More stories

  • in

    Environmental drivers of plant form and function

    1.Funk, J. L. et al. Biol. Rev. 92, 1156–1173 (2017).Article 

    Google Scholar 
    2.Hutchinson, G. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    3.Díaz, S. et al. Nature 529, 1–17 (2015).
    Google Scholar 
    4.Westoby, M. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    6.Thomas, H. J. D. et al. Nat. Commun. 11, 1351 (2020).CAS 
    Article 

    Google Scholar 
    7.Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    8.Blonder, B. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    9.Bjorkman, A. D. et al. Global Ecol. Biogeogr. 27, 1402–1411 (2018).Article 

    Google Scholar 
    10.Bjorkman, A. D. et al. Nature 562, 57–62 (2018).CAS 
    Article 

    Google Scholar 
    11.Cornwell, W. K. & Ackerly, D. D. Ecol. Monogr. 79, 109–126 (2009).Article 

    Google Scholar 
    12.Dong, N. et al. New Phytol. 228, 82–94 (2020).CAS 
    Article 

    Google Scholar 
    13.Harrison, S., Damschen, E., Fernandez-Going, B., Eskelinen, A. & Copeland, S. Ann. Bot. 116, 1017–1022 (2015).Article 

    Google Scholar 
    14.Yang, J., Cao, M. & Swenson, N. G. Trends Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    15.Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. New Phytol. 193, 673–682 (2012).Article 

    Google Scholar 
    16.Bardgett, R. D., Mommer, L. & De Vries, F. T. Trends Ecol. Evol. 29, 692–699 (2014).Article 

    Google Scholar 
    17.Messier, J., McGill, B. J. & Lechowicz, M. J. Ecol. Lett. 13, 838–848 (2010).Article 

    Google Scholar 
    18.Arrouays, D. et al. Adv. Agron. 125, 93–134 (2014).Article 

    Google Scholar 
    19.Diaz, S. et al. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    20.Suding, K. N. et al. Global Change Biol. 14, 1125–1140 (2008).Article 

    Google Scholar  More

  • in

    Natural selection for imprecise vertical transmission in host–microbiota systems

    1.Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).PubMed 

    Google Scholar 
    6.Matsuoka, K. & Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37, 47–55 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Berg, M. & Koskella, B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28, 2487–2492 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015).10.Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & William, W. J. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Camarinha-Silva, A. et al. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics 206, 1637–1644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 14, e1007580 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).15.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 

    Google Scholar 
    17.Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 

    Google Scholar 
    18.Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).
    Google Scholar 
    19.Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68, 389–396 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).CAS 
    PubMed 

    Google Scholar 
    21.Jahnes, B. C., Herrmann, M. & Sabree, Z. L. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7, e6914 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    22.Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8, e79061 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    24.Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).25.Björk, J. R., Diez-Vives, C., Astudillo-Garcia, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    26.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Phil. Trans. R. Soc. B 374, 20190068 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Metcalf, C. J. E., Henry, L. P., Rebolleda-Gomez, M. & Koskella, B. Why evolve reliance on the microbiome for timing of ontogeny?. mBio 10, e01496-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–23 (2020).PubMed 

    Google Scholar 
    30.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315 (1987).CAS 
    PubMed 

    Google Scholar 
    31.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).CAS 
    PubMed 

    Google Scholar 
    32.Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).
    Google Scholar 
    33.Halley, J. M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996).CAS 
    PubMed 

    Google Scholar 
    34.Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).CAS 
    PubMed 

    Google Scholar 
    35.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    36.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    37.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    38.Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).CAS 
    PubMed 

    Google Scholar 
    40.Zapién-Campos, R., Sieber, M. & Traulsen, A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput. Biol. 16, e1008392 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    41.De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J. & Breeuwer, J. A. J. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc. R. Soc. Lond. B 271, 2171–2178 (2004).
    Google Scholar 
    42.Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. N. Phytol. 135, 575–585 (1997).
    Google Scholar 
    43.Cheney, K. L. & Côté, I. M. Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol. Lett. 1, 162–165 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    44.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    45.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).PubMed 

    Google Scholar 
    48.Ives, A. R. et al. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat. Ecol. Evol. 4, 702–711 (2020).PubMed 

    Google Scholar 
    49.Chen, D.-Q., Montllor, C. B. & Purcell, A. H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol. Exp. Appl. 95, 315–323 (2000).
    Google Scholar 
    50.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    51.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed 

    Google Scholar 
    55.Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation (Sinauer Associates, 2001).56.Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 

    Google Scholar 
    60.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Ibáñez, F., Tonelli, M. L., Muñoz, V., Figueredo, M. S. & Fabra, A. in Endophytes: Biology and Biotechnology (ed. Maheshwari, D.) 25–40 (Springer, 2017).62.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 

    Google Scholar 
    63.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 

    Google Scholar 
    64.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Ravel, C., Michalakis, Y. & Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80, 18–24 (1997).
    Google Scholar 
    67.Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of nontransitive fitness in yeast. eLife 9, e62238 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Clune, J. et al. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput. Biol. 4, e1000187 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    69.King, O. D. & Masel, J. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, X.-D., Lei, H.-X. & Chen, F.-F. Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci. Rep. 9, 4013 (2019).71.Oyserman, B. O. et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11, 3444 (2021).
    Google Scholar 
    72.Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).PubMed 

    Google Scholar 
    73.Osaka, R., Nomura, M., Watada, M. & Kageyama, D. Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr. Microbiol. 57, 335–339 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Gundel, P. E. et al. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb. Ecol. 57, 740 (2009).PubMed 

    Google Scholar 
    75.Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 

    Google Scholar 
    77.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    79.Scheuring, I. & Yu, D. W. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15, 1300–1307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Roughgarden, J. Holobiont evolution: Mathematical model with vertical vs. horizontal microbiome transmission. Phil. Theory Pract. Biol. 12, 002 (2020).81.Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    82.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    83.Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).
    Google Scholar 
    84.Bruijning, M. Code for: Natural selection for imprecise vertical transmission in host-microbiota systems. Zenodo https://doi.org/10.5281/zenodo.5534317 (2021).85.Sauer, C., Dudaczek, D., Hölldobler, B. & Gross, R. Tissue localization of the endosymbiotic bacterium “Candidatus Blochmannia floridanus” in adults and larvae of the carpenter ant Camponotus floridanus. Appl. Environ. Microbiol. 68, 4187–4193 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Brentassi, M. E. et al. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. Protoplasma 254, 1421–1429 (2017).CAS 
    PubMed 

    Google Scholar 
    88.Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).
    Google Scholar 
    89.Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    92.Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    93.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    94.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).CAS 
    PubMed 

    Google Scholar  More

  • in

    Staphylococcus aureus isolates from Eurasian Beavers (Castor fiber) carry a novel phage-borne bicomponent leukocidin related to the Panton-Valentine leukocidin

