More stories

  • in

    Simulating grazing beef and sheep systems

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil

    1.Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Spinoni, J., Naumann, G., Carrao, H., Barbosa, P. & Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 34, 2792–2804 (2014).
    Google Scholar 
    3.Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165(3), 1–21 (2021).
    Google Scholar 
    4.Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J. & Hayhoe, K. Global Pyrogeography: The current and future distribution of wildfire. PLoS ONE 4(4), e5102 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Fut. 7, 892–910 (2019).ADS 

    Google Scholar 
    6.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative Fire Management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    7.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    8.Criado, M. G., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29(5), 925–943 (2020).
    Google Scholar 
    9.Mancini, L. D., Corona, P. & Salvati, L. Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environ. Impact Assess. Rev. 72, 177–186 (2018).
    Google Scholar 
    10.Moreira, F. et al. Landscape – wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 92(10), 2389–2402 (2011).
    Google Scholar 
    11.Clarke, H. et al. The proximal drivers of large fires: A pyrogeographic study. Front. Earth Sci. 8, 90 (2020).ADS 

    Google Scholar 
    12.Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1 (2021).ADS 

    Google Scholar 
    13.Daskin, J. H., Aires, F. & Staver, A. C. Determinants of tree cover in tropical floodplains. Proc. R. Soc. B. 286, 20191755 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Kotze, D. C. The effects of fire on wetland structure and functioning. Afr. J. Aquat. Sci. 38(3), 237–247 (2013).
    Google Scholar 
    15.Tedim, F. et al. Defining Extreme Wildfire Events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
    Google Scholar 
    16.Libonati, R. et al. Sistema ALARMES – Alerta de área queimada Pantanal, situação final de 2020 https://www.researchgate.net/publication/350103205_Nota_Tecnica_012021_LASA-UFRJ_Queimadas_Pantanal_2020?channel=doi&linkId=6051109d92851cd8ce483fb1&showFulltext=true (2021).17.Libonati, R., DaCamara, C. C., Peres, F. L., de Carvalho, L. A. S. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–219 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes and impacts. Front. Water 3, 639204 (2021).
    Google Scholar 
    19.Marengo, J. A., Alves, L. M. & Torres, R. R. Regional climate change scenarios in the Brazilian Pantanal watershed. Clim. Res. 68(2–3), 201–213 (2016).
    Google Scholar 
    20.Hardesty, J., Myers, R. & Fulks, W. Fire, ecosystems, and people: A preliminary assessment of fire as a global conservation issue. George Wright Forum 22, 78–87 (2005).
    Google Scholar 
    21.Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl. Acad. Sci. USA 105(39), 14796–14801 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Chang. Biol. 12, 2023–2031 (2006).ADS 

    Google Scholar 
    23.Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. USA 106, 20359–20364 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Pott, A. & Pott, V. J. Features and conservation of the Brazilian Pantanal wetland. Wetl. Ecol. Manag. 12, 547–552 (2004).
    Google Scholar 
    25.Ferraz-Vicentini, K. R. & Salgado-Laboriau, M. L. Palynological analysis of a palm swamp in Central Brasil. J. South Am. Earth Sci. 9(3–4), 207–219 (1996).ADS 

    Google Scholar 
    26.Engstrom, R. T. First-order fire effects on animals: review and recommendations. Fire Ecol. 6(1), 115–130 (2010).
    Google Scholar 
    27.Whelan, R. J., Rodgerson, L., Dickman, C. R. & Sutherland, E. F. Critical life processes of plants and animals: Developing a process-based understanding of population changes in fireprone landscapes (Cambridge University Press, 2002).
    Google Scholar 
    28.van Eeden, L. M. et al. Impacts of the unprecedented 2019–2020 bushfires on Australian animals. https://www.wwf.org.au/ArticleDocuments/353/WWF_Impacts-of-the-unprecedented-2019-2020-bushfires-on-Australian-animals.pdf.aspx (2020).29.Pacheco, L. F., Quispe-Calle, L. C., Suárez-Guzmán, F. A., Ocampo, M. & Claure-Herrera, A. J. Muerte de mamíferos por los incendios de 2019 en la Chiquitania. Ecol. Boliv. 56(1), 4–16 (2021).
    Google Scholar 
    30.Berlinck, C. B. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz. J. Biol. 82, e244200 (2021).CAS 
    PubMed 

