More stories

  • in

    Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits

    1.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Phil. Trans. R. Soc. B 365, 3947–3958. https://doi.org/10.1098/rstb.2010.0221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Wolf, M., van Doorn, G., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584. https://doi.org/10.1038/nature05835 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sih, A. & Bell, A. M. Insights for behavioral ecology from behavioral syndromes. Adv. Study Behav. 38, 227–281. https://doi.org/10.1016/S0065-3454(08)00005-3 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Sih, A., Bell, A. M. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378. https://doi.org/10.1016/j.tree.2004.04.009 (2004).Article 
    PubMed 

    Google Scholar 
    6.Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B. 270, 45–51. https://doi.org/10.1098/rspb.2002.2168 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Sol, D., Griffin, A. S., Bartomeus, I. & Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 6, e19535. https://doi.org/10.1371/journal.pone.0019535 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dammhahn, M., Mazza, V., Schirmer, A., Göttsche, C. & Eccard, J. C. Of city and village mice: Behavioural adjustments of striped field mice to urban environments. Sci. Rep. 10, 13056. https://doi.org/10.1038/s41598-020-69998-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecological perspective. Phil. Trans. R. Soc. B 367, 2762–2772. https://doi.org/10.1098/rstb.2012.0216 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Stoewe, M. & Kotrschal, K. Behavioural phenotypes may determine whether social context facilitates or delays novel object exploration in ravens (Corvus corax). J. Ornithol. 148, S179–S184. https://doi.org/10.1007/s10336-007-0145-1 (2007).Article 

    Google Scholar 
    11.Guillette, L. M., Reddon, A. R., Hoeschele, M. & Sturdy, C. B. Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proc. R. Soc. B 278, 767–773. https://doi.org/10.1098/rspb.2010.1669 (2011).Article 
    PubMed 

    Google Scholar 
    12.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B 282, 20142201. https://doi.org/10.1098/rspb.2014.2201 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206. https://doi.org/10.1163/156853905774539364 (2005).Article 

    Google Scholar 
    14.Van Oers, K. & Mueller, J. C. Evolutionary genomics of animal personality. Phil. Trans. R. Soc. B 365, 3991–4000. https://doi.org/10.1098/rstb.2010.0178 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459. https://doi.org/10.1093/beheco/arv088 (2015).Article 

    Google Scholar 
    16.Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Phil. Trans. R. Soc. B 371, 20150184. https://doi.org/10.1098/rstb.2015.0184 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595. https://doi.org/10.1111/j.1439-0310.2010.01771.x (2010).Article 

    Google Scholar 
    18.Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, 36639. https://doi.org/10.1371/journal.pone.0036639 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Charmantier, A., Deyeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00053 (2017).Article 

    Google Scholar 
    20.Isaksson, C., Rodewald, A. D. & Gil, D. Editorial: Behavioural and ecological consequences of urban life in birds. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00050 (2018).Article 

    Google Scholar 
    21.Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644. https://doi.org/10.1093/beheco/arv201 (2016).Article 

    Google Scholar 
    22.Miranda, A. C., Schielzeth, H., Sonntag, T. & Partecke, J. Urbanization and its effects on personality traits: A result of microevolution or phenotypic plasticity. Glob. Change Biol. 19, 2634–2644. https://doi.org/10.1111/gcb.12258 (2013).ADS 
    Article 

    Google Scholar 
    23.Riyahi, S., Björklund, M., Mateos-Gonzalez, F. & Senar, J. C. Personality and urbanization: Behavioural traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. J. Ethol. 35, 101–108. https://doi.org/10.1007/s10164-016-0496-2 (2017).Article 

    Google Scholar 
    24.Schinka, J. A., Letsch, E. A. & Crawford, F. C. DRD4 and novelty seeking: Results of meta-analyses. Am. J. Med. Genet. 114, 643–648. https://doi.org/10.1002/ajmg.10649 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Chen, C. S., Burton, M., Greenberger, E. & Dmitrieva, J. Population migration and the variation of Dopamine D4 Receptor (DRD4) allele frequencies around the globe. Evol. Hum. Behav. 20, 309–324. https://doi.org/10.1016/S1090-5138(99)00015-X (1999).Article 

    Google Scholar 
    26.Shimada, M. K. et al. Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochem. Biophys. Res. Commun. 316, 1186–1190. https://doi.org/10.1016/j.bbrc.2004.03.006 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Fidler, A. E. et al. Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc. R. Soc. B. 274, 1685–1691. https://doi.org/10.1098/rspb.2007.0337 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809. https://doi.org/10.1111/mec.12282 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843. https://doi.org/10.1111/j.1365-294X.2009.04518.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Jiang, W., Shang, S. & Su, Y. Genetic influences on insight problem solving: The role of catechol-O-methyltransferase polymorphisms. Front. Psychol. 6, 1569. https://doi.org/10.3389/fpsyg.2015.01569 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hopkins, W. et al. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci. Rep. 4, 3774. https://doi.org/10.1038/srep03774 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104. https://doi.org/10.1016/j.tree.2004.11.017 (2005).Article 
    PubMed 

    Google Scholar 
    33.Munafo, M. R., Brown, S. M. & Harkless, K. C. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biol. Psychiatry 63, 852–857. https://doi.org/10.1016/j.biopsych.2007.08.016 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Staes, N. et al. Serotonin receptor 1A variation is associated with anxiety and agonistic behavior in chimpanzees. Mol. Biol. Evol. 36, 1418–1429. https://doi.org/10.1093/molbev/msz061 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mueller, J. C. et al. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol. Ecol. 23, 2876–2885. https://doi.org/10.1111/mec.12763 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Timm, K., Tilgar, V. & Saag, P. DRD4 gene polymorphism in great tits: Gender-specific association with behavioural variation in the wild. Behav. Ecol. Sociobiol. 69, 729–735. https://doi.org/10.1007/s00265-015-1887-z (2015).Article 

    Google Scholar 
    37.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behaviour in great tit Parus major. Epigenetics 10, 516–525. https://doi.org/10.1080/15592294.2015.1046027 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722. https://doi.org/10.1111/mec.13514 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Krause, E. T., Kjaer, J. B., Lüders, C. & van Phi, L. A polymorphism in the 5′-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav. Brain Res. 14, 92–96. https://doi.org/10.1016/j.bbr.2017.04.051 (2017).CAS 
    Article 

    Google Scholar 
    40.Timm, K., van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595. https://doi.org/10.1242/jeb.171595 (2018).Article 
    PubMed 

    Google Scholar 
    41.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227. https://doi.org/10.1007/s10164-019-00593-7 (2019).Article 

    Google Scholar 
    42.Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    Article 

    Google Scholar 
    44.Duke, A. A., Bègue, L., Bell, R. & Eisenlohr-Moul, T. Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol. Bull. 139, 1148–1172. https://doi.org/10.1037/a0031544 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ferrari, P. F., Palanza, P., Parmigiani, S., de Almeida, R. M. & Miczek, K. A. Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. Eur. J. Pharmacol. 526, 259–273. https://doi.org/10.1016/j.ejphar.2005.10.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1649. https://doi.org/10.3390/ijms21051649 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    47.Walker, S. C. et al. Selective prefrontal serotonin depletion impairs acquisition of a detour-reaching task. Eur. J. Neurosci. 23, 3119–3123. https://doi.org/10.1111/j.1460-9568.2006.04826.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Cools, R., Roberts, A. C. & Robbins, T. W. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40. https://doi.org/10.1016/j.tics.2007.10.011 (2008).Article 
    PubMed 

    Google Scholar 
    49.Rudnick, G. & Sandtner, W. Serotonin transport in the 21st century. J. Gen. Physiol. 151, 1248–1264. https://doi.org/10.1085/jgp.201812066 (2018).CAS 
    Article 

    Google Scholar 
    50.Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531. https://doi.org/10.1126/science.274.5292.1527 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Sen, S., Burmeister, M. & Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5- HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. 127, 85–89. https://doi.org/10.1002/ajmg.b.20158 (2004).Article 

    Google Scholar 
    52.Karg, K., Burmeister, M., Shedden, K. & Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 68, 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Beversdorf, D. Q. et al. Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: An exploratory pilot study. Cogn. Behav. Neurol. 31, 79–85. https://doi.org/10.1097/WNN.0000000000000153 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Canli, T. & Lesch, P.-K. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 10, 1103–1109. https://doi.org/10.1038/nn1964 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Jarrell, H. et al. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol. Behav. 93, 807–819. https://doi.org/10.1016/j.physbeh.2007.11.042 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bennett, A. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122. https://doi.org/10.1038/sj.mp.4000949 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Golebiowska, J. et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci. Rep. 9, 20283. https://doi.org/10.1038/s41598-019-56629-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Thys, B. et al. The serotonin transporter gene and female personality variation in a free-living passerine. Sci. Rep. 11, 8577. https://doi.org/10.1038/s41598-021-88225-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Audet, J.-N. et al. Divergence in problem-solving skills is associated with differential expression of glutamate receptors in wild finches. Sci. Adv. 4, eaao6369. https://doi.org/10.1126/sciadv.aao6369 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Personality and plasticity in neophobia levels vary with anthropogenic disturbance but not toxic metal exposure in urban great tits. Sci. Total Environ. 656, 997–1009. https://doi.org/10.1016/j.scitotenv.2018.11.383 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Sources of individual variation in problem-solving performance in urban great tits (Parus major): Exploring effects of metal pollution, urban disturbance and personality. Sci. Tot. Environ. 749, 141436. https://doi.org/10.1016/j.scitotenv.2020.141436 (2020).CAS 
    Article 

