More stories

  • in

    Large sinuous rivers are slowing down in a warming Arctic

    Gillet, N. et al. Canada’s Changing Climate Report (Government of Canada, 2019).Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 6–11 (2018).Article 

    Google Scholar 
    Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68, 135–152 (2005).Article 
    CAS 

    Google Scholar 
    Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Change 5, 574–578 (2015).Article 

    Google Scholar 
    Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).Article 

    Google Scholar 
    Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).Article 

    Google Scholar 
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).Article 

    Google Scholar 
    Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).Article 
    CAS 

    Google Scholar 
    Shevtsova, I. et al. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ. Res. Lett. 15, 085006 (2020).Article 

    Google Scholar 
    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).Article 
    CAS 

    Google Scholar 
    Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).Article 

    Google Scholar 
    Walcker, R., Corenblit, D., Julien, F., Martinez, J. M. & Steiger, J. Contribution of meandering rivers to natural carbon fluxes: evidence from the Ucayali River, Peruvian Amazonia. Sci. Total Environ. 776, 146056 (2021).Article 
    CAS 

    Google Scholar 
    Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).Article 

    Google Scholar 
    Allen, J. R. Sedimentary structures: their character and physical basis. Dev. Sedimentol. 30B, 1–593 (1982).
    Google Scholar 
    Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).Article 

    Google Scholar 
    Chassiot, L., Lajeunesse, P. & Bernier, J. F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).Article 

    Google Scholar 
    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).Article 
    CAS 

    Google Scholar 
    Horton, A. J. et al. Modification of river meandering by tropical deforestation. Geology 45, 511–514 (2017).Article 

    Google Scholar 
    Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).Article 
    CAS 

    Google Scholar 
    Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).Article 

    Google Scholar 
    Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851(2022).Brown, D. R. N. et al. Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Clim. Change 162, 385–404 (2020).Article 

    Google Scholar 
    Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).Article 
    CAS 

    Google Scholar 
    Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).Matsubara, Y. et al. Geomorphology river meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).Article 

    Google Scholar 
    Lininger, K. B. & Wohl, E. Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: a review and synthesis. Earth-Sci. Rev. 193, 24–44 (2019).Article 
    CAS 

    Google Scholar 
    Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).Article 

    Google Scholar 
    Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. M. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).Article 

    Google Scholar 
    Wang, G., Hu, H. & Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 375, 438–449 (2009).Article 

    Google Scholar 
    Tananaev, N. & Lotsari, E. Defrosting northern catchments: fluvial effects of permafrost degradation. Earth-Sci. Rev. 228, 103996 (2022).Article 

    Google Scholar 
    Tarnocai, C., Nixon, M. F. & Kutny, L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada. Permafr. Periglac. Process. 15, 141–153 (2004).Article 

    Google Scholar 
    Nguyen, T.-N., Burn, C. R., King, D. J. & Smith, S. L. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafr. Periglac. Process. 20, 141–153 (2009).Article 

    Google Scholar 
    Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Process. 31, 239–254 (2020).Article 

    Google Scholar 
    Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zo. J. 15, vzj2016.01.0010 (2016).Article 

    Google Scholar 
    Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (Dover, 1964).Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).Article 

    Google Scholar 
    Lageweg, W. I. van de et al. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).Article 

    Google Scholar 
    Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).Article 

    Google Scholar 
    Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 46, W09506 (2010).
    Google Scholar 
    Ielpi, A. & Lapôtre, M. G. A. Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah. Sedimentology 66, 1896–1929 (2019).Article 

    Google Scholar 
    Fox, G. A. et al. Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf. Process. Landf. 1573, 1558–1573 (2007).Article 

    Google Scholar 
    O’Neill, H. B., Smith, S. L. & Duchesne, C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements. In 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (eds Bilodeau, J.-P. et al.) 643–651 (ASCE, 2019).Qiu, J. Thawing permafrost reduces river runoff. Nature https://doi.org/10.1038/nature.2012.9749 (2012).Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).Article 

    Google Scholar 
    Jorgenson, M. T. et al. An Ecological Land Survey for the Colville River Delta, Alaska, 1996 (ABR, Inc., 1997).Park, H., Yoshikawa, Y., Yang, D. & Oshima, K. Warming water in arctic terrestrial rivers under climate change. J. Hydrometeorol. 18, 1983–1995 (2017).Article 

    Google Scholar 
    Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).Article 

    Google Scholar 
    Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).Article 

    Google Scholar 
    O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).Article 

    Google Scholar 
    French, H. The Periglacial Environment (Wiley, 2017).Prowse, T. D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 15, 1–16 (2001).Article 
    CAS 

    Google Scholar 
    Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).Article 
    CAS 

    Google Scholar 
    Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melkinov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (USGS, 1997); https://pubs.usgs.gov/cp/45/report.pdfIelpi, A., Lapotre, M. G. A., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Zenodo https://doi.org/10.5281/zenodo.7556050 (2023).Leopold, L. B. & Maddock, T. J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS, 1953).Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009).Article 

    Google Scholar 
    Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).Article 

    Google Scholar 
    Sylvester, Z., Durkin, P. R., Hubbard, S. M. & Mohrig, D. Autogenic translation and counter point bar deposition in meandering rivers. GSA Bull. 133, 2439–2456 (2021).Titov, M. Code for dynamic time warping analysis. GitHub http://mlt.github.io/QGIS-Processing-tools/tags/dtw.html (2015).Finotello, A., D’Alpaos, A., Lazarus, E. D. & Lanzoni, S. High curvatures drive river meandering: COMMENT. Geology 47, e485 (2019).Finotello, A. et al. American Geophysical Union, Fall Meeting Abstracts (AGU, 2020).Congedo, L. Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 6, 3172 (2021).Article 

