More stories

  • in

    Drivers of language loss

    1.Nettle, D. Linguistic Diversity (Oxford Univ. Press, USA, 1999).2.Campbell, L. & Belew, A. Cataloguing the World’s Endangered Languages (Routledge, 2018).3.Bromham, L. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01604-y (2021).4.Amano, T. et al. Proc. R. Soc. B 281, 20141574 (2014).Article 

    Google Scholar 
    5.Austin, P. K. & Sallabank, J. The Cambridge Handbook of Endangered Languages (Cambridge Univ. Press, 2011).6.Kandler, A., Unger, R. & Steele, J. Phil. Trans. R. Soc. B 365, 3855–3864 (2010).Article 

    Google Scholar 
    7.Kik, A. et al. Proc. Natl Acad. Sci. USA 118, e2100096118 (2021).CAS 
    Article 

    Google Scholar 
    8.Lewis, M. P., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 17th edn (SIL International, 2013).9.Fischer, S. D. in The Routledge Handbook of Historical Linguistics (ed. Bowern, C. & Evans, B.) Ch. 20, 443–465 (CRC Press, Routledge, 2015).10.Hou, L. & Kusters, A. in The Routledge Handbook of Linguistic Ethnography (ed. Tusting, K.) Ch. 25 (CRC Press, Routledge, 2019).11.Turner, M. K. & McDonald, B. M. J. Iwenhe Tyerrtye: What it Means to be an Aboriginal Person (IAD Press, 2010).12.Hercus, L. A. & Sutton, P. This is What Happened: Historical Narratives by Aborigines (Australian Institute of Aboriginal Studies, 1986).13.Meek, B. A. Annu. Rev. Anthropol. 48, 95–115 (2019).Article 

    Google Scholar  More

  • in

    The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem

    1.Cornwell, W. K. et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed?. Glob. Change Biol. 15, 2431–2449 (2009).ADS 
    Article 

    Google Scholar 
    2.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).Article 

    Google Scholar 
    3.Rayner, A. D. M. & Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology 587 (Wiley, 1988).
    Google Scholar 
    4.Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The combustion of sound and rotten coarse woody debris: A review. Int. J. Wildland Fire 20, 163–174. https://doi.org/10.1071/WF09113 (2011).Article 

    Google Scholar 
    5.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).Article 
    CAS 

    Google Scholar 
    6.Wu, C. et al. Stronger effects of termites than microbes on wood decomposition in a subtropical forest. For. Ecol. Manage. 493, 119263. https://doi.org/10.1016/j.foreco.2021.119263 (2021).Article 

    Google Scholar 
    7.Jacobsen, R. M., Kauserud, H., Sverdrup-Thygeson, A., Bjorbækmo, M. M. & Birkemoe, T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 29, 76–84. https://doi.org/10.1016/j.funeco.2017.06.006 (2017).Article 

    Google Scholar 
    8.Leach, J. G., Orr, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    9.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926. https://doi.org/10.1016/j.funeco.2020.100926 (2020).Article 

    Google Scholar 
    10.Wikars, L.-O. Dependence on fire in wood-living insects: An experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 6, 1–12. https://doi.org/10.1023/a:1015734630309 (2002).Article 

    Google Scholar 
    11.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46. https://doi.org/10.1007/s10021-012-9594-3 (2013).Article 
    CAS 

    Google Scholar 
    12.Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Ulyshen, M. D., Horn, S., Barnes, B. & Gandhi, K. J. K. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv. Divers. 3, 247–251 (2010).Article 

    Google Scholar 
    14.Billings, R. F. et al. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 55, 7 (2004).
    Google Scholar 
    15.Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, article 47 (2014).16.Van Lear, D. H., Carroll, W. D., Kapeluck, P. R. & Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 211, 150–165 (2005).Article 

    Google Scholar 
    17.Noss, R. F. & Scott, J. M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation. Vol. 28. (US Department of the Interior, National Biological Service, 1995).18.Folkerts, G. W., Deyrup, M. A. & Sisson, D. C. Arthropods associated with xeric longleaf pine habitats in the southeastern United States: A brief overview. Proc. Tall Timbers Fire Ecol. Conf. 18, 159–191 (1993).
    Google Scholar 
    19.Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R.-M. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335. https://doi.org/10.1007/s10021-011-9512-0 (2012).Article 

    Google Scholar 
    20.Ulyshen, M. D., Horn, S., Pokswinski, S., McHugh, J. V. & Hiers, J. K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 429, 124–132. https://doi.org/10.1016/j.foreco.2018.07.017 (2018).Article 

    Google Scholar 
    21.Hanula, J. L., Ulyshen, M. D. & Wade, D. D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests 3, 317–331 (2012).Article 

    Google Scholar 
    22.Goebel, P. C. et al. Forest Ecosystems of a Lower Gulf Coastal Plain Landscape: Multifactor Classification and Analysis. 47–75. (2001).23.Ulyshen, M. D., Müller, J. & Seibold, S. Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl. Soil. Ecol. 105, 25–30. https://doi.org/10.1016/j.apsoil.2016.03.017 (2016).Article 

    Google Scholar 
    24.Kirkman, L. K. et al. Productivity and species richness in longleaf pine woodlands: Resource-disturbance influences across an edaphic gradient. Ecology 97, 2259–2271. https://doi.org/10.1002/ecy.1456 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).Article 