    Isolates and typingThe isolates characterised as well as strain affiliations, geographic origins and clinical presentations are summarised in Table 1. Autopsy images showing typical aspects of putrid infections in some animals are shown in Fig. 1. The complete microarray hybridisation patterns are provided as Supplemental file 2 and some relevant features will be discussed in the descriptions of the respective strains. While all German isolates yielded hybridisation signals for lukF/S-PV, frequently only weak positive or ambiguous results for the lukS-PV probe were observed. This prompted further investigations, including the detection of PVL by lateral flow assay21 (Table 1) and whole genome sequencing (see below).Table 1 Details of animals, isolates and strains.Full size tableFigure 1Pathological lesions of Eurasian beavers (C. fiber) infected with BVL-positive S. aureus. (A) Severe suppurative necrotizing pneumonia (animal B); (B) severe suppurative pyelonephritis (animal G); (C) caseous lymphadenitis, popliteal lymph node (animal E); (D) urinary bladder with pyuria (animal C).Full size imagePhenotypic and genotypic resistance properties of the S. aureus isolatesAntimicrobial susceptibility testing revealed that all beaver isolates from Germany were susceptible to all antimicrobial agents tested. The distribution of minimal inhibitory concentration (MIC) values and test ranges are displayed in Supplemental File 3a. The phenotypic data corresponded well with microarray data, since none of the corresponding resistance genes was identified. In contrast, two of the Austrian isolates showed macrolide resistance with one of them also being lincosamide resistant. One isolate also exhibited tetracycline resistance. These phenotypes corresponded with the detection of genes erm(A), erm(C) and tet(M), respectively (Supplemental file 2 and 3b).The chromosomal variant of the metallothiol transferase gene fosB was present in all CC1956 isolates. Sequence analysis revealed a frame shift at position 108 creating a stop codon at positions (pos.) 146.0.148 compared to the reference sequence (N315, GenBank BA000018.3 [2,389,328.0.2,389,747]). This resulted in a truncated protein of 48 amino acids (aa) rather than 139 aa as for the original fosB gene product. The mutation was present in all available sequences (i.e., Oxford Nanopore and Illumina of WT19 as well as Illumina of WT63, WT64, WT66, WT67a, WT67b, WT68, WT69, WT70, WT71, WT110 and WT111). While fosB was originally implicated in fosfomycin resistance, it appears to be linked to certain CCs. Indeed, it was also present in the CC8 and CC12 beaver isolates (B2, B3, B4) as well as in the reference sequences of the respective CCs (Supplemental File 2). The fosB gene was absent from the CC49 isolate WT65 and from the CC49 reference sequence of Tager 104, GenBank CP012409.1, as well as from the CC398 isolate B1. Moreover, all sequenced isolates (from animals A to G) harboured a gene designated tet(38), encoding a major facilitator superfamily permease. While this gene was implicated in low-level tetracycline resistance when overexpressed22, its mere presence certainly is not associated with phenotypic tetracycline resistance as it can be found in virtually every S. aureus genome.Biocide susceptibility testing of the CC49/1956 isolates revealed unimodal MIC distributions (Supplemental File 3b), with ranges encompassing not more than three to four dilution steps for each of the biocides (benzalkonium chloride, 0.00003–0.00025%; polyhexanide, 0.000125–0.0005%; chlorhexidine, 0.00006–0.00025% and octenidine, 0.00006–0.00025% with percentages given as mass per volume). The four remaining isolates showed MIC values of 0.0000125–0.00025% for benzalkonium chloride, 0.0005–0.001% for polyhexanide, 0.00006–0.000125% for chlorhexidine, and 0.000125–0.00025% for octenidine.The chromosomal heavy metal resistance markers arsB/R and czrB were detected by hybridisation in all four CC1956 isolates tested as well as in the CC49 isolate. This was confirmed by sequencing. There was no evidence for plasmid- or SCC-borne heavy metal resistance markers.The sequence of the phage-borne leukocidin genes in WT19 and WT65As mentioned above, CC49/CC1956 beaver isolates yielded occasionally ambiguous hybridisation intensities for lukS-PV probes prompting further investigation assuming that the specifically designed oligonucleotides were not able to bind optimally at the target due to mismatches, i.e., allelic variants. Sequencing revealed the presence of distinct alleles of phage-borne leukocidin genes (Figs. 2a/b and 3a/b). The sequences from the two sequenced beaver isolates were identical to each other despite their origin from different prophages in different CCs. In general, the beaver alleles, hitherto referred to as “Beaver Leukocidin” or BVL, lukF/S-BV, appeared to be closer related to the PVL genes from human strains of S. aureus than to those from ruminants and horses (see Figs. 2a/b and 3a/b and the percentages of homologies as provided in Supplemental File 4). There was no evidence for recombination/chimerism in lukF-BV and lukS-BV as mismatches compared to other sequences were evenly distributed across the entire sequences. Sequences of lukF-BV and lukS-BV were also related but clearly distinct from core genomic lukF/S-int of S. intermedius/pseudintermedius.Figure 2(a) Alignment of the lukF-BV sequences, of other phage-borne leukocidin F component sequences from S. aureus and of lukF-int from S. intermedius/pseudintermedius. (b) Alignment of the amino acid sequences of the corresponding lukF gene products.Full size imageFigure 3(a) Alignment of the lukS-BV sequences, of other phage-borne leukocidin S component sequences from S. aureus and of lukS-int from S. intermedius/pseudintermedius. (b) Alignment of the amino acid sequences of the corresponding lukS gene products.Full size image
    lukF/S-BV and the agr locusTwo isolates from one animal, WT110 and WT111 (Table 1), differed in hemolysis on Columbia blood agar and were thus handled separately although array analysis eventually revealed the same strain affiliations. They also differed in BVL production as shown by lateral flow tests. Sequencing using both, Illumina and Oxford nanopore technologies, revealed a substitution from A to T in position 706 of the agrA gene that results in a premature stop codon at position 236 of the agrA gene product (Supplemental File 5) suggesting that agr played a role in the observed phenotype and the regulation of BVL.Core genome and genomic islands of the CC1956 isolate WT19As revealed by array experiments (Supplemental File 1) and confirmed by genome sequencing of WT19, CC1956 isolates presented with agr IV alleles and capsule type 5. They were positive for cna, but they lacked seh and egc enterotoxin genes, ORF CM14 as well as sasG. Leukocidin genes lukX/Y, lukD/E and lukF/S-hlg were present. This is also in accordance with previously sequenced BVL-negative CC1959 isolates (SAMEA3251370, SAMEA3251372, SAMEA3251377, SAMEA3251376, SAMEA3251380; Supplemental File 2).The WT19 genome (Supplemental Files 6a and 6b) harboured two uncharacterised enterotoxin genes (pos. 1,940,148..1,940,900 and pos. 1,939,378..1,940,121). Both were also found in DAR4145 (CC772) where they also formed a genomic island at approximately the same position within the genome (GenBank CP010526.1: RU53_RS09775, pos. 1,968,336..1,969,061 and RU53_RS09780, pos. 1,969,088..1,969,840). One of these two genes (“seu2” = RU53_RS09780) was covered by the second array-based assay23 and it was found in all four isolates tested with this array.Mobile genetic elements in the CC1956 isolate WT19The lukF/S-BV prophage was integrated into the lipase 2 gene (lip2, “geh”, “sal3”, “salip35”, GenBank CP000253.1 [314,326..316,398]), and spanned pos. 322,629 to 365,636. Besides leukocidin genes, it also included genes associated with the different modules of a typical Siphoviridae genome (lysogeny, DNA metabolism, packaging and capsid morphogenesis, tail morphogenesis, host cell lysis24,25; see Supplemental File 7/Fig. 4).Figure 4Schematic representation of the aligned sequences of the lukF/S-BV prophages from WT19 and WT65.Full size imageFurthermore, there was a small pathogenicity island at pos. 869,706 to 884,748 that included pif encoding a phage interference protein, a gene for a small terminase subunit, genes for “putative proteins” as well as a gene (scn2) coding for a paralog of a complement inhibitor SCIN family protein and a gene for a variant of the von Willebrand factor binding protein Vwb (vwb3). Thus, it is considered a staphylococcal pathogenicity island (SaPI) related to the one in S0385, GenBank AM990992.1.Another prophage integrated between rpmF and isdB, pos. 1,107,447 to 1,146,132. A third prophage was located between a truncated nikB and Q5HG37, pos. 1,425,279 to 1,481,870. Finally, there was a forth prophage between Q5HDU4 and sarV (actually interrupting an MFS transporter between those genes), pos. 2,340,832 to 2,386,591. This prophage sequence corresponded to the phage that was detected by nanopore sequencing after induction by Mitomycin C (see below and Supplemental File 8).Phage morphology and sequencing of phages from the CC1956 isolate WT19In three separate preparations, large numbers of phages were observed that were well contrasted with uranyl acetate and with phosphotungstic acid. Phages had elongated capsids. The non-contractile thin tails were straight or slightly curved and ended in a bulb-shaped base plate. Based on these characteristics, they were assigned to the order Caudovirales, family Siphoviridae.Capsids were measured in 40 phages, tails in 34 and base plates in 33 phages. Based on these measurements, two distinct populations could be differentiated (Fig. 5). In one (Fig. 5A), the prolate, distinctly pentagonal capsids averaged 39 ± 5 nm (range 32–46 nm) in diameter and 92 ± 8 nm (range 80–104 nm) in length. Tails were 276 ± 20 nm (range 243–310 nm) long, had a diameter of 11 ± 1 nm (range 10–12 nm) and had a stacked discs appearance. Their baseplates were 16 nm (range 16–31 nm) by 27 nm (range 19–33 nm). The other population (Fig. 5B) had elongated oval capsids with a maximal diameter of 55 ± 2 nm (range 51–60 nm) diameter and 93 ± 5 nm (range 85–100 nm) length. Their tails measured 287 ± 12 nm (range 275–313 nm) in length and 9 ± 1 nm (8–10) in diameter and had a rail-road-track morphology. Dimensions of baseplates were 25 nm (range 21–30 nm) by 29 nm (range 23–39 nm).Figure 5Transmission electron micrograph of two distinct prolate phages resulting from Mitomycin C treatment of S. aureus CC1956 isolate WT19. A, Phage particle with pentagonal 38 nm in diameter capsid and a 12 nm thick tail with stacked disc appearance; B, Two phage particles (1, 2) with oval capsids of 55 nm in diameter and 9 nm thick tails with rail-road-track morphology. The base plate is separated from the tail by a transversal disc (arrow). Negative contrast preparation with uranyl acetate. Bars = 100 nm.Full size imageOxford Nanopore sequencing of one of these phage preparations (Supplemental File 8) yielded just one circular contig with a coverage of 724. Its sequence was identical to that of the forth prophage, between Q5HDU4 and sarV, except for a loss of a single triplet out of a total length of 46,387 nt.Core genome and genomic islands of the CC49 isolate WT65The CC49 isolate carried agr group II alleles and capsule type 5. It was positive for sasG, but lacked seh and egc enterotoxin genes, ORF CM14 and the collagen adhesion gene cna. A truncated copy of the enterotoxin S gene (GenBank CP000046, pos. 2,203,972.0.2,204,196) was found as well as leukocidin genes lukG/H = lukX/Y, lukD/E and lukF/S-hlg. With regard to presence and alleles of chromosomal markers such as MSCRAMM or ssl genes, the genome of WT65 (Supplemental Files 7a and 7b) is closely related to the CC49 reference sequences such as Tager 104, GenBank CP012409.1 (Supplemental File 2).Mobile genetic elements in the CC49 isolate WT65One prophage was integrated into the lip2 gene spanning pos. 311,401 to 354,724. The prophage included the lukF/S-BV genes as well as genes associated with the different modules of a typical Siphoviridae genome (Supplemental File 7/Fig. 4). Sequences corresponding to the lysogeny and replication modules were clearly different compared to the lukF/S-BV-prophage in the CC1956 isolate WT19 while approximately the second half of the two respective prophage sequences (the lower part of the alignment in Fig. 4) were virtually identical in gene content, order and orientation.Other mobile genetic elements (Supplemental File 9a/b) included a small pathogenicity island, pos. 402,133 to 416,237 (between rpsR encoding 30S ribosomal protein S18 and its terminator), that included hypothetical proteins, a gene of a terminase small subunit, vwb3 (encoding a “von Willebrand factor” binding protein) and the scn2 gene (putative paralog of complement inhibitor). Between the genes ktrB and groL, pos. 2,029,208 to 2,042,866, another SaPI was identified that contained additional, slightly different copies of vwb3 and scn2 genes as well as terminase small subunit, integrase and excisionase (xis-AIO21657) genes. Finally, five genes between pos.1,334,169 and 1,339,503 were annotated as phage capsid genes although no other phage-related genes were found in this region.Phage morphology and sequencing of phages from the CC49 isolate WT65Four separate phage preparations were examined. In one of them, few phage-like structures were detected. These findings could not be confirmed in the following preparations. Thus, they were interpreted as artefacts, also given that it was not possible to induce a sufficient amount of phages for Oxford Nanopore sequencing. More

