More stories

  • in

    Ontogenetic shifts from social to experiential learning drive avian migration timing

    1.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    2.Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    3.Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).PubMed 

    Google Scholar 
    4.Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).
    Google Scholar 
    5.Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).
    Google Scholar 
    6.Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).
    Google Scholar 
    9.Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).PubMed 

    Google Scholar 
    10.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).MathSciNet 

    Google Scholar 
    11.Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).
    Google Scholar 
    14.Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).CAS 
    PubMed 

    Google Scholar 
    16.French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).17.Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).
    Google Scholar 
    18.Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).PubMed 

    Google Scholar 
    19.Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 

    Google Scholar 
    20.Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).
    Google Scholar 
    21.Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).
    Google Scholar 
    22.Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).
    Google Scholar 
    23.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).ADS 

    Google Scholar 
    24.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    25.Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).
    Google Scholar 
    27.Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Google Scholar 
    30.Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    32.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    33.Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).
    Google Scholar 
    34.Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    36.Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).
    Google Scholar 
    37.Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).
    Google Scholar 
    40.Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
    Google Scholar 
    41.Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).
    Google Scholar 
    42.Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).
    Google Scholar 
    43.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).PubMed 

    Google Scholar 
    44.Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    45.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).46.Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).
    Google Scholar 
    47.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    48.Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).
    Google Scholar 
    49.“R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).50.Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).51.Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021). More

  • in

    Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata

    Study speciesArabidopsis lyrata subsp. lyrata (Brassicaceae) is a small, insect-pollinated, short-lived perennial native to the Great Lakes region of North America. It grows in relatively dry habitats with porous soils, such as sand dunes and rocky outcrops (Mable et al. 2005). Like many other Brassicaceae, this plant is usually characterized by sporophytic SI (Mable et al. 2003) and thus obligately outcrossing, although hand-pollinations have indicated that SC individuals occur at low frequencies in otherwise SI populations (Mable et al. 2005). A few populations consist of only SC plants and are characterized by a mating system with high selfing rates (Foxe et al. 2010) and shorter-life spans (Gorman et al. 2020b). Evidence suggests that there have been at least two relatively recent ( More

  • in

    Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism

    1.Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol Ecol. 2020;29:1300–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.PubMed 

    Google Scholar 
    3.Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.CAS 
    PubMed 

    Google Scholar 
    4.Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales-one thousand and one interactions with land plants. New Phytol. 2016;211:20–40.PubMed 

    Google Scholar 
    5.Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321.PubMed 
    PubMed Central 

    Google Scholar 
    6.Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–29.CAS 
    PubMed 

    Google Scholar 
    7.Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21:51–66.
    Google Scholar 
    8.Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.
    Google Scholar 
    9.Miller JD, Sumarah MW, Adams GW. Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol. 2008;34:362–8.CAS 
    PubMed 

    Google Scholar 
    10.White JF Jr, Torres MS. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant. 2010;138:440–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol. 2014;28:356–63.
    Google Scholar 
    12.Carroll G. The foraging ascomycete, in: Abstracts of the 16th International Botanical Congress. St Louis, Missouri, USA, 1999.13.Müller MM, Valjakka R, Suokko A, Hantula J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol. 2001;10:1801–10.PubMed 

    Google Scholar 
    14.Thomas DC, Vandegrift R, Ludden A, Carroll GC, Roy BA. Spatial ecology of the fungal genus Xylaria in a tropical cloud forest. Biotropica. 2016;48:381–93.
    Google Scholar 
    15.Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    16.Oono R, Lutzoni F, Arnold AE, Kaye L, U’Ren JM, May G, et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot. 2014;101:1362–74.PubMed 

    Google Scholar 
    17.Shao S, Jin Z. In Species Diversity and Extinction (ed. Tepper, GH) Ch. 15. Nova Science Publishers. 2010.18.Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011;115:197–213.PubMed 

    Google Scholar 
    19.Yuan ZL, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2014;56:205–13.
    Google Scholar 
    20.Sieber T. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89.
    Google Scholar 
    21.Levis NA, Martin RA, O’Donnell KA, Pfennig DW. Intraspecific adaptive radiation: competition, ecological opportunity, and phenotypic diversification within species. Evolution. 2017;71:2496–509.PubMed 

    Google Scholar 
    22.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.CAS 
    PubMed 

    Google Scholar 
    23.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.CAS 
    PubMed 

    Google Scholar 
    24.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–W41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 

    Google Scholar 
    27.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 

    Google Scholar 
    29.Enright AJ, Dongen SV, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30:1987–97.CAS 
    PubMed 

    Google Scholar 
    31.Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics. 2016;17:1014.PubMed 
    PubMed Central 

    Google Scholar 
    32.Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.PubMed 
    PubMed Central 

    Google Scholar 
    33.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    34.Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33.
    Google Scholar 
    35.Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hutter S, Vilella AJ, Rozas J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 2006;7:409.
    Google Scholar 
    38.Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, et al. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 2019;15:e1008223.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CAS 
    PubMed 

    Google Scholar 
    40.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.PubMed 

    Google Scholar 
    41.Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, et al. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement? bioRxiv. 2021. https://doi.org/10.1101/2021.02.23.432530.42.Wey T, Schlegel M, Stroheker S, Gross A. MAT-gene structure and mating behavior of Hymenoscyphus fraxineus and Hymenoscyphus albidus. Fungal Genet Biol. 2016;87:54–63.CAS 
    PubMed 

    Google Scholar 
    43.Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–62.
    Google Scholar 
    44.Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Zuccaro A, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA. 2017;114:E9403–E9412.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, et al. The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol. 2016;120:26–42.CAS 
    PubMed 

    Google Scholar 
    46.Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–7.PubMed 

    Google Scholar 
    47.Wrzosek M, Ruszkiewicz-Michalska M, Sikora K, Damszel M, Sierota Z. The plasticity of fungal interactions. Mycol Prog. 2017;16:101–8.
    Google Scholar 
    48.Parrent JL, James TY, Vasaitis R, Taylor AF. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 2009;9:148.PubMed 
    PubMed Central 

    Google Scholar 
    49.Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–21.CAS 
    PubMed 

    Google Scholar 
    50.Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun. 2021;12:7227.CAS 
    PubMed 

    Google Scholar 
    51.Schulz B, Sucker J, Aust HJ. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–15.CAS 

    Google Scholar 
    52.Tanney JB, McMullin DR, Miller JD. Toxigenic Foliar Endophytes from the Acadian Forest. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. 2018;343–81.53.Yue Q, Li Y, Chen L, Zhang X, Liu X, An Z, et al. Genomics-driven discovery of a novel self-resistance mechanism in the echinocandin-producing fungus Pezicula radicicola. Environ Microbiol. 2018;20:3154–67.CAS 
    PubMed 

    Google Scholar 
    54.Rogers RL, Grizzard SL, Titus-McQuillan JE, Bockrath K, Patel S, Wares JP, et al. Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa. Mol Ecol. 2021;30:1155–73.CAS 
    PubMed 

    Google Scholar 
    55.Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, et al. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics. 2019;20:430.PubMed 
    PubMed Central 

    Google Scholar 
    56.Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, et al. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics. 2019;20:782.PubMed 
    PubMed Central 