    Google Scholar 
    26.R Core Team. R: A Language and Environment for Statistical Computing (Version 3.6.1). http://www.R-project.org. (R Foundation for Statistical Computing, 2019).27.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    28.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    29.Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of paired comparisons. R Package Version 0.1-7. (2015).30.Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9, e101867 (2014).31.Stoklosa, A. M. et al. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl. Ecol. 17, 463–470. https://doi.org/10.1016/j.baae.2016.03.001 (2016).Article 

    Google Scholar 
    32.Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. 84, 375–389 (2009).Article 

    Google Scholar 
    33.Mackensen, J., Bauhus, J. & Webber, E. Decomposition rates of coarse woody debris—A review with particular emphasis on Australian tree species. Aust. J. Bot. 51, 27–37 (2003).Article 

    Google Scholar  More

  • in

    Mathematical model for predicting oxygen concentration in tilapia fish farms

    Dissolved oxygen modelThe dissolved oxygen in this model had a number of interactions to consider. Oxygen consumption through the processes of both respiration and nitrification. On the other hand, the water receives oxygen through water agitation as it is pumped through the system and from the oxygen generator. Oxygen is added to the water by oxygen generator and flow aeration (Fig. 1).Figure 1Dissolved oxygen model.Full size imageThe required oxygen supplementation is a sum of the pervious components as follows:$$ DO_{FR} + DO_{B} + DO_{N} = DO_{sup } + DO_{PF} $$
    (1)
    where DOFR is the dissolved oxygen consumption through fish respiration, g O2 m−3 h−1. DOB is the dissolved oxygen consumption through the biofilter, g O2 m−3 h−1. DON is the dissolved oxygen consumption through nitrification, g O2 m−3 h−1. DOPF is the dissolved oxygen addition through pipe flow, g O2 m−3 h−1. DOsup is the required oxygen supplementation (oxygen generator), g O2 m−3 h−1.The rate of change in DO concentration in fish tank:$$ frac{dDO}{{dt}} = DO_{FR} + DO_{B} + DO_{N} – DO_{PF} $$
    (2)
    where (frac{dDO}{{dt}}) is the rate of change in DO concentration during the time interval, g O2 m−3 h−1. dt is the rate of change in the time interval, hAfter calculating oxygen concentration for each element at each time step, the net oxygen change is then added to or subtracted from the previous time step`s oxygen concentration. DO concentrations can be calculated at any time (t) as:$$ DO_{t} = DO_{t – 1} + left( {frac{dDO}{{dt}} cdot dt} right) $$
    (3)
    where DOt is the DO concentration (g m−3) at time t. DOt−1 is the DO concentration (g m−3) at time t−1.The rate of oxygen consumption through fish respiration can be calculated on water temperature and average fish weight. This calculation is shown in the following equation10:$$ FR = 2014.45 + 2.75W – 165.2T + 0.007W^{2} + 3.93T^{2} – 0.21WT $$
    (4)
    $$ DO_{FR} = frac{FR times SD}{{1000}} $$
    (5)
    where FR is rate of oxygen consumption through fish respiration, mg O2 kg−1 fish. h−1. W is average of individual fish mass, g. T is water temperature, °C. SD is the stocking density of fish, kg m−3.The correlation coefficient for the equation was 0.99. Data used in preparing the equation ranged from 20 to 200 g for fish weight and from 24 to 32 °C.The rate of oxygen consumption through nitrification is calculated in terms of Total Ammonia Nitrogen (TAN) that is converted from ammonia to nitrate. The rate found in the literature is 4.57 g O2 g−1 TAN6.The oxygen consumption in nitrification process can be calculated as11:$$ DO_{N} = 4.57 times K_{NR} times {{{text{Nr}}} mathord{left/ {vphantom {{{text{Nr}}} {text{V}}}} right. kern-nulldelimiterspace} {text{V}}} $$
    (6)
    $$ K_{NR} = 0.1left( {1.08} right)^{{left( {T – 20} right)}} $$
    (7)
    $$ Nr = frac{{0.03 times F_{r} times W times N_{F} }}{24 times 1000} $$
    (8)
    where KNR is the coefficient of nitrification. Nr is the nitrification rate, g TAN h−1. Fr is the feeding ratio, % of body fish day−1. NF is the number of fish. V is the water volume, m3.The feeding ratio can be calculated as the following equation:$$ F_{r} = 17.02 times e^{{left[ {{raise0.7exhbox{${left( {ln W + 1.14} right)^{2} }$} !mathord{left/ {vphantom {{left( {ln W + 1.14} right)^{2} } { – 19.52}}}right.kern-nulldelimiterspace} !lower0.7exhbox{${ – 19.52}$}}} right]}} $$
    (9)
    The bacteria in the biofilter are a second source of oxygen consumption. Lawson explains that the biofilter oxygen demand is approximated 2.3 times the BOD5 production rate of fish6. The oxygen consumption of the biofilter is calculated using following equation:$$ DO_{B} = frac{{(2.3)left( {BOD_{5} } right)left( {W_{n} } right)}}{{left( V right)left( {24} right)left( {1000} right)}} $$
    (10)
    where BOD5 is average unfiltered BOD5 excretion rate, 2160 mg O2 kg−1 fish day−1. Wn is biomass, kg fish.The water pumping cycle was a source of oxygen addition to the system. The amount of oxygen addition through the water pumping cycle was calculated on an hourly basis. The method of calculating aeration from a pipe is detailed by12:$$ DO_{PF} = frac{PC times f times E times OTR}{V} $$
    (11)
    where PC is pump cycle length, h. f is pumping frequency, h−1. E is efficiency, %. OTR is oxygen transfer rate, g O2 h−1.This model sums the DOFR, DOB, DON, and DOPF to determine the supplemental DO demand in kg h−1. This number can be used to estimate the oxygen consumption if pure oxygen transfers system is used.Fish growth modelFish growth is affected by environmental and physical factors, such as water temperature, dissolved oxygen, unionized ammonia, photoperiod, fish stocking density, food availability, and food quality.In order to calculate the fish growth rate (g day−1) for individual fish, the following model was used13 as it includes the main environmental factors influencing fish growth. These factors are temperature, dissolved oxygen and unionized ammonia.$$ FGR = left( {0.2919 , tau , kappa , delta , varphi , h , f , W^{m} } right) – K.W^{n} $$
    (12)
    Where FGR is the fish growth rate, g day−1. τ is the temperature factor (0  > τ  к  δ  φ  ƒ  More

