The polar night shift: seasonal dynamics and drivers of Arctic Ocean microbiomes revealed by autonomous sampling
1.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS
PubMed
PubMed Central
Google Scholar
2.Bunse C, Pinhassi J. Marine Bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:494–505.CAS
PubMed
Google Scholar
3.Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.PubMed
Google Scholar
4.Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS
PubMed
Google Scholar
5.Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed
Google Scholar
6.Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2021.7.Alonso-Saez L, Sanchez O, Gasol JM, Balague V, Pedros-Alio C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol. 2008;10:2444–54.CAS
PubMed
Google Scholar
8.Rokkan Iversen K, Seuthe L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 2011;34:731–49.
Google Scholar
9.Grzymski JJ, Riesenfeld CS, Williams TJ, Dussaq AM, Ducklow H, Erickson M, et al. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. ISME J. 2012;6:1901–15.CAS
PubMed
PubMed Central
Google Scholar
10.Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 2015;139:233–43.
Google Scholar
11.Wilson B, Müller O, Nordmann E-L, Seuthe L, Bratbak G, Øvreås L. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front Mar Sci. 2017;4:95.
Google Scholar
12.Sandaa R-A, E Storesund J, Olesin E, Lund Paulsen M, Larsen A, Bratbak G, et al. Seasonality drives microbial community structure, shaping both eukaryotic and prokaryotic host−viral relationships in an Arctic marine ecosystem. Viruses. 2018;10:715.CAS
PubMed Central
Google Scholar
13.Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900.CAS
PubMed
PubMed Central
Google Scholar
14.Freyria NJ, Joli N, Lovejoy C. A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels. Sci Rep. 2021;11:8413.CAS
PubMed
PubMed Central
Google Scholar
15.Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A, Mundy CJ, et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci Rep. 2017;7:40850.CAS
PubMed
PubMed Central
Google Scholar
16.Hegseth EN, Assmy P, Wiktor JM, Wiktor J, Kristiansen S, Leu E, et al. Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds). The ecosystem of Kongsfjorden, Svalbard. 2019. Springer International Publishing, Cham, pp 173–227.17.Liu Y, Blain S, Crispi O, Rembauville M, Obernosterer I. Seasonal dynamics of prokaryotes and their associations with diatoms in the Southern Ocean as revealed by an autonomous sampler. Environ Microbiol. 2020;22:3968–84.CAS
PubMed
Google Scholar
18.Randelhoff A, Lacour L, Marec C, Leymarie E, Lagunas J, Xing X, et al. Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci Adv. 2020;6:eabc2678.PubMed
PubMed Central
Google Scholar
19.Randelhoff A, Reigstad M, Chierici M, Sundfjord A, Ivanov V, Cape M, et al. Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Front Mar Sci. 2018;5:224.
Google Scholar
20.Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr. 2015;139:258–71.
Google Scholar
21.Müller O, Wilson B, Paulsen ML, Rumińska A, Armo HR, Bratbak G, et al. Spatiotemporal dynamics of ammonia-oxidizing thaumarchaeota in distinct arctic water masses. Front Microbiol. 2018;9:24.PubMed
PubMed Central
Google Scholar
22.Johnsen G, Leu E, Gradinger R. Marine micro- and macroalgae in the polar night. In: Berge J, Johnsen G, Cohen JH (eds). Polar night marine ecology: life and light in the dead of night. 2020. Springer International Publishing, Cham, pp 67–112.23.Vader A, Marquardt M, Meshram A, Gabrielsen T. Key Arctic phototrophs are widespread in the polar night. Polar Biol. 2014;38:13–21.
Google Scholar
24.Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, et al. Arctic spring awakening—steering principles behind the phenology of vernal ice algal blooms. Prog Oceanogr. 2015;139:151–70.
Google Scholar
25.Soltwedel T, Bauerfeind E, Bergmann M, Bracher A, Budaeva N, Busch K, et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol Indic. 2016;65:89–102.
Google Scholar
26.Nöthig E-M, Ramondenc S, Haas A, Hehemann L, Walter A, Bracher A, et al. Summertime chlorophyll a and particulate organic carbon standing stocks in surface waters of the Fram Strait and the Arctic Ocean (1991–2015). Front Mar Sci. 2020;7:350.
Google Scholar
27.Nöthig E-M, Bracher A, Engel A, Metfies K, Niehoff B, Peeken I, et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 2015;34:23349.