  • in

    The Nature Podcast annual holiday spectacular

    NATURE PODCAST
    22 December 2021

    The Nature Podcast annual holiday spectacular

    Games, seasonal science songs, and Nature’s 10.

    Benjamin Thompson

    &

    Noah Baker

    Benjamin Thompson

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Noah Baker

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Subscribe
    Subscribe

    iTunes
    Google Podcast
    acast
    RSS

    Benjamin Thompson and Noah Baker get festive!

    Your browser does not support the audio element.

    Download MP3

    In this episode:01:12 “Oh powered flight”In the first of our festive songs, We pay tribute to NASA’s Ingenuity craft — which took the first powered flight on another planet earlier this year. Lyrics by Noah Baker and performed by The Simon Langton School choir, directed by Emily Renshaw-Kidd.Scroll to the bottom of the page for the lyrics.Video: Flying a helicopter on Mars: NASA’s IngenuityNews: Lift off! First flight on Mars launches new way to explore worlds07:40 Communicating complex science with common wordsIn this year’s festive challenge, our competitors try to describe some of the biggest science stories of the year, using only the 1,000 most commonly used words in the English language. Find out how they get on …Test your skills communicating complex science with simple words with the Up-Goer Five Text Editor18:04 Alphafold oh AlphafoldOur second song brings some Hanukkah magic to Deep Mind’s protein-solving algorithm Alphafold. Lyrics by Kerri Smith and Noah Baker, arranged and performed by Phil Self.Scroll to the bottom of the page for the lyrics.News: ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures21:01 Nature’s 10Every year, Nature’s 10 highlights some of the people who played key roles in science. We hear about a few of the people who made the 2021 list.Nature’s 10 — Ten people who helped shape science in 2021

    doi: https://doi.org/10.1038/d41586-021-03784-w

    Related Articles

    Nature’s 10: ten people who helped shape science in 2021

    Subjects

    Communication

    SARS-CoV-2

    Planetary science

    Biodiversity

    Latest on:

    Communication

    The science news that shaped 2021: Nature’s picks
    News 14 DEC 21

    Call to join the decentralized science movement
    Correspondence 07 DEC 21

    From the archive
    News & Views 30 NOV 21

    SARS-CoV-2

    Local and systemic responses to SARS-CoV-2 infection in children and adults
    Article 22 DEC 21

    Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta
    Article 22 DEC 21

    Omicron overpowers key COVID antibody treatments in early tests
    News 21 DEC 21

    Planetary science

    On the liquid–liquid phase transition of dense hydrogen
    Matters Arising 15 DEC 21

    Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter
    Article 15 DEC 21

    Sublimation-driven convection in Sputnik Planitia on Pluto
    Article 15 DEC 21

    Jobs

    Postdoctoral Scientist

    University of California San Francisco (UCSF)
    San Francisco, CA, United States

    Postdoctoral Fellow – Pediatric Cancer Biology/Genomics

    Research Institute of the McGill University Health Centre (RI-MUHC)
    Montreal, Quebec, Canada

    Assistant/Associate Professor in Pathology

    Yale School of Medicine (YSM)
    New Haven, CT, United States

    Faculty Positions in Neuroscience

    University of Minnesota Twin Cities (UMTC)
    Minneapolis, MN, United States More

