More stories

  • in

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula

    1.Landschützer, P., Gruber, N. & Bakker, D. C. E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30, 1396–1417 (2016).ADS 

    Google Scholar 
    2.Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).ADS 

    Google Scholar 
    3.Passow, U. & Carlson, C. A. The biological pump in a high CO2 world. Mar. Ecol. Prog. Ser. 470, 249–271 (2012).ADS 
    CAS 

    Google Scholar 
    4.Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).ADS 

    Google Scholar 
    5.Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).ADS 

    Google Scholar 
    6.Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: degradation processes and ballasting effects. Deep Sea Res. Pt. I 57, 771–784 (2010).CAS 

    Google Scholar 
    7.Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).ADS 

    Google Scholar 
    8.Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. A. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).ADS 

    Google Scholar 
    9.Archibald, K. M., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).ADS 
    CAS 

    Google Scholar 
    10.Whitehouse, M. J. et al. Role of krill versus bottom-up factors in controlling phytoplankton biomass in the northern Antarctic waters of South Georgia. Mar. Ecol. Prog. Ser. 393, 69–82 (2009).ADS 
    CAS 

    Google Scholar 
    11.Atkinson, A., Schmidt, K., Fielding, S., Kawaguchi, S. & Geissler, P. A. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets. Deep Sea Res. 59–60, 147–158 (2012). Pt. II.ADS 

    Google Scholar 
    12.Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Belcher, A. et al. The potential role of Antarctic krill faecal pellets in efficient carbon export at the marginal ice zone of the South Orkney Islands in spring. Polar Biol. 40, 2001–2013 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Belcher, A. et al. Krill faecal pellets drive hidden pulses of particulate organic carbon in the marginal ice zone. Nat. Commun. 10, 889 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Gleiber, M. R., Steinberg, D. K. & Ducklow, H. W. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 471, 23–36 (2012).ADS 

    Google Scholar 
    16.Belcher, A. et al. The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol. Oceanogr. 61, 1049–1064 (2016).ADS 

    Google Scholar 
    17.Siegel, V. & Watkins, J. L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia Superba in Biology and Ecology of Antarctic Krill 21-100 (Springer International Publishing, Switzerland, 2016).18.Cavan, E. L. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).ADS 
    CAS 

    Google Scholar 
    19.Bathmann, U., Fischer, G., Müller, P. J. & Gerdes, D. Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11, 185–195 (1991).
    Google Scholar 
    20.Ducklow, H. W. et al. Marine pelagic ecosystems: The West Antarctic Peninsula. Philos. Trans. R. Soc., B. 362, 67–94 (2007).
    Google Scholar 
    21.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc., B. 362, 149–166 (2007).
    Google Scholar 
    22.Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).
    Google Scholar 
    23.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).ADS 

    Google Scholar 
    24.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    25.Bernard, K. S., Steinberg, D. K. & Schofield, O. M. E. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Pt. I 62, 111–122 (2012).
    Google Scholar 
    26.Pakhomov, E. A., Dubischar, C. D., Strass, V., Brichta, M. & Bathmann, U. V. The tunicate Salpa thompsoni ecology in the Southern Ocean. I. Distribution, biomass, demography and feeding ecophysiology. Mar. Biol. 149, 609–623 (2006).
    Google Scholar 
    27.Fischer, G. et al. Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335, 426–428 (1988).ADS 

    Google Scholar 
    28.Schmidt, K. & Atkinson, A. Feeding and Food Processing in Antarctic Krill (Euphausia superba Dana) in Biology and Ecology of Antarctic Krill 175-224 (Springer International Publishing, Switzerland, 2016).29.Bone, Q., Carré, C. & Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. 83, 907–919 (2003).
    Google Scholar 
    30.Pakhomov, E. A., Froneman, P. W. & Perissinotto, R. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep Sea Res. 49, 1881–1907 (2002). Pt. II.ADS 
    CAS 

    Google Scholar 
    31.Iversen, M. H. et al. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res. 138, 116–125 (2017). Pt. II.CAS 

    Google Scholar 
    32.Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).ADS 
    CAS 

    Google Scholar 
    33.Dubischar, C. D. & Bathmann, U. V. The occurrence of faecal material in relation to different pelagic systems in the Southern Ocean and its importance for vertical flux. Deep Sea Res. 49, 3229–3242 (2002). Pt. II.ADS 