    Google Scholar 
    31.Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
    Google Scholar 
    32.Komarek, R. Fire and the changing wildlife habitat. Proc. Tall Timbers Fire Ecol. Conf. 2, 35–43 (1963).
    Google Scholar 
    33.Layme, V. M. G., Lima, A. P. & Magnusson, W. E. Effects of fire, food availability and vegetation on the distribution of the rodent Bolomys lasiurus in an Amazonian savanna. J. Trop. Ecol. 20, 183–187 (2004).
    Google Scholar 
    34.Roberts, S. L., van Wagtendonk, J. W., Miles, A. K., Kelt, D. A. & Lutz, J. A. Modeling the effects of fire severity and spatial complexity on small mammals in Yosemite National Park, California. Fire Ecol. 4(2), 83–104 (2008).
    Google Scholar 
    35.Smith, J. K. Wildland Fire in Ecosystems: Effects of Fire on Fauna (Rocky Mountain Research Station, Colorado, 2000).36.Woinarski, J. C. Z. & Legge, S. The impacts of fire on birds in Australia’s tropical savannas. Emu 113(4), 319–352 (2013).
    Google Scholar 
    37.Pires, A. S., Fernandez, F. A., de Freitas, D. & Feliciano, B. R. Influence of edge and fire-induced changes on spatial distribution of small mammals in Brazilian Atlantic Forest fragments. Stud. Neotrop. Fauna Environ. 40(1), 7–14 (2005).
    Google Scholar 
    38.Silveira, L. F., Rodrigues, H. G., Jácomo, A. T. A. & Diniz Filho, J. A. F. Impact of wildfires on the megafauna of Emas National Park, Central Brazil. Oryx 33, 108–114 (1999).39.Tomas, W. M. et al. Checklist of mammals from Mato Grosso do Sul, Brazil. Iheringia, Sér. zool. 107(Suppl), e2017155 (2017).40.Tomas, W. M. et al. Mammals in the Pantanal wetland, Brazil (Pensoft Publishers, 2010).
    Google Scholar 
    41.Burnham, K. P., Anderson, D. R. & Laake, J. L. Estimation of density from line transect sampling of biological populations. Ecol. Monogr. 72, 1–202 (1980).
    Google Scholar 
    42.Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    43.Thielen, D. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 15(1), e0227437 (2020).44.Ciemer, C. et al. An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic Sea surface temperatures. Environ. Res. Lett. 15, 094087 (2020).45.Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619–620, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    47.Hofmann, G. et al. The Brazilian Cerrado is becoming hotter and drier. Glob. Chang. Biol. 00, 1–14 (2021).
    Google Scholar 
    48.Tomas, W. M. et al. Sustainability Agenda for the Pantanal Wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    49.Schulz, C. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: Synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Harris, M. B. et al. Safeguarding the Pantanal wetlands: Threats and conservation initiatives. Conserv. Biol. 19(3), 714–720 (2005).
    Google Scholar 
    51.Ely, P., Fantin-Cruz, I., Tritico, H. M., Girard, P. & Kaplan, D. Dam-induced hydrologic alterations in the rivers feeding the Pantanal. Front. Environ. Sci. 8, 256 (2020).
    Google Scholar 
    52.Roque, F. O. et al. Simulating land use changes, sediment yields, and pesticide use in the Upper Paraguay River Basin: Implications for conservation of the Pantanal wetland. Agric. Ecosyst. Environ. 314, 107405 (2021).53.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).54.Berlinck, C. N., Lima, L. H. A. & Carvalho Junior, E. A. R. Historical survey of research related to fire management and fauna conservation in the world and in Brazil. Biota Neotropica 21(3), e20201144 (2021).55.Estado de Mato Grosso do Sul. DECRETO Nº 15.654, de 15 de abril de 2021. Institui o Plano Estadual de Manejo Integrado do Fogo, e Dá Outras Providências. (Diário Oficial do Estado, Mato Grosso do Sul nº 10.477, 2021).56.Marino, E. et al. Forest fuel management for wildfire prevention in Spain: A quantitative SWOT analysis. Int. J. Wildland Fire 23, 373–384 (2014).
    Google Scholar 
    57.Finney, M. A. & Cohen, J. D. Expectation and Evaluation of Fuel Management Objectives (Rocky Mountain Research Station, Colorado, 2003).58.Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D. & Wotton, B. M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10(4), 405–413 (2001).
    Google Scholar 
    59.Rocca, M. E., Brown, P. M., MacDonald, L. H. & Carrico, C. M. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecol. Manag. 327, 290–305 (2014).
    Google Scholar 
    60.Pott, V. J., Pott, A., Lima, L. C. P., Moreira, S. N. & Oliveira, A. K. M. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz. J. Biol. 71(1), 255–563 (2011).CAS 
    PubMed 

    Google Scholar 
    61.Britski, H. A., Silimon, K. Z. S. & Lopes, B. S. Peixes do Pantanal: Manual de Identificação (EMPRAPA, Brasília, 2007).62.Sousa, T. P. et al. Cytogenetic and molecular data Support the occurrence of three Gymnotus species (Gymnotiformes: Gymnotidae) used as live bait in Corumbá, Brazil: Implications for conservation and management of professional fishing. Zebrafish 14(2), 177–186 (2017).PubMed 