  • in

    Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages

    This study applies the SVM, ANN, RT, and GP, for forecasting monthly reservoirs inflow with 1- and 2-month time lags. The historical data for inflow to the Dez, Karkheh, and Gotvand reservoirs were collected and used to build the ML algorithms. The inputs to the algorithms for the Dez, Karkheh, and Gotvand reservoirs are the monthly inflows for 1965–2019, 1957–2019, and 1961–2019, respectively. Four projections were designed for the 1-month time lag and the 2-month time lag patterns based on the input and output months, as depicted in Fig. 1. Figure 2 displays the flowchart of this paper’s methodology.Figure 1Schematic of projections of 1-month and 2-month time-lag patterns.Full size imageFigure 2Flowchart of this study’s methodology.Full size imageSupport vector machineSupport Vector Machine was introduced by Vapnik et al.43. SVM performs classification and regression based on statistical learning theory44. The regression form of SVM is named support vector regression (SVR). Vapnik et al.45 defined two functions for SVR design. The first function is the error function. (Eq. (1), see Fig. 3). The second function is a linear function that calculates output values for input, weight, and deviation values (Eq. 2):$$ left| {y – fleft( x right)} right| = left{ {begin{array}{ll} 0 & {if;left| {y – fleft( x right)} right| le varepsilon } \ {left| {y – fleft( x right)} right| – varepsilon = xi } & {otherwise} \ end{array} } right. $$
    (1)
    $$ fleft( x right) = W^{T} x + b $$
    (2)
    Figure 3Illustration of the error function of SVR.Full size image
    where (y), (f(x)), (varepsilon), (xi), (W), (b), (T) denote respectively the observational value, the output value calculated by SVR, a function sensitivity value, a model penalty, the weight applied to the variable (x), the deviation of (W^{T} x) from the (y), and the vector/matrix transpose operator.It is seen in Fig. 3 that the first function (Eq. 1) does not apply a penalty to the points where the difference between the observed value and the calculated value falls within the range of (( – varepsilon , + varepsilon )). Otherwise, a penalty (xi) is applied. SVR solves an optimization problem that minimizes the forecast error (Eq. 3) to improve the model’s forecast accuracy. Equations (4) and (5) represent the constraints of the optimization problem.$$ minimizefrac{1}{2}left| W right|^{2} + Csumlimits_{{i = 1}}^{m} {left( {xi _{i}^{ – } + xi _{i}^{ + } } right)} $$
    (3)
    Subject to:$$ (W^{T} x + b) – y_{i} < varepsilon + xi_{i}^{ + } ;;;i = 1, , 2, ldots , , m $$ (4) $$ y_{i} - left( {W^{T} x + b} right) le varepsilon + xi_{i}^{ - } ;;;i = 1, , 2, ldots , , m $$ (5) where (C), m, (xi_{i}^{ - }), (xi_{i}^{ + }), (y_{i}), and || || denote respectively the penalty coefficient, the number of input data to the model in the training phase, the penalty for the lower bound (( - varepsilon , + varepsilon )), the penalty for the upper bound (( - varepsilon , + varepsilon )), the i-th observational value, and vectorial magnitude. The values of W and b are calculated by solving the optimization problem embodied by Eqs. (3)–(5) with the Lagrange method, and they are substituted in Eq. (2) to calculate the SVR output. SVR is capable of modeling nonlinear data, in which case it relies on transfer functions to transform the data to such that linear functions can be fitted to the data. Reservoirs inflow is forecasted with SVR was performed with the Tanagra software. The transfer function selected and used in this study is the Radial Basis Function (RBF), which provided better results than other transfer functions. The weight vector W is calculated using the Soft Margin method46, and the optimal values of the parameters (xi_{i}^{ - } , + xi_{i}^{ + }) and C were herein estimated by trial and error.Regression tree (RT)RT involves a clustering tree with post-pruning processing (CTP). The clustering tree algorithm has been reported in various articles as the forecasting clustering tree47 and the monothetic clustering tree48. The clustering tree algorithm is based on the top-down induction algorithm of decision trees49; This algorithm takes a set of training data as input and forms a new internal node, provided the best acceptable test can be placed in a node. The algorithm selects the best test scores based on their lower variance. The smaller the variance, the greater the homogeneity of the cluster and the greater the forecast accuracy. If none of the tests significantly reduces the variance the algorithm generates a leaf and tags it as being representative of data47,48.The CTP algorithm is similar to the clustering tree algorithm, except that its post-pruning process is performed with a pruning set to create the right size of the tree50.RT used in this study is programmed in the MATLAB software. The minimum leaf size, the minimum node size for branching, the maximum tree depth, and the maximum number of classification ranges are set by trial and error in this paper’s application.Genetic programming (GP)GP, developed by Cramer51 and Koza52, is a type of evolutionary algorithm that has been used effectively in water management to carry out single- and multi-objective optimization53. GP finds functional relations between input and output data by combining operators and mathematical functions relying on structured tree searches44. GP starts the searching process by generating a random set of trees in the first iteration. The tree's length creates a function called the depth of the tree which the greater the depth of the tree, the more accurate the GP functional relation is54. In a tree structure, all the variables and operators are assumed to be the terminal and function sets, respectively. Figure 4 shows mathematical relational functions generated by GP. Genetic programming consists of the following steps: Select the terminal sets: these are the problem-independent variables and the system state variables. Select a set of functions: these include arithmetic operators (÷ , ×, −, +), Boolean functions (such as "or" "and"), mathematical functions (such as sin and cos), and argumentative expressions (such as if–then-else), and other required statements based on problem objectives. Algorithmic accuracy measurement index: it determines to what extent the algorithm is performing correctly. Control components: these are numerical components, and qualitative variables are used to control the algorithm's execution. Stopping criterion: which determines when the execution of the algorithm is terminated. Figure 4Example of mathematical relations produced by GP based on a tree representation for the function:(fleft( {X_{1} , X_{2} ,X_{3} } right) = left( {5 X_{1} /left( {X_{2} X_{3} } right)} right)^{2}).Full size imageThe Genexprotools software was implemented in this study to program GP. The GP parameters, operators, and linking functions were chosen based on the lowest RMSE in this study. The GP model's parameters and operators applied in this study are listed in Table 1.Table 1 Operators and range of parameters used in GP.Full size tableArtificial Neural Network (ANN)ANN, developed by McCollock and Walterpits55, is an artificial intelligence-based computational method that features an information processing system that employs interconnected data structures to emulate information processing by the human brain56. A neural network does not require precise mathematical algorithms and, like humans, can learn through input/output analysis relying on explicit instructions57. A simple neural network contains one input layer, one hidden layer, and one output layer. Deep-learning networks have multiple hidden layers58. ANN introduces new inputs to forecast the corresponding output with a specific algorithm after training the functional relations between inputs and outputs.This study applies the Multi-Layer Perceptron (MLP). A three-layer feed-forward ANN that features a processing element, an activation function, and a threshold function, as shown in Fig. 5. In MLP, the weighted sum of the inputs and bias term is passed to activation level through a transfer function to create the one output.Figure 5The general structure of a three-layer feed forward ANN and processing architecture.Full size imageThe output is calculated with a nonlinear function as follows:$$ Y = fleft( {mathop sum limits_{i = 1}^{n} W_{i} X_{i} + b} right) $$ (6) where (W_{i}), (X_{i}), (b), (f), and (Y) denote the i-th weight factor, the i-th input vector, the bias, the conversion function, and the output, respectively.The ANN was coded in MATLAB. The number of epochs, the optimal number of hidden layers, and the number of neurons of the hidden layers were found through a trial-and-error procedure. The model output sensitivity was assessed with various algorithms; however, the best forecasting skill was achieved with the Levenberg–Marquardt (LM) algorithm59, and the weight vector W is calculated using the Random Search method60. Furthermore, the Tangent Sigmoid and linear transfer function were chosen by trial and error and used in the hidden and output layers, respectively.70% of the total data were randomly selected and used for training SVM, ANN, RT, and GP. The remaining 30% of the data were applied for testing the forecasting algorithms.Performance-evaluation indicesThe forecasting skill of the ML algorithms (SVM, ANN, RT, and GP) was evaluated with the Correlation Coefficient (R), the Nash–Sutcliffe Efficiency (NSE), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE) in the training and testing phases. The closer the R and NSE values are to 1, and the closer the RMSE and MAE values are to 0, the better the performance of the algorithms20. Equations (7)–(10) describe the performance indices:$$ NSE = 1 - frac{{mathop sum nolimits_{i = 1}^{n} left( {Q_{fore,;i} - Q_{obs,i} } right)^{2} }}{{mathop sum nolimits_{i = 1}^{n} left( {Q_{obs,i} - Q_{mean ; obs} } right)^{2} }} $$ (7) $$ R = frac{{mathop sum nolimits_{i = 1}^{n} left( {Q_{fore,i} - Q_{mean ; fore} } right)left( {Q_{obs,i} - Q_{mean ; obs} } right)}}{{sqrt {mathop sum nolimits_{i = 1}^{n} left( {Q_{fore,i} - Q_{mean ; fore} } right)^{2} } sqrt {mathop sum nolimits_{i = 1}^{n} left( {Q_{obs,i} - Q_{mean ; obs} } right)^{2} } }} $$ (8) $$ MAE = frac{1}{n}mathop sum limits_{i = 1}^{n} left| {Q_{fore,i} - Q_{obs,i} } right| $$ (9) $$ RMSE = sqrt {frac{{mathop sum nolimits_{i = 1}^{n} left( {Q_{fore,i} - Q_{obs,i} } right)^{2} }}{n}} $$ (10) in which ( Q_{fore,i}), (Q_{obs,i}), (Q_{mean ; fore}), (Q_{mean ; obs}), (i), and (n) denote the forecasted inflow, observed inflow, mean forecasted inflow, mean observed inflow, time step, and the total number of time steps during training and testing phases, respectively.Ethics approvalAll authors complied with the ethical standards.Consent to participateAll authors consent to participate.Consent for publishAll authors consent to publish. More