    Google Scholar  More

  • in

    The terrestrial isopod symbiont ‘Candidatus Hepatincola porcellionum’ is a potential nutrient scavenger related to Holosporales symbionts of protists

    McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol. 2019;29:R485–95.Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.Article 
    CAS 

    Google Scholar 
    Latorre A, Manzano-Marin A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci. 2017;1389:52–75.Article 
    PubMed 

    Google Scholar 
    Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol. 2021;19:375–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe. 2021;29:879–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience. 2021;10:giab021.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol. 2017;19:4238–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol. 1999;1:357–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjsek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 2014;8:1634–44.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjsek R, Ettema TJ, et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 2016;18:2326–42.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hess S, Suthaus A, Melkonian M. “Candidatus Finniella” (Rickettsiales, Alphaproteobacteria), Novel Endosymbionts of Viridiraptorid Amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol. 2016;82:659–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 2019;13:2280–94.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, et al. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol. 2018;10:1120–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    George EE, Husnik F, Tashyreva D, Prokopchuk G, Horak A, Kwong WK, et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 2020;30:925–33.e3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J. 2021;15:1680–94.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, et al. ‘Candidatus Gromoviella agglomerans’, a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. Environ Microbiol Rep. 2022;14:34–49.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA, Peters EC, et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 2019;13:2938–53.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an Alphaproteobacterial symbiont clade of the ecdysozoa. Front Microbiol. 2016;7:539.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yurchenko T, Sevcikova T, Pribyl P, El Karkouri K, Klimes V, Amaral R, et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 2018;12:2163–75.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE. 2013;8:e83383.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szokoli F, Castelli M, Sabaneyeva E, Schrallhammer M, Krenek S, Doak TG, et al. Disentangling the taxonomy of Rickettsiales and description of two novel symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) sharing the cytoplasm of the ciliate protist Paramecium biaurelia. Appl Environ Microbiol. 2016;82:7236–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munoz-Gomez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife. 2019;8:e42535.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, et al. ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol. 2006;56:2535–40.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fokin SI, Görtz HD, Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M, editor. Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Berlin: Springer; 2009. https://doi.org/10.1007/978-3-540-92677-1_7.Min CK, Yang JS, Kim S, Choi MS, Kim IS, Cho NH. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics. 2008;2008:623145.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garushyants SK, Beliavskaia AY, Malko DB, Logacheva MD, Rautian MS, Gelfand MS. Comparative genomic analysis of Holospora spp., intranuclear symbionts of paramecia. Front Microbiol. 2018;9:738.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb Ecol. 2013;65:255–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, et al. “Candidatus Gortzia shahrazadis”, a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front Microbiol. 2016;7:1704.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, et al. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol. 2019;85:e00854–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang Y, Brune A, Zimmer M. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiol Ecol. 2007;61:141–52.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A. ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol. 2004;181:299–304.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraune S, Zimmer M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol. 2008;10:2497–504.Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol. 2016;92:fiw063.Article 
    PubMed 

    Google Scholar 
    Zimmer M, Topp W. Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol. 1998;24:1397–408.Article 
    CAS 

    Google Scholar 
    Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, et al. Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol. 2001;138:955–63.Article 

    Google Scholar 
    Bouchon D, Zimmer M, Dittmer J. The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol. 2016;7:1472.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dittmer J, Beltran-Bech S, Lesobre J, Raimond M, Johnson M, Bouchon D. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Mol Ecol. 2014;23:2619–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18:e1009802.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome. 2018;6:162.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Herran B, Bertaux J, Greve P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. Biotechnol Biofuels. 2020;13:49.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70:e102.Article 
    CAS 
    PubMed 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badawi M, Moumen B, Giraud I, Greve P, Cordaux R. Investigating the molecular genetic basis of cytoplasmic sex determination caused by Wolbachia endosymbionts in terrestrial isopods. Genes. 2018;9:290.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3:e000132.PubMed 
    PubMed Central 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017;45:D320–4.Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: bacteria providing their host the killer trait. Syst Appl Microbiol. 2018;41:213–20.Article 
    PubMed 

    Google Scholar 
    Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 2015;39:47–80.CAS 
    PubMed 

    Google Scholar  More

  • in

    Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific

    Lynn, D. H. Ciliated Protozoa: Characterization, Classification, and Guide to the Literature 3rd edn, 1–455 (Springer, 2008).
    Google Scholar 
    Stoecker, D. K., Michaels, A. E. & Davis, L. H. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9, 901–915 (1987).Article 

    Google Scholar 
    Dolan, J. R., Vidussi, F. & Claustre, H. Planktonic ciliates in the Mediterranean Sea: Longitudinal trends. Deep-Sea Res. I(46), 2025–2039 (1999).Article 

    Google Scholar 
    Gómez, F. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol. 32, 188–202 (2007).Article 
    ADS 

    Google Scholar 
    Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 
    ADS 

    Google Scholar 
    Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
    Google Scholar 
    Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).Article 

    Google Scholar 
    Kim, Y. O. et al. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 47, 161–172 (2012).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol. Indic. 133, 108441 (2021).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic tintinnid community structure variations in different water masses of the Arctic Basin. Front. Mar. Sci. 8, 775653 (2022).Article 

    Google Scholar 
    Haney, J. F. Diel patterns of zooplankton behavior. Bull. Mar. Sci. 43, 583–603 (1988).ADS 

    Google Scholar 
    Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res-Oceans 104, 3297–3310 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C., Webb, P. I. & Frears, S. L. Diet changes in the carbon and nitrogen content of the copepod Metridia lucens. J. Plankton Res. 4, 727–737 (1998).Article 