    Google Scholar 
    62.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behavior. Sci. Rep. 7, 7656. https://doi.org/10.1038/s41598-017-08001-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Grunst, A. S. et al. An important personality trait varies with blood and plumage metal concentrations in a free-living songbird. Environ. Sci. Technol. 53, 10487–10496. https://doi.org/10.1021/acs.est.9b03548 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678. https://doi.org/10.1016/j.scitotenv.2018.02.19 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Laucht, M. et al. Interaction between the 5-HTTLPR serotonin transporter polymorphism and environmental adversity for mood and anxiety psychopathology: Evidence from a high-risk community sample of young adults. Int. J. Neuropharmacol. 12, 737–747. https://doi.org/10.1017/S1461145708009875 (2009).CAS 
    Article 

    Google Scholar 
    66.Wang, Z. et al. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ. Health 16, 81. https://doi.org/10.1186/s12940-017-0288-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. Environ. Pollut. 256, 113373. https://doi.org/10.1016/j.envpol.2019.113373 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Dingemanse, N. J. et al. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–937. https://doi.org/10.1006/anbe.2002.2006 (2002).Article 

    Google Scholar 
    69.Solé, X. et al. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929. https://doi.org/10.1093/bioinformatics/bti283 (2005).Article 

    Google Scholar 
    70.Hecht, M., Bromberg, Y. & Rost, B. Better prediction of functional effects for sequence variants from VarI-SIG 2014: Identification and annotation of genetic variants in the context of structure, function and disease. BMC Genom. 16, S1. https://doi.org/10.1186/1471-2164-16-S8-S1 (2015).CAS 
    Article 

    Google Scholar 
    71.Choi, Y. & Chan, A. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. https://doi.org/10.1093/bioinformatics/btv195 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). URL https://www.R-project.org/.74.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).Article 

    Google Scholar 
    75.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    76.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    77.Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616. https://doi.org/10.7717/peerj.616 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01 (2019). https://CRAN.R-project.org/package=emmeans.79.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300. https://doi.org/10.2307/2346101 (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    80.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    81.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of Regression Models Performance. R package version 0.4.6 (2020). https://CRAN.R-project.org/package=performance.82.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.6 (2019). https://CRAN.R-project.org/package=DHARMa.83.Mikros, E. & Diallinas, G. Tales of tails in transporters. Open Biol. 9, 190083. https://doi.org/10.1098/rsob.190083 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kern, C. et al. The N teminus specifies the switch between transporter modes of the human serotonin transporter. J. Biol. Chem. 292, 3603–3613. https://doi.org/10.1074/jbc.M116.771360 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).Article 
    PubMed Central 

    Google Scholar 
    86.Hunt, R., Sauna, Z. E., Ambudkar, S. V., Gottesman, M. M. & Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should we care about them? In Single Nucleotide Polymorphisms Methods in Molecular Biology (Methods and Protocols) Vol. 578 (ed. Komar, A.) (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-411-1_2.Chapter 

    Google Scholar 
    87.Grunst, A.S., Grunst, M.L. & Staes, N., Bert, T., Pinxten, R., Eens, M. Data for: Serotonin Transporter (SERT) Polymorphisms, Personality and Problem-Solving in Urban Great Tits. (Dryad Digital Repository, 2021). More

  • in

    The belowground growing season

    1.Piao, S. et al. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    2.Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    3.Ma, H. et al. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 

    Google Scholar 
    4.Mokany, K., Raison, R. J. & Prokushkin, A. S. Glob. Change Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    5.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. J. Exp. Bot. 67, 3617–3628 (2016).CAS 
    Article 

    Google Scholar 
    6.Liu, H. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01244-x (2021).7.Freschet, G. T. et al. New Phytol. 232, 1123–1158 (2021).Article 

    Google Scholar 
    8.Clemmensen, K. E. et al. Science 339, 1615–1618 (2013).CAS 
    Article 

    Google Scholar 
    9.Sokol, N. W. & Bradford, M. A. Nat. Geosci. 12, 46–53 (2019).CAS 
    Article 

    Google Scholar 
    10.Jones, D. L., Nguyen, C. & Finlay, R. D. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    11.Abramoff, R. Z. & Finzi, A. C. New Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    12.Warren, J. M. et al. New Phytol. 205, 59–78 (2015).Article 

    Google Scholar 
    13.Blume-Werry, G., Wilson, S. D., Kreyling, J. & Milbau, A. New Phytol. 209, 978–986 (2016).CAS 
    Article 

    Google Scholar 
    14.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. J. Ecol. 104, 239–248 (2016).CAS 
    Article 

    Google Scholar 
    15.Fu, Y. H. et al. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Phenological mismatches between above- and belowground plant responses to climate warming

    1.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    2.Forrest, J. & Miller-Rushing, A. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).
    Google Scholar 
    3.Lane, J. E., Kruuk, L., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).CAS 

    Google Scholar 
    4.Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).CAS 

    Google Scholar 
    5.Abramoff, R. Z. & Finzi, A. C. Are above- and below-ground phenology in sync? New Phytol. 205, 1054–1061 (2015).
    Google Scholar 
    6.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    7.Smithwick, E., Lucash, M. S., Mccormack, M. L. & Sivandran, G. Improving the representation of roots in terrestrial models. Ecol. Model. 291, 193–204 (2014).CAS 

    Google Scholar 
    8.Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol. 205, 59–78 (2015).
    Google Scholar 
    9.Ma, H., Mo, L., Crowther, T. W., Maynard, D. S. & Zohner, C. M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).
    Google Scholar 
    10.Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).
    Google Scholar 
    11.Lucas, M., Schlueter, S., Vogel, H.-J. & Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 9, 16236 (2019).
    Google Scholar 
    12.Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).
    Google Scholar 
    13.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 

    Google Scholar 
    14.Roslin, T., Anto, L., Hllfors, M., Meyke, E. & Ovaskainen, O. Phenological shifts of abiotic events, producers and consumers across a continent. Nat. Clim. Change 11, 241–248 (2021).
    Google Scholar 
    15.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).CAS 

    Google Scholar 
    16.Blume-Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).
    Google Scholar 
    17.Wilson, J. B. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61, 433–449 (1988).
    Google Scholar 
    18.Schwieger, S., Kreyling, J., Milbau, A. & Blume-Werry, G. Autumnal warming does not change root phenology in two contrasting vegetation types of subarctic tundra. Plant Soil 424, 145–156 (2018).CAS 

    Google Scholar 
    19.Liu, H., Lu, C., Wang, S., Ren, F. & Wang, H. Climate warming extends growing season but not reproductive phase of terrestrial plants. Glob. Ecol. Biogeogr. 30, 950–960 (2021).
    Google Scholar 
    20.Steinaker, D. F., Wilson, S. D. & Peltzer, D. A. Asynchronicity in root and shoot phenology in grasses and woody plants. Glob. Change Biol. 16, 2241–2251 (2010).
    Google Scholar 
    21.Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    22.Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).
    Google Scholar 
    23.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).
    Google Scholar 
    24.Chuine, I. A united model for budburst of trees. J. Theor. Biol. 2007, 337–347 (2000).
    Google Scholar 
    25.Lim, P. O., Kim, H. J. & Gil Nam, H. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).CAS 

    Google Scholar 
    26.Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).
    Google Scholar 
    27.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    28.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    29.Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).CAS 

    Google Scholar 
    30.López-Bucio, J., Cruz-Ramírez, A. & Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287 (2003).
    Google Scholar 
    31.Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).
    Google Scholar 
    32.Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).
    Google Scholar 
    33.Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).
    Google Scholar 
    34.Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
    Google Scholar 
    35.Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. https://doi.org/10.1038/s41467-021-23841-2 (2021).36.Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–267 (2014).CAS 

    Google Scholar 
    37.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    38.Wingler, A. & Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 7, 1130 (2016).
    Google Scholar 
    39.Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).
    Google Scholar 
    40.Wang, P., Huang, K. & Hu, S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytol. 225, 1491–1499 (2020).
    Google Scholar 
    41.Arft, A. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    42.Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).CAS 

    Google Scholar 
    43.Seastedt, T. & Knapp, A. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 

    Google Scholar 
    44.Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).
    Google Scholar 
    45.Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress (Springer‐Verlag, 1987).46.Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 

    Google Scholar 
    47.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).
    Google Scholar 
    48.Hijmans, R. J., Ca Meron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2010).
    Google Scholar 
    49.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).CAS 

    Google Scholar 
    50.Kou, L. et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytol. 218, 1450–1461 (2018).
    Google Scholar 
    51.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
    Google Scholar 
    52.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Soft. 36, 1–48 (2010).
    Google Scholar 
    53.Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    54.De Martonne, E. Une nouvelle fonction climatologique: l’indice d’aridité. La MétéOrol. 2, 449–458 (1926).
    Google Scholar 
    55.Breiman, L. Classification and Regression Trees (Routledge, 2017).56.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2/3, 18–22 (2002).
    Google Scholar 
    57.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 10, 696–697 (2020).
    Google Scholar 
    58.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).59.Liu, H. et al. Supporting data for ‘Phenological mismatches between above- and belowground plant responses to climate warming’. Figshare https://figshare.com/s/1f086364114021cd80d9 (2021). More

  • in

    Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol

    1.Yang, W. Y. et al. Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl. Soil Ecol. 167, 104109. https://doi.org/10.1016/j.apsoil.2021.104109 (2021).Article 

    Google Scholar 
    2.Li, H. Y. et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China. J. Clean. Prod. 246, 119077. https://doi.org/10.1016/j.jclepro.2019.119077 (2020).CAS 
    Article 

    Google Scholar 
    3.Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).CAS 
    Article 