  • in

    Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50–2000 m) shaped by bacterial community composition and optical signature of DOM

    1.Yamada, N., Fukuda, H., Ogawa, H., Saito, H. & Suzumura, M. Heterotrophic bacterial production and extracellular enzymatic activity in sinking particulate matter in the western North Pacific Ocean. Front. Microbiol. 3, 379. https://doi.org/10.3389/fmicb.2012.00379 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.del Giorgio, P., Cole, J. & Cimbleris, A. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385, 148–151 (1997).ADS 

    Google Scholar 
    3.Teira, E. et al. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world’s oceans. Appl. Environ. Microbiol. 81, 8224–8232 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Dobal-Amador, V. et al. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0–5000 m) off the Galician coast (NW Iberian margin). Deep-Sea Res. I(114), 1–11 (2016).
    Google Scholar 
    5.Kirchman, D., Ducklow, H. W. & Mitchell, R. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44, 1296–1307 (1982).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).ADS 
    CAS 

    Google Scholar 
    7.Ducklow, H. Bacterial production and biomass in the ocean. In Microbial Ecology of the Oceans (ed. Kirchman, D.) 85–120 (Wiley, 2000).
    Google Scholar 
    8.Varela, M. M., Bode, A., Morán, X. A. G. & Valencia, J. Dissolved organic nitrogen (DON) release and bacterial activity in the upper layers of the Atlantic Ocean. Microb. Ecol. 51, 487–500 (2006).CAS 
    PubMed 

    Google Scholar 
    9.Calvo-Díaz, A. & Morán, X. A. G. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: Seasonality and predictability in a temperate coastal ecosystem. Appl. Environ. Microbiol. 75, 3216–3221 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Alonso-Sáez, L., Pinhassi, J., Pernthaler, J. & Gasol, J. M. Leucine-to-carbon empirical conversion factor experiments: Does bacterial community structure have an influence?. Environ. Microbiol. 12, 2988–2997 (2010).PubMed 

    Google Scholar 
    11.Gasol, J. M. et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Prog. Oceanogr. 83, 189–196 (2009).ADS 

    Google Scholar 
    12.Baltar, F., Aristegui, J., Gasol, J. M. & Herndl, G. Prokaryotic carbon utilization in the dark ocean: Growth efficiency, leucine-to-carbon conversion factors, and their relation. Aquat. Microb. Ecol. 60, 227–232 (2010).
    Google Scholar 
    13.Varela, M. M., Rodríguez-Ramos, T., Guerrero-Feijóo, E. & Nieto-Cid, M. Changes in activity and community composition shape bacterial responses to size-fractionated marine DOM. Front. Microbiol. 11, 586148. https://doi.org/10.3389/fmicb.2020.586148 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J. 10, 2582–2592 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Guerrero-Feijóo, E. et al. Optical properties of dissolved organic matter relate to different depth-specific patterns of archaeal and bacterial community structure in the North Atlantic Ocean. FEMS Microbiol. Ecol. 93, 1–14 (2017).
    Google Scholar 
    16.Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 51, 2170–2180 (2008).
    Google Scholar 
    17.Stedmon, C. A. & Nelson, N. B. The optical properties of DOM in the ocean. In Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 481–508 (Academic Press, 2015).
    Google Scholar 
    18.Nieto-Cid, M., Álvarez-Salgado, X. A. & Pérez, F. F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol. Oceanogr. 51, 1391–1400 (2006).ADS 
    CAS 

    Google Scholar 
    19.Rodríguez-Ramos, T., Nieto-Cid, M., Auladell, A., Guerrero-Feijóo, E. & Varela, M. M. Vertical niche partitioning of archaea and bacteria linked to shifts in dissolved organic matter quality and hydrography in North Atlantic waters. Front. Mar. Sci. 8, 673171. https://doi.org/10.3389/fmars.2021.673171 (2021).Article 

    Google Scholar 
    20.Bode, A., Álvarez-Osorio, M. T., Cabanas, J. M., Miranda, A. & Varela, M. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Prog. Oceanogr. 83, 342–350 (2009).ADS 

    Google Scholar 
    21.Teira, E. et al. Plankton carbon budget in a coastal wind-driven upwelling station off A Coruña (NW Iberian Peninsula). Mar. Ecol. Prog. Ser. 265, 31–43 (2003).ADS 
    CAS 

    Google Scholar 
    22.Ruiz-Villarreal, M. et al. Oceanographic conditions in North and Northwest Iberia and their influence on the Prestige oil spill. Mar. Pollut. Bull. 53, 220–238 (2006).CAS 
    PubMed 

    Google Scholar 
    23.Lavin, A. et al. The Bay of Biscay: The encountering of the ocean and the shelf. In The Sea, Volume 14B: The Global Coastal Ocean (eds Robinson, A. & Brink, K.) 993–1001 (Harvard University Press, 2006).
    Google Scholar 
    24.Pedrós-Alió, C., Calderón-Paz, J. I., Guixa-Boixereu, N., Estrada, M. & Gasol, J. M. Bacterioplankton and phytoplankton biomass and production during summer stratification in the northwestern Mediterranean Sea. Deep-Sea Res. I(46), 985–1019 (1999).
    Google Scholar 
    25.Barbosa, A. B. et al. Short-term variability of heterotrophic bacterioplankton during upwelling off the NW Iberian margin. Prog. Oceanogr. 51, 339–359 (2001).ADS 

    Google Scholar 
    26.Morán, X. A., Gasol, J. M., Pedrós-Alió, C. & Estrada, M. Partitioning of phytoplankton organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimes. Aquat. Microb. Ecol. 29, 239–252 (2002).
    Google Scholar 
    27.Martínez-García, S. et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar. Ecol. Prog. Ser. 416, 17–33 (2010).ADS 

    Google Scholar 
    28.Li, X., Xu, J., Shi, Z., Li, Q. & Li, R. Variability in the empirical leucine-to-carbon conversion factors along an environmental gradient. Acta Oceanol. Sin. 37, 77–82 (2018).
    Google Scholar 
    29.Doval, M. D., Nogueira, E. & Pérez, F. F. Spatio-temporal variability of the thermohaline and biogeochemical properties and dissolved organic carbon in a coastal embayment affected by upwelling: The Ría de Vigo (NW Spain). J. Mar. Sys. 14, 135–150 (1998).
    Google Scholar 
    30.Valencia, J. et al. Variations in planktonic bacterial biomass and production, and phytoplankton blooms off A Coruña (NW Spain). Sci. Mar. 67, 143–157 (2003).
    Google Scholar 
    31.Bode, A., Álvarez-Osorio, M. T. & Varela, M. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).ADS 
    CAS 

    Google Scholar 
    32.Bode, A., Varela, M., Canle, M. & González, N. Dissolved and particulate organic nitrogen in shelf waters of northern Spain during spring. Mar. Ecol. Prog. Ser. 214, 43–54 (2001).ADS 
    CAS 