  • in

    Global controls on phosphatization of fossils during the toarcian oceanic anoxic event

    1.Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 34–39 (1970).2.Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M. Exceptional Fossil Preservation. A Unique View on the Evolution of Marine Life. (2002).3.Schiffbauer, J. D. & Laflamme, M. Lagerstätten through time: A collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27, 275–278 (2012).ADS 

    Google Scholar 
    4.Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Ann. Rev. Earth Planet. Sci. 31, 275–301 (2003).ADS 
    CAS 

    Google Scholar 
    5.Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).ADS 

    Google Scholar 
    6.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 

    Google Scholar 
    7.Ansorge, J. Insects from the Lower Toarcian of Middle Europe and England. Acta Zool. Crac. 46, 291–310 (2003).
    Google Scholar 
    8.Klug, C., Riegraf, W. & Lehmann, J. Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55, 1307–1331 (2012).
    Google Scholar 
    9.Martindale, R. C., Them, T. R., Gill, B. C., Marroquín, S. M. & Knoll, A. H. A new Early Jurassic (ca183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada. Geol. 45, 255–258 (2017).ADS 

    Google Scholar 
    10.Williams, M., Benton, M. J. & Ross, A. The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life. J. Geol. Soc. 172, 683–692 (2015).ADS 

    Google Scholar 
    11.Feldmann, R. M., Villamil, T. & Kauffman, E. G. Decapod and stomatopod crustaceans from mass mortality Lagerstatten: Turonian (Cretaceous) of Colombia. J. Paleontol. 73, 91–101 (1999).
    Google Scholar 
    12.Martill, D. M. et al. A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco. Cretac. Res. 32, 433–446 (2011).
    Google Scholar 
    13.Fuchs, D., Ifrim, C. & Stinnesbeck, W. A new Palaeoctopus (Cephalopoda: Coleoidea) from the Late Cretaceous of Vallecillo, north-eastern Mexico, and implications for the evolution of Octopoda. Palaeontology 51, 1129–1139 (2008).
    Google Scholar 
    14.Ifrim, C., Stinnesbeck, W. & Frey, E. Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 245, 71–81 (2007).
    Google Scholar 
    15.Schmid-Röhl, A., Röhl, H. J., Oschmann, W., Frimmel, A. & Schwark, L. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control. Geobios 35, 13–20 (2002).
    Google Scholar 
    16.Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 27–52 (2001).
    Google Scholar 
    17.Allison, P. A. The role of anoxia in the decay and mineralization of proteinaceous macro- fossils. Paleobiology 14, 139–154 (1988).
    Google Scholar 
    18.Muscente, A. D., Martindale, R. C., Schiffbauer, J. D., Creighton, A. L. & Bogan, B. A. Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya Ha Tinda (Alberta, Canada) and its significance for exceptional fossil preservation during oceanic anoxic events. Palaios 34, 514–541 (2019).ADS 

    Google Scholar 
    19.Little, C. T. S. & Benton, M. J. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–498 (1995).ADS 

    Google Scholar 
    20.Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).ADS 
    CAS 

    Google Scholar 
    21.Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    22.Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, 1–15 (2012).
    Google Scholar 
    23.Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212, 307–320 (2003).ADS 
    CAS 

    Google Scholar 
    24.Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).ADS 
    CAS 

    Google Scholar 
    25.Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).ADS 
    CAS 

    Google Scholar 
    26.Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, (2010).27.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).
    Google Scholar 
    28.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction: a North American perspective. Geol. Soc. Am. Spec. Papers 505, 225–243 (2014).
    Google Scholar 
    29.Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl. Acad. Sci. U.S.A. 115, 6596–6601 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Seilacher, A. Posidonia Shales (Toarcian, S. Germany): Stagnant basin model revalidated. in Palaeontology, Essential of Historical Geology (ed. Gallitelli, Motanaro, E.) 279–298 (1982).31.Vincent, P. A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. J. Vertebr. Paleontol. 31, 340–351 (2011).
    Google Scholar 
    32.Littke, R., Leythaeuser, D., Rullkötter, J. & Baker, D. R. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. Geol. Soc. Spec. Pub. 58, 311–333 (1991).
    Google Scholar 
    33.Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297–307 (2007).
    Google Scholar 
    34.Boomer, I. et al. The biostratigraphy of the Upper Pliensbachian-Toarcian (Lower Jurassic) sequence at Ilminster, Somerset. J. Micropalaeontol. 28, 67–85 (2009).
    Google Scholar 
    35.Boomer, I. et al. Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate-clastic sequence from Somerset, UK. Geological Society, London, Special Publications (2021).36.Moore, C. On the Middle and Upper Lias of the South West of England. Proc. Somerset Archaeol. Nat. Hist. Soc. 13, 19–244 (1866).
    Google Scholar 
    37.Rayner, D. H. The structure of certain Jurassic holostean fishes with special reference to their neurocrania. Philos. Trans. R. Soc. Lond. B Biol. Sci. 233, 287–345 (1948).ADS 