    Google Scholar 
    4.Mao, L. G. et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop. Prot. 83, 90–94. https://doi.org/10.1016/j.cropro.2016.02.002 (2016).ADS 
    Article 

    Google Scholar 
    5.Rasool, M. et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 11, 6092. https://doi.org/10.1038/s41598-021-85633-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Solorzano, C. D. & Malvick, D. K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field. Crop. Res. 122(3), 173–178. https://doi.org/10.1016/j.fcr.2011.02.011 (2011).Article 

    Google Scholar 
    7.An-le, H. E. et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3), 599–606. https://doi.org/10.1016/S2095-3119(18)62089-1 (2019).Article 

    Google Scholar 
    8.Xu, X. G. et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 130, 108259. https://doi.org/10.1016/j.foodcont.2021.108259 (2021).CAS 
    Article 

    Google Scholar 
    9.Bonanomi, G., Antignani, V. & Scala, C. P. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 89(3), 311–324 (2007).
    Google Scholar 
    10.Shafique, H. A., Sultana, V., Ehteshamul-Haque, S. & Athar, M. Management of soil-borne diseases of organic vegetables. J. Plan. Protect. Res. https://doi.org/10.1515/jppr-2016-0043 (2016).Article 

    Google Scholar 
    11.Li, H. et al. Evaluation on the production of food crop straw in China from 2006 to 2014. Bioenerg. Res. 10, 949–957. https://doi.org/10.1007/s12155-017-9845-4 (2017).Article 

    Google Scholar 
    12.Zhang, P., Wei, T., Jia, Z. K., Han, Q. F. & Ren, X. L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007 (2014).ADS 
    Article 

    Google Scholar 
    13.Yang, H. S. et al. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil. Till. Res. 202, 146656. https://doi.org/10.1016/j.still.2020.104656 (2020).Article 

    Google Scholar 
    14.Song, X. Y. et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total. Environ. 740, 140202. https://doi.org/10.1016/j.scitotenv.2020.140202 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Mi, Y. Z. et al. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur. J. Soil. Biol. 105, 103329. https://doi.org/10.1016/j.ejsobi.2021.103329 (2021).CAS 
    Article 

    Google Scholar 
    16.Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8 (2000).CAS 
    Article 

    Google Scholar 
    18.Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils. 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4 (2012).Article 

    Google Scholar 
    19.Hu, Y. et al. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci. Rep. 11, 16360. https://doi.org/10.1038/s41598-021-95741-w (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Hyder, S. et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10, 13859. https://doi.org/10.1038/s41598-020-69410-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Paterson, E., Sim, A., Osborne, S. & Murray, P. J. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil. Biol. Biochem. 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006 (2011).CAS 
    Article 

    Google Scholar 
    22.Wang, H., Guo, Q., Li, X., Li, X. & Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil. Ecol. 148, 103488. https://doi.org/10.1016/j.apsoil.2019.103488 (2020).Article 

    Google Scholar 
    23.Ndzelu, B. S., Dou, S. & Zhang, X. W. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil. Res. 58, 452–460. https://doi.org/10.1071/SR20025 (2020).CAS 
    Article 

    Google Scholar 
    24.De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840 (2021).CAS 
    Article 

    Google Scholar 
    25.Wong, M. & Swift, R. S. Role of organic matter in alleviating soil acidity. in Handbook of Soil Acidity. http://espace.library.uq.edu.au/view/UQ:191317 (2003).26.Xie, W. J. et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil. Till. Res. 198, 104535. https://doi.org/10.1016/j.still.2019.104535 (2020).Article 

    Google Scholar 
    27.Cathal, N. et al. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil. Biol. Biochem. 48, 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010 (2012).CAS 
    Article 

    Google Scholar 
    28.Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L. & Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil. Till. Res. 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007 (2011).Article 

    Google Scholar 
    29.Loffredo, E., Berloco, M. & Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69(3), 350–357. https://doi.org/10.1016/j.ecoenv.2007.11.005 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Bhatia, A. et al. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 33(7), 1595–1601. https://doi.org/10.1016/j.wasman.2013.03.019 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Dou, S., Zhang, J. J. & Li, K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 59(3), 532–539. https://doi.org/10.1111/j.1365-2389.2007.01012.x (2008).CAS 
    Article 

    Google Scholar 
    32.De, V. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Sanaullah, M. et al. How do microbial communities in top and subsoil respond to root litter addition under field conditions?. Soil Biol. Biochem. 103, 28–38. https://doi.org/10.1016/j.soilbio.2016.07.017 (2016).CAS 
    Article 

    Google Scholar 
    34.Song, Y. et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178–187. https://doi.org/10.1016/j.geoderma.2017.11.021 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Vida, C., Cazorla, F. M. & Vicente, A. D. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168(6), 583–593. https://doi.org/10.1016/j.resmic.2017.03.007 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Liu, J. G., Li, X. G., Jia, Z. J., Zhang, T. L. & Wang, X. X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil. Ecol. 110, 34–42. https://doi.org/10.1016/j.apsoil.2016.11.001 (2017).ADS 
    Article 

    Google Scholar 
    37.Zhao, S. C. et al. Ciampitti dynamic of fungal community composition during maize residue decomposition process in north-central China. Appl. Soil Ecol. 167, 104057. https://doi.org/10.1016/j.apsoil.2021.104057 (2021).Article 

    Google Scholar 
    38.Zhang, J., Xu, Y., Liang, S., Ma, X. & Sun, F. Synergistic effect of klebsiella sp. fh-1 and arthrobacter sp. nj-1 on the growth of the microbiota in the black soil of northeast china. Ecotox. Environ. Safe 190, 110079. https://doi.org/10.1016/j.ecoenv.2019.110079 (2019).CAS 
    Article 

    Google Scholar 
    39.Wang, X. W. et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224. https://doi.org/10.1016/j.simyco.2016.11.005 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Chen, W. H. et al. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp.. S. Afr. J. Bot. 134, 349–358. https://doi.org/10.1016/j.sajb.2020.04.010 (2020).CAS 
    Article 

    Google Scholar 
    41.Voriskova, J. & Baldrain, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Kerdraon, L., Laval, V. & Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 3, 246–255. https://doi.org/10.1094/pbiomes-02-19-0010-rvw (2019).Article 

    Google Scholar 
    43.Rahman, S. F. S. A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018).CAS 
    Article 

    Google Scholar 
    44.Wachowska, U., Irzykowski, W., Jedryczka, M., Stasiulewicz-Paluch, A. D. & Glowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol. Sci. Technol. 23, 1110–1122. https://doi.org/10.1080/09583157.2013.812185 (2013).Article 

    Google Scholar 
    45.Liu, J. J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83(0038–0017), 29–39. https://doi.org/10.1016/j.soilbio.2015.01.009 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS 
    Article 

    Google Scholar 
    47.Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Deng, X. H. et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364 (2020).Article 

    Google Scholar 
    49.Li, C. N. et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 289, 121653. https://doi.org/10.1016/j.biortech.2019.121653 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Lydia, S., Tymon, P. M., Gundersen, B. & Inglis, D. A. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol. Res. 240, 126535. https://doi.org/10.1016/j.micres.2020.126535 (2020).CAS 
    Article 

    Google Scholar 
    51.Mehmood, M. A. et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manag. 259, 109857. https://doi.org/10.1016/j.jenvman.2019.109857 (2020).Article 

    Google Scholar 
    52.Ding, J. L. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil. Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).ADS 
    Article 

    Google Scholar 
    53.Zhao, Y. Y. et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 242, 126624. https://doi.org/10.1016/j.micres.2020.126624 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Liu, X. S. et al. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. J. Hazard. Mater. 416, 125805. https://doi.org/10.1016/j.jhazmat.2021.125805 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Qiao, J. Q., Tian, D. W., Huo, R., Wu, H. J. & Gao, X. W. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2), 141–149. https://doi.org/10.1016/j.plasmid.2010.11.008 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Coutte, F. et al. Effect of pps disruption and constitutive expression of srfa on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 109(2), 480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis bbg100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71(8), 4577. https://doi.org/10.1128/AEM.71.8.4577-4584.2005 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Choi, S. K., Jeong, H., Kloepper, J. W. & Ryu, C. M. Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product. Genome Announc. 2(5), 1092–1106. https://doi.org/10.1128/genomeA.01092-14 (2014).Article 

    Google Scholar 
    59.Kim, S. Y., Lee, S. Y., Weon, H. Y., Sang, M. K. & Song, J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J. Biotechnol. 241, 112–115. https://doi.org/10.1016/j.jbiotec.2016.11.023 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Abbasi, S. et al. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci. Rep. 11, 9317. https://doi.org/10.1038/s41598-021-88495-y (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Saravanakumar, K. et al. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 7, 1771. https://doi.org/10.1038/s41598-017-01680-w (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Yan, F., Li, C., Ye, X., Lian, Y. & Wang, X. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens mg3 against colletotrichum gloeosporioides in loquat fruits. Biol. Control 146, 104281. https://doi.org/10.1016/j.biocontrol.2020.104281 (2020).CAS 
    Article 

    Google Scholar 
    63.Qi, Y., Liu, H., Wang, J. & Wang, Y. Effects of different straw biochar combined with microbial inoculants on soil environment of ginseng. Sci. Rep. 11, 14685. https://doi.org/10.21203/rs.3.rs-189319/v1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Wang, Y. et al. Evaluation and spatial variability of paddy soil fertility in typical county of northeast China. J. Plant Nutr. Fertil. 26(2), 256–266. https://doi.org/10.11674/zwyf.19128 (2020).CAS 
    Article 