    Google Scholar 
    33.Lønborg, C. & Álvarez-Salgado, X. A. Tracing dissolved organic matter cycling in the eastern boundary of the temperate North Atlantic using absorption and fluorescence spectroscopy. Deep Res. Part I 85, 35–46 (2014).
    Google Scholar 
    34.Lønborg, C., Yokokawa, T., Herndl, G. & Álvarez-Salgado, X. A. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern North Atlantic Ocean. Deep Res. Part I(96), 28–37 (2015).
    Google Scholar 
    35.Lønborg, C., Davidson, K., Álvarez-Salgado, X. A. & Miller, A. E. J. Bioavailability 904 and bacterial degradation rates of dissolved organic matter in a temperate coastal area 905 during an annual cycle. Mar. Chem. 113, 219–226 (2009).
    Google Scholar 
    36.Teira, E. et al. Plankton carbon budget in a coastal wind-driven upwelling station off A Coruna (NW Iberian Peninsula). Mar. Ecol. Prog. Ser. 265, 31–43 (2003).ADS 
    CAS 

    Google Scholar 
    37.Álvarez-Salgado, X. A., Arístegui, J., Barton, E. D. & Hansell, D. A. Contribution of upwelling filaments to offshore carbon export in the subtropical Northeast Atlantic Ocean. Limnol. Oceanogr. 52, 1287–1292 (2007).ADS 

    Google Scholar 
    38.Álvarez-Salgado, X. A. et al. Off-shelf fluxes of labile materials by an upwelling filament in the NW Iberian Upwelling System. Prog. Oceanogr. 51, 321–337 (2001).ADS 

    Google Scholar 
    39.del Giorgio, P. A. et al. Coherent patterns in bacterial growth, growth efficiency, and leucine metabolism along a northeastern Pacific inshore-offshore transect. Limnol. Oceanogr. 56, 1–16 (2011).ADS 

    Google Scholar 
    40.Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).ADS 
    CAS 

    Google Scholar 
    41.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8, e00413-17. https://doi.org/10.1128/mBio.00413-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Catalá, T. et al. Dissolved Organic Matter (DOM) in the open Mediterranean Sea. I. Basin–wide distribution and drivers of chromophoric DOM. Prog. Oceanogr. 165, 35–51 (2018).ADS 

    Google Scholar 
    44.Bjørnsen, P. K. & Kuparinen, J. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar. Ecol. Prog. Ser. 71, 185–194 (1991).ADS 

    Google Scholar 
    45.Weinbauer, M. G. et al. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ. Microbiol. 9(3), 777–788 (2007).CAS 
    PubMed 

    Google Scholar 
    46.Evans, C. et al. Shift from carbon flow through the microbial loop to the viral shunt in coastal Antarctic waters during austral summer. Microorganisms 9, 460 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Gasol, J. M., Zweifel, U., Peters, F., Fuhrman, J. D. & Hagström, H. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in Natural Planktonic Bacteria. Appl. Environ. Microbiol. 65, 104475–104483 (1999).ADS 

    Google Scholar 
    48.Calvo-Díaz, A. & Morán, X. A. G. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat. Microb. Ecol. 42, 159–174 (2006).
    Google Scholar 
    49.Norland, S. The relationship between biomass and volume of bacteria. In Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 303–307 (CRC Press, 1993).
    Google Scholar 
    50.Kirchman, D., Knees, E. & Hodson, R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49, 599–607 (1985).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Smith, D. C. & Azam, F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107–114 (1992).
    Google Scholar 
    52.Massana, R. et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Herlemann, D. P. et al. Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.R Core Team. R: A language and environment for statistical computing http://www.r-project.org (2018).56.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    57.Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4–6 http://www.CRAN.R-project.org/package=vegan (2018).59.Álvarez-Salgado, X. A. & Miller, A. E. J. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: Conditions for precise shipboard measurements. Mar. Chem. 62, 325–333 (1998).
    Google Scholar 
    60.Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 29, 1903–1916 (1994).ADS 

    Google Scholar 
    61.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 

    Google Scholar 
    62.Pearson, K. Notes on the history of correlation. Biometrika 13, 25–45 (1920).
    Google Scholar 
    63.Addinsoft XLSTAT statistical and data analysis solution http://www.xlstat.com (2020).64.Burnham, K. & Anderson, D. Information and Likelihood Theory: A Basis for Model Selection and Inference in Model Selection and Inference: A Practical Information-Theoretic Approach 60–64 (Springer, 2002).65.Clarke, K. Nonparametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
    Google Scholar 
    66.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, giz107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Responses of functional traits in cavity-nesting birds to logging in subtropical and temperate forests of the Americas

    1.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Edwards, F. A., Edwards, D. P., Hamer, K. C. & Davies, R. G. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. Ibis 155, 313–326 (2013).
    Google Scholar 
    4.Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    5.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures: animal species diversity driven by habitat heterogeneity. J. Biogeogr. 31, 79–92 (2004).
    Google Scholar 
    6.Robles, H. et al. Sylvopastoral management and conservation of the middle spotted woodpecker at the south-western edge of its distribution range. For. Ecol. Manag. 242, 343–352 (2007).
    Google Scholar 
    7.Aleixo, A. Effects of selective logging on a bird community in the brazilian atlantic forest. Condor 101, 537–548 (1999).
    Google Scholar 
    8.Robles, H., Ciudad, C. & Matthysen, E. Tree-cavity occurrence, cavity occupation and reproductive performance of secondary cavity-nesting birds in oak forests: the role of traditional management practices. For. Ecol. Manag. 261, 1428–1435 (2011).
    Google Scholar 
    9.Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B. 282, 20150164 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    10.Wiebe, K. L. Nest sites as limiting resources for cavity-nesting birds in mature forest ecosystems: a review of the evidence. J. Field Ornithol. 82, 239–248 (2011).
    Google Scholar 
    11.Politi, N., Hunter, M. & Rivera, L. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers. Conserv. 21, 3131–3155 (2012).
    Google Scholar 
    12.Bergner, A. et al. Influences of forest type and habitat structure on bird assemblages of oak (Quercus spp.) and pine (Pinus spp.) stands in southwestern Turkey. For. Ecol. Manag. 336, 137–147 (2015).
    Google Scholar 
    13.van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers. Distrib. 23, 1120–1131 (2017).
    Google Scholar 
    14.Aitken, K. E. H. & Martin, K. The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada. J. Ornithol. 148, 425–434 (2007).
    Google Scholar 
    15.Cockle, K. L., Martin, K. & Wesołowski, T. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front. Ecol. Environ. 9, 377–382 (2011).
    Google Scholar 
    16.Schaaf, A. A. et al. Tree use, niche breadth and overlap for excavation by woodpeckers in subtropical piedmont forests of Northwestern Argentina. Acta Ornithol. 55 (2020).17.Sekercioglu, C. H. Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda. Biol. Conserv. 12 (2002).18.Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).
    Google Scholar 
    19.Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 