    Google Scholar 
    38.Patterson, C. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 269, 275–579 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    39.McGowan, C. Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia: Ichthyosauria). J. Paleontol. 52, 1155–1162 (1978).
    Google Scholar 
    40.Duffin, C. Pelagosaurus (Mesosuchia, Crocodilia) from the English Toarcian (Lower Jurassic). Neues Jb. Geol. Paläontol. Monat. 1979, 475–485 (1979).
    Google Scholar 
    41.Woodward, A. S. Notes on the collection of fossil fishes from the Upper Lias of Ilminster in the Bath Museum. Proc. Bath Nat. Hist. Antiqu. Field Club 8, 233–242 (1897).
    Google Scholar 
    42.Pierce, S. E. & Benton, M. J. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. J. Vertebr. Paleontol. 26, 621–635 (2006).
    Google Scholar 
    43.Caine, H. & Benton, M. J. Ichthyosauria from the Upper Lias of Strawberry Bank, England. Palaeontology 54, 1069–1093 (2011).
    Google Scholar 
    44.Marek, R. D., Moon, B. C., Williams, M. & Benton, M. J. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58, 723–742 (2015).
    Google Scholar 
    45.Urlichs, M. The Lower Jurassic in southwestern Germany. Stuttgarter Beitrage zur Naturkunde series b Number 24, 1–45 (1977).
    Google Scholar 
    46.Riegraf, W., Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). (1984).47.Hauff, B. Untersuchungen der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica 64, 1–42 (1921).
    Google Scholar 
    48.Röhl, H.-J., Schmid-Röhl, A. Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. in The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences: (ed. Harris, N.) 165–189 (Society for Sedimentary Geology Special Publications 82, 2005).49.Parrish, J. T. Climate of the supercontinent Pangaea. J. Geol. 101, 215–233 (1993).ADS 

    Google Scholar 
    50.Hall, R. L. New, biostratigraphically significant ammonities from the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 43, 555–570 (2006).ADS 

    Google Scholar 
    51.Hall, R. L., McNicoll, V., Grocke, D. R., Craig, J. & Johnston, K. Integrated stratigraphy of the lower and middle Fernie Formation in Alberta and British Columbia, Western Canada. Riv. Ital. Paleontol. Stratigr. 110, 61–68 (2004).
    Google Scholar 
    52.Them, T. R. et al. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet. Sci. Lett. 459, 118–126 (2017).ADS 
    CAS 

    Google Scholar 
    53.Hall, R.L., Poulton, T.P., and Monger, J. W. H. Field Trip A1: Calgary–Vancouver. in Field Guide for the Fifth International Symposium on the Jurassic System (ed. Smith, P. L.) 29–61 (International Union of Geological Sciences Subcommission on Jurassic Stratigraphy, 1998).54.Hall, R. L. New lower jurassic ammonite faunas from the fernie formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 24, 1688–1704 (1987).ADS 

    Google Scholar 
    55.Stronach, N. J. Depositional environments and cycles in the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. Soc. Pet. Geol. Memoir 9, 43–67 (1984).
    Google Scholar 
    56.Maxwell, E. E. & Martindale, R. C. New Saurorhynchus (Actinopterygii: Saurichthyidae) material from the Early Jurassic of Alberta, Canada. Can. J. Earth Sci. 54, 714–719 (2017).ADS 

    Google Scholar 
    57.Hall, R. L. Seirocrinus subangularis (Miller, 1821), a Pliensbachian (Lower Jurassic) crinoid from the Fernie Formation, Alberta, Canada. J. Paleontol. 65, 300–307 (1991).
    Google Scholar 
    58.Feldman, R. M. & Copeland, M. J. A new species of erymid lobster from Lower Jurassic strata (Sinemurian/Pliensbachian), Fernie Formation, southwestern Alberta. Geol. Surv. Can. Bull. 379, 93–101 (1988).
    Google Scholar 
    59.Schweigert, G., Garassino, A., Hall, R. L., Hauff, R. B. & Karasawa, H. The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) from the Lower Jurassic. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 332, 1–43 (2003).
    Google Scholar 
    60.Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120 (2017).
    Google Scholar 
    61.Hall, R. L. Paraplesioteuthis hastata (Munster), the first teuthid squid recorded from the Jurassic of North America. J. Paleontol. 59, 870–874 (1985).
    Google Scholar 
    62.Marroquín, S. M., Martindale, R. C. & Fuchs, D. New records of the late Pliensbachian to early Toarcian (Early Jurassic) gladius-bearing coleoid cephalopods from the Ya Ha Tinda Lagerstätte, Canada. Papers Palaeontol. 4, 245–276 (2018).
    Google Scholar 
    63.Muscente, A. D. & Xiao, S. Resolving three-dimensional and subsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (BSE-SEM). Palaios 30, 462–481 (2015).ADS 