    Google Scholar 
    Hays, G. C., Harris, R. P. & Head, R. N. Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Res. II(48), 1063–1068 (2001).ADS 

    Google Scholar 
    Anna, A., Enric, S. & Albert, C. Towards an understanding of diel feeding phythms in marine protists: Consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).Article 

    Google Scholar 
    Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep-Sea Res. II(49), 2601–2617 (2002).ADS 

    Google Scholar 
    Li, C. L. et al. Quasi-antiphase diel patterns of abundance and cell size/biomass of picophytoplankton in the oligotrophic ocean. Geophys. Res. Lett. 49, e2022GL097753 (2022).ADS 

    Google Scholar 
    Ohman, M. D. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990).Article 

    Google Scholar 
    Ringelberg, J. The photo behavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74, 397–423 (1999).Article 

    Google Scholar 
    Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: A response to satiation or krill predation?. Mar. Ecol. Prog. 240, 183–194 (2002).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Mar. Biol. 147, 387–398 (2005).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article 

    Google Scholar 
    Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans 1–347 (Springer, 2010).
    Google Scholar 
    Liu, H. J., Zhu, M. L., Guo, S. J., Zhao, X. H. & Sun, X. X. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope. J. Mar. Syst. 205, 103311 (2020).Article 

    Google Scholar 
    Tao, Z. C. et al. The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean. Sci. Rep. 12, 18908 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dale, T. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Mar. Microb. Food Webs 2, 15–28 (1987).
    Google Scholar 
    Jonsson, P. R. Vertical distribution of planktonic ciliates–an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52, 39–53 (1989).Article 
    ADS 

    Google Scholar 
    Stocker, D. K., Taniguchi, A. & Michaels, A. E. Abundance of autotrophic, mixotrophic and heterotrophic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50, 241–254 (1989).Article 
    ADS 

    Google Scholar 
    Passow, U. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110, 455–463 (1991).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Temporal change of clustered distribution of planktonic ciliates in Toyama Bay in summers of 1989 and 1990. J. Oceanogr. 53, 35–40 (1997).Article 
    CAS 

    Google Scholar 
    Olli, K. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J. Mar. Syst. 23, 145–163 (1999).Article 

    Google Scholar 
    Pérez, M. T., Dolan, J. R., Vidussi, F. & Fukai, E. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterrean (May 1995). Deep-Sea Res. I(47), 479–503 (2000).Article 

    Google Scholar 
    Rossberg, M. & Wickham, S. A. Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fund. Appl. Limnol. 171, 1–14 (2008).Article 

    Google Scholar 
    Gu, B. W. et al. High dynamics of ciliate community revealed via short-term, high-frequency sampling in a subtropical estuarine ecosystem. Front. Microbiol. 13, 797638 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Su, J. L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River Estuary. Cont. Shelf Res. 24, 1745–1760 (2004).Article 

    Google Scholar 
    Cravatte, S., Delcroix, T., Zhang, D., Mcphaden, M. & Leloup, J. Observed freshening and warming of the western pacific warm pool. Clim. Dyn. 33, 565–589 (2009).Article 

    Google Scholar 
    Feng, M. P., Zhang, W. C., Yu, Y., Xiao, T. & Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007. J. Trop. Oceanogr. 32, 86–92 (2013).
    Google Scholar 
    Liu, H. X. et al. Composition and distribution of planktonic ciliates in the southern South China Sea during late summer: Comparison between surface and 75 m deep layer. J. Ocean Univ. China 15, 171–176 (2016).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep-Sea Res. II(167), 70–78 (2019).
    Google Scholar 
    Sun, P., Zhang, S. L., Wang, Y. & Huang, B. Q. Biogeographic role of the Kuroshio Current Intrusion in the microzooplankton community in the boundary zone of the northern South China Sea. Microorganisms 9, 1104 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sohrin, R., Imazawa, M., Fukuda, H. & Suzuki, Y. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. II(57), 1537–1550 (2010).ADS 

    Google Scholar 
    Wang, C. F. et al. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanol. Sin. 39, 9–17 (2020).Article 
    CAS 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate trait structure variation over Yap, Mariana and Caroline seamounts in the tropical western Pacific Ocean. J. Oceanol. Limnol. 39, 1705–1717 (2021).Article 
    ADS 

    Google Scholar 
    McLaren, I. A. Demographic strategy of vertical migration by a marine copepod. Amer. Nat. 108, 91–102 (1974).Article 

    Google Scholar 
    Loose, C. J., Von Elert, E. & Dawidowicz, P. Chemically-induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126, 329–337 (1993).Article 

    Google Scholar 
    Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1–43 (2021).Article 

    Google Scholar 
    Oubelkheir, K. & Sciandra, A. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). J. Mar. Syst. 74, 364–371 (2008).Article 

    Google Scholar 
    Yang, E. J., Choi, J. K. & Hyun, J. H. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146, 1–15 (2004).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (Eastern Indian Ocean). J. Sea Res. 190, 102311 (2022).Article 

    Google Scholar 
    Daro, M. H. Migratory and grazing behavior of copepods and vertical distribution of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988).
    Google Scholar 
    Ursella, L., Cardin, V., Batistić, M., Garić, R. & Gačić, M. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Prog. Oceanogr. 167, 78–96 (2018).Article 
    ADS 

    Google Scholar 
    Roman, M. R., Dam, H. G., Le Borgne, R. & Zhang, X. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II(49), 2695–2711 (2002).ADS 

    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II(55), 1615–1635 (2008).ADS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).Article 

    Google Scholar 
    Dolan, J. R. Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Protozoologica 49, 235–244 (2010).
    Google Scholar 
    Jacquet, S., Partensky, F., Lennon, J. F. & Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).Article 