    Google Scholar 
    57.Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, et al. Secondary metabolism drives ecological breadth in the Xylariaceae. bioRxiv. 2021. https://doi.org/10.1101/2021.06.01.446356.58.Matsuda Y, Yamakawa M, Inaba T, Obase K, Ito S. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients. Mycoscience. 2017;58:369–77.
    Google Scholar 
    59.Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, et al. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectr. 2017;5:1–21.CAS 

    Google Scholar 
    60.Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018;220:1161–71.CAS 
    PubMed 

    Google Scholar 
    61.McCutcheon TL, Carroll GC, Schwab S. Genotypic diversity in populations of a fungal endophyte from Douglas Fir. Mycologia. 1993;85:180–6.
    Google Scholar 
    62.Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53.CAS 

    Google Scholar 
    63.Müller MM, Valjakka R, Hantula J. Genetic diversity of Lophodermium piceae in South Finland. For Pathol. 2007;37:329–37.
    Google Scholar 
    64.Morgenstern K, Polster J-U, Krabel D. Genetic variation between and within two populations of Rhabdocline pseudotsugae in Germany. Can J Res. 2016;46:716–24.CAS 

    Google Scholar 
    65.Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:996.PubMed 
    PubMed Central 

    Google Scholar 
    66.Gasca-Pineda J, Velez P, Hosoya T. Phylogeography of post-Pleistocene population expansion in Dasyscyphella longistipitata (Leotiomycetes, Helotiales), an endemic fungal symbiont of Fagus crenata in Japan. MycoKeys. 2020;65:1–24.PubMed 
    PubMed Central 

    Google Scholar 
    67.Groenewald M, Linde CC, Groenewald JZ, Crous PW. Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol. 2008;57:25–32.CAS 

    Google Scholar 
    68.Nordborg M, Charlesworth B, Charlesworth D. Increased levels of polymorphism surrounding selectively maintained sites in highly selfing species. Proc R Soc B. 1996;263:1033–9.
    Google Scholar 
    69.Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, et al. Long-term balancing selection drives evolution of immunity genes in Capsella. Elife. 2019;8:e43606.PubMed 
    PubMed Central 

    Google Scholar 
    70.Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol. 2007;16:4401–17.CAS 
    PubMed 

    Google Scholar 
    71.Drott MT, Debenport T, Higgins SA, Buckley DH, Milgroom MG. Fitness cost of aflatoxin production in Aspergillus flavus when competing with soil microbes could maintain balancing selection. mBio. 2019;10:e02782–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Chen F, Goodwin PH, Khan A, Hsiang T. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol. 2002;48:427–36.CAS 
    PubMed 

    Google Scholar  More

  • in

    Phytoplankton settling quality has a subtle but significant effect on sediment microeukaryotic and bacterial communities

    1.Griffiths, J. R. et al. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196 (2017).ADS 
    PubMed 

    Google Scholar 
    2.Graf, G., Bengtsson, W., Diesner, U., Schulz, R. & Theede, H. Benthic response to sedimentation of a spring phytoplankton bloom: Process and budget. Mar. Biol. 67, 201–208 (1982).
    Google Scholar 
    3.Campanyà-llovet, N., Snelgrove, P. V. R. & Parrish, C. C. Rethinking the importance of food quality in marine benthic food webs. Prog. Oceanogr. 156, 240–251 (2017).
    Google Scholar 
    4.Blomqvist, S. & Heiskanen, A.-S. The challenge of sedimentation in the Baltic Sea. In A Systems Analysis of the Baltic Sea. Ecological Studies (Analysis and Synthesis) Vol. 148 (eds Wulff, F. V. et al.) 211–227 (Springer, Berlin, 2001).
    Google Scholar 
    5.Elmgren, R. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-V. Réun. Cons. int. Explor. Mer. 183, 152–169 (1984).
    Google Scholar 
    6.Kahru, M., Elmgren, R., Di Lorenzo, E. & Savchuk, O. Unexplained interannual oscillations of cyanobacterial blooms in the Baltic Sea. Sci. Rep. 8, 6–10 (2018).ADS 

    Google Scholar 
    7.BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (SpringerOpen, 2015) https://doi.org/10.1007/978-3-319-16006-1.8.Spilling, K. & Lindström, M. Phytoplankton life cycle transformations lead to species-specific effects on sediment processes in the Baltic Sea. Cont. Shelf Res. 28, 2488–2495 (2008).ADS 

    Google Scholar 
    9.Suikkanen, S. et al. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8, e66475 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Tamelander, T., Spilling, K. & Winder, M. Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections. Ambio 46, 842–851 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments (Springer, 2009).
    Google Scholar 
    12.Schratzberger, M. & Ingels, J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
    Google Scholar 
    13.Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Nascimento, F. J. A., Näslund, J. & Elmgren, R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57, 338–346 (2012).ADS 
    CAS 

    Google Scholar 
    15.Nealson, K. H. Sediment bacteria: Who’s there, what are they doing, and what’s new?. Annu. Rev. Earth Planet Sci. 25, 403–434 (1997).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Meyer-Reil, L.-A. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol. 53, 1748–1755 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Ólafsson, E. & Elmgren, R. Seasonal dynamics of sublittoral meiobenthos in relation to phytoplankton sedimentation in the Baltic Sea. Estuar. Coast. Shelf Sci. 45, 149–164 (1997).ADS 

    Google Scholar 
    18.Pfannkuche, O. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W. Deep. Res. Part II 40, 135–149 (1993).
    Google Scholar 
    19.Hoffmann, K., Hassenrück, C., Salman-Carvalho, V., Holtappels, M. & Bienhold, C. Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front. Microbiol. 8, 266 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Stoeck, T., Kochems, R., Forster, D., Lejzerowicz, F. & Pawlowski, J. Metabarcoding of benthic ciliate communities shows high potential for environmental monitoring in salmon aquaculture. Ecol. Indic. 85, 153–164 (2018).
    Google Scholar 
    21.Rudnick, D. T. Time lags between the deposition and meiobenthic assimilation of phytodetritus. Mar. Ecol. Prog. Ser. 50, 231–240 (1989).ADS 

    Google Scholar 
    22.van der Heijden, L. H. et al. How do food sources drive meiofauna community structure in soft-bottom coastal food webs?. Mar. Biol. 165, 166 (2018).
    Google Scholar 
    23.Schratzberger, M., Forster, R. M., Goodsir, F. & Jennings, S. Nematode community dynamics over an annual production cycle in the central North Sea. Mar. Environ. Res. 66, 508–519 (2008).CAS 
    PubMed 

    Google Scholar 
    24.Wieser, W. Die beziehung zwischen mundhöhlengestalt, ernährungsweise und vorkommen bei freilebenden marinen nematoden. Ark Zool 2, 439–484 (1953).
    Google Scholar 
    25.Moens, T., Van Gansbeke, D. & Vincx, M. Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). J. Mar. Biol. Assoc. UK 79, 1017–1027 (1999).
    Google Scholar 
    26.Nascimento, F. J. A., Karlson, A. M. L. & Elmgren, R. Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages. Limnol. Oceanogr. 53, 2636–2643 (2008).ADS 