    Google Scholar 
    20.Woltmann, S. Bird community responses to disturbance in a forestry concession in lowland Bolivia. 16.21.Strubbe, D. & Matthysen, E. Experimental evidence for nest-site competition between invasive ring-necked parakeets (Psittacula krameri) and native nuthatches (Sitta europaea). Biol. Conserv. 142, 1588–1594 (2009).
    Google Scholar 
    22.Rivera, L., Politi, N. & Bucher, E. H. Nesting habitat of the Tucuman Parrot Amazona tucumana in an old-growth cloud-forest of Argentina. Bird Conserv. Int. 22, 398–410 (2012).
    Google Scholar 
    23.Schaaf, A. A., Tallei, E., Politi, N. & Rivera, L. Cavity-tree use and frequency of response to playback by the Tropical Screech-Owl in northwestern Argentina. NBC 14, 99–107 (2019).
    Google Scholar 
    24.Schepps, J., Lohr, L. & Martin, T. E. Does tree hardness influence nest-tree selection by primary cavity nesters?. Auk 116, 658–665 (1999).
    Google Scholar 
    25.Rudolph, D. C., Conner, R. N. & Turner, J. Competition for red-cockaded woodpecker roost and nest cavities: effects of resin age and entrance diameter. Wilson Bull. 102(1), 23–36 (1990).
    Google Scholar 
    26.Drever, M. C. & Martin, K. Response of woodpeckers to changes in forest health and harvest: implications for conservation of avian biodiversity. For. Ecol. Manag. 259, 958–966 (2010).
    Google Scholar 
    27.Styring, A. R. & Hussin, M. Z. Effects of logging on woodpeckers in a Malaysian rain forest: the relationship between resource availability and woodpecker abundance. J. Trop. Ecol. 20, 495–504 (2004).
    Google Scholar 
    28.Ruggera, R. A., Schaaf, A. A., Vivanco, C. G., Politi, N. & Rivera, L. O. Exploring nest webs in more detail to improve forest management. For. Ecol. Manag. 372, 93–100 (2016).
    Google Scholar 
    29.Ibarra, J. T., Martin, M., Cockle, K. L. & Martin, K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci. Rep. 7, 4467 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Dı́az, S., Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evolut. 16, 646–655 (2001).31.Córdova-Tapia, F. & Zambrano, L. Functional diversity in community ecology. ECOS 24, 78–87 (2015).
    Google Scholar 
    32.Leaver, J., Mulvaney, J., Ehlers Smith, D. A., Ehlers Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manag. 445, 82–95 (2019).33.Georgiev, K. B. et al. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J. Appl. Ecol. 57, 1103–1112 (2020).
    Google Scholar 
    34.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    35.Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity: experimental evolution in variable environments. J. Evolut. Biol. 15, 173–190 (2002).
    Google Scholar 
    36.Scherer-Lorenzen, M. Biodiversity and ecosystem functioning: basic principles. Struct. Funct. 10 (2005).37.Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Google Scholar 
    38.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 

    Google Scholar 
    39.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 

    Google Scholar 
    40.Schaaf, A. A. et al. Functional diversity of tree cavities for secondary cavity-nesting birds in logged subtropical Piedmont forests of the Andes. For. Ecol. Manag. 464, 118069 (2020).
    Google Scholar 
    41.Lindenmayer, D. B., Margules, C. R. & Botkin, D. B. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 14, 941–950 (2000).
    Google Scholar 
    42.Gregory, R. D. et al. The generation and use of bird population indicators in Europe. Bird Conserv. Int. 18, S223–S244 (2008).
    Google Scholar 
    43.Prado, D. E. Seasonally dry forests of tropical South America: from forgottenecosystems to a new phytogeographic unit. Edinb. J. Bot. 57, 437–461 (2000).
    Google Scholar 
    44.Arias, M. Estadísticas climatológicas de la Provincia de Salta. Dirección de Medio Ambiente y Recursos Naturales, Provincia de Salta, Estación Experimental Agropecuaria Salta, Inta. (1996).45.Brown, A. D. & Malizia, L. R. Las Selvas Pedemontanas de las Yungas. Ciencia hoy 14, 52–63 (2004).
    Google Scholar 
    46.Politi, N., Hunter, M. Jr. & Rivera, L. Nest selection by cavity-nesting birds in subtropical montane forests of the andes: implications for sustainable forest management. Biotropica 41, 354–360 (2009).
    Google Scholar 
    47.Politi, N., Hunter, M. & Rivera, L. Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. For. Ecol. Manag. 260, 893–906 (2010).
    Google Scholar 
    48.Eliano, P. M., Badinier, C. & Malizia, L. R. Manejo forestal sustentable en Yungas: protocolo para el desarrollo de un plan de manejo forestal e implementación en una finca piloto. Ediciones del Subtrópico, San Miguel de Tucumán (2009).49.Ralph, C. J., Droege, S. & Sauer, J. R. Managing and monitoring birds using point counts: standards and applications 1: 3-8 (1995).50.Hill, D. Handbook of biodiversity methods: survey, evaluation and monitoring (Cambridge University Press, 2005).
    Google Scholar 
    51.Ibarra, J. T. & Martin, K. Biotic homogenization: loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
    Google Scholar 
    52.Schaaf, A. A. et al. Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests. J. For. Res. 31, 1417–1424 (2020).
    Google Scholar 
    53.Blendinger, P. G. & Álvarez, M. E. Aves de la Selva Pedemontana de las Yungas australes. In: Selva Pedemontana de las Yungas. Historia Natural, Ecología y Manejo de un Ecosistema en Peligro. (Eds AD Brown, A. D et al.) 233–272 (2009).54.Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals: Ecol. Arch. Ecol. 95, 2027–2027 (2014).55.del Hoyo, J. A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive. (Lynx Edicions, 2017).56.Schaaf, A. A. et al. Influence of logging on nest density and nesting microsites of cavity-nesting birds in the subtropical forests of the Andes. For. Int. J. For. Res. https://doi.org/10.1093/forestry/cpab032 (2021).Article 

    Google Scholar 
    57.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).
    Google Scholar 
    58.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2016).59.Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. http://cran.r-project.org/web/packages/FD (2011).60.Ghadiri Khanaposhtani, M., Kaboli, M., Karami, M., Etemad, V. & Baniasadi, S. Effects of logged and unlogged forest patches on avifaunal diversity. Environ. Manag. 51, 750–758 (2013).61.Tilman, D. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 

    Google Scholar 
    62.Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules: functional diversity measures. Funct. Ecol. 24, 867–876 (2010).
    Google Scholar 
    63.Mackey, B. et al. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv. Lett. 8, 139–147 (2015).
    Google Scholar 
    64.Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 

    Google Scholar 
    65.Azeria, E. T. et al. Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem. Acta Oecol. 37, 220–229 (2011).ADS 

    Google Scholar  More

  • in

    Accelerated mass extinction in an isolated biota during Late Devonian climate changes

    1.Finnegan, S., Rasmussen, C. M. Ø. & Harper, D. A. T. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc. Biol. Sci. 283, 1–9 (2016).
    Google Scholar 
    2.Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).ADS 
    PubMed 

    Google Scholar 
    3.De Vleeschouwer, D. et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth Planet. Sci. Lett. 365, 25–37 (2013).ADS 

    Google Scholar 
    4.De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 1–11 (2017).
    Google Scholar 
    5.Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).ADS 

    Google Scholar 
    6.Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    7.Carmichael, S. K., Waters, J. A., Suttner, T. J. & Kido, E. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: a review of its sedimentological and geochemical expression. Glob. Planet. Change 183, 102984 (2019).
    Google Scholar 
    8.Lash, G. G. A multiproxy analysis of the Frasnian–Famennian transition in western New York State, U.S.A.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 473, 108–122 (2017).
    Google Scholar 
    9.Haddad, E. E. et al. Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 178–190 (2018).
    Google Scholar 
    10.Joachimski, M. M. & Buggisch, W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711–714 (2002).ADS 
    CAS 

    Google Scholar 
    11.Joachimski, M. M. & Buggisch, W. Anoxic events in the Late Frasnian—Causes of the Frasnian–Famennian faunal crisis?. Geology 21, 675–678 (1993).ADS 
    CAS 

    Google Scholar 
    12.McGhee, G. R. & Racki, G. Extinction: Late Devonian mass extinction. eLS 2, 1–12 (2021).
    Google Scholar 
    13.Racki, G. Toward understanding Late Devonian global events: few answers, many questions in Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach (eds. Over, D. J., Morrow, J. R. & Wignall, P. B.), 5–36 (Elsevier, 2005).14.Hartenfels, S., Becker, R. T. & Aboussalam, Z. S. Givetian to Famennian stratigraphy, Kellwasser, Annulata and other events at Beringhauser Tunnel (Messinghausen Anticline, eastern Rhenish Massif). Münster. Forsch. Geol. Paläont. 108, 196–219 (2016).
    Google Scholar 
    15.Le Houedec, S., Girard, C. & Balter, V. Conodont Sr/Ca and δ18O record seawater changes at the Frasnian–Famennian boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 114–121 (2013).
    Google Scholar 
    16.McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).
    Google Scholar 
    17.Stigall, A. L. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22, 4–9 (2012).
    Google Scholar 
    18.Beard, J. A., Bush, A. M., Fernandes, A. M., Getty, P. R. & Hren, M. T. Stratigraphy and paleoenvironmental analysis of the Frasnian–Famennian (Upper Devonian) boundary interval in Tioga, north-central Pennsylvania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 67–79 (2017).
    Google Scholar 
    19.Bush, A. M., Csonka, J. D., DiRenzo, G. V., Over, D. J. & Beard, J. A. Revised correlation of the Frasnian–Famennian boundary and Kellwasser Events (Upper Devonian) in shallow marine paleoenvironments of New York State. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 233–246 (2015).
    Google Scholar 
    20.Day, J. Stratigraphy, Biostratigraphy, and Depositional History of the Givetian and Frasnian Strata in the San Andres and Sacramento Mountains of Southern New Mexico (University of Iowa, Iowa City, 1988).
    Google Scholar 
    21.Stanley, S. M. Thermal barriers and the fate of perched faunas. Geology 38, 31–34 (2010).ADS 