    Google Scholar 
    65.Cambardella, C. A. & Elliott, E. T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57(4), 1071–1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Zhang, X., Dou, S., Ndzelu, B. S., Guan, X. W. & Bai, Y. Effects of different corn straw amendments on humus composition and structural characteristics of humic acid in black soil. Commun. Soil. Sci. Plan. 51(1), 1–11. https://doi.org/10.1080/00103624.2019.1695827 (2019).CAS 
    Article 

    Google Scholar 
    67.Edgar, R. C. Uparse: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10(10), 996. https://doi.org/10.1038/NMETH.2604 (2021).Article 

    Google Scholar 
    68.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353. https://doi.org/10.1038/ismej (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Lourenço, K. S. et al. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 6, 142. https://doi.org/10.1186/s40168-018-0525-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Exploring the potential of moringa leaf extract as bio stimulant for improving yield and quality of black cumin oil

    Plant height (cm)Plant height of black cumin as affected by moringa leaf extract applied at various growth stages is reported in Table 1. Both concentrations of moringa leaf extract significantly affected plant height of black cumin. All growth stages also showed statistically significant results. Mean comparison of control vs treatments and water spray vs rest were also found significant for plant height (cm) of black cumin. Whereas, interaction of moringa leaf extract concentrations and growth stages remained non-significant. With increase in interval of spraying moringa leaf extract, plant height enhanced and thus taller plants (68.15 cm) were recorded when moringa leaf extract was sprayed at stage-7 (40 + 80 + 120 days after sowing), followed by (65.15 cm) stage-4 (40 + 80 days after sowing), while lower plants height (47.45 cm) was recorded in stage-3 (120 days after sowing). The use of moringa leaf extract during critical vegetative development phases increased the black cumin crop’s plant height. Similar results were recorded by Abbas et al.14 that moringa leaf extract enhanced plant height and improved fresh and dried weight of wheat root when compared to control. Taller (62.2 cm) plants were recorded in 20% moringa leaf extract sprayed plots followed by (55.8 cm) 10% moringa leaf extract. Spraying moringa leaf extract on a variety of field crops can boost plants and increase vegetative development15.Table 1 Plant height (cm), number of branches plant−1 fixed oil content (% vw−1) and essential oil content (% vw−1) of black cumin as affected by moringa leaf extract applied at various growth stages.Full size tableBranches plant−1
    Branches plant−1 of black cumin were significantly influenced by moringa leaf extract concentrations, stage of application as well as their interaction (Table 1). The planned mean comparison of control vs rest and water spray vs rest were also found significant for branches plant−1. The unsprayed against sprayed treatments of moringa leaf extract showed that in unsprayed plots number of branches plant−1 (39) were less than plants sprayed with moringa leaf extract (61.19). Highest number of branches plant−1 (62.19) were observed 20% moringa leaf extract treated plots. These results are in agreement with Mahmood16 who found that foliar application of MLE contains an adequate amount of stimulating substances that promote cell division and enlargement at a faster rate. Zeatin, a growth hormone found in moringa leaf extract, encourages the growth of lateral buds, which leads to an increase in the number of branches. After pounding 100 g of Moringa leaves in 8 L of water, foliar spray of moringa leaf extract enhanced branches plant−1 in okra17. More number of branches plant−1 (70.66) were attained in plots sprayed with moringa leaf extract at growth stage 7 (40 + 80 + 120 days after sowing), followed by growth stage 4 (40 + 80 days after sowing). The effect of the application of MLE at the rate of 20% at 40 days’ interval increased the number of branches and this may be because of the abundant supply of macro and micronutrients and growth hormones. The result of yield parameters revealed that the yield increased as the frequency of moringa leaf extract increased. This is because hormone enhances formation and development of flowers and ripening of fruits. Hormones also enhance growth and yield by altering photosynthetic distributive pattern within the plants. The findings were also in line with that of Manzoor et al.18 who found that an aqueous extract of moringa significantly influence yield and yield components such as number of branches, number of fruits per plant and fruit weight of tomato. The significant interaction of MLE and growth stages is presented in Fig. 1. Applying moringa leaf extract @ 20% at all growth stages enhanced branches plant−1. Maximum branches plant−1 was observed when moringa leaf extract was sprayed @ 20% at growth stage 7 (40 + 80 + 120 days after sowing) whereas, minimum branches plant−1 was recorded in plants sprayed with 10% moringa leaf extract at growth stage-3 (120 days after sowing). Moringa leaf extract (MLE) increased number of branches. Similar results were recorded by Jain et al.19), who reported MLE positively enhanced plant growth attributes of wheat. He also stated that with increasing MLE concentration and application intervals, the growth parameters such as branches plant−1 were increased in arithmetic order. Plant growth regulators are essential for controlling growth and development of plants20. These plant growth regulators increased yield by changing the dry matter distribution pattern or controlling the growth characteristics in crop plants, depending on the dosage and time of application21. In comparison to control, foliar application of moringa leaf extract resulted in a markedly higher branches plant−1. The increased number of branches plant−1 might be due to Zeatin present in moringa leaf extract, which is very effective in delaying the abscission response10.Figure 1Number of branches plant−1 of black cumin as affected by moringa leaf extract applied at various growth stages.Full size imageFixed oil content (% vw−1)Data concerning fixed oil content (% vw−1) in response to moringa leaf extract applied at various growth stages is given in Table 1 and Fig. 2. Statistical analysis of data indicated that foliar application of various concentrations of moringa leaf extract, their stage of application and interaction of concentrations and growth stages had significantly affected fixed oil content (% vw−1) of black cumin crop. The planned mean comparison of control vs rest and water spray vs rest had significant effect on fixed oil content (% vw−1). Highest fixed oil percentage (35.39%) was recorded when moringa leaf extract was sprayed @ 20%, followed by (34.06%) 10% moringa leaf extract, whereas, control (31.48%) showed lowest fixed oil %. Sakr et al.22 indicated that foliar applications of MLE significantly improved the oil percentage and yield plant−1 and feddan of geranium plants. Application of MLE at growth stage-7 (40 + 80 + 120 days after sowing) showed maximum fixed oil content percentage (37.08%) as compared to all other growth stages. Minimum fixed oil percentage was recorded in growth stage-1 (40 days after sowing). Concerning the interaction of moringa leaf extract vs application stage, highest fix oil (37.45%) was observed when moringa leaf extract @ 20% was applied as foliar spray at growth stage-7 (40 + 80 + 120 days after sowing), followed by (36.71%) moringa leaf extract @ 10% applied at growth stage-7. Lowest fixed oil percentage (31.83%) was observed in plants sprayed with 10% moringa leaf extract at stage 1 (40 days after sowing). According to Rady et al.23, biosynthesis of cytokinins promotes the movement of stem reserves to new shoots, resulting in stable plant development, the prevention of premature leaf senescence, and the preservation of more leaf area for photosynthetic action.Figure 2Fixed oil content (%) of black cumin as affected by moringa leaf extract applied at various growth stages.Full size imageEssential oil content (% vw−1)Essential oil content (% vw−1) is a vital oil component of black cumin. Moringa leaf extract concentrations and stage of their application had significant effect on essential oil content of black cumin while the interaction remained non-significant (Table 1). Application of MLE at 20% resulted in higher essential oil yield (0.38%) followed by 10% moringa leaf extract (0.37) sprayed plots. Control plots resulted in lower essential oil (0.33%) content of black cumin. Many research ventures around the world are currently focusing on increasing the biomass yield and volatile oil output of aromatic plants. Moringa leaf extract has been discovered to be an excellent bio-stimulant for enhancing not only crop growth but also yield24,25. According to Aslam et al.26, Plant treated with MLE had major impacts, including an average rise in oil concentrations. Interestingly, MLE treatment not only increased the coriander fruit yield but also improved the fruits volatile oil suggesting that MLE could be a promise plant growth promoter that improved the content of volatile oil in coriander. MLE application also positively affected the volatile oil constituents (Table 2). Increasing the volatile oil in coriander by MLE could be due to the MLE components including amino acids, nutrient elements and phytohoromes that motivate the accumulation of secondary metabolites27. The phytohormones affect the pathway of terpenoids through motivating the responsible physiological and biochemical processes28. Concerning the application stages of moringa leaf extract, higher essential oil content % of black cumin (0.42%) was observed in growth stage-7 (40 + 80 + 120 days after sowing), followed by (0.39%) growth stage-4 (40 + 80 days after sowing), whereas, lower essential oil content % (0.36%) of black cumin was observed in growth stage-1 (40 days after sowing). Plant growth regulators are essential for controlling the amount, type, and direction of plant growth, development, and yield20. These plant growth regulators increased yield by changing the dry matter distribution pattern or controlling the growth characteristics in crop plants, depending on the dosage and time of application21. Exogenous application of MLE resulted in higher yield and quality29.Table 2 Peroxidase value (meq kg−1) and Iodine value (g of I2/100 g) of black cumin as affected by moringa leaf extract applied at various growth stages.Full size tablePeroxidase value (meq kg−1)The response of MLE and stage of MLE application recorded for peroxidase value is stated in Table 2. The data depicted that moringa leaf extract concentrations, stage of application and their interaction had significant (P ≤ 0.05) variation in peroxidase value of black cumin. Similarly, when means were compared, that of control vs treatments and water spray check vs treatments were found significant for peroxidase value (%). Mean value of data indicated that highest peroxidase value (6.32%) was recorded in 20% moringa leaf extract treated plots, followed by (6.03%) 10% moringa leaf extract. While in case of application stages, highest peroxidase value (6.42%) was recorded when moringa leaf extract was applied at stage-7 (40 + 80 + 120 days after sowing), followed by (6.39%) stage-6 (80 + 120 days after sowing). Whereas lowest peroxidase value (5.73%) was recorded in plots treated with moringa leaf extract at stage-3 (120 days after sowing). Interaction of moringa leaf extract concentrations and stage of application in Fig. 3 showed that increasing moringa leaf extract concentration from 10 to 20% applied at growth stage-7 increased peroxidase value of black cumin crop. However, application of moringa leaf extract @ 10% applied at growth stage-3 (120 days after sowing) showed lowest peroxidase value. The phytohormones affect the pathway of terpenoids through motivating the responsible physiological and biochemical processes28. Our results are in agreement with the reports of Ali et al.27 in geranium and Abdel-Rahman and Abdel-Kader30 in fennel who observed that MLE application improves both the volatile oil yield and its components. The fact that MLE application improved black cumin growth and quality characters suorts the study’s hypothesis that MLE is an important plant growth enhancer. In agreement with our results, Rady and Mohamed28 concluded that MLE is considered one of the important plant bio stimulants because it contains antioxidants, phenols, basic nutrients, ascorbates, and phytohormones. Furthermore, foliar application of moringa leaf extract may have a positive effect on endogenous phytohormone concentrations, resulting in improved plant growth and quality10,37.Figure 3Peroxidase value (meq kg−1) of black cumin as affected by moringa leaf extract applied at various growth stages.Full size imageIodine value (g of I2/100 g)Data concerning iodine value of black cumin oil in response to various concentrations of MLE applied at various growth stages is given in Table 2 and Fig. 4. Statistical analysis of data indicated that both the concentrations of moringa leaf extract, stage of application as well as their interaction had significant effect on iodine value of black cumin oil. The planned mean comparison of control vs rest and water spray vs rest treatments had significant effect on iodine value. Highest iodine value (85.3) was recorded with application of moringa leaf extract @ 20% whereas, lowest (78.28) was observed in control. Regarding the stage of application, highest iodine value (87.35) was observed in plots sprayed with moringa leaf extract at stage-7 (40 + 80 + 120 days after sowing), followed by (85.61) plots sprayed with moringa leaf extract at growth stage-6 (80 + 120 days after sowing). Concerning the interaction of MLE concentrations and stage of application of MLE, highest iodine value (6.49) was observed with 20% moringa leaf extract sprayed at stage-7 (40 + 80 + 120 days after sowing) whereas, lowest iodine value was observed in plants sprayed with moringa leaf extract @ 20% applied at stage-3 (120 days after sowing). The use of plant growth regulators is very specific and depends to achieve specific results like for example; enhanced plant growth, betterment in yield and yield related attributes, and to modify the fruit and plant bio-constituents. Several previous studies reveled that MLE are enriched with many phtyo-hormones especially zeatin31. In addition to that MLEs are embedded with many essential amino acids, vitamins (A, B1, B2, B3, C and E), minerals as well as several antioxidants like phenolic32,33. This unique biochemical composition of MLE showed that they can be utilized as bio stimulant which have the potential to promote crop growth, productivity as well as quality which in return depends on its application time34.Figure 4Iodine value (meq kg−1) of black cumin as affected by moringa leaf extract applied at various growth stages.Full size imageTotal free amino acidsThe data presented in Table 2 revealed that moringa leaf extract concentrations and application stages had significantly affected total free amino acid content of black cumin crop during rabi 2019-20 under agro-climatic conditions of Haripur whereas, their interaction remained non-significant. The planned mean comparison of control vs rest and water spray vs rest had significant effect on total free amino acids of black cumin. Highest amino acids (336.3) were observed with the application of moringa leaf extract @ 20%, followed by application of moringa leaf extract @ 10%. Regarding application stages, highest total free amino acids (364.2) were observed with the application of moringa leaf extract at 40 + 80 + 120 days after sowing, followed by (355.9) application of MLE at 40 + 80 days after sowing. Lowest total free amino acids (290.3) were recorded with moringa leaf extract sprayed at 40 days after sowing. Several investigations have demonstrated that MLE can alter both primary and secondary metabolism, resulting in an increase in antioxidant molecule concentrations35,36. The content of phenolic antioxidants, total soluble proteins, and total free amino acids increased in spinach plants treated with synthetic growth regulators and MLE26. MLE can also increase fruit quality metrics in ‘Kinnow’ mandarins, such as soluble solid contents, vitamin C, sugars, total antioxidant, phenolic contents, and superoxide dismutase and catalase enzyme activities, when treated at various growth stages37.Total phenolicPhenolic have acquired much importance because of their properties of disease preventing and health promoting. The effect of moringa leaf extract concentrations, stage of application and their interaction is presented in Table 2. Analysis of variance revealed that moringa leaf extract concentrations and stage of application of moringa leaf extract had significant effect on total phenolic content of black cumin while their interaction remained non-significant. Our results depict that all MLE levels enhanced the total phenolic content of black cumin leaves relative to the control. Highest phenolic content (71.59 mg g−1) was observed with application of moringa leaf extract at the rate of 20%, followed by (68.72 mg g−1) moringa leaf extract application at the rate of 10%. Regarding application stages, highest phenolic content (81.23 mg g−1) was observed with the application of moringa leaf extract at growth stage-7 (40 + 80 + 120 days after sowing), followed by (76.66 mg g−1) stage-6 (80 + 120 days after sowing), whereas, lowest phenolic content (55.25 mg g−1) was observed in crop sprayed with moringa leaf extract at stage-3 (120 days after sowing). In the medicinal, biological, and agricultural areas, phenolic and their derivatives gained scientists attention. Recent studies had focused on their potential as antioxidant-rich natural chemicals38. The increased content of phenolics, flavonoids, and phytohormones in moringa leaves, which may have contributed to the enhanced total phenolic content in black cumin leaves, can be linked to the higher content of phenolics, flavonoids, and phytohormones in MLE treated plants26. Furthermore, the proper concentrations of minerals, vitamins, and -carotene found in moringa leaves may have influenced metabolic processes in a way that increased the internal phenolic content in black cumin leaves, either directly or indirectly39. Therefore, these aspects assist MLE to serve as growth enhancer and natural antioxidant40. Our results supported by the previous report of Nasir et al.37 who revealed that the total phenolic content was enhanced as a result of MLE application at critical stages of plant growth. More