    Google Scholar 
    Pitta, P., Giannakourou, A. & Christaki, U. Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24, 297–311 (2001).Article 

    Google Scholar 
    Weisse, T. & Montagnes, D. J. S. Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. J. Eukaryot. Microbiol. 69, e12879 (2022).Article 
    PubMed 

    Google Scholar 
    Heinbokel, J. F. Diel periodicities and rates of reproduction in natural populations of tintinnines in the oligotrophic waters off Hawaii, September 1982. Mar. Microb. Food Webs 2, 1–14 (1987).
    Google Scholar 
    Tsai, A. Y., Chiang, K. P., Chang, J. & Gong, G. C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50, 1221–1231 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl. Acad. Sci. U. S. A. 112, 8008–8012 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Connell, P. E., Ribalet, F., Armbrust, E. V., White, A. & Caron, D. A. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 85, 167–181 (2020).Article 

    Google Scholar 
    Cheung, K. C., Poon, B., Lan, C. Y. & Wong, M. H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, X. P., Huang, L. M. & Yue, W. Z. The characteristics of nutrients and eutrophication in the Pearl River estuary. South China. Mar. Pollut. Bull. 47, 30–36 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, S. M. et al. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. J. Geophys. Res. 115, C11020 (2010).Article 
    ADS 

    Google Scholar 
    Shu, Y. Q., Wang, Q. & Zu, T. T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 61, 560–571 (2018).Article 
    ADS 

    Google Scholar 
    Dai, S. et al. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 210, 103396 (2020).Article 

    Google Scholar 
    He, X. Q. et al. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117–124 (2016).Article 
    ADS 

    Google Scholar 
    Pan, X. J. et al. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: The northern South China Sea Shelf-sea. Remote Sens. Environ. 210, 1–11 (2018).Article 
    ADS 

    Google Scholar 
    Xu, J. et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River. Deep-Sea Res. I. 55, 1330–1342 (2008).Article 
    CAS 

    Google Scholar 
    Caron, D. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28, 295–298 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kirchman, D. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Song, J. M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas 1–657 (Springer, 2011).
    Google Scholar 
    Zhang, W. C. et al. Review of nutrient (nitrogen and phosphorus) regeneration in the marine pelagic microbial food web. Mar. Sci. Bull. 35, 241–251 (2016).CAS 

    Google Scholar 
    Ma, J. et al. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean. Earth Sci. Front. 27, 322–331 (2020).
    Google Scholar 
    Li, H. B. et al. Tintinnid diversity in the tropical West Pacific Ocean. Acta Oceanol. Sin. 37, 218–228 (2018).Article 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E. & Ras, J. The, “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4, 297–310 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E., Tunin-Ley, A. & Pizay, M. Dynamics of core and occasional species in the marine plankton: Tintinnid ciliates in the north-west Mediterranean Sea. J. Biogeogr. 36, 887–895 (2009).Article 

    Google Scholar 
    Dolan, J. R. & Marrasé, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Res. I(42), 1965–1987 (1995).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382 (1998).Article 

    Google Scholar 
    Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
    Google Scholar 
    Lund, J. W. G., Kipling, C. & Cren, E. D. L. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).Article 

    Google Scholar 
    Kofoid, C. A. & Campbell, A. S. A Conspectus of the Marine and Fresh-Water Ciliata Belonging to the Suborder Tintinnoinea: With Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905 (University of California Press, 1929).
    Google Scholar 
    Kofoid, C. A., & Campbell, A. S. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge to Alexander Agassiz, by US Fish commission steamer “Albatross”, from October 1904 to March 1905, The Ciliata: The Tintinnoinea (Bulletin of the Museum of Comparative Zoology of Harvard College), vol. XXXVII. Cambridge University, Harvard (Lieut.-Commander LM Garrett, USN commanding) (1939).Zhang, W. C., Feng, M. P., Yu, Y., Zhang, C. X. & Xiao, T. An Illustrated Guide to Contemporary Tintinnids in the World 1–499 (Science Press, 2012).
    Google Scholar 
    Paranjape, M. A. & Gold, K. Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris 58, 143–150 (1982).
    Google Scholar 
    Alder, V. A. Tintinnoinea. In South Atlantic zooplankton (ed. Boltovskoy, D.) 321–384 (Backhuys, 1999).
    Google Scholar 
    Verity, P. G. & Langdon, C. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton R. 6, 859–868 (1984).Article 
    CAS 

    Google Scholar 
    Putt, M. & Stoecker, D. K. An experimentally determined carbon: Volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).Article 
    ADS 

    Google Scholar 
    Yu, Y. et al. Basin-scale variation in planktonic ciliate distribution: A detailed temporal and spatial study of the Yellow Sea. Mar. Biol. Res. 10, 641–654 (2014).Article 

    Google Scholar 
    Wang, C. F. et al. Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019. Front. Microbiol. 13, 881048 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Dolan, J. R. & Pierce, R. W. Diversity and distributions of tintinnid ciliates. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 214–243 (Wiley-Blackwell, 2013).
    Google Scholar 
    Xu, Z. L. & Chen, Y. Q. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea. J. Ecol. 8, 13–15 (1989).
    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E, 2008).
    Google Scholar 
    Jiang, Y., Xu, G. & Xu, H. Use of multivariate dispersion to assess water quality based on species composition data. Environ. Sci. Pollut. Res. 23, 3267–3272 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    The extent of windfarm infrastructures on recognised European blanket bogs

