 

    Google Scholar  More

  • in

    Mathematical model for predicting oxygen concentration in tilapia fish farms

    Dissolved oxygen modelThe dissolved oxygen in this model had a number of interactions to consider. Oxygen consumption through the processes of both respiration and nitrification. On the other hand, the water receives oxygen through water agitation as it is pumped through the system and from the oxygen generator. Oxygen is added to the water by oxygen generator and flow aeration (Fig. 1).Figure 1Dissolved oxygen model.Full size imageThe required oxygen supplementation is a sum of the pervious components as follows:$$ DO_{FR} + DO_{B} + DO_{N} = DO_{sup } + DO_{PF} $$
    (1)
    where DOFR is the dissolved oxygen consumption through fish respiration, g O2 m−3 h−1. DOB is the dissolved oxygen consumption through the biofilter, g O2 m−3 h−1. DON is the dissolved oxygen consumption through nitrification, g O2 m−3 h−1. DOPF is the dissolved oxygen addition through pipe flow, g O2 m−3 h−1. DOsup is the required oxygen supplementation (oxygen generator), g O2 m−3 h−1.The rate of change in DO concentration in fish tank:$$ frac{dDO}{{dt}} = DO_{FR} + DO_{B} + DO_{N} – DO_{PF} $$
    (2)
    where (frac{dDO}{{dt}}) is the rate of change in DO concentration during the time interval, g O2 m−3 h−1. dt is the rate of change in the time interval, hAfter calculating oxygen concentration for each element at each time step, the net oxygen change is then added to or subtracted from the previous time step`s oxygen concentration. DO concentrations can be calculated at any time (t) as:$$ DO_{t} = DO_{t – 1} + left( {frac{dDO}{{dt}} cdot dt} right) $$
    (3)
    where DOt is the DO concentration (g m−3) at time t. DOt−1 is the DO concentration (g m−3) at time t−1.The rate of oxygen consumption through fish respiration can be calculated on water temperature and average fish weight. This calculation is shown in the following equation10:$$ FR = 2014.45 + 2.75W – 165.2T + 0.007W^{2} + 3.93T^{2} – 0.21WT $$
    (4)
    $$ DO_{FR} = frac{FR times SD}{{1000}} $$
    (5)
    where FR is rate of oxygen consumption through fish respiration, mg O2 kg−1 fish. h−1. W is average of individual fish mass, g. T is water temperature, °C. SD is the stocking density of fish, kg m−3.The correlation coefficient for the equation was 0.99. Data used in preparing the equation ranged from 20 to 200 g for fish weight and from 24 to 32 °C.The rate of oxygen consumption through nitrification is calculated in terms of Total Ammonia Nitrogen (TAN) that is converted from ammonia to nitrate. The rate found in the literature is 4.57 g O2 g−1 TAN6.The oxygen consumption in nitrification process can be calculated as11:$$ DO_{N} = 4.57 times K_{NR} times {{{text{Nr}}} mathord{left/ {vphantom {{{text{Nr}}} {text{V}}}} right. kern-nulldelimiterspace} {text{V}}} $$
    (6)
    $$ K_{NR} = 0.1left( {1.08} right)^{{left( {T – 20} right)}} $$
    (7)
    $$ Nr = frac{{0.03 times F_{r} times W times N_{F} }}{24 times 1000} $$
    (8)
    where KNR is the coefficient of nitrification. Nr is the nitrification rate, g TAN h−1. Fr is the feeding ratio, % of body fish day−1. NF is the number of fish. V is the water volume, m3.The feeding ratio can be calculated as the following equation:$$ F_{r} = 17.02 times e^{{left[ {{raise0.7exhbox{${left( {ln W + 1.14} right)^{2} }$} !mathord{left/ {vphantom {{left( {ln W + 1.14} right)^{2} } { – 19.52}}}right.kern-nulldelimiterspace} !lower0.7exhbox{${ – 19.52}$}}} right]}} $$
    (9)
    The bacteria in the biofilter are a second source of oxygen consumption. Lawson explains that the biofilter oxygen demand is approximated 2.3 times the BOD5 production rate of fish6. The oxygen consumption of the biofilter is calculated using following equation:$$ DO_{B} = frac{{(2.3)left( {BOD_{5} } right)left( {W_{n} } right)}}{{left( V right)left( {24} right)left( {1000} right)}} $$
    (10)
    where BOD5 is average unfiltered BOD5 excretion rate, 2160 mg O2 kg−1 fish day−1. Wn is biomass, kg fish.The water pumping cycle was a source of oxygen addition to the system. The amount of oxygen addition through the water pumping cycle was calculated on an hourly basis. The method of calculating aeration from a pipe is detailed by12:$$ DO_{PF} = frac{PC times f times E times OTR}{V} $$
    (11)
    where PC is pump cycle length, h. f is pumping frequency, h−1. E is efficiency, %. OTR is oxygen transfer rate, g O2 h−1.This model sums the DOFR, DOB, DON, and DOPF to determine the supplemental DO demand in kg h−1. This number can be used to estimate the oxygen consumption if pure oxygen transfers system is used.Fish growth modelFish growth is affected by environmental and physical factors, such as water temperature, dissolved oxygen, unionized ammonia, photoperiod, fish stocking density, food availability, and food quality.In order to calculate the fish growth rate (g day−1) for individual fish, the following model was used13 as it includes the main environmental factors influencing fish growth. These factors are temperature, dissolved oxygen and unionized ammonia.$$ FGR = left( {0.2919 , tau , kappa , delta , varphi , h , f , W^{m} } right) – K.W^{n} $$
    (12)
    Where FGR is the fish growth rate, g day−1. τ is the temperature factor (0  > τ  к  δ  φ  ƒ  More