Google Scholar
28.Engel A, Bracher A, Dinter T, Endres S, Grosse J, Metfies K, et al. Inter-annual variability of organic carbon concentration in the Eastern Fram Strait during summer (2009-17). Front Mar Sci. 2019;6:187.
Google Scholar
29.Fadeev E, Salter I, Schourup-Kristensen V, Nöthig E-M, Metfies K, Engel A, et al. Microbial communities in the east and west Fram Strait during sea ice melting season. Front Mar Sci. 2018;5:429.
Google Scholar
30.von Jackowski A, Grosse J, Nöthig E-M, Engel A. Dynamics of organic matter and bacterial activity in the Fram Strait during summer and autumn. Philos Trans R Soc Math Phys Eng Sci. 2020;378:20190366.
Google Scholar
31.Metfies K, Bauerfeind E, Wolf C, Sprong P, Frickenhaus S, Kaleschke L, et al. Protist communities in moored long-term sediment traps (Fram Strait, Arctic)–preservation with mercury chloride allows for PCR-based molecular genetic analyses. Front Mar Sci. 2017;4:301.
Google Scholar
32.Cardozo-Mino MG, Fadeev E, Salman-Carvalho V, Boetius A. Spatial distribution of Arctic bacterioplankton abundance is linked to distinct water masses and summertime phytoplankton bloom dynamics (Fram Strait, 79°N). Front Microbiol. 2021;12:658803.PubMed
PubMed Central
Google Scholar
33.Richter ME, von Appen W-J, Wekerle C. Does the East Greenland Current exist in the northern Fram Strait? Ocean Sci. 2018;14:1147–65.CAS
Google Scholar
34.Tuerena RE, Hopkins J, Buchanan PJ, Ganeshram RS, Norman L, von Appen W-J, et al. An Arctic strait of two halves: the changing dynamics of nutrient uptake and limitation across the Fram Strait. Glob Biogeochem Cycles. 2021;35:e2021GB006961.35.Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 2017;356:285–91.CAS
PubMed
Google Scholar
36.Lannuzel D, Tedesco L, van Leeuwe M, Campbell K, Flores H, Delille B, et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat Clim Change. 2020;10:983–92.
Google Scholar
37.Carter-Gates M, Balestreri C, Thorpe SE, Cottier F, Baylay A, Bibby TS, et al. Implications of increasing Atlantic influence for Arctic microbial community structure. Sci Rep. 2020;10:19262.CAS
PubMed
PubMed Central
Google Scholar
38.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS
PubMed
Google Scholar
39.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011;17:10–2.
Google Scholar
40.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Google Scholar
41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS
PubMed
Google Scholar
42.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.CAS
PubMed
Google Scholar
43.Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.
Google Scholar
44.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
Google Scholar
45.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.CAS
PubMed
PubMed Central
Google Scholar
46.Andersen KSS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018.47.Lawlor J. PNWColors: A Pacific Northwest inspired R color palette package. 2020 https://github.com/jakelawlor/PNWColors.48.von Appen W-J, Schauer U, Hattermann T, Beszczynska-Möller A. Seasonal cycle of mesoscale instability of the west Spitsbergen Current. J Phys Oceanogr. 2016;46:1231–54.
Google Scholar
49.Wekerle C, Wang Q, von Appen W-J, Danilov S, Schourup-Kristensen V, Jung T. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J Geophys Res Oceans. 2017;122:8385–405.
Google Scholar
50.Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35.PubMed
Google Scholar
51.Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, Sebastián M, et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 2021;6:1561–74.52.Priest T, Orellana LH, Huettel B, Fuchs BM, Amann R. Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms. PeerJ. 2021;9:e11721.PubMed
PubMed Central
Google Scholar
53.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed
Google Scholar
54.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS
PubMed
Google Scholar
55.Monier A, Comte J, Babin M, Forest A, Matsuoka A, Lovejoy C. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 2015;9:990–1002.CAS
PubMed
Google Scholar
56.Leeuwe M, van, Tedesco L, Arrigo KR, Assmy P, Campbell K, Meiners KM, et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elem Sci Anth. 2018;6:4.
Google Scholar
57.Fadeev E, Rogge A, Ramondenc S, Nöthig E-M, Wekerle C, Bienhold C, et al. Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean. Commun Biol. 2021;4:1–13.
Google Scholar
58.Wasmund N, Göbel J, von Bodungen B. 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J Mar Syst. 2008;73:300–22.