    When studying windfarm developments at the European region scale, the high densities of windfarm developments on blanket bog in Galicia and Greater Manchester (north England) are influenced by the total extent of the recognised blanket bog which is lower in Spain (31.2 km2 total extent) and in Greater Manchester (40.8 km2 total extent) in comparison to other regions (Fig. 1), although no relationship between the total extent of recognised blanket bog and the windfarm developments (wind turbines, tracks and total affected area) was found. Although the rest of the European regions across Spain showed lower densities of windfarm infrastructures (Fig. 2), the total extent of recognised blanket bogs across those regions was under 1 km2 (Fig. 1) meaning that the majority of recognised Spanish blanket bogs could be under threat due to their small size and the potential impact of windfarm infrastructures, if installed. In addition to this, previously unrecognised Spanish blanket bogs that have now been reported17 that could also be under pressure as the lack of formal recognition and protection leaves this habitat exposed to a range of anthropogenic activities, including windfarm developments. In fact, some examples of blanket bogs with extensive damage have been identified and reported in Galicia25, and more recently in Cantabrian blanket bogs17.Spanish unmapped areas of blanket bog at the edge-of-range of this habitat in the south of Europe are, therefore, particularly at risk from windfarm developments, and may disappear before their extent and importance can be defined40. Currently, new renewable energy regulations have been developed as a result of the climate emergency, and several windfarm developments have been proposed in ecologically sensitive areas, where blanket bogs have been reported (e.g. Sierra del Escudo, Spain) increasing the pressure on this habitat. Spanish blanket bogs also have specific characteristics, such as their small size as a consequence of the topographical limitations (e.g. slope) for their development26, meaning that they usually only cover the hill summits, where wind energy potential is at its greatest. Since blanket bogs are small and the windfarm development may cover all of the hill summit for their installation, many blanket bogs will be irrevocably damaged40.Most of the Galician blanket bogs were protected in 1999, under the Natura 2000 network and were declared as Special Area of Conservation (SAC) in 2014. However, between 1999 and 2012, Galician blanket bogs underwent severe and significant alterations in the peatland surface as a consequence of the large number of windfarm developments41 that were established during the period (Table A—Supplementary information), even when the site was incorporated into the Natura 2000 network (Table B—Supplementary information). Despite available scientific evidence that showed the potential environmental risks for these vulnerable ecosystems, windfarms were installed in what this work found to be the most extensive windfarm infrastructures across recognised European blanket bogs (Fig. 2).The incomplete current understanding of the extent of Spanish blanket bogs highlights the need to improve the completeness and representativeness of their current records across the Spanish Atlantic biogeographical region to include, within Natura 2000, a sufficient cover of their occupied area, in proportion to the representation of this natural habitat type in the Member state, for which it could therefore be concluded that the network is complete. Due to the increasing evidence highlighting how important the transitional areas are within the blanket bog complex42, other peatland types and wet heaths should be also considered when recognising and protecting blanket bogs. Mapping unrecorded blanket bogs must be a priority to fully understand the geographical and climatic range of this habitat, and obligatory protection under the Habitats Directive (92/43/EEC) is key to protecting the southern edge-of-range of this habitat.In addition to the lack of protection and updated inventories, the priority status included in the Habitats Directive, key to promoting their protection and restoration, is only for active blanket bogs, excluding other degraded blanket bogs with the potential to be active (carbon sinks), if they are restored. An approach similar to that of Scotland, where degraded blanket bogs are included33,39, could promote blanket bog restoration across Europe and improve the protection of this natural carbon storage.Many countries have also misinterpreted the active status of the blanket bog meaning that it is difficult to define whether the recognised blanket bog habitat is classed as a priority or not. Some countries, such as the Republic of Ireland, have classified as 7130 only active blanket bogs36, meaning that degraded blanket bogs lack appropriate classification and incorrectly applying the Habitat Directive designation as not all blanket bogs are included. The priority status is given when the habitat is particularly vulnerable or unique to the EU and necessitates additional measures for their protection and surveillance; however, whilst some blanket bogs may not act currently as carbon sinks, they still contain large amounts of carbon, and when restored they can recover their carbon sink function1, and then act to mitigate climate change.The issue of windfarm developments across the Republic of Ireland has been previously reported using a peat map43. However, despite researchers highlighting the importance of excluding vulnerable peatland ecosystems in future developments44, new areas of windfarms have been built affecting further recognised blanket bogs. At least 79 wind turbines have been installed in the Republic of Ireland since 2008 on recognised blanket bogs (Table A—Supplementary information) representing the 9.8% of the total onshore turbines installed in the country (Table 3), highlighting the importance of this conflict. The contribution of wind energy production to electricity supply was predicted to be up to 30% by 202044. In 2020, wind energy consumed in the Republic of Ireland represented 36%45. This represented an average annual increase of wind energy consumption of 16.9%45 between 2005 and 2020, which may explain part of the increase of 42% in wind turbines since 2008 (Table A—Supplementary information).Table 3 Total % of turbines on blanket bog (recognised/national inventories) in relation with the total turbines installed by country.Full size tableAcross Europe, several governments have developed climate action plans that over the next decade promote renewable energies to reduce carbon emissions. The government of the Republic of Ireland is aiming to generate up to 80% of electricity from renewable energy by 2030, providing support for onshore windfarm developments with an increase of up to 32% of the renewable energy production by 2030, but with a favourable preference for offshore wind energy production (up to 52% of the renewable energy production)46. This may help to reduce the conflict between blanket bogs and windfarm developments. Currently, windfarm annual energy production on blanket bogs accounts for 263.4 MW, 6.1% of the total production of wind energy in the Republic of Ireland47.The promotion of onshore wind energy production46 and the lack of protection of the full extent of blanket bogs are also threats that need to be considered in the Republic of Ireland. In 2008, a peat map was published showing the distribution of blanket bogs and raised bogs across the Republic of Ireland43. However, the inventory of current recognised blanket bogs under the Habitats Directive does not cover the full extent reported in this research43. While the total extent of recognised blanket bogs under the Habitats Directive 92/43/ECC reported a total of 3621 km2 of blanket bogs36, the real extent of blanket bogs across the country could be up to 2.5 times more (9202 km2)43, highlighting the lack of protection and the potential further increase of the windfarms and peatlands conflict in the Republic of Ireland as it happens in Spain and Scotland.The lack of recognition of blanket bog habitat in combination with the promotion of wind energy production across the island of Ireland could affect further areas of blanket bog, increasing the degradation of blanket bogs. An urgent review of inventories needs to be promoted in both countries, the Republic of Ireland and Northern Ireland, to fully assess the impact of the extensive areas of windfarms across the whole island.In Scotland, the pressure of windfarm developments on blanket bogs is also evident, where the Scottish Planning Policy considers classes 1 and 2 as areas of significant protection; although, windfarm developments may be possible under some circumstances48 as is permitted under the Habitats Directive across the EU29. However, to assess the impacts of windfarms on peatlands in a consistent way and evaluate the environmental impact of potential new developments on carbon-rich soils, a carbon calculator has been developed by the Scottish Government49. The carbon calculator allows users to estimate the carbon savings of windfarms installed on peatlands, although they highlight the importance of long-term management in relation to the final net carbon calculation49. Nonetheless, installing windfarms on non-degraded peatlands has been reported as unlikely to reduce carbon emissions even when the management has been considered carefully and it should be avoided 30. Therefore, peatlands under classes 1 and 2 considered by the Scottish government as a priority should be excluded from any windfarm developments (currently representing over 16% of onshore turbines, Table 3); especially considering the current policy of increasing onshore windfarms in Scotland50. Long-term research is needed to fully assess the impacts before new windfarm developments are installed.The difference between the recognised blanket bogs included in the EU Habitats Directive and the Scottish national inventory highlights the importance of updating and defining the complete extent of blanket bogs to facilitate their protection and restoration.In this novel research, the extent of windfarm developments across all recognised European blanket bogs under the Habitats Directive have been assessed. Large extents of blanket bogs have already been damaged, concentrated in the edge-of-range of this habitat and directly affecting hundreds of hectares of blanket bog across the rest of Europe. The full potential long-term damage to the habitat functionality is still unclear, but scientific evidence supports the negative impacts of windfarm developments on this critical habitat. European blanket bogs need further scientific evidence to demonstrate the real benefit of incentivising the reduction of carbon emissions by installing onshore windfarm infrastructures on peatlands which are causing the degradation of the most important long-term natural carbon sink and storage ecosystems. A strategic restoration plan and appropriate relevant legislation would be beneficial to promote the safeguarding of blanket bogs in the UK after Brexit. An urgent revision and compliance of the legislation regarding the protection of blanket bogs needs to be implemented, especially under the current trend of promotion and increasing legislation on renewable energy to reduce carbon emissions. An improvement of the national inventories across the EU and UK protected area networks is critical to implement the recognition, protection, and restoration of this habitat, in order to guarantee its favourable conservation status and its function as a long-term carbon sink to mitigate climate change. More