    Google Scholar 
    27.Nascimento, F. J. A., Karlson, A. M. L., Näslund, J. & Gorokhova, E. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. J. Exp. Mar. Biol. Ecol. 368, 138–146 (2009).
    Google Scholar 
    28.Groendahl, S. & Fink, P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol. 17, 20 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Broman, E. et al. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microb. Ecol. 77, 288–303 (2019).CAS 
    PubMed 

    Google Scholar 
    30.Fagervold, S. K. et al. River organic matter shapes microbial communities in the sediment of the Rhône prodelta. ISME J. 8, 2327–2338 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Reed, H. E. & Martiny, J. B. H. Microbial composition affects the functioning of estuarine sediments. ISME J. 7, 868–879 (2013).CAS 
    PubMed 

    Google Scholar 
    32.Tuominen, L. et al. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia affinis. Estuar. Coast. Shelf Sci. 49, 83–97 (1999).ADS 
    CAS 

    Google Scholar 
    33.Zilius, M., De Wit, R. & Bartoli, M. Response of sedimentary processes to cyanobacteria loading. J. Limnol. 75, 236–247 (2016).
    Google Scholar 
    34.Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, e2807 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    36.Soto, E., Quiroga, E., Ganga, B. & Alarcón, G. Influence of organic matter inputs and grain size on soft-bottom macrobenthic biodiversity in the upwelling ecosystem of central Chile. Mar. Biodivers. 47, 433–450 (2017).
    Google Scholar 
    37.Broman, E., Bonaglia, S., Norkko, A., Creer, S. & Nascimento, F. J. A. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol. Ecol. 00, 1–17 (2020).CAS 

    Google Scholar 
    38.Ingels, J., Tchesunov, A. V. & Vanreusel, A. Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin—How local environmental conditions shape nematode structure and function. PLoS ONE 6, e20094 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Albert, S. et al. Influence of settling organic matter quantity and quality on benthic nitrogen cycling. Limnol. Oceanogr. 66, 1882–1895 (2021).ADS 
    CAS 

    Google Scholar 
    40.Modig, H. & Ólafsson, E. Responses of Baltic benthic invertebrates to hypoxic events. J. Exp. Mar. Biol. Ecol. 229, 133–148 (1998).
    Google Scholar 
    41.Ankar, S. Annual dynamics of a Northern Baltic Soft Bottom. In Cyclic Phenomena in Marine Plants and Animals (eds Naylor, E. & Hartnoll, R. G.) 29–36 (Pergamon Press, 1979). https://doi.org/10.1016/b978-0-08-023217-1.50011-4.Chapter 

    Google Scholar 
    42.Karlson, A. M. L., Nascimento, F. J. A. & Elmgren, R. Incorporation and burial of carbon from settling cyanobacterial blooms by deposit-feeding macrofauna. Limnol. Oceanogr. 53, 2754–2758 (2008).ADS 

    Google Scholar 
    43.Hedberg, P., Albert, S., Nascimento, F. J. A. & Winder, M. Effects of changing phytoplankton species composition on carbon and nitrogen uptake in benthic invertebrates. Limnol. Oceanogr. 66, 469–480 (2021).ADS 
    CAS 

    Google Scholar 
    44.Ólafsson, E., Modig, H. & van de Bund, W. J. Species specific uptake of radio-labelled phytodetritus by benthic meiofauna from the Baltic Sea. Mar. Ecol. Prog. Ser. 177, 63–72 (1999).ADS 

    Google Scholar 
    45.Guden, R. M., Vafeiadou, A., De Meester, N., Derycke, S. & Moens, T. Living apart-together: Microhabitat differentiation of cryptic nematode species in a saltmarsh habitat. PLoS ONE 13, e0204750 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    46.Rudnick, D. T. & Oviatt, C. A. Seasonal lags between organic carbon deposition and mineralization in marine sediments. J. Mar. Res. 44, 815–837 (1986).CAS 

    Google Scholar 
    47.Moens, T. et al. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J. Sea Res. 92, 125–133 (2014).ADS 

    Google Scholar 
    48.Schuelke, T., Pereira, T. J., Hardy, S. M. & Bik, H. M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol. Ecol. 27, 1930–1951 (2018).PubMed 

    Google Scholar 
    49.Fenchel, T. & Jansson, B.-O. On the vertical distribution of the microfauna in the sediments of a brackish-water beach. Ophelia 3, 161–177 (1966).
    Google Scholar 
    50.Fenchel, T. The ecology of marine microbenthos II. The food of marine benthic ciliates. Ophelia 5, 73–121 (1968).
    Google Scholar 
    51.Shimeta, J., Starczak, V. R., Ashiru, O. M. & Zimmer, C. A. Influences of benthic boundary-layer flow on feeding rates of ciliates and flagellates at the sediment-water interface. Limnol. Oceanogr. 46, 1709–1719 (2001).ADS 

    Google Scholar 
    52.Nagata, T. Organic matter–bacteria interactions in seawater. In Microbial Ecology of the Oceans 2nd edn (ed. Kirchman, D. L.) 207–241 (Wiley, 2008).
    Google Scholar 
    53.De Mesel, I. et al. Top-down impact of bacterivorous nematodes on the bacterial community structure: A microcosm study. Environ. Microbiol. 6, 733–744 (2004).PubMed 

    Google Scholar 
    54.Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. 16, 1668–1681 (2014).CAS 
    PubMed 

    Google Scholar 
    55.Izabel-Shen, D., Albert, S., Winder, M., Farnelid, H. & Nascimento, F. J. A. Quality of phytoplankton deposition structures bacterial communities at the water-sediment interface. Mol. Ecol. 30, 3515–3529 (2021).CAS 
    PubMed 

    Google Scholar 
    56.Bowen, J. L., Babbin, A. R., Kearns, P. J. & Ward, B. B. Connecting the dots: Linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front. Microbiol. 5, 429 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Broman, E. et al. Denitrification responses to increasing cadmium exposure in Baltic Sea sediments. Aquat. Toxicol. 217, 105328 (2019).CAS 
    PubMed 

    Google Scholar 
    58.van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 30, 3270–3288 (2021).PubMed 

    Google Scholar 
    59.Zinger, L. et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).PubMed 

    Google Scholar 
    60.Prokopowich, C. D., Gregory, T. R. & Crease, T. J. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46, 48–50 (2003).CAS 

    Google Scholar 
    61.Nascimento, F. J. A., Lallias, D., Bik, H. M. & Creer, S. Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Sci. Rep. 8, 11737 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Brannock, P. M. & Halanych, K. M. Meiofaunal community analysis by high-throughput sequencing: Comparison of extraction, quality filtering, and clustering methods. Mar. Genomics 23, 67–75 (2015).PubMed 

    Google Scholar 
    63.Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).PubMed 

    Google Scholar 
    64.Höglander, H., Larsson, U. & Hajdu, S. Vertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper. Mar. Ecol. Prog. Ser. 283, 15–27 (2004).ADS 

    Google Scholar 
    65.Walsby, A. E. Gas vesicles. Annu. Rev. Plant Physiol. 26, 427–439 (1975).CAS 