  • in

    Global controls on phosphatization of fossils during the toarcian oceanic anoxic event

    1.Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 34–39 (1970).2.Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M. Exceptional Fossil Preservation. A Unique View on the Evolution of Marine Life. (2002).3.Schiffbauer, J. D. & Laflamme, M. Lagerstätten through time: A collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27, 275–278 (2012).ADS 

    Google Scholar 
    4.Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Ann. Rev. Earth Planet. Sci. 31, 275–301 (2003).ADS 
    CAS 

    Google Scholar 
    5.Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).ADS 

    Google Scholar 
    6.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 

    Google Scholar 
    7.Ansorge, J. Insects from the Lower Toarcian of Middle Europe and England. Acta Zool. Crac. 46, 291–310 (2003).
    Google Scholar 
    8.Klug, C., Riegraf, W. & Lehmann, J. Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55, 1307–1331 (2012).
    Google Scholar 
    9.Martindale, R. C., Them, T. R., Gill, B. C., Marroquín, S. M. & Knoll, A. H. A new Early Jurassic (ca183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada. Geol. 45, 255–258 (2017).ADS 

    Google Scholar 
    10.Williams, M., Benton, M. J. & Ross, A. The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life. J. Geol. Soc. 172, 683–692 (2015).ADS 

    Google Scholar 
    11.Feldmann, R. M., Villamil, T. & Kauffman, E. G. Decapod and stomatopod crustaceans from mass mortality Lagerstatten: Turonian (Cretaceous) of Colombia. J. Paleontol. 73, 91–101 (1999).
    Google Scholar 
    12.Martill, D. M. et al. A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco. Cretac. Res. 32, 433–446 (2011).
    Google Scholar 
    13.Fuchs, D., Ifrim, C. & Stinnesbeck, W. A new Palaeoctopus (Cephalopoda: Coleoidea) from the Late Cretaceous of Vallecillo, north-eastern Mexico, and implications for the evolution of Octopoda. Palaeontology 51, 1129–1139 (2008).
    Google Scholar 
    14.Ifrim, C., Stinnesbeck, W. & Frey, E. Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 245, 71–81 (2007).
    Google Scholar 
    15.Schmid-Röhl, A., Röhl, H. J., Oschmann, W., Frimmel, A. & Schwark, L. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control. Geobios 35, 13–20 (2002).
    Google Scholar 
    16.Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 27–52 (2001).
    Google Scholar 
    17.Allison, P. A. The role of anoxia in the decay and mineralization of proteinaceous macro- fossils. Paleobiology 14, 139–154 (1988).
    Google Scholar 
    18.Muscente, A. D., Martindale, R. C., Schiffbauer, J. D., Creighton, A. L. & Bogan, B. A. Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya Ha Tinda (Alberta, Canada) and its significance for exceptional fossil preservation during oceanic anoxic events. Palaios 34, 514–541 (2019).ADS 