  • in

    Diel investments in metabolite production and consumption in a model microbial system

    1.Baines SB, Pace ML. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr. 1991;36:1078–90.
    Google Scholar 
    2.Williams PJLeB. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman DL (ed). Microbial Ecology of the Oceans, 1st edn. New York: Wiley-Liss; 2000. p. 153–200.3.Thornton DCO. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol. 2014;49:20–46.CAS 

    Google Scholar 
    4.Nagata T. Organic matter-bacteria interactions in seawater. In: Kirchman DL, (ed). Microbial Ecology of the Oceans. Hoboken: John Wiley and Sons, Inc; 2008. p. 207–41.
    Google Scholar 
    5.Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci. 2011;3:567–99.PubMed 

    Google Scholar 
    6.Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.
    Google Scholar 
    7.Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems – a cross-system overview. Mar Ecol Prog Ser. 1988;43:1–10.
    Google Scholar 
    8.Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Nat Acad Sci. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Comm. 2018;9:5179.
    Google Scholar 
    10.Boysen AK, Carlson LT, Durham BP, Groussman RD, Aylward FO, Ribalet F, et al. Diel oscillations of particulate metabolites reflect synchronized microbial activity in the North Pacific Subtropical Gyre. bioRxiv. 2020: 2020.05.09.086173.11.Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4:1706–15.CAS 
    PubMed 

    Google Scholar 
    12.Burney CM, Davis PG, Johnson KM, Sieburth JM. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar Biol. 1982;67:311–22.CAS 

    Google Scholar 
    13.Gasol JM, Doval MD, Pinhassi J, Calderon-Paz JI, Guixa-Boixareu N, Vaque D, et al. Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. Mar Ecol Prog Ser. 1998;164:107–24.
    Google Scholar 
    14.Kuipers B, van Noort GJ, Vosjan J, Herndl GJ. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Mar Ecol Prog Ser. 2000;201:13–25.
    Google Scholar 
    15.Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 2014;345:207–12.CAS 
    PubMed 

    Google Scholar 
    16.Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Frischkorn KR, Haley ST, Dyhrman ST. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J 2018;12:997–1007.PubMed 
    PubMed Central 

    Google Scholar 
    18.Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 

    Google Scholar 
    19.Bjornsen PK. Phytoplankton exudation of organic-matter – why do healthy cells do it. Limnol Oceanogr. 1988;33:151–4.
    Google Scholar 
    20.Fogg GE. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar. 1983;26:3–14.CAS 

    Google Scholar 
    21.Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    22.Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 

    Google Scholar 
    23.Guerrini F, Mazzotti A, Boni L, Pistocchi R. Bacterial-algal interactions in polysaccharide production. Aquat Micro Ecol. 1998;15:247–53.
    Google Scholar 
    24.Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86.CAS 
    PubMed 

    Google Scholar 
    25.Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 2004;432:910–3.CAS 
    PubMed 

    Google Scholar 
    26.Uitz J, Claustre H, Gentili B, Stramski D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem Cycles. 2010;24.27.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 

    Google Scholar 
    28.Luo HW, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 

    Google Scholar 
    29.Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524.CAS 
    PubMed 

    Google Scholar 
    30.Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Microbiology 2011;157:2983–91.CAS 
    PubMed 