Google Scholar
59.Stoecker DK, Lavrentyev PJ. Mixotrophic plankton in the polar seas: a pan-Arctic review. Front Mar Sci. 2018;5:292.
Google Scholar
60.Lampe V, Nöthig E-M, Schartau M. Spatio-temporal variations in community size structure of Arctic protist plankton in the Fram Strait. Front Mar Sci. 2021;7:579880.
Google Scholar
61.Brichta M, Nöthig E-M. The role of life cycle stages of diatoms in decoupling carbon and silica cycles in polar regions. In: Proceedings of SCAR Open Science Conference Bremen, Germany. 2004.62.Not F, Siano R, Kooistra WHCF, Simon N, Vaulot D, Probert I. Diversity and ecology of eukaryotic marine phytoplankton. In: Piganeau G (ed). Advances in botanical research. 2012. Academic Press, pp 1–53.63.Raghukumar S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol. 2002;38:127–45.
Google Scholar
64.Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, et al. Zoosporic parasites infecting marine diatoms—a black box that needs to be opened. Fungal Ecol. 2016;19:59–76.PubMed
PubMed Central
Google Scholar
65.Choi DH, Park K-T, An SM, Lee K, Cho J-C, Lee J-H, et al. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLOS One. 2015;10:e0116271.PubMed
PubMed Central
Google Scholar
66.Wemheuer B, Wemheuer F, Hollensteiner J, Meyer F-D, Voget S, Daniel R. The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches. Front Microbiol. 2015;6:805.PubMed
PubMed Central
Google Scholar
67.Delpech L-M, Vonnahme TR, McGovern M, Gradinger R, Præbel K, Poste A. Terrestrial inputs shape coastal bacterial and archaeal communities in a high Arctic Fjord (Isfjorden, Svalbard). Front Microbiol. 2021;12:614634.PubMed
PubMed Central
Google Scholar
68.Alldredge AL, Gotschalk CC. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res Part A. Oceanogr Res Pap. 1989;36:159–71.CAS
Google Scholar
69.Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.CAS
Google Scholar
70.Underwood GJC, Michel C, Meisterhans G, Niemi A, Belzile C, Witt M, et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat Clim Change. 2019;9:170–6.
Google Scholar
71.Graham E, Tully BJ. Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning. ISME J. 2021;15:1248–56.72.Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.CAS
PubMed
Google Scholar
73.Randelhoff A, Sundfjord A, Reigstad M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys Res Lett. 2015;42:3442–9.CAS
Google Scholar
74.García FC, Alonso-Sáez L, Morán XAG, López-Urrutia Á. Seasonality in molecular and cytometric diversity of marine bacterioplankton: the re-shuffling of bacterial taxa by vertical mixing. Environ Microbiol. 2015;17:4133–42.PubMed
Google Scholar
75.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed
PubMed Central
Google Scholar
76.Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 2020;14:437–49.PubMed
Google Scholar
77.Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.
Google Scholar
78.Williams TJ, Lefevre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol. 2012;62:2443–50.CAS
PubMed
Google Scholar
79.von Friesen LW, Riemann L. Nitrogen fixation in a changing Arctic Ocean: an overlooked source of nitrogen? Front Microbiol. 2020;11:596426.
Google Scholar
80.Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.CAS
PubMed
PubMed Central
Google Scholar
81.Martínez-Pérez C, Greening C, Zhao Z, Lappan RJ, Bay SK, De Corte D, et al. Lifting the lid: nitrifying archaea sustain diverse microbial communities below the Ross Ice Shelf. Cell Rev. 2020; SSRN: https://ssrn.com/abstract=3677479 or https://doi.org/10.2139/ssrn.3677479.82.Mohamed NM, Saito K, Tal Y, Hill RT. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 2010;4:38–48.CAS
PubMed
Google Scholar
83.Mussmann M, Pjevac P, Kruger K, Dyksma S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 2017;11:1276–81.CAS
PubMed
PubMed Central
Google Scholar
84.Burow LC, Kong Y, Nielsen JL, Blackall LL, Nielsen PH. Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology. 2007;153:178–85.CAS
PubMed
Google Scholar
85.Lucas J, Koester I, Wichels A, Niggemann J, Dittmar T, Callies U, et al. Short-term dynamics of North Sea Bacterioplankton-dissolved organic matter coherence on molecular level. Front Microbiol. 2016;7:321.86.Stecher A, Neuhaus S, Lange B, Frickenhaus S, Beszteri B, Kroth PG, et al. rRNA and rDNA based assessment of sea ice protist biodiversity from the central Arctic Ocean. Eur J Phycol. 2016;51:31–46.CAS
Google Scholar
87.Lalande C, Nöthig E-M, Somavilla R, Bauerfeind E, Shevchenko V, Okolodkov Y. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob Biogeochem Cycles. 2014;28:571–83.CAS
Google Scholar
88.Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front Microbiol. 2017;8:266.PubMed
PubMed Central
Google Scholar
89.Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.CAS
PubMed
Google Scholar
90.Izaguirre I, Unrein F, Schiaffino MR, Lara E, Singer D, Balagué V, et al. Phylogenetic diversity and dominant ecological traits of freshwater Antarctic Chrysophyceae. Polar Biol. 2021;44:941–57.