  • in

    Competition’s role

    Decline in organism size is seen as a major biological response to climate change, and can be particularly pronounced in aquatic ectotherms such as fish, with subsequent implications for fishery yield and food security. However, as well as being modulated by climate factors, the fish population size structure can also be impacted by biotic (competition, predation) and other human factors (harvesting). For migrating species such as salmon, while smaller size may represent reduced size at maturity, it may also indicate faster maturation. More

  • in

    Future riverine impact

    Shuang Gao from Bjerkens Center for Climate Research in Norway, and colleagues from Germany and the United States explored future changes in marine primary production and carbon uptake under climate scenarios using the Norwegian Earth-system model, with four river transport configurations incorporating established future economic development and nutrient-use efficiency pathways. The researchers find that riverine nutrient inputs lessen nutrient limitation under warmer conditions. In the future, the effect of increased riverine carbon may be larger than the effect of nutrient inputs on the projections of ocean carbon uptake. In the historical period, increased nutrient inputs are considered the most prominent driver of carbon uptake. The results of this study are subject to model limitations, and high-resolution models should be used to assess the future impact. More

  • in

    Simultaneous sulfate and nitrate reduction in coastal sediments

    Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: Overturning an old paradigm. Eos, Trans Am Geophys Union. 2001;82:133–6.Article 

    Google Scholar 
    Cook PL, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJ, Eyre BD, et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data. Limnol Oceanogr Methods. 2006;4:294–307.Article 
    CAS 

    Google Scholar 
    Evrard V, Glud RN, Cook PL. The kinetics of denitrification in permeable sediments. Biogeochemistry. 2013;113:563–72.Article 

    Google Scholar 
    Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Marine Sci. 2014;6:23–51.Article 

    Google Scholar 
    Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Res. 2007;27:1801–19.Article 

    Google Scholar 
    Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Marine Ecol Progr Series. 2006;326:61–76.Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn. 2009;59:317–32.Article 

    Google Scholar 
    de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr. 2005;50:113–27.Article 

    Google Scholar 
    Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G, et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr. 2012;57:185–98.Article 
    CAS 

    Google Scholar 
    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 2009;4:417.Article 
    PubMed 

    Google Scholar 
    Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour Res. 1997;33:123–36.Article 
    CAS 

    Google Scholar 
    Precht E, Huettel M. Advective pore‐water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr. 2003;48:1674–84.Article 

    Google Scholar 
    Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM, et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci Rep. 2020;10:1–12.Article 