    Google Scholar 
    31.Schulz A, Stoveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: a substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol. 2017;19:926–46.CAS 
    PubMed 

    Google Scholar 
    32.Crossette E, Gumm J, Langenfeld K, Raskin L, Duhaime M, Wigginton K. Metagenomic quantification of genes with internal standards. mBio. 2021;12:e03173-20.PubMed 
    PubMed Central 

    Google Scholar 
    33.Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. Quantitative transcriptomics reveals the growth-and nutrient-dependent response of a streamlined marine methylotroph to methanol and naturally occurring dissolved organic matter. mBio. 2016;7:e01279-16.PubMed 
    PubMed Central 

    Google Scholar 
    34.Moran MA, Satinsky B, Gifford SM, Luo HW, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    35.Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chyrsophyte. Phycologia 1993;32:234–6.
    Google Scholar 
    36.Uchimiya M, Tsuboi Y, Ito K, Date Y, Kikuchi J. Bacterial substrate transformation tracked by stable-isotope-guided NMR metabolomics: application in a natural aquatic microbial community. Metabolites 2017;7:52.PubMed Central 

    Google Scholar 
    37.Lewis IA, Schommer SC, Markley JL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Mag Res Chem. 2009;47:S123–S6.CAS 

    Google Scholar 
    38.Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, et al. HMDB 3.0-the human metabolome database in 2013. Nuc Acids Res 2013;41:D801–D7.CAS 

    Google Scholar 
    39.Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank Nuc Acids Res. 2008;36:D402–D8.CAS 

    Google Scholar 
    40.Toukach PV, Egorova KS. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nuclic Acids Res. 2016;44:D1229–D36.CAS 

    Google Scholar 
    41.Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, et al. Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME J. 2019;13:2536–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Boroujerdi AFB, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404:777–84.CAS 
    PubMed 

    Google Scholar 
    43.Walejko JM, Chelliah A, Keller-Wood M, Gregg A, Edison AS. Global metabolomics of the placenta reveals distinct metabolic profiles between maternal and fetal placental tissues following delivery in non-labored women. Metabolites 2018;8:10.PubMed Central 

    Google Scholar 
    44.Schwämmle V, Jensen ON. VSClust: feature-based variance-sensitive clustering of omics data. Bioinformatics 2018;34:2965–72.PubMed 

    Google Scholar 
    45.Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29:391–400.PubMed 
    PubMed Central 

    Google Scholar 
    46.Welsh J (2020). CirHeatmap. Available from: https://github.com/joadwe/cirheatmap.47.Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Satinsky BM, Gifford SM, Crump BC, Moran MA Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF (ed). Methods in Enzymology. 2013. 531: p. 237-50.49.Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    51.Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Nat Acad Sci. 2020;117:6599–607.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Neidhardt F, Ingraham J, Schaechter S Physiology of the bacterial cell: a molecular approach. Massachusetts: Sinauer Associates Inc.; 1990.53.Lidbury I, Murrell JC, Chen Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Nat Acad Sci. 2014;111:2710–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology 2010;156:1556–64.CAS 
    PubMed 

    Google Scholar 
    55.Mou XZ, Sun SL, Rayapati P, Moran MA. Genes for transport and metabolism of spermidine in Ruegeria pomeroyi DSS-3 and other marine bacteria. Aquat Micro Ecol. 2010;58:311–21.
    Google Scholar 
    56.Biller SJ, Coe A, Roggensack SE, Chisholm SW Heterotroph interactions alter Prochlorococcus transcriptome dynamics during extended periods of darkness. mSystems. 2018; 3 https://doi.org/10.1128/mSystems.00040-18.57.Harding L, Meeson B, Prézelin B, Sweeney B. Diel periodicity of photosynthesis in marine phytoplankton. Mar Biol. 1981;61:95–105.
    Google Scholar 
    58.Harding L, Prezelin B, Sweeney B, Cox J. Diel oscillations of the photosynthesis-irradiance (PI) relationship in natural assemblages of phytoplankton. Mar Biol. 1982;67:167–78.
    Google Scholar 
    59.Blough NV, Zepp RG Reactive oxygen species in natural waters. Active oxygen in chemistry. Dordrecht: Springer; 1995. p. 280–333.60.Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG. Photochemistry of natural waters. Environ Sci Technol. 1984;18:358A–71A.CAS 

    Google Scholar 
    61.Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT. Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of Caulobacter crescentus. J Bacteriol. 2016;198:187–200.CAS 
    PubMed 

    Google Scholar 
    63.Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, et al. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. Plos One. 2012;7:e47314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hsieh YJ, Wanner BL. Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol. 2010;13:198–203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, Coesel SN, et al. Community-scale synchronization and temporal partitioning of gene expression, metabolism, and lipid biosynthesis in oligotrophic ocean surface waters. bioRxiv. 2020: 2020.05.15.098020.66.Giedroc DP. Hydrogen peroxide sensing in Bacillus subtilis: it is all about the (metallo)regulator. Mol Microbiol. 2009;73:1–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS 
    PubMed 

    Google Scholar 
    68.Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits TH. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol. 2010;76:618–21.CAS 
    PubMed 

    Google Scholar 
    69.Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Hellebust JA. Excretion of some organic compounds by marine phytoplankton 1. Limnol Oceanogr. 1965;10:192–206.
    Google Scholar 
    71.Behrenfeld MJ, Halsey KH, Milligan AJ. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos Trans R Soc B: Biol Sci. 2008;363:2687–703.CAS 

    Google Scholar 
    72.Kiene RP, Linn LJ, Bruton JA. New and important roles for DMSP in marine microbial communities. J Sea Res. 2000;43:209–24.CAS 

    Google Scholar 
    73.Fredrickson KA, Strom SL. The algal osmolyte DMSP as a microzooplankton grazing deterrent in laboratory and field studies. J Plankton Res. 2009;31:135–52.
    Google Scholar 
    74.Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature 2002;418:317–20.CAS 
    PubMed 

    Google Scholar 
    75.Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Cunliffe M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3. FEMS Microbiol Ecol. 2016;92:fiv150.PubMed 

    Google Scholar 
    77.Durham BP, Sharma S, Luo HW, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Nat Acad Sci. 2015;112:453–7.CAS 
    PubMed 

    Google Scholar  More

  • in

    Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids

    1.Beissinger, S. R. & Westphal, M. I. On the use of demographic models of population viability in endangered species management. J. Wildl. Manag. 62, 821–841 (1998).
    Google Scholar 
    2.Campana, S. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).
    Google Scholar 
    3.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Jarman, S. N. et al. Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 24, 4826–4847 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    8.Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 

    Google Scholar 
    10.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 e956 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 

    Google Scholar 
    14.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    15.Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle https://doi.org/10.1002/jcsm.12556 (2020).16.De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Resour. 19, 411–425 (2019).PubMed 

    Google Scholar 
    17.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi‐ supercentenarians and their offspring. Aging 7, 1159–1170 (2018).
    Google Scholar 
    21.Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    23.Mitchell, C., Schneper, L. M. & Notterman, D. A. DNA methylation, early life environment, and health outcomes. Pediatr. Res. 79, 212–219 (2016).CAS 
    PubMed 

    Google Scholar 
    24.Pérez, R. F., Santamarina, P., Fernández, A. F., & Fraga, M. F. Epigenetics and Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis. In Epigenetics and Regeneration (ed. Palacios, D.) pp. 461–489 (Academic Press, 2019).25.Szyf, M., Tang, Y. Y., Hill, K. G. & Musci, R. The dynamic epigenome and its implications for behavioral interventions: a role for epigenetics to inform disorder prevention and health promotion. Transl. Behav. Med. 6, 55–62 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lee, R. S. et al. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151, 4332–4343 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Biemont, C. Inbreeding effects in the epigenetic era. Nat. Rev. Genet. 11, 234 (2010).CAS 
    PubMed 

    Google Scholar 
    29.Venney, C. J., Johansson, M. L. & Heath, D. D. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol. Ecol. 25, 4521–4533 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Vergeer, P., Wagemaker, N. C. & Ouborg, N. J. Evidence for an epigenetic role in inbreeding depression. Biol. Lett. 8, 798–801 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    32.Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pinho, G. M. et al. Hibernation slows epigenetic aging in yellow-bellied marmots. Preprint at bioRxiv https://doi.org/10.1101/2021.03.07.434299 (2021).36.Moehlman, P. D. Equids: Zebras, Asses, and Horses Status Survey and Conservation Action Plan Vol. 37, 190 pp (IUCN/SSC Equid Specialist Group, 2002).37.Moehlman, P. D. & King, S. R. B. IUCN SSC Equid Specialist Group 2020 Report. https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid (2020).38.Rubinacci, S., Ribeiro, D. M., Hofmeister, R. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).CAS 
    PubMed 

    Google Scholar 
    39.Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum. Genet. 138, 1123–1142 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest. Sci. 166, 26–34 (2014).
    Google Scholar 
    41.Anderson, J. A. et al. The costs of competition: high social status males experience accelerated epigenetic aging in wild baboons. eLife 10, e66128 (2020).
    Google Scholar 
    42.McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. https://doi.org/10.1038/nbt.1630 (2010).43.Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    44.Robeck, T. R. et al. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun. Biol. https://doi.org/10.1038/s42003-021-02179-x (2021).45.Jonsson, H. et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl Acad. Sci. USA 111, 18655–18660 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8, e55950 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Jensen-Seaman, M. I. & Hooper-Boyd, K. A. in Encyclopedia of Life Sciences (ELS) (John Wiley & Sons, Ltd., 2008).48.Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker—modeling epigenetic states under an evolutionary framework. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa585 (2020).49.Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 