    Google Scholar 
    64.Lindgren, J. et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–365 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Seilacher, A., Andalib, F., Dietl, G. & Gocht, H. Preservational history of compressed Jurassic ammonites from Southern Germany. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 152, 307–356 (1976).
    Google Scholar 
    66.Them, T. R. et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 7, 1–10 (2017).CAS 

    Google Scholar 
    67.Szpak, P. Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).
    Google Scholar 
    68.Kunkel, J. G., Nagel, W. & Jercinovic, M. J. Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 515–526 (2012).
    Google Scholar 
    69.Doguzhaeva, L. A. & Mutvei, H. Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Rev. Paleobiol. 22, 877–894 (2003).
    Google Scholar 
    70.Glass, K. et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. U.S.A. 109, 10218–10223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schiffbauer, J. D., Wallace, A. F., Broce, J. & Xiao, S. Exceptional fossil conservation through phosphatization. The Paleontol. Soc. Papers 20, 59–82 (2014).
    Google Scholar 
    72.Muscente, A. D., Hawkins, A. D. & Xiao, S. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434, 46–62 (2015).
    Google Scholar 
    73.Glenn, C. R. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol. Helv. 87, 747–788 (1994).
    Google Scholar 
    74.Arning, E. T., Birgel, D., Brunner, B. & Peckmann, J. Bacterial formation of phosphatic laminites off Peru. Geobiology 7, 295–307 (2009).CAS 
    PubMed 

    Google Scholar 
    75.Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 39–51 (2009).
    Google Scholar 
    76.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth-Sci. Rev. 198, 102932 (2019).CAS 

    Google Scholar  More

  • in

    Ontogenetic shifts from social to experiential learning drive avian migration timing

    1.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    2.Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    3.Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).PubMed 

    Google Scholar 
    4.Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).
    Google Scholar 
    5.Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).
    Google Scholar 
    6.Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).
    Google Scholar 
    9.Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).PubMed 

    Google Scholar 
    10.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).MathSciNet 

    Google Scholar 
    11.Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).
    Google Scholar 
    14.Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).CAS 
    PubMed 

    Google Scholar 
    16.French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).17.Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).
    Google Scholar 
    18.Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).PubMed 

    Google Scholar 
    19.Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 

    Google Scholar 
    20.Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).
    Google Scholar 
    21.Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).
    Google Scholar 
    22.Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).
    Google Scholar 
    23.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).ADS 

    Google Scholar 
    24.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    25.Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).
    Google Scholar 
    27.Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Google Scholar 
    30.Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    32.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    33.Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).
    Google Scholar 
    34.Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    36.Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).
    Google Scholar 
    37.Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).
    Google Scholar 
    40.Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
    Google Scholar 
    41.Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).
    Google Scholar 
    42.Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).
    Google Scholar 
    43.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).PubMed 

    Google Scholar 
    44.Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    45.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).46.Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).
    Google Scholar 
    47.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    48.Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).
    Google Scholar 
    49.“R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).50.Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).51.Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021). More

  • in

    Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata

    Study speciesArabidopsis lyrata subsp. lyrata (Brassicaceae) is a small, insect-pollinated, short-lived perennial native to the Great Lakes region of North America. It grows in relatively dry habitats with porous soils, such as sand dunes and rocky outcrops (Mable et al. 2005). Like many other Brassicaceae, this plant is usually characterized by sporophytic SI (Mable et al. 2003) and thus obligately outcrossing, although hand-pollinations have indicated that SC individuals occur at low frequencies in otherwise SI populations (Mable et al. 2005). A few populations consist of only SC plants and are characterized by a mating system with high selfing rates (Foxe et al. 2010) and shorter-life spans (Gorman et al. 2020b). Evidence suggests that there have been at least two relatively recent ( More

  • in

    Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism

    1.Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol Ecol. 2020;29:1300–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.PubMed 

    Google Scholar 
    3.Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.CAS 
    PubMed 

    Google Scholar 
    4.Weiß M, Waller F, Zuccaro A, Selosse MA. Sebacinales-one thousand and one interactions with land plants. New Phytol. 2016;211:20–40.PubMed 

    Google Scholar 
    5.Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep. 2018;8:6321.PubMed 
    PubMed Central 

    Google Scholar 
    6.Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–29.CAS 
    PubMed 

    Google Scholar 
    7.Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21:51–66.
    Google Scholar 
    8.Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.
    Google Scholar 
    9.Miller JD, Sumarah MW, Adams GW. Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol. 2008;34:362–8.CAS 
    PubMed 

    Google Scholar 
    10.White JF Jr, Torres MS. Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant. 2010;138:440–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol. 2014;28:356–63.
    Google Scholar 
    12.Carroll G. The foraging ascomycete, in: Abstracts of the 16th International Botanical Congress. St Louis, Missouri, USA, 1999.13.Müller MM, Valjakka R, Suokko A, Hantula J. Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol. 2001;10:1801–10.PubMed 

    Google Scholar 
    14.Thomas DC, Vandegrift R, Ludden A, Carroll GC, Roy BA. Spatial ecology of the fungal genus Xylaria in a tropical cloud forest. Biotropica. 2016;48:381–93.
    Google Scholar 
    15.Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    16.Oono R, Lutzoni F, Arnold AE, Kaye L, U’Ren JM, May G, et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot. 2014;101:1362–74.PubMed 