    Google Scholar 
    34.Manno, C. et al. Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean. Nat. Commun. 11, 6051 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Pauli, N.-C. et al. Selective feeding in Southern Ocean key grazers—diet composition of krill and salps. Commun. Biol. 4, 1061 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Siegel, V. Introducing Antarctic Krill Euphausia Superba Dana, 1850 in Biology and Ecology of Antarctic Krill 23-41 (Springer International Publishing, Switzerland, 2016).38.Pakhomov, E. A. Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean. Deep Sea Res. 51, 2645–2660 (2004). Pt. II.ADS 
    CAS 

    Google Scholar 
    39.Phillips, B., Kremer, P. & Madin, L. P. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol. 156, 455–467 (2009).
    Google Scholar 
    40.Perissinotto, R. & Pakhomov, E. A. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Mar. Biol. 131, 25–32 (1998).CAS 

    Google Scholar 
    41.Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).ADS 

    Google Scholar 
    42.Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).ADS 

    Google Scholar 
    43.Ploug, H., Iversen, M. H., Koski, M. & Buitenhuis, E. T. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53, 469–476 (2008).ADS 
    CAS 

    Google Scholar 
    44.Iversen, M. H. & Poulsen, L. K. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar. Ecol. Prog. Ser. 350, 79–89 (2007).ADS 

    Google Scholar 
    45.Cavan, E. L., Kawaguchi, S. & Boyd, P. W. Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets. Ecol. Evol. 11, 1023–1036 (2021).PubMed 

    Google Scholar 
    46.Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    47.DeMott, W. R. Retention Efficiency, Perceptual Bias, and Active Choice As Mechanisms of Food Selection by Suspension-Feeding Zooplankton in Behavioural Mechanisms of Food Selection 569–594 (Springer, Berlin, Heidelberg, Germany, 1990).48.Suh, H. L. & Nemoto, T. Morphology of the gastric mill in ten species of euphausiids. Mar. Biol. 97, 79–85 (1988).
    Google Scholar 
    49.Gauld, D. T. A peritrophic membrane in calanoid copepods. Nature 179, 325–326 (1957).ADS 

    Google Scholar 
    50.Bruland, K. W. & Silver, M. W. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar. Biol. 63, 295–300 (1981).
    Google Scholar 
    51.von Harbou, L. Trophodynamics of Salps in the Atlantic Southern Ocean. PhD thesis, University of Bremen, (2009).52.Poulsen, L. K. & Iversen, M. H. Degradation of copepod fecal pellets: Key role of protozooplankton. Mar. Ecol. Prog. Ser. 367, 1–13 (2008).ADS 

    Google Scholar 
    53.Böckmann, S. et al. Salp fecal pellets release more bioavailable iron to Southern Ocean phytoplankton than krill fecal pellets. Curr. Biol. 31, 2737–2746.e2733 (2021).PubMed 

    Google Scholar 
    54.Alcaraz, M. et al. Changes in the C, N, and P cycles by the predicted salps-krill shift in the Southern Ocean. Front. Mar. Sci. 1, 45 (2014).
    Google Scholar 
    55.Fielding, S., Watkins, J. L., Collins, M. A., Enderlein, P. & Venables, H. J. Acoustic determination of the distribution of fish and krill across the Scotia Sea in spring 2006, summer 2008 and autumn 2009. Deep Sea Res. 59-60, 173–188 (2012). Pt. II.ADS 

    Google Scholar 
    56.Chiba, S., Horimoto, N., Satoh, R., Yamaguchi, Y. & Ishimaru, T. Macrozooplankton distribution around the Antarctic Divergence off Wilkes Land in the 1996 austral summer: With reference to high abundance of Salpa thompsoni. in: Proceedings of NIPR Symposium on Polar Biology, 33–50 (1998).57.Henschke, N. & Pakhomov, E. A. Latitudinal variations in Salpa thompsoni reproductive fitness. Limnol. Oceanogr. 64, 575–584 (2018).ADS 

    Google Scholar 
    58.Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).ADS 
    CAS 

    Google Scholar 
    59.Foxton, P. The Distribution and Life-History of Salpa thompsoni Foxton with Observations on a Related Species, Salpa gerlachei Foxton (Cambridge University Press, UK, Cambridge, 1966).60.Meyer, B. et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation. Commun. Earth Environ. 1, 28 (2020).ADS 