    Google Scholar 
    63.Piva, A., Caramaschi, U. & Albuquerque, N. R. A new species of Elachistocleis (Anura: Microhylidae) from the Brazilian Pantanal. Phyllomedusa 16(2), 143–154 (2017).
    Google Scholar 
    64.Strüssmann, C., Ribeiro, R. A. K., Ferreira, V. L., & Beda, A. D. F. Herpetofauna do Pantanal Brasileiro [Herpetofauna of the Brazilian Pantanal]. (Sociedade Brasileira de Herpetologia, Belo Horizonte, 2007).65.Ferreira, V. L. et al. Répteis do Mato Grosso do Sul [Reptiles from Mato Grosso do Sul]. Brazil. Iheringia Sér. Zool. 107(Suppl), e2017153 (2017).66.Nunes, A. P. Quantas espécies de aves ocorrem no Pantanal? [How many bird species do occur in the Pantanal?]. Atualidades Ornitológicas 160, 45–54 (2011).
    Google Scholar 
    67.Tubelis, D. P. & Tomas, W. M. Bird species of the Pantanal wetland, Brazil.. Ararajuba 11(1), 5–37 (2003).
    Google Scholar 
    68.Thomas, L. et al. Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).PubMed 

    Google Scholar  More

  • in

    Statistical inference, scale and noise in comparative anthropology

    To the Editor — In an insightful Comment Bliege Bird and Codding1 highlight a number of important issues to consider in the analysis of cross-cultural anthropological data. However, a casual reader of the Comment could be forgiven for taking away the message that cross-cultural data in anthropology is inherently flawed, and so is of limited use. We want to emphasize that comparative analysis plays an essential role in all non-experimental sciences, including anthropology and archaeology. This is because when systems cannot be manipulated due to scales of time and space, or issues of logistics or ethics, the only way to evaluate alternative outcomes is by analysing the results of natural experiments. More

  • in

    Drivers of language loss

    1.Nettle, D. Linguistic Diversity (Oxford Univ. Press, USA, 1999).2.Campbell, L. & Belew, A. Cataloguing the World’s Endangered Languages (Routledge, 2018).3.Bromham, L. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01604-y (2021).4.Amano, T. et al. Proc. R. Soc. B 281, 20141574 (2014).Article 

    Google Scholar 
    5.Austin, P. K. & Sallabank, J. The Cambridge Handbook of Endangered Languages (Cambridge Univ. Press, 2011).6.Kandler, A., Unger, R. & Steele, J. Phil. Trans. R. Soc. B 365, 3855–3864 (2010).Article 

    Google Scholar 
    7.Kik, A. et al. Proc. Natl Acad. Sci. USA 118, e2100096118 (2021).CAS 
    Article 

    Google Scholar 
    8.Lewis, M. P., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 17th edn (SIL International, 2013).9.Fischer, S. D. in The Routledge Handbook of Historical Linguistics (ed. Bowern, C. & Evans, B.) Ch. 20, 443–465 (CRC Press, Routledge, 2015).10.Hou, L. & Kusters, A. in The Routledge Handbook of Linguistic Ethnography (ed. Tusting, K.) Ch. 25 (CRC Press, Routledge, 2019).11.Turner, M. K. & McDonald, B. M. J. Iwenhe Tyerrtye: What it Means to be an Aboriginal Person (IAD Press, 2010).12.Hercus, L. A. & Sutton, P. This is What Happened: Historical Narratives by Aborigines (Australian Institute of Aboriginal Studies, 1986).13.Meek, B. A. Annu. Rev. Anthropol. 48, 95–115 (2019).Article 

    Google Scholar  More

  • in

    The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem

    1.Cornwell, W. K. et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed?. Glob. Change Biol. 15, 2431–2449 (2009).ADS 
    Article 

    Google Scholar 
    2.Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).Article 

    Google Scholar 
    3.Rayner, A. D. M. & Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology 587 (Wiley, 1988).
    Google Scholar 
    4.Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The combustion of sound and rotten coarse woody debris: A review. Int. J. Wildland Fire 20, 163–174. https://doi.org/10.1071/WF09113 (2011).Article 

    Google Scholar 
    5.Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).Article 
    CAS 

    Google Scholar 
    6.Wu, C. et al. Stronger effects of termites than microbes on wood decomposition in a subtropical forest. For. Ecol. Manage. 493, 119263. https://doi.org/10.1016/j.foreco.2021.119263 (2021).Article 

    Google Scholar 
    7.Jacobsen, R. M., Kauserud, H., Sverdrup-Thygeson, A., Bjorbækmo, M. M. & Birkemoe, T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 29, 76–84. https://doi.org/10.1016/j.funeco.2017.06.006 (2017).Article 

    Google Scholar 
    8.Leach, J. G., Orr, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).
    Google Scholar 
    9.Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926. https://doi.org/10.1016/j.funeco.2020.100926 (2020).Article 

    Google Scholar 
    10.Wikars, L.-O. Dependence on fire in wood-living insects: An experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 6, 1–12. https://doi.org/10.1023/a:1015734630309 (2002).Article 

    Google Scholar 
    11.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46. https://doi.org/10.1007/s10021-012-9594-3 (2013).Article 
    CAS 

    Google Scholar 
    12.Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Ulyshen, M. D., Horn, S., Barnes, B. & Gandhi, K. J. K. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv. Divers. 3, 247–251 (2010).Article 

    Google Scholar 
    14.Billings, R. F. et al. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 55, 7 (2004).
    Google Scholar 
    15.Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, article 47 (2014).16.Van Lear, D. H., Carroll, W. D., Kapeluck, P. R. & Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 211, 150–165 (2005).Article 