    Google Scholar 
    17.Shao S, Jin Z. In Species Diversity and Extinction (ed. Tepper, GH) Ch. 15. Nova Science Publishers. 2010.18.Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG. From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011;115:197–213.PubMed 

    Google Scholar 
    19.Yuan ZL, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2014;56:205–13.
    Google Scholar 
    20.Sieber T. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89.
    Google Scholar 
    21.Levis NA, Martin RA, O’Donnell KA, Pfennig DW. Intraspecific adaptive radiation: competition, ecological opportunity, and phenotypic diversification within species. Evolution. 2017;71:2496–509.PubMed 

    Google Scholar 
    22.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.CAS 
    PubMed 

    Google Scholar 
    23.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495.CAS 
    PubMed 

    Google Scholar 
    24.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Blin K, Wolf T, Chevrette MG, Lu XW, Schwalen CJ, Kautsar SA, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:W36–W41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 

    Google Scholar 
    27.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 

    Google Scholar 
    29.Enright AJ, Dongen SV, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol. 2013;30:1987–97.CAS 
    PubMed 

    Google Scholar 
    31.Walkowiak S, Rowland O, Rodrigue N, Subramaniam R. Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics. 2016;17:1014.PubMed 
    PubMed Central 

    Google Scholar 
    32.Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.PubMed 
    PubMed Central 

    Google Scholar 
    33.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    34.Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1–11.10.33.
    Google Scholar 
    35.Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hutter S, Vilella AJ, Rozas J. Genome-wide DNA polymorphism analyses using VariScan. BMC Bioinform. 2006;7:409.
    Google Scholar 
    38.Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, et al. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet. 2019;15:e1008223.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CAS 
    PubMed 

    Google Scholar 
    40.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.PubMed 

    Google Scholar 
    41.Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, et al. Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: is preadaptation a requirement? bioRxiv. 2021. https://doi.org/10.1101/2021.02.23.432530.42.Wey T, Schlegel M, Stroheker S, Gross A. MAT-gene structure and mating behavior of Hymenoscyphus fraxineus and Hymenoscyphus albidus. Fungal Genet Biol. 2016;87:54–63.CAS 
    PubMed 

    Google Scholar 
    43.Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–62.
    Google Scholar 
    44.Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Zuccaro A, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci USA. 2017;114:E9403–E9412.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Gazis R, Kuo A, Riley R, LaButti K, Lipzen A, Lin J, et al. The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol. 2016;120:26–42.CAS 
    PubMed 

    Google Scholar 
    46.Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–7.PubMed 

    Google Scholar 
    47.Wrzosek M, Ruszkiewicz-Michalska M, Sikora K, Damszel M, Sierota Z. The plasticity of fungal interactions. Mycol Prog. 2017;16:101–8.
    Google Scholar 
    48.Parrent JL, James TY, Vasaitis R, Taylor AF. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol. 2009;9:148.PubMed 
    PubMed Central 

    Google Scholar 
    49.Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–21.CAS 
    PubMed 

    Google Scholar 
    50.Mesny F, Miyauchi S, Thiergart T, Pickel B, Atanasova L, Karlsson M, et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat Commun. 2021;12:7227.CAS 
    PubMed 

    Google Scholar 
    51.Schulz B, Sucker J, Aust HJ. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–15.CAS 

    Google Scholar 
    52.Tanney JB, McMullin DR, Miller JD. Toxigenic Foliar Endophytes from the Acadian Forest. In: Pirttilä A, Frank A (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. 2018;343–81.53.Yue Q, Li Y, Chen L, Zhang X, Liu X, An Z, et al. Genomics-driven discovery of a novel self-resistance mechanism in the echinocandin-producing fungus Pezicula radicicola. Environ Microbiol. 2018;20:3154–67.CAS 
    PubMed 

    Google Scholar 
    54.Rogers RL, Grizzard SL, Titus-McQuillan JE, Bockrath K, Patel S, Wares JP, et al. Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa. Mol Ecol. 2021;30:1155–73.CAS 
    PubMed 

    Google Scholar 
    55.Mäkinen M, Kuuskeri J, Laine P, Smolander OP, Kovalchuk A, Zeng Z, et al. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics. 2019;20:430.PubMed 
    PubMed Central 

    Google Scholar 
    56.Yang Y, Liu X, Cai J, Chen Y, Li B, Guo Z, et al. Genomic characteristics and comparative genomics analysis of the endophytic fungus Sarocladium brachiariae. BMC Genomics. 2019;20:782.PubMed 
    PubMed Central 

    Google Scholar 
    57.Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, et al. Secondary metabolism drives ecological breadth in the Xylariaceae. bioRxiv. 2021. https://doi.org/10.1101/2021.06.01.446356.58.Matsuda Y, Yamakawa M, Inaba T, Obase K, Ito S. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients. Mycoscience. 2017;58:369–77.
    Google Scholar 
    59.Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, et al. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol Spectr. 2017;5:1–21.CAS 

    Google Scholar 
    60.Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018;220:1161–71.CAS 
    PubMed 

    Google Scholar 
    61.McCutcheon TL, Carroll GC, Schwab S. Genotypic diversity in populations of a fungal endophyte from Douglas Fir. Mycologia. 1993;85:180–6.
    Google Scholar 
    62.Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53.CAS 