    Google Scholar 
    19.Little, C. T. S. & Benton, M. J. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–498 (1995).ADS 

    Google Scholar 
    20.Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).ADS 
    CAS 

    Google Scholar 
    21.Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    22.Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, 1–15 (2012).
    Google Scholar 
    23.Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212, 307–320 (2003).ADS 
    CAS 

    Google Scholar 
    24.Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).ADS 
    CAS 

    Google Scholar 
    25.Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).ADS 
    CAS 

    Google Scholar 
    26.Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, (2010).27.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).
    Google Scholar 
    28.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction: a North American perspective. Geol. Soc. Am. Spec. Papers 505, 225–243 (2014).
    Google Scholar 
    29.Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl. Acad. Sci. U.S.A. 115, 6596–6601 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Seilacher, A. Posidonia Shales (Toarcian, S. Germany): Stagnant basin model revalidated. in Palaeontology, Essential of Historical Geology (ed. Gallitelli, Motanaro, E.) 279–298 (1982).31.Vincent, P. A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. J. Vertebr. Paleontol. 31, 340–351 (2011).
    Google Scholar 
    32.Littke, R., Leythaeuser, D., Rullkötter, J. & Baker, D. R. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. Geol. Soc. Spec. Pub. 58, 311–333 (1991).
    Google Scholar 
    33.Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297–307 (2007).
    Google Scholar 
    34.Boomer, I. et al. The biostratigraphy of the Upper Pliensbachian-Toarcian (Lower Jurassic) sequence at Ilminster, Somerset. J. Micropalaeontol. 28, 67–85 (2009).
    Google Scholar 
    35.Boomer, I. et al. Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate-clastic sequence from Somerset, UK. Geological Society, London, Special Publications (2021).36.Moore, C. On the Middle and Upper Lias of the South West of England. Proc. Somerset Archaeol. Nat. Hist. Soc. 13, 19–244 (1866).
    Google Scholar 
    37.Rayner, D. H. The structure of certain Jurassic holostean fishes with special reference to their neurocrania. Philos. Trans. R. Soc. Lond. B Biol. Sci. 233, 287–345 (1948).ADS 

    Google Scholar 
    38.Patterson, C. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 269, 275–579 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    39.McGowan, C. Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia: Ichthyosauria). J. Paleontol. 52, 1155–1162 (1978).
    Google Scholar 
    40.Duffin, C. Pelagosaurus (Mesosuchia, Crocodilia) from the English Toarcian (Lower Jurassic). Neues Jb. Geol. Paläontol. Monat. 1979, 475–485 (1979).
    Google Scholar 
    41.Woodward, A. S. Notes on the collection of fossil fishes from the Upper Lias of Ilminster in the Bath Museum. Proc. Bath Nat. Hist. Antiqu. Field Club 8, 233–242 (1897).
    Google Scholar 
    42.Pierce, S. E. & Benton, M. J. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. J. Vertebr. Paleontol. 26, 621–635 (2006).
    Google Scholar 
    43.Caine, H. & Benton, M. J. Ichthyosauria from the Upper Lias of Strawberry Bank, England. Palaeontology 54, 1069–1093 (2011).
    Google Scholar 
    44.Marek, R. D., Moon, B. C., Williams, M. & Benton, M. J. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58, 723–742 (2015).
    Google Scholar 
    45.Urlichs, M. The Lower Jurassic in southwestern Germany. Stuttgarter Beitrage zur Naturkunde series b Number 24, 1–45 (1977).
    Google Scholar 
    46.Riegraf, W., Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). (1984).47.Hauff, B. Untersuchungen der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica 64, 1–42 (1921).
    Google Scholar 
    48.Röhl, H.-J., Schmid-Röhl, A. Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. in The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences: (ed. Harris, N.) 165–189 (Society for Sedimentary Geology Special Publications 82, 2005).49.Parrish, J. T. Climate of the supercontinent Pangaea. J. Geol. 101, 215–233 (1993).ADS 

    Google Scholar 
    50.Hall, R. L. New, biostratigraphically significant ammonities from the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 43, 555–570 (2006).ADS 