    Google Scholar 
    17.Noss, R. F. & Scott, J. M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation. Vol. 28. (US Department of the Interior, National Biological Service, 1995).18.Folkerts, G. W., Deyrup, M. A. & Sisson, D. C. Arthropods associated with xeric longleaf pine habitats in the southeastern United States: A brief overview. Proc. Tall Timbers Fire Ecol. Conf. 18, 159–191 (1993).
    Google Scholar 
    19.Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R.-M. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335. https://doi.org/10.1007/s10021-011-9512-0 (2012).Article 

    Google Scholar 
    20.Ulyshen, M. D., Horn, S., Pokswinski, S., McHugh, J. V. & Hiers, J. K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 429, 124–132. https://doi.org/10.1016/j.foreco.2018.07.017 (2018).Article 

    Google Scholar 
    21.Hanula, J. L., Ulyshen, M. D. & Wade, D. D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests 3, 317–331 (2012).Article 

    Google Scholar 
    22.Goebel, P. C. et al. Forest Ecosystems of a Lower Gulf Coastal Plain Landscape: Multifactor Classification and Analysis. 47–75. (2001).23.Ulyshen, M. D., Müller, J. & Seibold, S. Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl. Soil. Ecol. 105, 25–30. https://doi.org/10.1016/j.apsoil.2016.03.017 (2016).Article 

    Google Scholar 
    24.Kirkman, L. K. et al. Productivity and species richness in longleaf pine woodlands: Resource-disturbance influences across an edaphic gradient. Ecology 97, 2259–2271. https://doi.org/10.1002/ecy.1456 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).Article 

    Google Scholar 
    26.R Core Team. R: A Language and Environment for Statistical Computing (Version 3.6.1). http://www.R-project.org. (R Foundation for Statistical Computing, 2019).27.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    28.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 
    29.Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of paired comparisons. R Package Version 0.1-7. (2015).30.Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9, e101867 (2014).31.Stoklosa, A. M. et al. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl. Ecol. 17, 463–470. https://doi.org/10.1016/j.baae.2016.03.001 (2016).Article 

    Google Scholar 
    32.Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. 84, 375–389 (2009).Article 

    Google Scholar 
    33.Mackensen, J., Bauhus, J. & Webber, E. Decomposition rates of coarse woody debris—A review with particular emphasis on Australian tree species. Aust. J. Bot. 51, 27–37 (2003).Article 