    Google Scholar 
    63.Müller MM, Valjakka R, Hantula J. Genetic diversity of Lophodermium piceae in South Finland. For Pathol. 2007;37:329–37.
    Google Scholar 
    64.Morgenstern K, Polster J-U, Krabel D. Genetic variation between and within two populations of Rhabdocline pseudotsugae in Germany. Can J Res. 2016;46:716–24.CAS 

    Google Scholar 
    65.Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:996.PubMed 
    PubMed Central 

    Google Scholar 
    66.Gasca-Pineda J, Velez P, Hosoya T. Phylogeography of post-Pleistocene population expansion in Dasyscyphella longistipitata (Leotiomycetes, Helotiales), an endemic fungal symbiont of Fagus crenata in Japan. MycoKeys. 2020;65:1–24.PubMed 
    PubMed Central 

    Google Scholar 
    67.Groenewald M, Linde CC, Groenewald JZ, Crous PW. Indirect evidence for sexual reproduction in Cercospora beticola populations from sugar beet. Plant Pathol. 2008;57:25–32.CAS 

    Google Scholar 
    68.Nordborg M, Charlesworth B, Charlesworth D. Increased levels of polymorphism surrounding selectively maintained sites in highly selfing species. Proc R Soc B. 1996;263:1033–9.
    Google Scholar 
    69.Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, et al. Long-term balancing selection drives evolution of immunity genes in Capsella. Elife. 2019;8:e43606.PubMed 
    PubMed Central 

    Google Scholar 
    70.Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol. 2007;16:4401–17.CAS 
    PubMed 

    Google Scholar 
    71.Drott MT, Debenport T, Higgins SA, Buckley DH, Milgroom MG. Fitness cost of aflatoxin production in Aspergillus flavus when competing with soil microbes could maintain balancing selection. mBio. 2019;10:e02782–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Chen F, Goodwin PH, Khan A, Hsiang T. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can J Microbiol. 2002;48:427–36.CAS 
    PubMed 