    Google Scholar 
    61.Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. I 56, 727–740 (2009).
    Google Scholar 
    62.Montes-Hugo, M. et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323, 1470–1473 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    63.Fielding, S. et al. A Condensed History and Document of the Method Used by CCAMLR to Estimate Krill Biomass (B0) in 2010. (CCAMLR, 2016).64.Chu, D., Foote, K. G. & Stanton, T. K. Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am. 93, 2985–2988 (1993).ADS 

    Google Scholar 
    65.McGehee, D. E., O’Driscoll, R. L. & Traykovski, L. V. M. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz. Deep Sea Res. 45, 1273–1294 (1998). Pt. II.ADS 

    Google Scholar 
    66.Demer, D. A. & Conti, S. G. Reconciling theoretical versus empirical target strengths of krill: effects of phase variability on the distorted-wave Born approximation. ICES J. Mar. Sci. 60, 429–434 (2003).
    Google Scholar 
    67.Conti, S. G. & Demer, D. A. Improved parameterization of the SDWBA for estimating krill target strength. ICES J. Mar. Sci. 63, 928–935 (2006).
    Google Scholar 
    68.Calise, L. & Skaret, G. Sensitivity investigation of the SDWBA Antarctic krill target strength model to fatness, material contrasts and orientation. CCAMLR Sci. 18, 97–122 (2011).
    Google Scholar 
    69.Hewitt, R. P. et al. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Res. 51, 1215–1236 (2004). Pt. II.ADS 

    Google Scholar 
    70.Flintrop, C. M. et al. Embedding and slicing of intact in situ collected marine snow. Limnol. Oceanogr. Methods 16, 339–355 (2018).
    Google Scholar 
    71.Markussen, T. N. et al. Tracks in the snow—advantage of combining optical methods to characterize marine particles and aggregates. Front. Mar. Sci. 7, 476 (2020).
    Google Scholar 
    72.Ploug, H. & Jorgensen, B. B. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279–290 (1999).ADS 
    CAS 

    Google Scholar 
    73.Ploug, H., Terbrüggen, A., Kaufmann, A., Wolf-Gladrow, D. & Passow, U. A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods. Limnol. Oceanogr. Methods 8, 386–393 (2010).
    Google Scholar 
    74.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).75.ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016). More

  • in

    Toward quantifying the adaptive role of bacterial pangenomes during environmental perturbations

    1.Kislyuk AO, Haegeman B, Bergman NH, Weitz JS. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genom. 2011;12:1–10.
    Google Scholar 
    2.Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11:472–7.CAS 

    Google Scholar 
    3.Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA. 2005;102:13950–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr Opin Genet Dev. 2005;15:589–94.CAS 

    Google Scholar 
    5.Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol. 2015;23:148–54.CAS 
    PubMed 

    Google Scholar 
    6.Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.CAS 
    PubMed 

    Google Scholar 
    7.Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, Woyke T, et al. Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J. 2018;12:742–55.CAS 
    PubMed 

    Google Scholar 
    8.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731–19.9.Konstantinidis KT, DeLong EF. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME J. 2008;2:1052–65.CAS 
    PubMed 

    Google Scholar 
    10.Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed 
    PubMed Central 

    Google Scholar 
    11.Johnston ER, Rodriguez RL, Luo C, Yuan MM, Wu L, He Z, et al. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem. Front Microbiol. 2016;7:579.PubMed 
    PubMed Central 

    Google Scholar 
    12.Meziti A, Tsementzi D, Rodriguez RL, Hatt JK, Karayanni H, Kormas KA, et al. Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient. ISME J. 2019;13:767–79.PubMed 

    Google Scholar 
    13.Orellana LH, Ben Francis T, Kruger K, Teeling H, Muller MC, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    15.Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Andreani NA, Hesse E, Vos M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 2017;11:1719–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc B 2006;361:1929–40.
    Google Scholar 
    18.McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2:17040.CAS 
    PubMed 

    Google Scholar 
    19.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:170203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Chen LX, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res. 2020;30:315–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Shaiber A, Eren AM. Composite metagenome-assembled genomes reduce the quality of public genome repositories. mBio. 2019;10:e00725–19.23.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 

