Soil minerals affect taxon-specific bacterial growth
1.Roselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.
Google Scholar
2.Certini G, Campbell CD, Edwards AC. Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem. 2004;36:1119–28.CAS
Google Scholar
3.Carson JK, Rooney D, Gleeson DB, Clipson N. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol. 2007;61:414–23.CAS
PubMed
Google Scholar
4.Uroz S, Kelly LC, Turpault M, Lepleux C, Frey-Klett P. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 2015;23:751–62.CAS
PubMed
Google Scholar
5.Ahmed E, Hugerth LW, Logue JB, Brüchert V, Andersson AF, Holmström SJ. Mineral type structures soil microbial communities. Geomicrobiol J 2017;34:538–45.CAS
Google Scholar
6.Whitman T, Neurath R, Perera A, Chu-Jacoby I, Ning D, Zhou J, et al. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ Microbiol. 2018;20:4444–60.CAS
PubMed
Google Scholar
7.Kandeler E, Gebala A, Boeddinghaus RS, Müller K, Rennert T, Soares M, et al. The mineralosphere—succession and physiology of bacteria and fungi colonising pristine minerals in grassland soils under different land-use intensities. Soil Biol Biochem. 2019;136:107534.CAS
Google Scholar
8.Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L. Relationships between soil texture, physical protection of organic-matter, soil biota, and C-mineralization and N-mineralization in grassland soils. Geoderma 1993;57:105–28.CAS
Google Scholar
9.Mayer LM, Schick LL, Hardy KR, Wagai R, McCarthy J. Organic matter in small mesopores in sediments and soils. Geochim Cosmochim Acta. 2004;68:3868–72.
Google Scholar
10.Chenu C, Stotzky G. Interaction between microorganisms and soil particles: an overview. In: Huang PM, Bollag JM, Senesi N, editors. Interactions between soil particles and microorganism: impact on the terrestrial ecosystem. New York: Wiley; 2002. p. 3–40.11.Hemkemeyer M, Pronk GJ, Heister K, Kögel-Knabner I, Martens R, Tebbe CC. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol Ecol. 2014;90:770–82.CAS
PubMed
Google Scholar
12.Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 2000;32:2099–103.CAS
Google Scholar
13.Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, et al. Microaggregates in soils. J Plant Nutr Soil Sci. 2018;181:104–36.CAS
Google Scholar
14.Rasmussen C, Southard RJ, Horwath WR. Litter type and soil minerals control temperate forest soil carbon response to climate change. Glob Change Biol 2008;14:2064–80.
Google Scholar
15.Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019;570:228–31.CAS
PubMed
Google Scholar
16.Ranjard L, Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol. 2001;152:707–16.CAS
PubMed
Google Scholar
17.Poll C, Thiede A, Wermbter N, Sessitsch A, Kandeler E. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. Eur J Soil Sci. 2003;54:715–24.
Google Scholar
18.Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol. 2013;86:71–84.CAS
PubMed
Google Scholar
19.Nie M, Pendall E, Bell C, Wallenstein MD. Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol Biochem. 2014;68:357–365.CAS
Google Scholar
20.Chenu C, Hassink J, Bloem J. Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biol Fertil Soils. 2001;34:349–56.CAS
Google Scholar
21.Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma. 2013;209:15–21.
Google Scholar
22.Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 2006;77:25–56.CAS
Google Scholar
23.Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010;156:609–43.CAS
PubMed
Google Scholar
24.Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature 2015;528:60–68.CAS
PubMed
Google Scholar
25.Sokol NW, Sanderman J, Bradford MA. Pathways of mineral‐associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob Change Biol. 2019;25:12–24.
Google Scholar
26.Skjemstad JO, Janik LJ, Head MJ, McClure SG. High energy ultraviolet photo‐oxidation: a novel technique for studying physically protected organic matter in clay‐and silt‐sized aggregates. J Soil Sci. 1993;44:485–99.CAS
Google Scholar
27.Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:1–10.
Google Scholar
28.Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007;85:9–24.
Google Scholar
29.Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover content. Nature 1997;389:3601–3.