    Google Scholar 
    50.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Fox, C. W. Inbreeding depression increases with maternal age. Evolut. Ecol. Res. 12, 961–972 (2010).
    Google Scholar 
    52.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 

    Google Scholar 
    53.Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.McClain, A. T. & Faulk, C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging 10, 561–572 (2018).
    Google Scholar 
    55.Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).CAS 
    PubMed 

    Google Scholar 
    56.Kannan, M. B., Solovieva, V. & Blank, V. The small MAF transcription factors MAFF, MAFG, and MAFK: current knowledge and perspectives. Biochim. Biophys. Acta 1823, 1841–1846 (2012).CAS 
    PubMed 

    Google Scholar 
    57.Li, Z. et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 121, 1422–1431 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23, 323–328 (1999).CAS 
    PubMed 

    Google Scholar 
    59.Ding, Q., Joshi, P. S., Xie, Z. H., Xiang, M. & Gan, L. BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord. Proc. Natl Acad. Sci. USA 109, 1566–1571 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mo, Z., Li, S., Yang, X. & Xiang, M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131, 1607–1618 (2004).CAS 
    PubMed 

    Google Scholar 
    61.Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat. Commun. 6, 8479 (2015).CAS 
    PubMed 

    Google Scholar 
    62.Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).CAS 
    PubMed 

    Google Scholar 
    64.Hiraike, Y. et al. NFIA co-localizes with PPARgamma and transcriptionally controls the brown fat gene program. Nat. Cell Biol. 19, 1081–1092 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caricasole, A., Sala, C., Roncarati, R., Formenti, E. & Terstappen, G. C. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63–72 (2000).CAS 
    PubMed 

    Google Scholar 
    66.McOmish, C. E., Burrows, E. L., Howard, M. & Hannan, A. J. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18, 824–834 (2008).CAS 
    PubMed 

    Google Scholar 
    67.Mittelstaedt, T., Alvarez-Baron, E. & Schoch, S. RIM proteins and their role in synapse function. Biol. Chem. 391, 599–606 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).CAS 
    PubMed 

    Google Scholar 
    69.Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).70.Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Saidak, Z., Hay, E., Marty, C., Barbara, A. & Marie, P. J. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11, 467–474 (2012).CAS 
    PubMed 

    Google Scholar 
    72.McClay, J. L. et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 23, 1175–1185 (2014).CAS 
    PubMed 

    Google Scholar 
    73.Ambeskovic, M. et al. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 12, 3828–3847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J. & Muzyczka, N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol. Learn Mem. 89, 379–396 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Horvath, S. et al. DNA methylation clocks show slower progression of aging in naked mole-rat queens. Preprint at bioRxiv https://doi.org/10.1101/2021.03.15.435536 (2021).76.Rapoport, S. I., Primiani, C. T., Chen, C. T., Ahn, K. & Ryan, V. H. Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10, e0132675 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    77.Dube, J. B. et al. Genetic determinants of “cognitive impairment, no dementia”. J. Alzheimers Dis. 33, 831–840 (2013).CAS 
    PubMed 

    Google Scholar 
    78.Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 283–293 (2014).PubMed 

    Google Scholar 
    79.Ntalla, I. et al. Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann. Hum. Genet. 77, 268–274 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    80.Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Badawi, Y. & Nishimune, H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci. Res. 127, 78–88 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Tollervey, J. R. et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 21, 1572–1582 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kim, B. H., Nho, K. & Lee, J. M., Alzheimer’s Disease Neuroimaging, I. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer’s disease. Neurobiol. Aging 102, 200 e201–200 e211 (2021).
    Google Scholar 
    85.Horvath, S. et al. DNA methylation aging and transcriptomic studies in horses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.435032 (2021).86.Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12, 206–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    89.Reed, K., Poulin, M. L., Yan, L. & Parissenti, A. M. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal. Biochem. 397, 96–106 (2010).CAS 
    PubMed 

    Google Scholar 
    90.Tost, J., Dunker, J. & Gut, I. G. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Karesh, W. B. in Zoo and Wild Animal Medicine: Current Therapy (eds Fowler Murray, E. & Eric Miller, R.) 298−308 (Saunders Elsevier, 2008).92.Chiou, K. L. & Bergey, C. M. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci. Rep. 8, 1975 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    93.Orkin, J. D. et al. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010632118 (2021).94.Snyder-Mackler, N. et al. Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203, 699–714 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Harley, E. H., Knight, M. H., Lardner, C., Wooding, B. & Gregor, M. The Quagga project: progress over 20 years of selective breeding. South African J. Wildlife Res. https://doi.org/10.3957/056.039.0206 (2009).96.Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences Preprint at bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).97.Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 1, 197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    98.Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science https://doi.org/10.1126/science.1178158 (2009).99.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    103.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).104.Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).105.Larison, B. et al. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol. Ecol. 30, 379–390 (2021).CAS 
    PubMed 

    Google Scholar 
    106.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).108.Freed, D., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics Tools—A fast and accurate solution to variant calling from next-generation sequence data. Preprint at bioRxiv https://doi.org/10.1101/115717 (2017).109.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    110.Meyermans, R., Gorssen, W., Buys, N. & Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    114.Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17 (2004).
    Google Scholar 
    115.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. 95, 1–36 (2020).
    Google Scholar 
    116.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
    Google Scholar 
    117.Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M. J. Adjustment During Army Life (Princeton University Press, 1949). More

  • in

    Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition

    1.Schmidt-Nielsen, K. Scaling: Why is Animal Size So Important? (Cambrige University Press, 1984).Book 

    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406. https://doi.org/10.1038/nclimate1259 (2011).ADS 
    Article 

    Google Scholar 
    3.Yom-Tov, Y., Heggberget, T. M., Wiig, O. & Yom-Tov, S. Body size changes among otters, Lutra lutra, in Norway: The possible effects of food availability and global warming. Oecologia 150, 155–160. https://doi.org/10.1007/s00442-006-0499-8 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gött Stud. 3, 595–708 (1847).
    Google Scholar 
    5.Dehnel, A. Studies on the genus Sorex L.. Ann. Univ. Mariae Curie Sklodowska 5, 17–102 (1949).
    Google Scholar 
    6.Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235. https://doi.org/10.1038/202234a0 (1964).ADS 
    Article 

    Google Scholar 
    7.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108. https://doi.org/10.1111/j.1558-5646.1956.tb02836.x (1956).Article 

    Google Scholar 
    8.Allen, J. A. The Influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    9.Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: A clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174. https://doi.org/10.1046/j.1472-4642.1999.00046.x (1999).Article 

    Google Scholar 
    10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, 16. https://doi.org/10.7554/eLife.27166 (2018).Article 

    Google Scholar 
    11.Ashton, K. G. Patterns of within-species body size variation of birds: Strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. 11, 505–523. https://doi.org/10.1046/j.1466-822X.2002.00313.x (2002).Article 

    Google Scholar 
    12.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351. https://doi.org/10.1046/j.1365-2699.2003.00837.x (2003).Article 

    Google Scholar 
    13.Reig, S. Geographic variation in pine marten (Martes martes) and beech marten (M. foina) in Europe. J. Mammal. 73, 744–769. https://doi.org/10.2307/1382193 (1992).Article 

    Google Scholar 
    14.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724. https://doi.org/10.1111/j.0906-7590.2004.03999.x (2004).Article 

    Google Scholar 
    15.Diniz, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. & Hawkins, B. A. Seeing the forest for the trees: Partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography 30, 598–608. https://doi.org/10.1111/j.2007.0906-7590.04988.x (2007).Article 

    Google Scholar 
    16.Hoy, S. R., Peterson, R. O. & Vucetich, J. A. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Glob. Change Biol. 24, 2488–2497. https://doi.org/10.1111/gcb.14015 (2018).ADS 
    Article 

    Google Scholar 
    17.Martin, J. M., Mead, J. I. & Barboza, P. S. Bison body size and climate change. Ecol. Evol. 8, 4564–4574. https://doi.org/10.1002/ece3.4019 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467. https://doi.org/10.1126/science.1173668 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Prokosch, J., Bernitz, Z., Bernitz, H., Erni, B. & Altwegg, R. Are animals shrinking due to climate change? Temperature-mediated selection on body mass in mountain wagtails. Oecologia 189, 841–849. https://doi.org/10.1007/s00442-019-04368-2 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    20.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055. https://doi.org/10.1038/nature08649 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Schloss, C. A., Nunez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U.S.A. 109, 8606–8611. https://doi.org/10.1073/pnas.1116791109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189. https://doi.org/10.1111/jbi.13395 (2018).Article 

    Google Scholar 
    23.Gordon, C. J. Effects of ambient temperature and exposure to 2450-MHz microwave radiation of evaporative heat loss in the mouse. J. Microw. Power Electromagn. Energy 17, 145–150 (1982).CAS 

    Google Scholar 
    24.Zub, K., Piertney, S., Szafranska, P. A. & Konarzewski, M. Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Mol. Ecol. 21, 1283–1293. https://doi.org/10.1111/j.1365-294X.2011.05436.x (2012).Article 
    PubMed 

    Google Scholar 
    25.Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741. https://doi.org/10.1007/s11284-006-0311-6 (2007).Article 

    Google Scholar 
    26.Briscoe, N. J., Krockenberger, A., Handasyde, K. A. & Kearney, M. R. Bergmann meets Scholander: Geographical variation in body size and insulation in the koala is related to climate. J. Biogeogr. 42, 791–802. https://doi.org/10.1111/JBI.12445 (2015).Article 

    Google Scholar 
    27.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291. https://doi.org/10.1016/J.TREE.2011.03.005 (2011).Article 
    PubMed 