    Google Scholar 
    22.Copper, P. Frasnian/Famennian mass extinction and cold-water oceans. Geology 14, 835–839 (1986).ADS 

    Google Scholar 
    23.Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).
    Google Scholar 
    24.Copper, P. Evaluating the Frasnian–Famennian mass extinction: comparing brachiopod faunas. Acta Palaeontol. Pol. 43, 137–154 (1998).
    Google Scholar 
    25.Becker, R. T. & House, M. R. Kellwasser Events and goniatite successions in the Devonian of the Montagne Noire with comments on possible causations. Cour Forsch Senck 169, 45–77 (1994).
    Google Scholar 
    26.Bond, D., Wignall, P. B. & Racki, G. Extent and duration of marine anoxia during Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria, and France. Geol. Mag. 2, 173–193 (2004).ADS 

    Google Scholar 
    27.Buggisch, W. The global Frasnian–Famennian »Kellwasser Event«. Geol. Rundschau 80, 49–72 (1991).ADS 

    Google Scholar 
    28.Johnson, J. G., Klapper, G. & Sandberg, C. A. Devonian eustatic fluctuations in Euramerica. Geol. Soc. Am. Bull. 96, 567–587 (1985).ADS 

    Google Scholar 
    29.Mcghee, G. R. The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology 14, 250–257 (1988).
    Google Scholar 
    30.Sandberg, C. A., Morrow, J. R. & Ziegler, W. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geol. Soc. Am. Spec. Pap. 356, 473–487 (2002).
    Google Scholar 
    31.Mehta, C. R. & Patel, N. R. Exact logistic regression: theory and examples. Stat. Med. 14, 2143–2160 (1995).CAS 
    PubMed 

    Google Scholar 
    32.Over, J. D. Conodont biostratigraphy of the Java Formation (Upper Devonian) and the Frasnian–Famennian boundary in western New York State. Geol. Soc. Am. Spec. Pap. 321, 161–177 (1997).
    Google Scholar 
    33.Boyer, D. L. et al. Living on the edge: the impact of protracted oxygen stress on life in the Late Devonian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 566, 1–16 (2021).
    Google Scholar 
    34.Bush, A. M. & Brame, R. I. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 26, 573–591 (2010).
    Google Scholar 
    35.Fasham, M. J. R. A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology 58, 551–561 (1977).
    Google Scholar 
    36.Legendre, P. & Legendre, L. Numerical ecology (Elsevier, Amsterdam, 2012).MATH 

    Google Scholar 
    37.Holland, S. M. The stratigraphy of mass extinctions and recoveries. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-071719-054827 (2020).Article 

    Google Scholar 
    38.Kelly, A. A., Cohen, P. A. & Boyer, D. L. Tiny keys to unlocking the Kellwasser events: detailed characterization of organic walled microfossils associated with extinction in western New York State. Palaios 34, 96–104 (2019).ADS 

    Google Scholar 
    39.Boyer, D. L. & Droser, M. L. Palaeoecological patterns within the dysaerobic biofacies: examples from Devonian black shales of New York state. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 206–216 (2009).
    Google Scholar 
    40.Day, J. & Witzke, B. J. Upper Devonian biostratigraphy, Event Stratigraphy, and Late Frasnian Kellwasser Extinction bioevents in the Iowa Basin: western Euramerica. In Stratigraphy & Timescales. 2, 243–332 (Elsevier, 2017).41.Day, J. & Copper, P. Revision of latest Givetian-Frasnian Atrypida (Brachiopoda) from central North America. Acta Palaeontol. Pol. 43, 155–204 (1998).
    Google Scholar 
    42.Day, J. Subtropical record of Upper Devonian (late Frasnian-early Famennian) sea level events and Kellwasser Extinction bioevents, southern Ouachita margin-western Laurussia (Arizona-New Mexico, central and northern Mexico) in Geological Society of America Abstracts with Programs Vol. 42, 89 (2010).43.Schindler, E. The late Frasnian (Upper Devonian) Kellwasser crisis. Lect. Notes Earth Sci. 30, 151–160 (1990).
    Google Scholar 
    44.Schindler, E. Event-stratigraphic markers within the Kellwasser crisis near the Frasnian/Famennian boundary (Upper Devonian) in Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 104, 115–125 (1993).
    Google Scholar 
    45.Zapalski, M. et al. The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of Ardennes-Changes through time. Bulletin de la Société Géologique de France. 178(5), 383–390. https://doi.org/10.2113/gssgfbull.178.5.383 (2007).Article 

    Google Scholar 
    46.Ma, X. P., Sun, Y. L., Hao, W. C. & Liao, W. H. Rugose corals and brachiopods across the Frasnian–Famennian boundary in central Hunan, South China. Acta Palaeontol. Pol. 47, 373–396 (2002).
    Google Scholar 
    47.Racki, G., Makowski, I., Miklas, J. & Gawlik, S. Brachiopod biofacies in the Frasnian reef-complexes: an example from the Holy Cross Mts, Poland. Geologia 12(13), 64–109 (1993).
    Google Scholar 
    48.Sokiran, E. V. Frasnian–Famennian extinction and recovery of rhynchonellid brachiopods from the East European Platform. Acta Palaeontol. Pol. 47, 339–354 (2002).
    Google Scholar 
    49.Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & Mclaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios https://doi.org/10.2110/palo.2005.p05-028r (2007).Article 

    Google Scholar 
    50.Rode, A. L. & Lieberman, B. S. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 345–359 (2004).
    Google Scholar 
    51.Hall, J. Palaeontology: containing descriptions and figures of the fossil Brachiopoda of the upper Helderberg, Hamilton, Portage and Chemung Groups. Geological Survey of New York IV (1867).52.Cooper, G. A. & Dutro, J. T. Devonian brachiopods of New Mexico. Bull. Am. Paleontol. 82, 1–215 (1982).
    Google Scholar 
    53.Linsley, D. M. Devonian paleontology of New York. Paleontol. Res. Inst. Spec. Publ. 21, 472 (1994).
    Google Scholar 
    54.R: A Language and Environment for Statistical Computing. (2021).55.Holland, S. M., Miller, A. I., Meyer, D. L. & Dattilo, B. F. The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16, 205–217 (2001).ADS 

    Google Scholar 
    56.The Paleobiology Database. (2018). Available at: http://www.paleobiodb.org/.57.Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).MathSciNet 
    MATH 

    Google Scholar 
    58.Finney, D. J. The Fisher-Yates test of significance in 2 × 2 contingency tables. Biometrika 35, 156 (1948).MathSciNet 
    MATH 

    Google Scholar 
    59.Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324–325, 19–27 (2012).ADS 

    Google Scholar 
    60.Boyer, D. L., Owens, J. D., Lyons, T. W. & Droser, M. L. Joining forces: combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 134–146 (2011).
    Google Scholar 
    61.Boyer, D. L., Haddad, E. E. & Seeger, E. S. The last gasp: trace fossils track deoxygenation leading into the Frasnian–Famennian extinction event. Palaios 29, 646–651 (2014).ADS 

    Google Scholar 
    62.Rickard, L. V. & Fisher, D. W. Geologic map of New York: Finger Lakes sheet and Niagara sheet. (1970).63.Woodrow, D. L. Stratigraphy, structure, and sedimentary patterns in the Upper Devonian of Bradford County, Pennsylvania. Pennsylvania Geological Survey 1–78 (1968). More