    Google Scholar 
    51.Hall, R. L., McNicoll, V., Grocke, D. R., Craig, J. & Johnston, K. Integrated stratigraphy of the lower and middle Fernie Formation in Alberta and British Columbia, Western Canada. Riv. Ital. Paleontol. Stratigr. 110, 61–68 (2004).
    Google Scholar 
    52.Them, T. R. et al. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet. Sci. Lett. 459, 118–126 (2017).ADS 
    CAS 

    Google Scholar 
    53.Hall, R.L., Poulton, T.P., and Monger, J. W. H. Field Trip A1: Calgary–Vancouver. in Field Guide for the Fifth International Symposium on the Jurassic System (ed. Smith, P. L.) 29–61 (International Union of Geological Sciences Subcommission on Jurassic Stratigraphy, 1998).54.Hall, R. L. New lower jurassic ammonite faunas from the fernie formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 24, 1688–1704 (1987).ADS 

    Google Scholar 
    55.Stronach, N. J. Depositional environments and cycles in the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. Soc. Pet. Geol. Memoir 9, 43–67 (1984).
    Google Scholar 
    56.Maxwell, E. E. & Martindale, R. C. New Saurorhynchus (Actinopterygii: Saurichthyidae) material from the Early Jurassic of Alberta, Canada. Can. J. Earth Sci. 54, 714–719 (2017).ADS 

    Google Scholar 
    57.Hall, R. L. Seirocrinus subangularis (Miller, 1821), a Pliensbachian (Lower Jurassic) crinoid from the Fernie Formation, Alberta, Canada. J. Paleontol. 65, 300–307 (1991).
    Google Scholar 
    58.Feldman, R. M. & Copeland, M. J. A new species of erymid lobster from Lower Jurassic strata (Sinemurian/Pliensbachian), Fernie Formation, southwestern Alberta. Geol. Surv. Can. Bull. 379, 93–101 (1988).
    Google Scholar 
    59.Schweigert, G., Garassino, A., Hall, R. L., Hauff, R. B. & Karasawa, H. The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) from the Lower Jurassic. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 332, 1–43 (2003).
    Google Scholar 
    60.Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120 (2017).
    Google Scholar 
    61.Hall, R. L. Paraplesioteuthis hastata (Munster), the first teuthid squid recorded from the Jurassic of North America. J. Paleontol. 59, 870–874 (1985).
    Google Scholar 
    62.Marroquín, S. M., Martindale, R. C. & Fuchs, D. New records of the late Pliensbachian to early Toarcian (Early Jurassic) gladius-bearing coleoid cephalopods from the Ya Ha Tinda Lagerstätte, Canada. Papers Palaeontol. 4, 245–276 (2018).
    Google Scholar 
    63.Muscente, A. D. & Xiao, S. Resolving three-dimensional and subsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (BSE-SEM). Palaios 30, 462–481 (2015).ADS 

    Google Scholar 
    64.Lindgren, J. et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–365 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Seilacher, A., Andalib, F., Dietl, G. & Gocht, H. Preservational history of compressed Jurassic ammonites from Southern Germany. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 152, 307–356 (1976).
    Google Scholar 
    66.Them, T. R. et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 7, 1–10 (2017).CAS 

    Google Scholar 
    67.Szpak, P. Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).
    Google Scholar 
    68.Kunkel, J. G., Nagel, W. & Jercinovic, M. J. Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 515–526 (2012).
    Google Scholar 
    69.Doguzhaeva, L. A. & Mutvei, H. Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Rev. Paleobiol. 22, 877–894 (2003).
    Google Scholar 
    70.Glass, K. et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. U.S.A. 109, 10218–10223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schiffbauer, J. D., Wallace, A. F., Broce, J. & Xiao, S. Exceptional fossil conservation through phosphatization. The Paleontol. Soc. Papers 20, 59–82 (2014).
    Google Scholar 
    72.Muscente, A. D., Hawkins, A. D. & Xiao, S. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434, 46–62 (2015).
    Google Scholar 
    73.Glenn, C. R. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol. Helv. 87, 747–788 (1994).
    Google Scholar 
    74.Arning, E. T., Birgel, D., Brunner, B. & Peckmann, J. Bacterial formation of phosphatic laminites off Peru. Geobiology 7, 295–307 (2009).CAS 
    PubMed 

    Google Scholar 
    75.Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 39–51 (2009).
    Google Scholar 
    76.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth-Sci. Rev. 198, 102932 (2019).CAS 

    Google Scholar  More