    Google Scholar  More

  • in

    Mathematical model for predicting oxygen concentration in tilapia fish farms

    Dissolved oxygen modelThe dissolved oxygen in this model had a number of interactions to consider. Oxygen consumption through the processes of both respiration and nitrification. On the other hand, the water receives oxygen through water agitation as it is pumped through the system and from the oxygen generator. Oxygen is added to the water by oxygen generator and flow aeration (Fig. 1).Figure 1Dissolved oxygen model.Full size imageThe required oxygen supplementation is a sum of the pervious components as follows:$$ DO_{FR} + DO_{B} + DO_{N} = DO_{sup } + DO_{PF} $$
    (1)
    where DOFR is the dissolved oxygen consumption through fish respiration, g O2 m−3 h−1. DOB is the dissolved oxygen consumption through the biofilter, g O2 m−3 h−1. DON is the dissolved oxygen consumption through nitrification, g O2 m−3 h−1. DOPF is the dissolved oxygen addition through pipe flow, g O2 m−3 h−1. DOsup is the required oxygen supplementation (oxygen generator), g O2 m−3 h−1.The rate of change in DO concentration in fish tank:$$ frac{dDO}{{dt}} = DO_{FR} + DO_{B} + DO_{N} – DO_{PF} $$
    (2)
    where (frac{dDO}{{dt}}) is the rate of change in DO concentration during the time interval, g O2 m−3 h−1. dt is the rate of change in the time interval, hAfter calculating oxygen concentration for each element at each time step, the net oxygen change is then added to or subtracted from the previous time step`s oxygen concentration. DO concentrations can be calculated at any time (t) as:$$ DO_{t} = DO_{t – 1} + left( {frac{dDO}{{dt}} cdot dt} right) $$
    (3)
    where DOt is the DO concentration (g m−3) at time t. DOt−1 is the DO concentration (g m−3) at time t−1.The rate of oxygen consumption through fish respiration can be calculated on water temperature and average fish weight. This calculation is shown in the following equation10:$$ FR = 2014.45 + 2.75W – 165.2T + 0.007W^{2} + 3.93T^{2} – 0.21WT $$
    (4)
    $$ DO_{FR} = frac{FR times SD}{{1000}} $$
    (5)
    where FR is rate of oxygen consumption through fish respiration, mg O2 kg−1 fish. h−1. W is average of individual fish mass, g. T is water temperature, °C. SD is the stocking density of fish, kg m−3.The correlation coefficient for the equation was 0.99. Data used in preparing the equation ranged from 20 to 200 g for fish weight and from 24 to 32 °C.The rate of oxygen consumption through nitrification is calculated in terms of Total Ammonia Nitrogen (TAN) that is converted from ammonia to nitrate. The rate found in the literature is 4.57 g O2 g−1 TAN6.The oxygen consumption in nitrification process can be calculated as11:$$ DO_{N} = 4.57 times K_{NR} times {{{text{Nr}}} mathord{left/ {vphantom {{{text{Nr}}} {text{V}}}} right. kern-nulldelimiterspace} {text{V}}} $$
    (6)
    $$ K_{NR} = 0.1left( {1.08} right)^{{left( {T – 20} right)}} $$
    (7)
    $$ Nr = frac{{0.03 times F_{r} times W times N_{F} }}{24 times 1000} $$
    (8)
    where KNR is the coefficient of nitrification. Nr is the nitrification rate, g TAN h−1. Fr is the feeding ratio, % of body fish day−1. NF is the number of fish. V is the water volume, m3.The feeding ratio can be calculated as the following equation:$$ F_{r} = 17.02 times e^{{left[ {{raise0.7exhbox{${left( {ln W + 1.14} right)^{2} }$} !mathord{left/ {vphantom {{left( {ln W + 1.14} right)^{2} } { – 19.52}}}right.kern-nulldelimiterspace} !lower0.7exhbox{${ – 19.52}$}}} right]}} $$
    (9)
    The bacteria in the biofilter are a second source of oxygen consumption. Lawson explains that the biofilter oxygen demand is approximated 2.3 times the BOD5 production rate of fish6. The oxygen consumption of the biofilter is calculated using following equation:$$ DO_{B} = frac{{(2.3)left( {BOD_{5} } right)left( {W_{n} } right)}}{{left( V right)left( {24} right)left( {1000} right)}} $$
    (10)
    where BOD5 is average unfiltered BOD5 excretion rate, 2160 mg O2 kg−1 fish day−1. Wn is biomass, kg fish.The water pumping cycle was a source of oxygen addition to the system. The amount of oxygen addition through the water pumping cycle was calculated on an hourly basis. The method of calculating aeration from a pipe is detailed by12:$$ DO_{PF} = frac{PC times f times E times OTR}{V} $$
    (11)
    where PC is pump cycle length, h. f is pumping frequency, h−1. E is efficiency, %. OTR is oxygen transfer rate, g O2 h−1.This model sums the DOFR, DOB, DON, and DOPF to determine the supplemental DO demand in kg h−1. This number can be used to estimate the oxygen consumption if pure oxygen transfers system is used.Fish growth modelFish growth is affected by environmental and physical factors, such as water temperature, dissolved oxygen, unionized ammonia, photoperiod, fish stocking density, food availability, and food quality.In order to calculate the fish growth rate (g day−1) for individual fish, the following model was used13 as it includes the main environmental factors influencing fish growth. These factors are temperature, dissolved oxygen and unionized ammonia.$$ FGR = left( {0.2919 , tau , kappa , delta , varphi , h , f , W^{m} } right) – K.W^{n} $$
    (12)
    Where FGR is the fish growth rate, g day−1. τ is the temperature factor (0  > τ  к  δ  φ  ƒ  More

  • in

    Global controls on phosphatization of fossils during the toarcian oceanic anoxic event

    1.Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 34–39 (1970).2.Bottjer, D. J., Etter, W., Hagadorn, J. W. & Tang, C. M. Exceptional Fossil Preservation. A Unique View on the Evolution of Marine Life. (2002).3.Schiffbauer, J. D. & Laflamme, M. Lagerstätten through time: A collection of exceptional preservational pathways from the terminal Neoproterozoic through today. Palaios 27, 275–278 (2012).ADS 

    Google Scholar 
    4.Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Ann. Rev. Earth Planet. Sci. 31, 275–301 (2003).ADS 
    CAS 

    Google Scholar 
    5.Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).ADS 

    Google Scholar 
    6.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 

    Google Scholar 
    7.Ansorge, J. Insects from the Lower Toarcian of Middle Europe and England. Acta Zool. Crac. 46, 291–310 (2003).
    Google Scholar 
    8.Klug, C., Riegraf, W. & Lehmann, J. Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55, 1307–1331 (2012).
    Google Scholar 
    9.Martindale, R. C., Them, T. R., Gill, B. C., Marroquín, S. M. & Knoll, A. H. A new Early Jurassic (ca183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada. Geol. 45, 255–258 (2017).ADS 

    Google Scholar 
    10.Williams, M., Benton, M. J. & Ross, A. The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life. J. Geol. Soc. 172, 683–692 (2015).ADS 