    Google Scholar 
    66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).
    Google Scholar 
    68.Huson, D. H. et al. MEGAN community edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    69.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Google Scholar 
    70.Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 1–14 (2018).
    Google Scholar 
    71.Urban-Malinga, B., Warzocha, J. & Zalewski, M. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. J. Sea Res. 80, 25–34 (2013).ADS 

    Google Scholar 
    72.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Oksanen, J. et al. Vegan: Community ecology package. version 2.5-7, 1–298 (2020).74.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    75.Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2017).
    Google Scholar 
    76.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar  More

  • in

    Publisher Correction: Collective behaviour can stabilize ecosystems

    AffiliationsDepartment of Integrative Biology, Oregon State University, Corvallis, OR, USABenjamin D. Dalziel & Mark NovakDepartment of Mathematics, Oregon State University, Corvallis, OR, USABenjamin D. DalzielCollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USAJames R. WatsonDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USAStephen P. EllnerAuthorsBenjamin D. DalzielMark NovakJames R. WatsonStephen P. EllnerCorresponding authorCorrespondence to
    Benjamin D. Dalziel. More

  • in

    DNA barcodes evidence the contact zone of eastern and western caddisfly lineages in the Western Carpathians

    1.Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    2.Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x (2010).Article 
    PubMed 

    Google Scholar 
    3.Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981. https://doi.org/10.1111/j.1365-2427.2012.02758.x (2012).Article 

    Google Scholar 
    4.Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).Article 

    Google Scholar 
    5.Mamos, T., Wattier, R., Burzýnski, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).Article 
    PubMed 

    Google Scholar 
    6.Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Copilaş-Ciocianu, D., Zimţa, A. A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).Article 

    Google Scholar 
    8.Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297. https://doi.org/10.1111/jzs.12248 (2019).Article 

    Google Scholar 
    9.Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—A result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Kotlík, P. et al. A northern glacial refugium for bank voles (Clethrionomys glareolus). PNAS 103, 14860–14864. https://doi.org/10.1073/pnas.0603237103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Theissinger, K. et al. Glacial survival and post-glacial recolonization of an arctic-alpine freshwater insect (Arcynopteryx dichroa, Plecoptera, Perlodidae) in Europe. J. Biogeogr. 40, 236–248. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2012).Article 

    Google Scholar 
    13.Vörös, J., Mikulíček, P., Major, Á., Recuero, E. & Arntzen, J. W. Phylogeographic analysis reveals northern refugia for the riverine amphibian Triturus dobrogicus (Caudata: Salamandridae). Biol. J. Linn. Soc. 119, 974–991. https://doi.org/10.1111/bij.12866 (2016).Article 

    Google Scholar 
    14.Copilaș-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).Article 

    Google Scholar 
    15.Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. Holocene 28(4), 583–594. https://doi.org/10.1177/0959683617735592 (2017).ADS 
    Article 

    Google Scholar 
    16.Mamos, T., Jażdżewski, K., Čiamporová-Zaťovičová, Z., Čiampor, F. & Grabowski, M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci. Rep. 11, 21629. https://doi.org/10.1038/s41598-021-00320-8 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: Evidence for Alpine refugia rapid colonization after the Pleistocene glaciations. Mol. Ecol. 14, 1133–1150. https://doi.org/10.1111/j.1365-294X.2005.02479.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence genetic consequences. New Phytol. 171, 199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Jamrichová, E., Potůčková, A. & Horsák, M. Landscape history, calcareous fen development historical events in the Slovak Eastern Carpathians. Veg. Hist. Archaeobot. 23, 497–513. https://doi.org/10.1007/s00334-013-0416-0 (2014).Article 

    Google Scholar 
    20.Jamrichová, E., Petr, L. & Jiménez-Alfaro, B. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J. Biogeogr. 44, 2386–2397 (2017).Article 

    Google Scholar 
    21.Wielstra, B., Babik, W. & Arntzen, J. W. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol. J. Linn. Soc. 114, 574–587. https://doi.org/10.1111/bij.12446 (2015).Article 

    Google Scholar 
    22.Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).Article 

    Google Scholar 
    23.Pauls, S. U., Lumbsch, H. A. T. & Haase, P. Phylogeography of the montane caddisfly Drusus discolor: Evidence for multiple refugia and periglacial survival. Mol. Ecol. 15(8), 2153–2169. https://doi.org/10.1111/j.1365-294X.2006.02916.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Pauls, S. U., Theissinger, K., Ujvarosi, L., Bálint, M. & Haase, P. Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. J. N. Am. Benthol. Soc. 28, 517–536. https://doi.org/10.1899/08-100.1 (2009).Article 

    Google Scholar 
    25.Lehrian, S., Pauls, S. U. & Haase, P. Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the Central European highlands. Freshw. Biol. 54, 283–295. https://doi.org/10.1111/j.1365-2427.2008.02107.x (2009).Article 

    Google Scholar 
    26.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 216, 434–437 (1996).Article 

    Google Scholar 
    27.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    28.Robert, S. & Curtean-Bănăduc, A. Aspects concerning Târnava Mare and Târnava Mică rivers (Transylvania, Romania) caddisfly (Insecta, Trichoptera) larvae communities. Transylv. Rev. Syst. Ecol. Res. 2, 89–98 (2005).
    Google Scholar 
    29.Bálint, M., Ujvárosi, L., Dénes, A. L. & Octavian, P. European phylogeography of Rhyacophila tristis Pictet (Trichoptera: Rhyacophilidae): Preliminary results. Zoosymposia 5, 11–18. https://doi.org/10.11646/zoosymposia.5.1.1 (2011).Article 

    Google Scholar 
    30.Bielik, M. Geophysical features of the Slovak Western Carpathians. Geol. Q. 43, 251–262. https://doi.org/10.1016/j.quascirev.2008.08.019 (1999).Article 

    Google Scholar 
    31.Céréghino, R., Cugny, P. & Lavandier, P. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol. 87, 47–60. https://doi.org/10.1002/1522-2632(200201)87:1%3c47::AID-IROH47%3e3.0.CO;2-9 (2002).Article 

    Google Scholar 
    32.Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).CAS 
    Article 

    Google Scholar 
    33.Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).Article 

    Google Scholar 
    34.Bozáňová, J., Čiamporová-Zaťovičová, Z., Čiampor, F. Jr., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jedlička, L., Kúdela, M., Szemes, T. & Celec, P. Population genetic structure of Simulium degrangei (Diptera: Simuliidae) from Western Carpathians. Biologia 67, 777–787. https://doi.org/10.2478/s11756-012-0057-2 (2012).Article 

    Google Scholar 
    36.Hughes, J. M., Bunn, S. E., Hurwood, D. A. & Cleary, C. Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasmiidae) in rainforest streams, south-east Queensland, Australia. Freshw. Biol. 41, 1–10 (1998).
    Google Scholar 
    37.Finn, D. S., Theobald, D. M., Black, W. C. & Poff, N. L. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol. Ecol. 15, 3553–3566 (2006).CAS 
    Article 

    Google Scholar 
    38.Vuataz, L., Rutschmann, S., Monaghan, M. T. & Sartori, M. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae). BMC Evol. Biol. 16, 194. https://doi.org/10.1186/s12862-016-0758-1 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. J. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).Article 