    Google Scholar 
    Ahmerkamp S, Winter C, Krämer K, Beer DD, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.Article 
    CAS 

    Google Scholar 
    Cardenas MB, Wilson JL Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res. 2007;43:W08412.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–33.Article 
    PubMed 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchant HK, Holtappels M, Lavik G, Ahmerkamp S, Winter C, Kuypers MMM. Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnol Oceanogr. 2016;61:1033–48.Article 

    Google Scholar 
    Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, et al. Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions. Environ Microbiol. 2018;20:4486–502.Article 
    CAS 
    PubMed 

    Google Scholar 
    Laverman AM, Pallud C, Abell J, Van, Cappellen P. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica et Cosmochimica Acta. 2012;77:474–88.Article 
    CAS 

    Google Scholar 
    Fenchel T, Jørgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol. 1977;1:1–58.Article 
    CAS 

    Google Scholar 
    Canfield DE, Kristensen E, Thamdrup B Aquatic Geomicrobiology: Elsevier Science; 2005.Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica Acta. 1979;43:1075–90.Article 
    CAS 

    Google Scholar 
    Eckford RE, Fedorak PM. Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol. 2002;29:243–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol. 2008;74:4324.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Progr. 2003;19:338–45.Article 
    CAS 

    Google Scholar 
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol. 2003;5:607–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wolfe BM, Lui SM, Cowan JA. Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Purification, characterization, kinetics and EPR studies. Eur J Biochem. 1994;223:79–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature. 1995;374:713–15.Article 
    CAS 

    Google Scholar 
    Jørgensen BB. Big sulfur bacteria. ISME J. 2010;4:1083.Article 
    PubMed 

    Google Scholar 
    Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Londry KL, Suflita JM. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol. 1999;22:582–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    McInerney MJ, Bhupathiraju VK, Sublette KL. Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm. J Ind Microbiol. 1992;11:53–8.Article 
    CAS 

    Google Scholar 
    Schwermer CU, Ferdelman TG, Stief P, Gieseke A, Rezakhani N, Van Rijn J, et al. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiol Ecol. 2010;72:476–84.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta. 1994;58:5115–29.Article 
    CAS 

    Google Scholar 
    Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn. 2009;59:351–70.Article 

    Google Scholar 
    Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol. 2006;29:333–48.Article 
    PubMed 

    Google Scholar 
    Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.Article 
    PubMed 

    Google Scholar 
    Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Front Microbiol. 2018;9:3124Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen J, Hanke A, Tegetmeyer HE, Kattelmann I, Sharma R, Hamann E, et al. Impacts of chemical gradients on microbial community structure. ISME J. 2017;11:920.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations. Environ Microbiol. 2017;19:4866–81.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.Article 
    CAS 

    Google Scholar 
    Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krekeler D, Cypionka H. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol. 1995;17:271–7.Article 
    CAS 

    Google Scholar 
    Seitz H-J, Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol. 1986;146:63–7.Article 
    CAS 

    Google Scholar 
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.Article 
    PubMed 

    Google Scholar 
    Marietou A, Griffiths L, Cole J. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol. 2009;191:882–889.Article 
    CAS 
    PubMed 

    Google Scholar 
    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2015;49:924–931.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochimica et Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 2000;1481:119–130.Article 
    CAS 

    Google Scholar 
    Werner U, Billerbeck M, Polerecky L, Franke U, Huettel M, van Beusekom JEE, et al. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnol Oceanogr. 2006;51:2549–63.Article 
    CAS 

    Google Scholar 
    Marchant HK, Lavik G, Holtappels M, Kuypers MMM. The fate of nitrate in intertidal permeable sediments. PLOS ONE. 2014;9:e104517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canfield DE. Reactive iron in marine sediments. Geochimica et cosmochimica acta. 1989;53:619–632.Article 
    CAS 
    PubMed 

    Google Scholar 
    Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M. Nutrient release from an exposed intertidal sand flat. Marine Ecol Progr Series. 2006;316:35–51.Article 
    CAS 

    Google Scholar 
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean Coast. Science. 2010;330:1375.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001;26:350–355.Article 
    CAS 
    PubMed 

    Google Scholar 
    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. J Bacteriol. 2004;186:7944–7950.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.Article 

    Google Scholar 
    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta. 2020;280:441–52.Article 
    CAS 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evolut Microbiol. 2020;70:5972–6016.Article 
    CAS 

    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–1953.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol. 2011;13:758–774.Article 
    CAS 
    PubMed 

    Google Scholar 
    An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecol Progr Series. 2002;237:41–50.Article 
    CAS 

    Google Scholar 
    Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun. 2017;8:15595.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 1997;3:279–290.Article 
    CAS 
    PubMed 

    Google Scholar 
    Song G, Liu S, Zhang J, Zhu Z, Zhang G, Marchant HK, et al. Response of benthic nitrogen cycling to estuarine hypoxia. Limnol Oceanogr. 2021;66:652–66.Article 
    CAS 

    Google Scholar 
    Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek. 1983;48:569–583.Article 

    Google Scholar 
    Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol. 2007;73:1420–1424.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.Article 

    Google Scholar 
    Røy H, Lee JS, Jansen S, de Beer D. Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr. 2008;53:1521–30.Article 

    Google Scholar 
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol Oceanogr. 1969;14:454–458.Article 
    CAS 

    Google Scholar 
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl Geochem. 2000;15:785–90.Article 
    CAS 

    Google Scholar 
    Røy H, Weber HS, Tarpgaard IH, Ferdelman TG, Jørgensen BB. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. Limnol Oceanogr Methods. 2014;12:196–211.Article 

    Google Scholar 
    García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chem. 2014;162:30–36.Article 

    Google Scholar 
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.Article 
    CAS 
    PubMed 