    Google Scholar 
    11.Feldmann, R. M., Villamil, T. & Kauffman, E. G. Decapod and stomatopod crustaceans from mass mortality Lagerstatten: Turonian (Cretaceous) of Colombia. J. Paleontol. 73, 91–101 (1999).
    Google Scholar 
    12.Martill, D. M. et al. A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco. Cretac. Res. 32, 433–446 (2011).
    Google Scholar 
    13.Fuchs, D., Ifrim, C. & Stinnesbeck, W. A new Palaeoctopus (Cephalopoda: Coleoidea) from the Late Cretaceous of Vallecillo, north-eastern Mexico, and implications for the evolution of Octopoda. Palaeontology 51, 1129–1139 (2008).
    Google Scholar 
    14.Ifrim, C., Stinnesbeck, W. & Frey, E. Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 245, 71–81 (2007).
    Google Scholar 
    15.Schmid-Röhl, A., Röhl, H. J., Oschmann, W., Frimmel, A. & Schwark, L. Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control. Geobios 35, 13–20 (2002).
    Google Scholar 
    16.Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 27–52 (2001).
    Google Scholar 
    17.Allison, P. A. The role of anoxia in the decay and mineralization of proteinaceous macro- fossils. Paleobiology 14, 139–154 (1988).
    Google Scholar 
    18.Muscente, A. D., Martindale, R. C., Schiffbauer, J. D., Creighton, A. L. & Bogan, B. A. Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya Ha Tinda (Alberta, Canada) and its significance for exceptional fossil preservation during oceanic anoxic events. Palaios 34, 514–541 (2019).ADS 

    Google Scholar 
    19.Little, C. T. S. & Benton, M. J. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–498 (1995).ADS 

    Google Scholar 
    20.Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).ADS 
    CAS 

    Google Scholar 
    21.Ruebsam, W., Reolid, M. & Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    22.Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, 1–15 (2012).
    Google Scholar 
    23.Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett. 212, 307–320 (2003).ADS 
    CAS 

    Google Scholar 
    24.Dera, G. et al. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth Planet. Sci. Lett. 286, 198–207 (2009).ADS 
    CAS 

    Google Scholar 
    25.Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).ADS 
    CAS 

    Google Scholar 
    26.Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, (2010).27.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 104–118 (2013).
    Google Scholar 
    28.Caruthers, A. H., Smith, P. L. & Gröcke, D. R. The Pliensbachian-Toarcian (Early Jurassic) extinction: a North American perspective. Geol. Soc. Am. Spec. Papers 505, 225–243 (2014).
    Google Scholar 
    29.Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc. Natl. Acad. Sci. U.S.A. 115, 6596–6601 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Seilacher, A. Posidonia Shales (Toarcian, S. Germany): Stagnant basin model revalidated. in Palaeontology, Essential of Historical Geology (ed. Gallitelli, Motanaro, E.) 279–298 (1982).31.Vincent, P. A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. J. Vertebr. Paleontol. 31, 340–351 (2011).
    Google Scholar 
    32.Littke, R., Leythaeuser, D., Rullkötter, J. & Baker, D. R. Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany. Geol. Soc. Spec. Pub. 58, 311–333 (1991).
    Google Scholar 
    33.Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297–307 (2007).
    Google Scholar 
    34.Boomer, I. et al. The biostratigraphy of the Upper Pliensbachian-Toarcian (Lower Jurassic) sequence at Ilminster, Somerset. J. Micropalaeontol. 28, 67–85 (2009).
    Google Scholar 
    35.Boomer, I. et al. Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate-clastic sequence from Somerset, UK. Geological Society, London, Special Publications (2021).36.Moore, C. On the Middle and Upper Lias of the South West of England. Proc. Somerset Archaeol. Nat. Hist. Soc. 13, 19–244 (1866).
    Google Scholar 
    37.Rayner, D. H. The structure of certain Jurassic holostean fishes with special reference to their neurocrania. Philos. Trans. R. Soc. Lond. B Biol. Sci. 233, 287–345 (1948).ADS 

    Google Scholar 
    38.Patterson, C. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos. Trans. R. Soc. Lond. B Biol. Sci. 269, 275–579 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    39.McGowan, C. Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia: Ichthyosauria). J. Paleontol. 52, 1155–1162 (1978).
    Google Scholar 
    40.Duffin, C. Pelagosaurus (Mesosuchia, Crocodilia) from the English Toarcian (Lower Jurassic). Neues Jb. Geol. Paläontol. Monat. 1979, 475–485 (1979).
    Google Scholar 
    41.Woodward, A. S. Notes on the collection of fossil fishes from the Upper Lias of Ilminster in the Bath Museum. Proc. Bath Nat. Hist. Antiqu. Field Club 8, 233–242 (1897).
    Google Scholar 
    42.Pierce, S. E. & Benton, M. J. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. J. Vertebr. Paleontol. 26, 621–635 (2006).
    Google Scholar 
    43.Caine, H. & Benton, M. J. Ichthyosauria from the Upper Lias of Strawberry Bank, England. Palaeontology 54, 1069–1093 (2011).
    Google Scholar 
    44.Marek, R. D., Moon, B. C., Williams, M. & Benton, M. J. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58, 723–742 (2015).
    Google Scholar 
    45.Urlichs, M. The Lower Jurassic in southwestern Germany. Stuttgarter Beitrage zur Naturkunde series b Number 24, 1–45 (1977).
    Google Scholar 
    46.Riegraf, W., Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie Fauna und Fazies des südwestdeutschen Untertoarciums (Lias ε). (1984).47.Hauff, B. Untersuchungen der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica 64, 1–42 (1921).
    Google Scholar 
    48.Röhl, H.-J., Schmid-Röhl, A. Lower Toarcian (Upper Liassic) Black Shales of the Central European Epicontinental Basin: A Sequence Stratigraphic Case Study from the SW German Posidonia Shale. in The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences: (ed. Harris, N.) 165–189 (Society for Sedimentary Geology Special Publications 82, 2005).49.Parrish, J. T. Climate of the supercontinent Pangaea. J. Geol. 101, 215–233 (1993).ADS 