    Google Scholar 
    40.Spielman, D., Brook, B. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. 101, 15261–15264 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    42.Bunn, S. E. & Hughes, J. M. Dispersal and recruitment in streams: Evidence from genetic studies. J. N. Am. Benthol. Soc. 16, 338–346. https://doi.org/10.2307/1468022 (1997).Article 

    Google Scholar 
    43.Barron, E. & Pollard, D. High-resolution climate simulations of oxygen isotope stage 3 in Europe. Quat. Res. 28, 296–309. https://doi.org/10.1006/qres.2002.2374 (2002).Article 

    Google Scholar 
    44.Bennet, K. & Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 27, 2449–2455 (2008).ADS 
    Article 

    Google Scholar 
    45.Kondracki, J. Karpaty. Wydanie drugie i poprawione [The Carpathians. Ed. 2].—Wydawnictwa Szkolne i Pedagogiczne, Warszawa (1989).46.Grecula, P. (ed.). Geological evolution of the Western Carpathians. Monograph: Mineralia Slovaca (1997).47.Lukniš, M. The course of the last glaciation of the Western Carpathians in the relation to the Alps, to the glaciation of northern Europe, and to the division of the central European Wurm into periods. Geografický Časopis 16, 127–142 (1964).
    Google Scholar 
    48.Lindner, L., Dzierzek, J., Marciniak, B. & Nitychoruk, J. Outline of Quaternary glaciations in the Tatra Mts.: Their development, age and limits. Geol. Q. 47, 269–280 (2003).
    Google Scholar 
    49.Frost, S. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49, 161–173. https://doi.org/10.1016/j.biocon.2005.05.002 (1971).Article 

    Google Scholar 
    50.Sedlák, E. Řád Chrostíci—Trichoptera. In Klíč vodních larev hmyzu (ed. Rozkošný, R.) 163–220 (ČSAV, 1980).
    Google Scholar 
    51.Waringer, J. & Graf, W. Atlas of Central European Trichoptera Larvae: Atlas der Mitteleuropäischen Köcherfliegenlarven (Erik Mauch, 2011).
    Google Scholar 
    52.Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    54.Bálint, M., Botoşaneanu, L., Ujvárosi, L. & Popescu, O. Taxonomic revision of Rhyacophila aquitanica (Trichoptera: Rhyacophilidae), based on molecular and morphological evidence and change of taxon status of Rhyacophila aquitanica ssp. carpathica to Rhyacophila carpathica stat. n. Zootaxa 2148, 39–48. https://doi.org/10.11646/zootaxa.2148.1.3 (2009).Article 

    Google Scholar 
    55.Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    56.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 

    Google Scholar 
    58.Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21(2), 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    60.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    62.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17(42), 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).Article 

    Google Scholar 
    64.Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. PNAS 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Miller, M. P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724. https://doi.org/10.1093/jhered/esi119 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    68.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    69.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123(3), 597–601 (1989).CAS 
    Article 

    Google Scholar 
    70.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2), 915–925 (1997).CAS 
    Article 

    Google Scholar 
    71.Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 14, 693–709 (1993).Article 