    Google Scholar 
    28.Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225. https://doi.org/10.1007/s13595-013-0306-8 (2014).Article 

    Google Scholar 
    29.Laidre, K. L. et al. Transient benefits of climate change for a high-Arctic polar bear (Ursus maritimus) subpopulation. Glob. Change Biol. 26, 6251–6265. https://doi.org/10.1111/gcb.15286 (2020).ADS 
    Article 

    Google Scholar 
    30.Yunger, J. A. Response of two low-density populations of Peromyscus leucopus to increased food availability. J. Mammal. 83, 267–279. https://doi.org/10.1644/1545-1542(2002)083%3c0267:rotldp%3e2.0.co;2 (2002).Article 

    Google Scholar 
    31.Monterroso, P., Francisco, D. R., Lukacs, P. M., Alves, P. C. & Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology. https://doi.org/10.1002/ecy.3059 (2020).Article 
    PubMed 

    Google Scholar 
    32.Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).Article 

    Google Scholar 
    33.Creel, S. & Creel, N. M. Limitation of African wild dogs by competition with larger carnivores. Conserv. Biol. 10, 526–538. https://doi.org/10.1046/j.1523-1739.1996.10020526.x (1996).Article 

    Google Scholar 
    34.Wereszczuk, A. & Zalewski, A. Spatial niche segregation of sympatric stone marten and pine marten—Avoidance of competition or selection of optimal habitat? PLoS ONE 10, e0139852. https://doi.org/10.1371/journal.pone.0139852 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    36.Virgos, E., Zalewski, A., Rosalino, L. M. & Mergey, M. Habitat ecology of Martens species in Europe. A review of the evidence. In Biology and Conservation of Martens, Sables and Fishers: A New Synthesis (eds Aubry, K. B. et al.) 255–266 (Cornell University Press, 2012).
    Google Scholar 
    37.Goszczyński, J., Posłuszny, M., Pilot, M. & Gralak, B. Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can. J. Zool. 85, 239–249. https://doi.org/10.1139/Z06-212 (2007).ADS 
    Article 

    Google Scholar 
    38.Larroque, J., Ruette, S., Vandel, J. M. & Devillard, S. Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38, 1129–1140. https://doi.org/10.1111/ecog.01133 (2015).Article 

    Google Scholar 
    39.Monakhov, V. G. & Hamilton, M. J. Spatial trends in the size structure of pine Marten Martes martes Linnaeus, 1756 (Mammalia: Mustelidae) within the species range. Russ. J. Ecol. 51, 250–259. https://doi.org/10.1134/s1067413620030108 (2020).CAS 
    Article 

    Google Scholar 
    40.Meiri, S., Dayan, T. & Simberloff, D. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588. https://doi.org/10.1111/j.1095-8312.2004.00310.x (2004).Article 

    Google Scholar 
    41.Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127. https://doi.org/10.1111/geb.12509 (2017).Article 

    Google Scholar 
    42.Bailey, L. D. et al. Using different body size measures can lead to different conclusions about the effects of climate change. J. Biogeogr. 47, 1687–1697. https://doi.org/10.1111/jbi.13850 (2020).Article 

    Google Scholar 
    43.Buskirk, S. W. & Harlow, H. J. Body-fat dynamics of the American marten (Martes americana) in winter. J. Mammal. 70, 191–193. https://doi.org/10.2307/1381687 (1989).Article 

    Google Scholar 
    44.Wereszczuk, A.et al. Various responses of pine marten
    morphology and demography to temporal climate changes and primary productivity. PREPRINT (Version 1) available at
    Research Square https://doi.org/10.21203/rs.3.rs-1021314/v1 (2021)45.Desy, E. A. & Batzli, G. O. Effects of food availability and predation on prairie vole demography—A field experiment. Ecology 70, 411–421. https://doi.org/10.2307/1937546 (1989).Article 

    Google Scholar 
    46.Geist, V. Bergmann rule is invalid. Can. J. Zool. 65, 1035–1038. https://doi.org/10.1139/z87-164 (1987).Article 

    Google Scholar 
    47.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563. https://doi.org/10.1126/science.1082750 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Svensson, B. M., Carlsson, B. A. & Melillo, J. M. Changes in species abundance after seven years of elevated atmospheric CO2 and warming in a Subarctic birch forest understorey, as modified by rodent and moth outbreaks. PeerJ 6, e4843. https://doi.org/10.7717/peerj.4843 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Zalewski, A., Jedrzejewski, W. & Jedrzejewska, B. Mobility and home range use by pine martens (Martes martes) in a Polish primeval forest. Ecoscience 11, 113–122. https://doi.org/10.1080/11956860.2004.11682815 (2004).Article 

    Google Scholar 
    50.Krebs, C. J., Cowcill, K., Boonstra, R. & Kenney, A. J. Do changes in berry crops drive population fluctuations in small rodents in the southwestern Yukon? J. Mammal. 91, 500–509. https://doi.org/10.1644/09-mamm-a-005.1 (2010).Article 

    Google Scholar 
    51.Selas, V., Kobro, S. & Sonerud, G. A. Population fluctuations of moths and small rodents in relation to plant reproduction indices in southern Norway. Ecosphere 4, 1–11. https://doi.org/10.1890/es13-00228.1 (2013).Article 

    Google Scholar 
    52.Yom-Tov, Y., Yom-Tov, S. & Jarrell, G. Recent increase in body size of the American marten Martes americana in Alaska. Biol. J. Linn. Soc. 93, 701–707. https://doi.org/10.1111/j.1095-8312.2007.00950.x (2008).Article 

    Google Scholar 
    53.Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: the importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-mamm-a-149.1 (2012).Article 

    Google Scholar 
    54.Zalewski, A. Factors affecting the duration of activity by pine martens (Martes martes) in the Bialowieza National Park, Poland. J. Zool. 251, 439–447. https://doi.org/10.1111/j.1469-7998.2000.tb00799.x (2000).Article 

    Google Scholar 
    55.Zalewski, A. Factors affecting selection of resting site type by pine marten in primeval deciduous forests (Bialowieza National Park, Poland). Acta Theriol. 42, 271–288. https://doi.org/10.4098/AT.arch.97-29 (1997).Article 

    Google Scholar 
    56.Gilbert, J. H., Zollner, P. A., Green, A. K., Wright, J. L. & Karasov, W. H. Seasonal field metabolic rates of American martens in Wisconsin. Am. Midl. Nat. 162, 327–334. https://doi.org/10.1674/0003-0031-162.2.327 (2009).Article 

    Google Scholar 
    57.Zub, K., Szafranska, P. A., Konarzewski, M. & Speakman, J. R. Effect of energetic constraints on distribution and winter survival of weasel males. J. Anim. Ecol. 80, 259–269. https://doi.org/10.1111/j.1365-2656.2010.01762.x (2011).Article 
    PubMed 

    Google Scholar 
    58.Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. https://doi.org/10.1038/s42003-021-02505-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Yom-Tov, Y., Yom-Tov, S. & Baagoe, H. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: An effect of improved diet? Evol. Ecol. Res. 5, 1037–1048 (2003).
    Google Scholar 
    60.Wereszczuk, A., Leblois, R. & Zalewski, A. Genetic diversity and structure related to expansion history and habitat isolation: Stone marten populating rural-urban habitats. BMC Ecol. 17, 46. https://doi.org/10.1186/s12898-017-0156-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803. https://doi.org/10.1038/439803a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Sidorovich, V., Kruuk, H. & Macdonald, D. W. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J. Zool. 248, 521–527. https://doi.org/10.1017/s0952836999008110 (1999).Article 

    Google Scholar 
    63.Pagh, S., Hansen, M. S., Jensen, B., Pertoldi, C. & Chriel, M. Variability in body mass and sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zool. Ecol. 28, 1–9. https://doi.org/10.1080/21658005.2017.1409997 (2018).Article 

    Google Scholar 
    64.Zalewski, A. & Bartoszewicz, M. Phenotypic variation of an alien species in a new environment: The body size and diet of American mink over time and at local and continental scales. Biol. J. Linn. Soc. 105, 681–693. https://doi.org/10.1111/j.1095-8312.2011.01811.x (2012).Article 

    Google Scholar 
    65.Balestrieri, A. et al. Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mamm. Biol. 75, 412–419. https://doi.org/10.1016/j.mambio.2009.05.003 (2010).Article 

    Google Scholar 
    66.Rosellini, S., Osorio, E., Ruiz-Gonzalez, A., Isabel, A. P. & Barja, I. Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): A multievidence approach using faecal DNA analysis and camera-traps. Wildl. Res. 35, 434–440. https://doi.org/10.1071/wr07030 (2008).Article 

    Google Scholar 
    67.Delibes, M. Interspecific competition and the habitat of the stone marten Martes foina (Erxleben 1777) in Europe. Acta Zool. Fennica 174, 229–231 (1983).
    Google Scholar 
    68.Zabala, J., Zuberogoitia, I. & Antonio Martinez-Climent, J. Testing for niche segregation between two abundant carnivores using presence-only data. Folia Zool. 58, 385–395 (2009).
    Google Scholar 
    69.Jacob, D. et al. Climate impacts in Europe under +1.5 degrees C global warming. Earths Fut. 6, 264–285. https://doi.org/10.1002/2017ef000710 (2018).ADS 
    Article 

    Google Scholar 
    70.Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984. https://doi.org/10.2307/177286 (2000).Article 

    Google Scholar 
    71.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).73.Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326. https://doi.org/10.1029/2018jd029522 (2019).ADS 
    Article 

    Google Scholar  More