    Google Scholar 
    24.Meziti A, Rodriguez-R LM, Hatt JK, Peña-Gonzalez A, Levy K, Konstantinidis KT. The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: Insights from comparing MAGs against isolate genomes derived from the same fecal sample. Appl Environ Microbiol. 2021;87:e02593–20.25.Meziti A, Tsementzi D, Ar Kormas K, Karayanni H, Konstantinidis KT. Anthropogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics. Environ Microbiol. 2016;18:4640–52.PubMed 

    Google Scholar 
    26.Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.e14.CAS 
    PubMed 

    Google Scholar 
    27.Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ. 2018;6:e4320.PubMed 
    PubMed Central 

    Google Scholar 
    28.Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. Elife. 2019;8:e46497.29.Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:1–11.
    Google Scholar 
    30.Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.CAS 
    PubMed 

    Google Scholar 
    31.Viver T, Orellana LH, Diaz S, Urdiain M, Ramos-Barbero MD, Gonzalez-Pastor JE, et al. Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities. Environ Microbiol. 2019;21:4300–15.CAS 
    PubMed 

    Google Scholar 
    32.Viver T, Cifuentes A, Diaz S, Rodriguez-Valdecantos G, Gonzalez B, Anton J, et al. Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: evidence that unexplored sites constitute sources of cultivable novelty. Syst Appl Microbiol. 2015;38:266–75.CAS 
    PubMed 

    Google Scholar 
    33.Viver T, Conrad RE, Orellana LH, Urdiain M, González-Pastor JE, Hatt JK, et al. Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps. ISME J. 2020:15:1–14.34.Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA. 2004;101:3160–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Rodriguez‐R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol. 2020;22:3394–412.PubMed 

    Google Scholar 
    36.Pena A, Teeling H, Huerta-Cepas J, Santos F, Yarza P, Brito-Echeverria J, et al. Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains. ISME J. 2010;4:882–95.CAS 
    PubMed 

    Google Scholar 
    37.Maistrenko OM, Mende DR, Luetge M, Hildebrand F, Schmidt TSB, Li SS, et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 2020;14:1247–59.PubMed 
    PubMed Central 

    Google Scholar 
    38.Anton J, Lucio M, Pena A, Cifuentes A, Brito-Echeverria J, Moritz F, et al. High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber. PLOS ONE. 2013;8:e64701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Luley-Goedl C, Nidetzky B. Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep. 2011;28:875–96.CAS 
    PubMed 

    Google Scholar 
    40.Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. IJSEM. 2002;52:485–91.PubMed 

    Google Scholar 
    41.Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000;66:3052–7.PubMed 
    PubMed Central 

    Google Scholar 
    42.Viver T, Orellana L, Gonzalez-Torres P, Diaz S, Urdiain M, Farias ME, et al. Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano. Syst Appl Microbiol. 2018;41:198–212.PubMed 

    Google Scholar 
    43.Oren A, Rodríguez-Valera F. The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol. 2001;36:123–30.CAS 
    PubMed 

    Google Scholar 
    44.Santos F, Moreno-Paz M, Meseguer I, Lopez C, Rossello-Mora R, Parro V, et al. Metatranscriptomic analysis of extremely halophilic viral communities. ISME J. 2011;5:1621–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Kuo CH, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009;1:145–52.PubMed 
    PubMed Central 

    Google Scholar 
    46.Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467:929–34.CAS 
    PubMed 

    Google Scholar 
    47.Vos M, Hesselman MC, Te Beek TA, van Passel MWJ, Eyre-Walker A. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 2015;23:598–605.CAS 
    PubMed 

    Google Scholar 
    48.Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3:679–87.CAS 
    PubMed 

    Google Scholar 
    49.Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, et al. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat Methods. 2017;14:1063–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Munoz R, Lopez-Lopez A, Urdiain M, Moore ER, Rossello-Mora R. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Syst Appl Microbiol. 2011;34:69–75.CAS 
    PubMed 

    Google Scholar 
    51.Urdiain M, López-López A, Gonzalo C, Busse H-J, Langer S, Kämpfer P, et al. Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. Syst Appl Microbiol. 2008;31:339–51.CAS 
    PubMed 

    Google Scholar 
    52.Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.53.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    55.Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.57.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLOS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    59.Rambaut A. FigTree v1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ 2018.60.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 

    Google Scholar 
    61.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.
    Google Scholar 
    63.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    PubMed 