    Google Scholar  More

  • in

    Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations

    Table S1 lists the data used in this paper, the instruments that it is based on, the data repositories, and in which figures the data are used.Global data setsBathymetryBathymetric data was taken from the International Bathymetric Chart of the Arctic Ocean (IBCAO 30 sec V3)64 available at https://www.ngdc.noaa.gov/mgg/bathymetry/arctic/grids/version3_0/.Sea ice concentrationWe use data derived from the Advanced Microwave Scanning Radiometer sensor AMSR-2 for the years 2013–18 processed in accordance with65 and downloaded from https://seaice.uni-bremen.de/sea-ice-concentration-amsr-eamsr2/66. At each grid point the sum of days during all April/May/June of 2013–2018 when the sea ice concentration at the grid point was >20% was divided by the total number of days with data in those months to obtain the percentage of days with ice concentration >20% (Fig. 1). For separate 7-day periods in April/May/June 2017 and 2018 the mean ice concentration over those 7 days was calculated and the 20% contour of this mean was plotted separately for each of those 7-day periods. For each mooring and each day, the ice concentration at the grid cell closest to the mooring was calculated (Fig. 4a and S1a), and if the ice concentration at the mooring was below 20%, the shortest distance to grid cells where the ice concentration exceeded 20% was calculated (Fig. 4a and S1a). If the ice concentration at the mooring exceeded 20%, the shortest distance to grid cells where the ice concentration was below 20% was calculated and the distance was defined as negative.Sea ice velocity and sea ice area exportIce area flux estimates in Fig. 2a are calculated using CERSAT (Center for Satellite Exploitation and Research, France) motion estimates together with CERSAT ice concentration information67. Fluxes are estimated along a zonal gate positioned at 82°N between 12°W and 20°E and a meridional gate at 20°E between 80.5°N and 82°N (Fig. 1) for the period 1994–2020 (January–May). The ice area flux at the gate is the integral of the product between the meridional and zonal ice drift and ice concentration. For a more detailed description we refer to ref. 68. Arctic-wide sea ice velocity anomalies (Fig. 2b, c) were computed from the OSI-405-c motion product provided by the Ocean and Sea Ice Satellite Application 635 Facility (OSISAF)69.Satellite chlorophyllSurface chlorophyll concentrations measured with the Sentinel 3 A OLCI (Ocean and Land Colour Instrument) were downloaded from https://earth.esa.int/web/sentinel/sentinel-data-access. The 8-day satellite data were averaged for the time series over grid points within boxes of 60 km by 60 km around the moorings.Atmospheric reanalysisERA-Interim reanalysis70 data at the surface on a 0.25° latitude by 0.25° longitude grid at 12 hourly resolution was downloaded from https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. Incoming shortwave radiation (ssr) and outgoing longwave radiation (str), sensible heat flux (sshf), and latent heat flux (slhf) were extracted and averaged to daily values.Physical numerical modelsFESOMIn this study, we used model data from the Finite-Element Sea ice-Ocean Model (FESOM) version 1.471. FESOM is a sea ice-ocean model that solves the hydrostatic primitive equations for the ocean and comprises a finite element sea ice component. It uses triangular surface meshes for spatial discretization, allowing for a refined mesh in regions of interest, while keeping a coarser mesh elsewhere. In the model configuration used here, a mesh resolution of nominally 1° was applied in the global oceans. The mesh was refined to 25 km north of 40°N, and to 4.5 km in the Nordic Seas and Arctic Ocean. In the wider Fram Strait (20°W-20°E/76°N-82°30′N), the mesh was further refined to 1 km. In this region, the simulation can be considered as eddy-resolving, as the local internal Rossby radius of deformation is about 2–6 km72,73. In the vertical, the model used 47 z-levels with a resolution of 10 m in the upper 100 m, and coarser resolution with depth (with a resolution of ~100 m at 800 m depth). For bottom topography, the RTopo-2 data set was used74. The model simulation covers the period 2010–2018 and has daily model output. It was forced with atmospheric reanalysis data from Era-Interim70, and was initialized with model fields from the simulation described in ref. 75. River runoff (except for Greenland) was taken from the JRA-55 data set76, and Greenland ice-sheet runoff was taken from ref. 77. Tides were not taken into account in this simulation. Here we studied the model data of 2016 to 2018 in Fram Strait for comparison with our observations.1-dimensional mixed layer depth modelThe PWP78 1-dimensional mixed layer model simulates the response of the ocean to surface fluxes. It ignores horizontal gradients and horizontal advection. This allows to judge whether certain surface flux conditions can on their own explain observed conditions. We ran the PWP model (as implemented for Matlab by http://www.po.gso.uri.edu/rafos/research/pwp/) with four different scenarios (Fig. S6: P17-M17, P17-M18, P18-M17, P18-M18) where: P17: An idealized initial profile based on the observed profiles (Fig. 3) representing the conditions in 2017: constant temperature of 2 °C in the vertical, linear salinity gradient from 30.5 at the surface to 35 at 50 m and another linear salinity gradient from 35 at 50 m to 35.1 at 200 m. P18: An idealized initial profile based on the observed profiles (Fig. 3) representing the conditions in 2018: Same as P17 except that the surface to 50 m salinity gradient is from 34.8 to 35. M17: A time series of the the meteorological forcing (10 m wind velocity, heat fluxes, and evaporation minus precipitation) from the ERA-Interim reanalysis (Fig. 4b) at the grid point closest to mooring HG-IV for the period 15-May-2017 to 01-Aug-2017. M18: Same as M17 but for the period 15-May-2018 to 01-Aug-2018. M17 and M18 are provided in Supplementary Data 1.Shipboard CTD dataShipboard CTD casts of a standard dual sensor Seabird 911+ CTD-rosette were occupied in spatial and temporal vicinity to the moored observations (Tab. S2) on three cruises: PS107 in 2017 (https://doi.org/10.1594/PANGAEA.894189), PS114 in 2018 (https://doi.org/10.1594/PANGAEA.898694) of RV Polarstern, and JR17005 in 2018 (https://doi.org/10.5285/84988765-5fc2-5bba-e053-6c86abc05d53) of RRS James Clark Ross. The data were processed according to standard routine79. Additionally, we use underway CTD data from an OceanScience underway CTD collected during PS107 in 2017 (https://doi.org/10.1594/PANGAEA.886146) and processed according to ref. 21.Mooring dataThe mooring data discussed in this paper is from two mooring clusters in the central and eastern Fram Strait (named “HG-IV” at ~79°N 4°20’E and “F4” at ~79°N 7°E) where moorings were located as close to each other as possible (the horizontal separation was equal to the water depth) in order to enable more measurements than could be fit physically onto a single mooring. Tab. S2/S3 list the deployment and recovery details of the moorings including the exact latitudes/longitudes as well as the individual instruments on the moorings. Note that all data shown in this paper from ~30 m depth and the temperature/salinity/oxygen data from ~55 m is from the HG-IV-S-* and F4-S-* moorings, while all other data is from the HG-IV-FEVI-* and F4-* moorings. The AZFP data is from F5-17 located roughly half way between the two clusters. All sensor based mooring raw data (except for the ASL AZFP data) is available at ref. 80.It is known that conversion factors for biogeochemical sensors (e.g., chlorophyll fluorescence) change over the seasons, depths, and regions81,82. In order to make as few assumptions as possible, we used the following approach: we could have determined the conversion factors from the instance when the ship was there with the CTD-rosette, but these conversion factors might not be appropriate for the majority of the time series. Hence, simply using the manufacturers’ calibrations, as we do here, introduces fewer uncertainties. Where we have different estimates of the same parameter, we present them together and demonstrate that they agree qualitatively and also mostly quantitatively (e.g., Fig. 5b). In particular the timing of events is robust.At some locations, the target variables were not measured the whole time or the measurements failed, hence we present what is available. The vertical location of the instruments (Fig. 4c and S1c) varied substantially (intermittently up to 200 m) as a result of mooring blow downs caused by strong intermittent ocean currents. Time series have not been corrected for this vertical motion, but data are not used during blow downs in order not to bias the time series interpretation by temporal changes introduced by instruments traversing through vertical property gradients.Physical sensor measurementsThe physical sensors (for pressure, temperature, conductivity, and oxygen) were pre-cruise manufacturer calibrated and processed similar to ref. 83; the processed data is also available at ref. 80.Mixed layer depth (MLD)Since there are no autonomous vertically profiling measurements available, we can only determine the minimum value of the mixed layer depth. At each hourly time step, the potential density difference (Δσ) between the uppermost (~30 m) temperature/salinity recorder and the underlying temperature/salinity recorders is calculated. The 0.5th percentile of each Δσ time series is added to the Δσ time series for the different deployments. This fixes slight offsets in the temperature and/or conductivity calibrations which result in too negative or too positive density differences. The minimum estimate of the mixed layer depth at hourly resolution is then determined as the depth of the deepest instrument where Δσ  0.05 kg m−3 for all depths at a time step, then the minimum mixed layer depth can only be determined as 0 for that time step. Daily values of the MLD were defined as the depth at which three hourly realizations of MLD were shallower within a 24 h time span and at which the remaining 21 MLD realizations were deeper. This biases the daily MLD estimate towards situations where phytoplankton is kept in the surface ocean rather than also being mixed down for some amount of time.Stratification estimated between 30 m and 55 mBased on the temperature and salinity time series observed at ~30 m and ~55 m, we estimate the buoyancy frequency as ({N}^{2}=frac{-g}{{rho }_{0}}frac{Delta rho }{Delta z}) where g is the acceleration due to gravity, Δσ is the potential density difference over the vertical distance of Δz = 25 m, and ρ0 is the average density. The contributions to stratification due to temperature (N2T) and salinity (N2S) are estimated as ({N}_{T}^{2}=g*alpha frac{Delta T}{Delta z}) and ({N}_{S}^{2}=-g*beta frac{Delta S}{Delta z}), respectively, where ΔT/ΔS are the temperature/salinity differences and α/β are the thermal expansion/haline contraction coefficients estimated from the average temperature/salinity at the two measurement depths.Apparent oxygen utilization (AOU)Oxygen concentration from the microcats was calculated using the pre-cruise manufacturer calibrations. AOU was calculated as the atmospherically equilibrated oxygen concentration (calculated from measured pressure, temperature, and salinity with sw_satO2 from the Seawater toolbox available at http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm) minus the measured oxygen concentration.LightPolar night/polar dayThe length of day (hours per 24 h that the sun is above the horizon) was calculated from the sunrise equation as implemented for Matlab by https://de.mathworks.com/matlabcentral/fileexchange/55509-sunrise-sunset.Photosynthetically available radiation (PAR)The WetLabs Eco PAR measured PAR for 5 (in 2016–2017) or 10 (in 2017–2018) individual measurements 1 s apart from each other before it slept for 1 h before repeating the measurement cycle. These 5 or 10 individual measurements are averaged linearly to obtain hourly values at ~30 m depth (Fig. 5a blue). Values below the detection limit are set to a constant of 10−1.32 μmol m−2 s−1. Hourly values are linearly averaged to daily values (Fig. 5a black). The incoming solar shortwave radiation varies as a function of season and latitude as well as cloud cover as represented in the ERA-Interim reanalysis (parameters ssr). Its unit of W m−2 is converted to PAR assuming a constant spectral distribution as 1 W m−2 = 2.1 μmol m−2 s−184. In order to compare the PAR measured at a depth of approximately 30 m to the surface values, we approximate a spectrally averaged diffuse attenuation coefficient for PAR in clear water using the values of85 as kd = 0.02 m−1 and apply it to calculate a constant exponential extinction applied to the reanalysis surface values (Fig. 5a yellow). The average PAR available (PARavailable) to phytoplankton being moved around in the clear water mixed layer of depth MLD was calculated as the depth averaged vertical integral of the clear water extinguished PAR at the surface (PARsurf from the shortwave radiation of ERA-Interim): ({{PAR}}_{{available}}=frac{1}{{MLD}}*{int }_{z=0}^{z={MLD}}{{PAR}}_{{surf}}*{e}^{-{k}_{d}z}{dz}) (Fig. 5a red).Chlorophyll concentration and optical backscatteringChlorophyll fluorescenceThe WetLabs ECO Triplet measures fluorescence at a “chlorophyll wavelength” and at a “CDOM wavelength” as well as optical scattering at 700 nm. The conversion from fluorescence to chlorophyll a concentration (in μg l−1) follows a manufacturer determined conversion determined for a mono-culture of phytoplankton (Thalassiosira weissflogii), which typically overestimates the chlorophyll concentration. Hence, we applied the community-established calibration bias of 2 for the WetLabs ECO-series fluorometer to these in situ fluorometric chlorophyll values81. This conversion factor may be different in ocean waters of Fram Strait, but it still gives reasonable agreement with independent estimates.Optical backscatteringThe EcoTriplet measured 8 individual measurements 1 s apart from each other before it slept for 1 h before repeating the measurement cycle. For the chlorophyll fluorescence, the individual measurements are averaged to hourly values. For the scattering, times when individual 1-second measurements exceed 0.002 m−1 sr−1 are indicative of strong optical backscattering not due to small particles in the water column, but rather to larger potentially aggregated particles. The times of strong backscattering are marked individually (Fig. 5b red).NutrientsNitrate (SUNA sensor)Prior to deployment (11 and 15 days for sensors deployed at HG-IV and F4, respectively), the reference spectrum of the sensors were updated as per manufacturer specifications. We first let the sensors cool down for 24 h at 0 °C in a temperature controlled laboratory. Next, the reference spectrum update was achieved by measuring Milli-Q water (i.e., no nitrate present). To verify if this update was successful, solutions with three different nitrate concentrations (3, 7, and 14 μmol l−1) were then measured, with the output being monitored live (expected to be within ±2 μmol l−1 of each concentration). A measuring time of 20 s yields stable results and was thus applied during the deployments with an interval of 6 h. Upon recovery, SUNA data were processed using the SeaBird UCI software package version 1.2.1. Here, temperature and salinity data were used to remove the spectrum of bromide and compensate for temperature dependent absorption using an algorithm developed by ref. 86. This step yields the spectrum of nitrate only, at a precision of ±0.3 μmol l−1. The sensor is characterized by a drift of 0.3 μmol l−1 per hour lamp time. Given the deployment settings, a total operational time of about 8 h was accumulated. Therefore, a linear drift correction of 2.4 μmol l−1 (365 days)−1 was applied. Up to this point, however, accuracy remains at 2 μmol l−1 as per manufacturer specifications. Therefore, an offset correction is then applied based on the in situ concentrations observed at the beginning of the deployment as well as with the RAS (see below) where available, with outliers excluded.Inorganic nutrients from Remote Access Samplers (RAS)McLane RAS were programmed to draw two 500 ml samples (1 h apart, starting at noon) approximately every other week. Samples within the RAS were collected in sterile plastic bags and fixed with 700 μl of 50% mercuric chloride solution. Upon recovery, two samples from a given sampling date were combined to yield a volume of 1 l, required for bacterial and phytoplankton genetic analyses (see below), and a 50-ml aliquot destined for the measurement of dissolved inorganic nutrients. Aliquots for nutrient analysis were collected in PE bottles, which were then stored frozen (−20 °C) until analysis on land. Analyses for inorganic nutrients were carried out using a QuAAtro Seal Analytical segmented continuous flow autoanalyser following standard colorimetric techniques. The accuracy of the analysis was evaluated through the measurement of KANSO LTD Japan Certified Reference Materials and corrections were applied accordingly. Finally, we evaluated pressure, temperature, and salinity data from the CTD (SBE37-SMP-ODO) attached to the RAS to determine whether the two samples taken one hour apart on a given date drew water from the same depth and with consistent properties.Carbonate system
    pCO
    2 and pH
    The calibration of SAMI pH and SAMI CO2 sensors was carried out by the manufacturer, approximately 2 months prior to deployment. The calibration certificates specify accuracy and precision of ±0.003/±0.001 pH units and ±3/ More