    Google Scholar 
    50.Hall, R. L. New, biostratigraphically significant ammonities from the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 43, 555–570 (2006).ADS 

    Google Scholar 
    51.Hall, R. L., McNicoll, V., Grocke, D. R., Craig, J. & Johnston, K. Integrated stratigraphy of the lower and middle Fernie Formation in Alberta and British Columbia, Western Canada. Riv. Ital. Paleontol. Stratigr. 110, 61–68 (2004).
    Google Scholar 
    52.Them, T. R. et al. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth Planet. Sci. Lett. 459, 118–126 (2017).ADS 
    CAS 

    Google Scholar 
    53.Hall, R.L., Poulton, T.P., and Monger, J. W. H. Field Trip A1: Calgary–Vancouver. in Field Guide for the Fifth International Symposium on the Jurassic System (ed. Smith, P. L.) 29–61 (International Union of Geological Sciences Subcommission on Jurassic Stratigraphy, 1998).54.Hall, R. L. New lower jurassic ammonite faunas from the fernie formation, southern Canadian Rocky Mountains. Can. J. Earth Sci. 24, 1688–1704 (1987).ADS 

    Google Scholar 
    55.Stronach, N. J. Depositional environments and cycles in the Jurassic Fernie Formation, southern Canadian Rocky Mountains. Can. Soc. Pet. Geol. Memoir 9, 43–67 (1984).
    Google Scholar 
    56.Maxwell, E. E. & Martindale, R. C. New Saurorhynchus (Actinopterygii: Saurichthyidae) material from the Early Jurassic of Alberta, Canada. Can. J. Earth Sci. 54, 714–719 (2017).ADS 

    Google Scholar 
    57.Hall, R. L. Seirocrinus subangularis (Miller, 1821), a Pliensbachian (Lower Jurassic) crinoid from the Fernie Formation, Alberta, Canada. J. Paleontol. 65, 300–307 (1991).
    Google Scholar 
    58.Feldman, R. M. & Copeland, M. J. A new species of erymid lobster from Lower Jurassic strata (Sinemurian/Pliensbachian), Fernie Formation, southwestern Alberta. Geol. Surv. Can. Bull. 379, 93–101 (1988).
    Google Scholar 
    59.Schweigert, G., Garassino, A., Hall, R. L., Hauff, R. B. & Karasawa, H. The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) from the Lower Jurassic. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 332, 1–43 (2003).
    Google Scholar 
    60.Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120 (2017).
    Google Scholar 
    61.Hall, R. L. Paraplesioteuthis hastata (Munster), the first teuthid squid recorded from the Jurassic of North America. J. Paleontol. 59, 870–874 (1985).
    Google Scholar 
    62.Marroquín, S. M., Martindale, R. C. & Fuchs, D. New records of the late Pliensbachian to early Toarcian (Early Jurassic) gladius-bearing coleoid cephalopods from the Ya Ha Tinda Lagerstätte, Canada. Papers Palaeontol. 4, 245–276 (2018).
    Google Scholar 
    63.Muscente, A. D. & Xiao, S. Resolving three-dimensional and subsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (BSE-SEM). Palaios 30, 462–481 (2015).ADS 

    Google Scholar 
    64.Lindgren, J. et al. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–365 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Seilacher, A., Andalib, F., Dietl, G. & Gocht, H. Preservational history of compressed Jurassic ammonites from Southern Germany. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 152, 307–356 (1976).
    Google Scholar 
    66.Them, T. R. et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett. 7, 1–10 (2017).CAS 

    Google Scholar 
    67.Szpak, P. Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. J. Archaeol. Sci. 38, 3358–3372 (2011).
    Google Scholar 
    68.Kunkel, J. G., Nagel, W. & Jercinovic, M. J. Mineral fine structure of the American lobster cuticle. J. Shellfish Res. 31, 515–526 (2012).
    Google Scholar 
    69.Doguzhaeva, L. A. & Mutvei, H. Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Rev. Paleobiol. 22, 877–894 (2003).
    Google Scholar 
    70.Glass, K. et al. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. U.S.A. 109, 10218–10223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schiffbauer, J. D., Wallace, A. F., Broce, J. & Xiao, S. Exceptional fossil conservation through phosphatization. The Paleontol. Soc. Papers 20, 59–82 (2014).
    Google Scholar 
    72.Muscente, A. D., Hawkins, A. D. & Xiao, S. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 434, 46–62 (2015).
    Google Scholar 
    73.Glenn, C. R. Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol. Helv. 87, 747–788 (1994).
    Google Scholar 
    74.Arning, E. T., Birgel, D., Brunner, B. & Peckmann, J. Bacterial formation of phosphatic laminites off Peru. Geobiology 7, 295–307 (2009).CAS 
    PubMed 