    Google Scholar 
    Holtappels M, Lavik G, Jensen MM, Kuypers MMM Chapter ten – 15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. In: Klotz MG, editor. Methods in Enzymology. 486: Academic Press; 2011. p. 223-251.Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment.ISME J. 2007;1:341–353.Article 
    CAS 
    PubMed 

    Google Scholar 
    Warembourg FR 5 – Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH, editors. Nitrogen Isotope Techniques. San Diego: Academic Press; 1993. p. 127-156.Orellana LH, Rodriguez-R LM, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2016;45:e14–e14.PubMed Central 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Preparation of aluminium-hydroxide-modified diatomite and its fluoride adsorption mechanism

    Scanning electron microscopy and energy spectrum analysisThe SEM images show the morphological structures of DA and Al-DA before and after adsorption (Fig. 1). DA and Al-DA have disk-like microstructures29 with sur-faces containing both large and small pores, that is, DA and Al-DA have unique multi-level pore structures. The main component of DA and Al-DA is silica, which has a large specific surface area, good thermal stability, and is a natural green material for use as a water treatment agent with a porous structure31. The micrographs show that before adsorption, the DA surface is smooth with a distinct pore structure, whereas modification with aluminium hydroxide makes DA coarse and loose because of the formation of amorphous aluminium hydroxide colloids32. After adsorption, the surface pore structure is covered over for DA and completely covered over for Al-DA, which indicates that F− reacts with Al3+ to form nanoscale precipitates22. The results of the EDS analysis (Fig. 2) show that the content of elemental Al increased from 3.96 to 12.74% after DA was modified with aluminium hydroxide, indicating that Al adhered effectively to the modified DA surface. After adsorption, the content of elemental Al decreased from 3.96 to 1.36% for DA and from 12.74 to 2.03% for Al-DA, which fully confirmed that fluorine preferentially combined with Al to form aluminium precipitates during adsorption, thereby decreasing the Al content.Figure 1SEM images of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageFigure 2EDS graphs of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageXRD analysisThe surface mineral composition and crystallinity of the materials before and after adsorption were analyzed by XRD (Fig. 3). In the DA and Al-DA patterns, the wide diffraction peaks at approximately 22.0°, 26.0°, and 50.0° mainly correspond to amorphous SiO2, and the diffraction peak at approximately 35° mainly corresponds to amorphous Al2O3, indicating that the material is polycrystalline29. It has been re-ported that amorphous materials may be good adsorbents because of a large specific surface area and numerous active sites33. Many Al(OH)3 peaks and NaCl peaks appear in the XRD pattern of Al-DA, indicating the successful modification of DA by aluminium hydroxide. After adsorption, Na3AlF6 peaks appear in the DA pattern, and Na3AlF6 and AlF3 peaks appear in the Al-DA pattern, whereas the characteristic peaks of NaCl are absent in the Al-DA pattern, which indicates the participation of NaCl in the adsorption process. It has been demonstrated that in the presence of excess sodium fluoride in the reaction solution, the generated aluminium fluoride combines with sodium fluoride to form a NaAlF4 intermediate, which is subsequently converted to cryolite complexes by further adsorption of sodium fluoride34. This result confirms the XRD mapping results.Figure 3XRD patterns of DA and Al-DA before and after adsorption.Full size imageInfrared analysisFigure 4 shows the FTIR spectra of DA and Al-DA before and after adsorption: peaks at 3418, 1635, 1096, 791, and 538 cm−1 appear in the spectrum of DA spectrum before adsorption, and peaks at 3630, 3449, 1637, 1094, 913, 793, and 538 cm−1, appear in the Al-DA spectrum before adsorption. The strong and broad band centered at 3418 cm−1 is due to the stretching vibration of the adsorbed water hydroxyl group (O–H) and the surface hydroxyl group, the vibrational peak at approximately 1635 cm−1 is probably from bound water or the surface hydroxyl group; the peaks at 1096 cm−1 and 538 cm−1 correspond to siloxane groups (Si–O–Si–) and an Al–O absorption band, respectively; and the strong oscillations at 791 cm−1 may be attributed to inorganic Al salts35,36,37. The original absorption peak in the DA spectrum is shifted in the spectrum of DA modified with aluminium hydroxide, confirming the successful modification of DA. The shift of the band at 3418 cm−1 in the DA spectrum to a higher frequency at 3623 cm−1 in the DA spectrum after fluoride absorption is caused by fluoride bonding and has been previously reported38. Another noticeable change in the spectra of DA and Al-DA before and after adsorption is the increase or decrease in the intensity of bending vibrations of specific peaks because the highly electronegative fluoride may have an inductive effect on the respective groups that leads to a blueshift, and the formation of hydrogen bonds leads to a redshift and broadening of the spectral band. The shifts and changes of these peaks indicate the interaction of fluoride with the respective groups29. The new peak at approximately 1170 cm−1 in the spectra of DA and Al-DA with adsorbed fluoride may be due to the formation of Al-F bonds6. The IR spectra show that the formation of a new bonding electronic structure by surface complexation with F− is one of the main mechanisms for the adsorption of F−.Figure 4FTIR spectra of DA and Al-DA before and after adsorption.Full size imageZeta potential analysisThe zeta potential of the material surface plays a very key role in the adsorption process, which reflects the surface charge properties of the material under different pH conditions, and also reflects the surface properties of the material. To obtain the zero charge point of the material, we studied the potential change of the material under different pH values. The results are shown in Fig. 5. In the range of pH 3–11, the zeta potential of the two adsorbents decreased linearly with the increase in pH, and the pHzpc of DA and Al-DA were 9.84 and 10.61, respectively. When pH  More