  • in

    Depth dependence of climatic controls on soil microbial community activity and composition

    1.Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio. 2019;10:e01318–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Brubaker SC, Jones AJ, Lewis DT, Frank K. Soil properties associated with landscape position. Soil Sci Soc Am J. 1993;57:235–9.
    Google Scholar 
    3.Richter DD, Markewitz D. How deep is soil? BioScience. 1995;45:600–9.
    Google Scholar 
    4.Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil. 2010;338:143–58.
    Google Scholar 
    5.Dove NC, Arogyaswamy K, Billings SA, Botthoff JK, Carey CJ, Cisco C, et al. Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ Res Lett. 2020;15:1040a1.CAS 

    Google Scholar 
    6.Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, et al. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 2008;11:1252–64.PubMed 

    Google Scholar 
    7.Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:6213.
    Google Scholar 
    8.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10:423–36.
    Google Scholar 
    10.Chapin FS, Matson PA, Vitousek P. Principles of terrestrial ecosystem ecology. New York: Springer Science & Business Media; 2011.
    Google Scholar 
    11.Bárcenas‐Moreno G, Gómez‐Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Change Biol. 2009;15:2950–7.
    Google Scholar 
    12.Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. In: Shukla G, Varma A, editors. Soil enzymology. Berlin, Heidelberg: Springer; 2011. p. 245–58.13.German DP, Marcelo KRB, Stone MM, Allison SD. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol. 2012;18:1468–79.
    Google Scholar 
    14.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Change Biol. 2017;23:2117–29.
    Google Scholar 
    15.Jenny H. Factors of soil formation. New York: McGraw-Hill; 1941.
    Google Scholar 
    16.Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO. Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol. 1995;1:13–22.
    Google Scholar 
    17.Jenny H. The soil resource: origin and behavior. Berlin: Springer Science & Business Media; 1980.18.Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. PNAS. 2006;103:626–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540:567–9.CAS 
    PubMed 

    Google Scholar 
    21.Brovkin V. Climate-vegetation interaction. J Phys IV France. 2002;12:57–72.
    Google Scholar 
    22.Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 1997;79:439–49.
    Google Scholar 
    23.Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, et al. Early stage litter decomposition across biomes. Sci Total Environ. 2018;628–9:1369–94.
    Google Scholar 
    24.Shiozawa S, Campbell GS. Soil thermal conductivity. Remote Sens Rev. 1990;5:301–10.
    Google Scholar 
    25.Verhoef A, Fernández-Gálvez J, Diaz-Espejo A, Main BE, El-Bishti M. The diurnal course of soil moisture as measured by various dielectric sensors: effects of soil temperature and the implications for evaporation estimates. J Hydrol. 2006;321:147–62.
    Google Scholar 
    26.Dove NC, Torn MS, Hart SC, Taş N. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nat Commun. 2021;12:2089.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Bai W, Wang G, Xi J, Liu Y, Yin P. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur J Soil Biol. 2019;92:16–23.CAS 