    Google Scholar 
    75.Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 39–51 (2009).
    Google Scholar 
    76.Fantasia, A. et al. Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth-Sci. Rev. 198, 102932 (2019).CAS 

    Google Scholar  More

  • in

    Ontogenetic shifts from social to experiential learning drive avian migration timing

    1.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552–1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    2.Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    3.Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112 (2016).PubMed 

    Google Scholar 
    4.Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 20, 741–749 (2018).
    Google Scholar 
    5.Fryxell, J. M., Greever, J. & Sinclair, A. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).
    Google Scholar 
    6.Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188–4 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170009–20170016 (2018).
    Google Scholar 
    9.Campioni, L., Dias, M. P., Granadeiro, J. P. & Catry, P. An ontogenetic perspective on migratory strategy of a long‐lived pelagic seabird: timings and destinations change progressively during maturation. J. Anim. Ecol. 89, 29–43 (2020).PubMed 

    Google Scholar 
    10.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 1–17 (2014).MathSciNet 

    Google Scholar 
    11.Thorup, K. et al. Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc. Natl Acad. Sci. USA 104, 18115–18119 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 34, e12599–7 (2018).
    Google Scholar 
    14.Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kendal, R. L., Coe, R. L. & Laland, K. N. Age differences in neophilia, exploration, and innovation in family groups of callitrichid monkeys. Am. J. Primatol. 66, 167–188 (2005).CAS 
    PubMed 

    Google Scholar 
    16.French, J. B. et al. Whooping cranes past and present. in Whooping Cranes (eds. French, J. B. Jr, Conserve, S. J. & Austin, J. E.) (Academic Publisher, 2019).17.Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory Whooping Cranes Grus americana. Bird. Conserv. Int. 20, 43–54 (2009).
    Google Scholar 
    18.Sorte, F. A. L. & Graham, C. H. Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. J. Anim. Ecol. 90, 343–355 (2021).PubMed 

    Google Scholar 
    19.Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 

    Google Scholar 
    20.Xu, F. & Si, Y. The frost wave hypothesis: how the environment drives autumn departure of migratory waterfowl. Ecol. Indic. 101, 1018–1025 (2019).
    Google Scholar 
    21.Nuijten, R. J. M. et al. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J. Avian Biol. 45, 113–122 (2013).
    Google Scholar 
    22.Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 485–18 (2019).
    Google Scholar 
    23.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).ADS 

    Google Scholar 
    24.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    25.Thurfjell, H., Ciuti, S. & Boyce, M. S. Learning from the mistakes of others: How female elk (Cervus elaphus) adjust behaviour with age to avoid hunters. PLoS ONE 12, e0178082–20 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Reader, S. M. & Laland, K. N. Primate innovation: sex, age and social rank differences. Int. J. Primatol. 22, 787–805 (2001).
    Google Scholar 
    27.Brent, L. J. N. et al. Ecological knowledge, leadership, and the evolution of menopause in killer whales. Curr. Biol. 25, 746–750 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not? Proc. R. Soc. B Biol. Sci. 281, 20132161 (2014).
    Google Scholar 
    30.Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    32.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    33.Gurarie, E. et al. Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10, 407–432 (2019).
    Google Scholar 
    34.Burnside, R. J., Salliss, D., Collar, N. J. & Dolman, P. M. Birds use individually consistent temperature cues to time their migration departure. Proc. Natl Acad. Sci. USA 118, e2026378118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    36.Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2004).
    Google Scholar 
    37.Roth, T. C. II & Krochmal, A. R. The role of age-specific learning and experience for turtles navigating a changing landscape. Curr. Biol. 25, 333–337 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. 115, 1004–1008 (2018).CAS 
    PubMed 

    Google Scholar 
    39.Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green‐wave surfing for a migratory ungulate. Glob. Change Biol. 23, 239–11 (2020).
    Google Scholar 
    40.Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
    Google Scholar 
    41.Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130195–20130195 (2014).
    Google Scholar 
    42.Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 65, 502–510 (2017).
    Google Scholar 
    43.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2010).PubMed 

    Google Scholar 
    44.Paradis, E., Claude, J. & Strimmer, K. Ape: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    45.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach Vol. 72 (Springer, 1998).46.Nally, R. M., Duncan, R. P., Thomson, J. R. & Yen, J. D. L. Model selection using information criteria, but is the “best” model any good? J. Appl. Ecol. 55, 1441–1444 (2017).
    Google Scholar 
    47.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    48.Fox, J. & Weisberg, S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J. Stat. Softw. 87, 1–27 (2018).
    Google Scholar 
    49.“R Core Team”. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).50.Abrahms, B., Teitelbaum, C., Mueller, T. & Converse, S. Data from: ontogenetic shifts from social to experiential learning drive avian migration timing. Movebank Data Repository https://doi.org/10.5441/001/1.t23vm852 (2021).51.Abrahms, B. Code from: ontogenetic shifts from social to experiential learning drive avian migration timing. Github Repository. https://doi.org/10.5281/zenodo.5719357 (2021). More