Google Scholar
30.Dahlgren RA, Saigusa M, Ugolini FC. The nature, properties and management of volcanic soils. Adv Agron. 2004;82:113–82.CAS
Google Scholar
31.Mikutta R, Kleber M, Jahn R. Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 2005;128:106–15.CAS
Google Scholar
32.Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M. Mineral protection of soil carbon counteracted by root exudates. Nat Clim Change. 2015;5:588–95.CAS
Google Scholar
33.Rasmussen C, Throckmorton H, Liles G, Heckman K, Meding S, Horwath WR. Controls on soil organic carbon partitioning and stabilization in the California Sierra Nevada. Soil Syst. 2018;2:1–18.
Google Scholar
34.Zhou Z, Wang C, Luo Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Comm. 2020;11:1–10.CAS
Google Scholar
35.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microb. 2015;81:7570–81.CAS
Google Scholar
36.Hayer M, Schwartz E, Marks JC, Koch BJ, Morrissey EM, Schuettenberg AA, et al. Identification of growing bacteria during litter decomposition in freshwater through H218O quantitative stable isotope probing. Environ Microbiol Rep. 2016;8:975–82.CAS
PubMed
Google Scholar
37.Papp K, Hungate BA, Schwartz E. Microbial rRNA synthesis and growth compared through quantitative stable isotope probing with H218O. Appl Environ Microbiol. 2018;84:1–17.
Google Scholar
38.Finley BK, Dijkstra P, Rasmussen C, Schwartz E, Liu XA, van Gestel N, et al. Soil mineral assemblage and substrate quality effects on microbial priming. Geoderma2018;322:38–47.CAS
Google Scholar
39.Rasmussen C, Southard RJ, Horwath WR. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Glob Change Biol. 2006;12:834–47.
Google Scholar
40.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS
PubMed
PubMed Central
Google Scholar
41.Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.CAS
PubMed
PubMed Central
Google Scholar
42.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS
PubMed
PubMed Central
Google Scholar
43.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Google Scholar
44.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
Google Scholar
45.Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.PubMed
PubMed Central
Google Scholar
46.R Core Team. R: a language and environment for statistical computiong. Vienna: R Foundation for Statistical Computing; 2021. https://www.R-project.org/.47.Dowle M, Srinivasan A. data.table: Extensions of ‘data.frame’. R package version 1.13.6. 2020.48.Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, et al. Vegan: community ecology package. R package version 1.17-4. 2010. http://cran.r-project.org.49.Morrissey EM, Mau RL, Hayer M, Liu XJ, Schwartz E, Dijkstra P, et al. Evolutionary history constrains microbial traits across environmental variation. Nat Ecol Evol. 2019;3:1064–9.PubMed
Google Scholar
50.Pinheiro J, Bates D, DebRoy S, Sarkar D. R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3. 1–137, 2018. https://CRAN.R-project.org/package=nlme .51.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018;35:526–8.
Google Scholar
52.Barter RL, Yu B. Superheat: an R package for creating beautiful and extendable heatmaps for visualizing complex data. J Comput Graph Stat. 2018;27:910–22.PubMed
PubMed Central
Google Scholar
53.Demoling F, Figueroa D, Bååth E. Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem. 2007;39:2485–95.CAS
Google Scholar
54.Kaiser K, Zech W. Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. Eur J Soil Sci. 2000;51:403–11.CAS
Google Scholar
55.Barnhisel RI, Bertsch PM. Chlorites and hydroxy-interlayered vermiculite and smectite. In: Dixon JB, Weed SB editors. Minerals in soils environments, 2nd edn. Madison: Soil Science Society of America, Inc.; 1989. p. 729–88.56.Zunino H, Borie F, Aguilera S, Martin JP, Haider K. Decomposition of C-14- labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem. 1982;14:37–43.CAS
Google Scholar
57.Baldock JA, Nelson PN. In: Sumner ME editor. Handbook of soil science. Boca Raton: CRC Press; 2000. B25–B84.58.Matus F, Rumpel C, Neculman R, Panichini M, Mora ML. Soil carbon storage and stabilisation in andic soils: a review. Catena. 2014;120:102–10.CAS
Google Scholar
59.Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol. 2009;42:183–90.
Google Scholar
60.McMahon SK, Williams MA, Bottomley PJ, Myrold DD. Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Sci Soc Am J 2005;69:1238–47.CAS
Google Scholar
61.Vieira S, Sikorski J, Gebala A, Boeddinghaus RS, Marhan S, Rennert T, et al. Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environ Microbiol. 2020;22:917–33.CAS
PubMed
Google Scholar
62.Mille-Lindblom C, Fischer H, Tranvik LJ. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 2006;113:233–42.
Google Scholar More