    Google Scholar 
    28.Yost JL, Hartemink AE. How deep is the soil studied—an analysis of four soil science journals. Plant Soil. 2020;425:5–18.
    Google Scholar 
    29.Hicks Pries CE, Castanha C, Porras RC, Torn MS. The whole-soil carbon flux in response to warming. Science. 2017;355:1420–3.CAS 
    PubMed 

    Google Scholar 
    30.Jones DL, Magthab EA, Gleeson DB, Hill PW, Sánchez-Rodríguez AR, Roberts P, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol Biochem. 2018;117:72–82.CAS 

    Google Scholar 
    31.Ofiti NOE, Zosso CU, Soong JL, Solly EF, Torn MS, Wiesenberg GLB, et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol Biochem. 2021;156:108185.CAS 

    Google Scholar 
    32.Soong JL, Castanha C, Pries CEH, Ofiti N, Porras RC, Riley WJ, et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci Adv. 2021;7:eabd1343.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology. 2018;99:2455–66.PubMed 

    Google Scholar 
    34.O‘Geen A (Toby), Safeeq M, Wagenbrenner J, Stacy E, Hartsough P, Devine S., et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 2018;17:180081.35.Frisbie JA. Soil organic carbon storage and aggregate stability in an arid mountain range, White Mountains, CA. UC Riverside Master’s Thesis. 2014. https://escholarship.org/uc/item/4rn6j9rq.36.Marchand DE. Soil contamination in the White Mountains, Eastern California. GSA Bull. 1970;81:2497–506.
    Google Scholar 
    37.Aciego SM, Riebe CS, Hart SC, Blakowski MA, Carey CJ, Aarons SM, et al. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat Commun. 2017;8:14800.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Dove NC, Safford HD, Bohlman GN, Estes BL, Hart SC. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol Appl. 2020;30:e02072.PubMed 

    Google Scholar 
    39.USDA-NRCS. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. U.S. Department of Agriculture Handbook 436. 2nd edition. Washington D.C.: Natural Resources Conservation Service; 1999.40.Lajtha K, Driscoll CT, Jarrell WM, Elliot ET. Phosphorus characterization and total element analysis. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard soil methods for long-term ecological research. New York: Oxford University Press; 1999. p. 115–42.41.Harris D, Horwáth WR, vanKessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci Soc Am J. 2001;65:1853–6.CAS 

    Google Scholar 
    42.Thomas GW, Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of soil analysis, part 3: chemical methods. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy; 1996, p. 475–90.43.Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    44.Hart SC, Firestone MK. Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry. 1991;12:103–27.CAS 

    Google Scholar 
    45.Haubensak KA, Hart SC, Stark JM. Influences of chloroform exposure time and soil water content on C and N release in forest soils. Soil Biol Biochem. 2002;34:1549–62.CAS 

    Google Scholar 
    46.Stenberg B, Johansson M, Pell M, Sjödahl-Svensson K, Stenström J, Torstensson L. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol Biochem. 1998;30:393–402.CAS 

    Google Scholar 
    47.Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp. 2013;81:e50961.
    Google Scholar 
    48.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.CAS 

    Google Scholar 
    50.Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014;9:e90234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 

    Google Scholar 
    54.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.
    Google Scholar 
    55.Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist. 2010;186:281–5.
    Google Scholar 
    56.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    57.R Development Core Team. R: a language and environment for statistical computing. 2008. Vienna, Australia: R Foundation for Statistical Computing. http://www.R-project.org.58.Cribari-Neto F, Zeileis A. Beta regression in R. J Statl Softw. 2010;34:1–24.
    Google Scholar 
    59.Fox J, Weisberg S. An {R} companion to applied regression, Second. 2011. Thousand Oaks, CA: Sage.60.Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Oksanen J, Blanchet FG, Kindt R, Legendre P, Simpson GL, Minchin PR, et al. vegan: community Ecology Package. 2013 http://CRAN.R-project.org/package=vegan.63.Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    64.Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9:683–93.PubMed 

    Google Scholar 
    65.Legendre P, Cáceres MD. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett. 2013;16:951–63.PubMed 

    Google Scholar 
    66.Legendre P, Anderson MJ. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24.
    Google Scholar 
    67.Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 

    Google Scholar 
    69.Kanzaki Y, Takemoto K. Diversity of dominant soil bacteria increases with warming velocity at the global scale. Diversity. 2021;13:120.
    Google Scholar 
    70.Russell NJ, Harrisson P, Johnston IA, Jaenicke R, Zuber M, Franks F, et al. Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci. 1990;326:595–611.CAS 
    PubMed 

    Google Scholar 
    71.Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, et al. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol. 2006;8:514–25.CAS 
    PubMed 

    Google Scholar 
    72.Jobbágy EG, Jackson RB. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry. 2001;53:51–77.
    Google Scholar 
    73.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 

    Google Scholar 
    74.Offre P, Spang A, Schleper C. Archaea in biogeochemical cycles. Ann Rev Microbiol. 2013;67:437–57.CAS 

    Google Scholar 
    75.Stegen JC, Bottos EM, Jansson JK. A unified conceptual framework for prediction and control of microbiomes. Curr Opin in Microbiol. 2018;44:20–27.
    Google Scholar 
    76.Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM, et al. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol. 2014;89:281–92.CAS 
    PubMed 

    Google Scholar 
    77.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed 
    PubMed Central 

    Google Scholar 
    78.Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, et al. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol. 2012;14:3081–96.CAS 
    PubMed 

    Google Scholar 
    79.Johnston ER, Hatt JK, He Z, Wu L, Guo X, Luo Y, et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. PNAS. 2019;116:15096–105.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923.PubMed 
    PubMed Central 

    Google Scholar 
    81.Sarkar JM, Leonowicz A, Bollag J-M. Immobilization of enzymes on clays and soils. Soil Biol Biochem. 1989;21:223–30.CAS 

    Google Scholar 
    82.Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol Biochem. 2013;58:216–34.CAS 

    Google Scholar 
    83.Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.CAS 

    Google Scholar 
    84.Kellogg CA, Griffin DW. Aerobiology and the global transport of desert dust. Trends Ecol Evol. 2006;21:638–44.PubMed 

    Google Scholar 
    85.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 

    Google Scholar 
    86.Du X, Deng Y, Li S, Escalas A, Feng K, He Q, et al. Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Mol Ecol. 2021;30:1072–85.CAS 
    PubMed 

    Google Scholar 
    87.Fanning DS, Fanning MCB. Soil morphology, genesis and classification. New York: John Wiley & Sons; 1989.88.IPCC. Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Geneva, Switzerland: IPCC.89.Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2008;11:1316–27.PubMed 

    Google Scholar  More