    Google Scholar 
    64.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size

    1.MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    2.Stearns, S. C. The evolution of life history traits: A critique of the theory and a review of the data. Annu. Rev. Ecol. Evol. Syst. 8, 145–171. https://doi.org/10.1146/annurev.es.08.110177.001045 (1977).Article 

    Google Scholar 
    3.Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244 (2017).Article 
    PubMed 

    Google Scholar 
    4.Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7 (2018).Article 

    Google Scholar 
    5.Ferreira-Rodríguez, N. et al. Research priorities for freshwater mussel conservation assessment. Biol. Conserv. 231, 77–87. https://doi.org/10.1016/j.biocon.2019.01.002 (2019).Article 

    Google Scholar 
    6.Haag, W. R. & Rypel, A. L. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biol. Rev. 86, 225–247. https://doi.org/10.1111/j.1469-185X.2010.00146.x (2011).Article 
    PubMed 

    Google Scholar 
    7.Haag, W. R. North American Freshwater Mussels: Natural History, Ecology, and Conservation (Cambridge University Press, 2012).Book 

    Google Scholar 
    8.Ziuganov, V. et al. Life span variation of the freshwater pearl shell: A model species for testing longevity mechanisms in animals. AMBIO J. Hum. Environ. 29, 102–105. https://doi.org/10.1579/0044-7447-29.2.102 (2000).Article 

    Google Scholar 
    9.Wächtler, K., Drehen-Mansur, M. C., & Richter, T. Larval types and early postlarval biology in Naiads (Unionoida). In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 93–119 (Springer Science & Business Media, 2001).10.Hanson, J. M., Mackay, W. C. & Prepas, E. E. Effect of size-selective predation by muskrats (Ondatra zebithicus) on a population of unionid clams (Anodonta grandis simpsoniana). J. Anim. Ecol. 58, 15–28. https://doi.org/10.2307/4983 (1989).Article 

    Google Scholar 
    11.Bauer, G. The adaptive value of offspring size among freshwater mussels (Bivalvia; Unionoidea). J. Anim. Ecol. 63, 933–944. https://doi.org/10.2307/5270 (1994).Article 

    Google Scholar 
    12.Bauer, G. Framework and driving forces for the evolution of Naiad life histories. In Ecology and Evolution of the Freshwater Mussels Unionoida (eds. Bauer, G. & Wächtler, K.) 233–257 (Springer Science & Business Media, 2001).13.Haag, W. R. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels. Biol. Rev. 88, 745–766. https://doi.org/10.1111/brv.12028 (2013).Article 
    PubMed 

    Google Scholar 
    14.Wood, E. M. Development and morphology of the glochidium larva of Anodonta cygnea (Mollusca: Bivalvia). J. Zool. 173, 1–13. https://doi.org/10.1111/j.1469-7998.1974.tb01743.x (1974).Article 

    Google Scholar 
    15.Silverman, H., Steffens, W. L. & Dietz, T. Calcium from extracellular concretions in the gills of freshwater unionid mussels is mobilized during reproduction. J. Exp. Zool. 236, 137–147. https://doi.org/10.1002/jez.1402360204 (1985).CAS 
    Article 

    Google Scholar 
    16.Silverman, H., Kays, W. T. & Dietz, T. H. Maternal calcium contribution to glochidial shells in freshwater mussels (Eulamellibranchia: Unionidae). J. Exp. Zool. 242, 137–146. https://doi.org/10.1002/jez.1402420204 (1987).CAS 
    Article 

    Google Scholar 
    17.McIvor, A. L. & Aldridge, D. C. The reproductive biology of the depressed river mussel Pseudanodonta complanata (Bivalvia: Unionidae) with implications for its conservation. J. Molluscan Stud. 73, 259–266. https://doi.org/10.1093/mollus/eym023 (2007).Article 

    Google Scholar 
    18.Neves, R. J., Bogan, A. E., WIlliams, J. D., Ahlstedt, S. A., & Hartfield, P. W. Status of aquatic mollusks in the southeastern United States: A downward spiral of diversity. In Aquatic Fauna in Peril: A Southeastern Perspective (eds. Benz, W. & Collins, D. E.) 43–85 (Southeast Aquatic Research Institute, 1997).19.Kat, P. W. Parasitism and the Unionacea (Bivalvia). Biol. Rev. 59, 189–207. https://doi.org/10.1111/j.1469-185X.1984.tb00407.x (1984).Article 