Google Scholar
91.Humphry DR, George A, Black GW, Cummings SP. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol. 2001;51:1235–43.CAS
PubMed
Google Scholar
92.Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.93.Ardyna M, Mundy CJ, Mayot N, Matthes LC, Oziel L, Horvat C, et al. Under-ice phytoplankton blooms: shedding light on the “invisible” part of Arctic primary production. Front Mar Sci. 2020;7:608032.
Google Scholar
94.Alonso-Sáez L, Zeder M, Harding T, Pernthaler J, Lovejoy C, Bertilsson S, et al. Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front Microbiol. 2014;5:425.95.Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B, et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun. 2017;8:1507.PubMed
PubMed Central
Google Scholar
96.Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 2018;12:1907–17.PubMed
PubMed Central
Google Scholar
97.Singh A, Divya DT, Tripathy SC, Naik RK. Interplay of regional oceanography and biogeochemistry on phytoplankton bloom development in an Arctic fjord. Estuar Coast Shelf Sci. 2020;243:106916.CAS
Google Scholar
98.Engel A, Piontek J, Metfies K, Endres S, Sprong P, Peeken I, et al. Inter-annual variability of transparent exopolymer particles in the Arctic Ocean reveals high sensitivity to ecosystem changes. Sci Rep. 2017;7:4129.PubMed
PubMed Central
Google Scholar
99.Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, et al. Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry. 2007;83:147–72.
Google Scholar
100.Lampitt RS, Salter I, Johns D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycles. 2009;23:GB1010.
Google Scholar
101.Luria CM, Amaral-Zettler LA, Ducklow HW, Rich JJ. Seasonal succession of free-living bacterial communities in coastal waters of the western Antarctic Peninsula. Front Microbiol. 2016;7:1731.PubMed
PubMed Central
Google Scholar
102.Taylor JD, Cunliffe M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ Microbiol Rep. 2017;9:151–7.CAS
PubMed
Google Scholar
103.Gómez-Gutiérrez J, Kawaguchi S, Nicol S. Epibiotic suctorians and enigmatic ecto- and endoparasitoid dinoflagellates of euphausiid eggs (Euphausiacea) off Oregon, USA. J Plankton Res. 2009;31:777–85.
Google Scholar
104.Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, et al. Verrucomicrobia: candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl Environ Microbiol. 2014;80:3749–56.CAS
PubMed
PubMed Central
Google Scholar
105.Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol. 2018;94:fiy034.
Google Scholar
106.Fahrbach E, Meincke J, Østerhus S, Rohardt G, Schauer U, Tverberg V, et al. Direct measurements of volume transports through Fram Strait. Polar Res. 2001;20:217–24.
Google Scholar
107.Comeau AM, Li WK, Tremblay JE, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS
PubMed
PubMed Central
Google Scholar
108.Lalande C, Bauerfeind E, Nöthig E-M, Beszczynska-Möller A. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog Oceanogr. 2013;109:70–7.
Google Scholar
109.Dybwad C, Assmy P, Olsen LM, Peeken I, Nikolopoulos A, Krumpen T, et al. Carbon export in the seasonal sea ice zone north of Svalbard from winter to late summer. Front Mar Sci. 2021;7:525800.
Google Scholar
110.Glud RN, Rysgaard S, Turner G, McGinnis DF, Leakey RJG. Biological- and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnol Oceanogr. 2014;59:1097–111.CAS
Google Scholar
111.Shiozaki T, Ijichi M, Fujiwara A, Makabe A, Nishino S, Yoshikawa C, et al. Factors regulating nitrification in the Arctic Ocean: potential impact of sea ice reduction and ocean acidification. Glob Biogeochem Cycles. 2019;33:1085–99.CAS
Google Scholar More