    Google Scholar  More

  • in

    Direct pesticide exposure of insects in nature conservation areas in Germany

    Pesticide residuesInsects were collected in Malaise traps during two-week intervals, where pesticide residues from insect bodies were dissolved in the ethanol that was used to preserve the collected samples. Additionally, particles of plants, pollen, nectar or honeydew adhering to the insect bodies can be carriers of chemical pollution. Detected pesticide residues can therefore come from the insects and potentially attached particles. Under natural conditions of sunlight and warm temperatures, chemical stability of pesticide residues in the ethanol solution may have been affected by hydrolysis, for example, which could have caused the degradation of residues during the two-week collection intervals. Only flying insects that are alive can get into the Malaise traps, and therefore pesticide residues in the collected samples are assumed to represent sublethal levels to all trapped species. Additionally, insect collection was performed over an entire season and did not consider explicit spraying events. Therefore, the sampling we performed did not necessarily record maximum exposure levels that could represent lethal levels for individual species and substances. Hence, the quantification of pesticide amounts cannot be used for risk calculations. Instead we evaluate the presence of residues of CUPs on insects. Since detection is possible at low concentrations (see SOM Table A2) we obtained information on trace concentrations of the pesticide residues that insects were exposed to. It is safe to assume that the pesticide loads of insects were especially high following spraying events, and for individuals that were affected and consequently unable to fly. These insects were then not sampled in the Malaise traps.Of the 92 target common CUPs, 47 were detected in the insect samples from 21 nature conservation areas from two sampling dates in May and August 2020: 13 herbicides, 28 fungicides and 6 insecticides. Additionally, metabolites of fipronil, an insecticide registered for biocidal use in the EU, were recorded at three locations. At the 21 sites, insects in the conservation areas were exposed to 16.7 pesticides on average, ranging from 7 to 27 substances. More fungicides than herbicides were recorded and, on average, insects were exposed to less than two insecticides (Table 1). This may in part reflect the application in arable crops where more fungicides than herbicides are applied and insecticides are used less frequently. On the other hand, as insecticides affect insects directly due to their high acute toxicity, exposure to insecticides results in mortality or sublethal effects that impair mobility, leading to an underestimation of insecticide residues in our samples.Table 1 Number of CUP residues detected at 21 nature conservation areas across Germany and the resulting minimal, maximal and mean number of pesticide substances.Full size tableInsects at all 21 sites were exposed to residues of the herbicides metolachlor-S, prosulfocarb and terbuthylazine, and the fungicides azoxystrobin and fluopyram (Table 2). The presence of the six frequently detected herbicides can be explained by the high volume sold in 2019 (see SOM Table A3). They are among the 25 highest-ranking pesticides in terms of selling volume in Germany34. The same is true for the fungicide azoxystrobin. All other seven regularly detected fungicides were sold at lower volumes and their presence in the insect samples could be related to the high persistence of these fungicides, with soil half-lives reaching 500 d (bixafen), 484 d (boscalid) and 309 d (fluopyram). Only kresoxim-methyl, present in 10 sites, is not highly persistent in soil but has an affinity for the waxy plant cuticle, where it binds and accumulates35,36.Table 2 CUP residues frequently recorded at the 21 sites. Only substances that were recorded in ≥ 10 sites are listed.Full size tableThe neonicotinoid insecticide thiacloprid was recorded on insects in 16 of the 21 nature conservation areas. Thiacloprid was banned in the EU for use in field applications from August 2020 onwards, however, the end of use (grace period) was set to 3rd February, 202137. The high incidence of thiacloprid in our samples at many sites across Germany may therefore also reflect the last opportunity for farmers to use their remaining stocks. A ban could thus result in a greater impact to the ecosystem if parallel applications take place on a large scale. Hence, for potent pesticides which are banned from the market, it seems advisable to stop granting grace periods and instead destroy remaining stock rather than dispersing them into the environment despite knowledge of their high environmental risks.On average, in spring (May) residues of 9.6 and in summer (August) 9.3 CUPs were recorded in individual ethanol samples of the three trapping locations in the conservation areas. The minimum number of pesticide residues of 3 (May, site Mülhauser Halde) and 2 (August, Mittelberg) and the maximum of 16 (May, Bottendorfer Hügel) and 18 (August, Wisseler Dünen) were all from samples closer to the centre of the nature protection area, furthest away from adjacent agricultural fields.Seasonality of CUP exposureThe total number of CUP residues recorded on insects was similar for the two sampling intervals with 32 substances in May and 35 in August. However, a higher number of herbicide residues was recorded in May (13) compared to August (9), whereas for fungicides the reverse was the case [August (23), May (14)]. The number of detected insecticide residues was similar, with three and five substances recorded in May and August, respectively. This resulted in a different set of pesticide residue mixtures, driven by seasonality (Fig. 1). Mixtures in May, dominated by herbicides, were more similar to each other than the August mixtures, which contained more fungicides. The extreme positions of the NMDS analysis in August with Brauselay and Mittelberg are driven by the number of fungicide residues recorded. Brauselay is the only site where vineyards bordered the study area. Wine growing in Germany requires frequent fungicide applications.Figure 1CUP mixtures in May (green) and August (red) analysed with NMDS. The position of each location was determined by the composition of pesticide residues found in the ethanol samples. The closer data points are located in the ordination space, the more similar are their composition of pesticides. For abbreviations see Table 1.Full size imageOn the substance level, residues of the herbicides prosulfocarb, metolachlor-S, dimethenamid-P were recorded in more than half of the sites at both sampling intervals, whereas terbuthylazine was frequently present in May but not in August, and flufenacet was detected more frequently later in the year. Fungicide residues of fluopyram, azoxystrobin and boscalid were common in both sampling intervals, but pyraclostrobin, bixafen and dimoxystrobin were characteristic for May samples and fluazinam and kresoxim-methyl for the August samples (SOM Table A4). Although more residues of fungicides were recorded in August, this did not result in an increase in the number of fungicides that are found at many sites. Thirteen out of the 23 fungicides that were recorded in August were detected comparatively sporadic in samples from one to three sites. For insecticides, only thiacloprid was frequently noted, and the remaining substances acetamiprid, dimethoate, tebufenozide, and indoxacarb were found in May, whereas chlorantraniliprole and indoxacarb were recorded in August. The observed patterns reflect the agricultural practice of using herbicides in spring and early summer to establish crops such as cereals, oilseed rape and maize, and fungicides later in the year to control fungal diseases that increase with warmer temperatures.In addition to pesticide applications, seasonality has a direct effect on insect communities that change in composition from spring to autumn38,39,40. Because of shifts in insect community composition and pesticide application schemes, the mixture of pesticide residues present in insect samples changes throughout the year. Thus, it is likely that a finer time resolution than the selected two sampling intervals could reveal additional pesticide residues for the exposure of insects in conservation areas in the agricultural landscape.Influence of surrounding agricultural production areaOur data demonstrate that insects collected with Malaise traps in the nature conservation areas are exposed to pesticides applied in the surrounding agricultural landscape, where various crops are grown and are treated with a variety of pesticides. As the flight range of aerial insects fluctuates from less than one hundred meters to kilometres (for examples from the literature see SOM Table A5), it is not only the neighbouring arable field that may act as a source of contamination. A correlation analysis of the area of arable fields in the surrounding landscape (buffered from 500 to 3500 m) and number of pesticide residues recorded in the insect-trapping ethanol revealed a best fit for a radius of 2000 m around the center of the trapping positions in the conservation area (Fig. 2, all 21 sites, Pearson correlation coefficient = 0.48, p = 0.029). The site Brauselay differed from all nature conservation areas as vineyards were bordering the nature conservation area. Wine growing is a permanent crop characterised by high fungicide use on a comparable small area. When removing Brauselay from the analysis significance increased further (Pearson correlation coefficient = 0.60, p = 0.005; for further details, see SOM Fig. A2 and Table A6). Hence, pesticide residues on insects collected in the nature conservation areas are not only a result of applications on crops in the direct vicinity, but also from pesticide use in a larger area within the agricultural landscape around the conservation areas.Figure 2The number of CUP residues per site detected in insect/ethanol samples increased with the area of agriculture in a radius of 2000 m around the trapping positions (Pearson correlation coefficient = 0.48, p = 0.029).Full size imageBased on the correlation between pesticides and surrounding arable land, a generalized linear mixed model (GLMM) was applied to model the number of detected pesticide residues as a function of landscape factors (amount of agricultural production area, amount of nature conservation area and amount of FFH area in a 2000 m radius) and biomass of insects collected by the Malaise traps, with the study sites included as random effects (Table 3). Neither the area of the nature conservation area nor the FFH area nor biomass of collected insects was related to the number of pesticides recorded in ethanol samples. Only the agricultural production area in a 2000 m vicinity had a significant (p  More