    Google Scholar 
    20.Ćmiel, A. M., Zając, K., Lipińska, A. M. & Zając, T. Glochidial infestation of fish by the endangered thick-shelled river mussel Unio crassus. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 535–544. https://doi.org/10.1002/aqc.2883 (2018).Article 

    Google Scholar 
    21.Modesto, V. et al. Fish and mussels: Importance of fish for freshwater mussel conservation. Fish Fish. 19, 244–259. https://doi.org/10.1111/faf.12252 (2018).Article 

    Google Scholar 
    22.Jansen, W. A. & Hanson, M. J. Estimates of the number of glochidia produced by clams (Anodonta grandis simpsoniana Lea) attaching to yellow perch (Perca flavescens) and surviving to various ages in Narrow Lake, Alberta. Can. J. Zool. 69, 973–977. https://doi.org/10.1139/z91-141 (1991).Article 

    Google Scholar 
    23.Young, M. & Williams, J. The reproductive biology of the freshwater pearl mussel Margaritifera margaritifera (Linn.) in Scotland. II Laboratory studies. Arch. Hydrobiol. 100, 29–43 (1984).
    Google Scholar 
    24.Zimmerman, L. & Neves, R. J. Effects of temperature on duration of viability for glochidia of freshwater mussels (Bivalvia: Unionidae). Am. Malacol. Bull. 17, 31–35 (2002).
    Google Scholar 
    25.Haag, W. R. & Warren, M. L. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA. J. N. Am. Benthol. Soc. 22, 78. https://doi.org/10.2307/1467979 (2003).Article 

    Google Scholar 
    26.Ćmiel, A. M., Zając, T., Zając, K., Lipińska, A. & Najberek, K. Single or multiple spawning? Comparison of breeding strategies of freshwater Unionidae mussels under stochastic environmental conditions. Hydrobiologia 848, 3067–3075. https://doi.org/10.1007/s10750-019-04045-8 (2021).Article 

    Google Scholar 
    27.Lillie, F. R. The embryology of the unionidae. A study in cell-lineage. J. Morphol. 10, 1–100. https://doi.org/10.1002/jmor.1050100102 (1895).Article 

    Google Scholar 
    28.Lopes-Lima, M. et al. The strange case of the tetragenous Anodonta anatina. J. Exp. Zool. 325, 52–56. https://doi.org/10.1002/jez.1995 (2016).Article 

    Google Scholar 
    29.Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 27, 370–394. https://doi.org/10.1899/07-093.1 (2008).Article 

    Google Scholar 
    30.Zając, K. & Zając, T. A. Seasonal patterns in the developmental rate of glochidia in the endangered thick-shelled river mussel. Unio crassus Philipsson. 1788. Hydrobiologia 848, 3077–3091. https://doi.org/10.1007/s10750-020-04240-y (2021).CAS 
    Article 

    Google Scholar 
    31.Jones, J. W., Mair, R. A. & Neves, R. J. Factors affecting survival and growth of juvenile freshwater mussels (Bivalvia: Unionidae) cultured in recirculating aquaculture systems. N. Am. J. Aquac. 67, 210–220. https://doi.org/10.1577/A04-055.1 (2005).Article 

    Google Scholar 
    32.Iwata, H. & Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93, 384–385. https://doi.org/10.1093/jhered/93.5.384 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Freeman, H. Computer processing of line drawing images. ACM Comput. Surv. 6, 57–97. https://doi.org/10.1145/356625.356627 (1974).Article 
    MATH 

    Google Scholar 
    34.Kuhl, F. P. & Giardina, C. R. Elliptic Fourier features of a closed contour. Comput. Gr. Image Process. 18, 236–258. https://doi.org/10.1016/0146-664X(82)90034-X (1982).Article 

    Google Scholar 
    35.Aldridge, D. C. & Horne, D. C. Fossil glochidia (Bivalvia. Unionidae): Identification and value in palaeoenvironmental reconstructions. J. Micropalaeontol. 17, 179–182. https://doi.org/10.1144/jm.17.2.179 (1998).Article 

    Google Scholar 
    36.Antonova, L. A. & Starobogatov, Y. I. Generic differences of glochidia of naiades (Bivalvia Unionoidea) of the fauna of USSR and problems of the evolution of glochidia. Systematics and Fauna of Gastropoda. Bivalvia and Cephalopoda. Proc. Zool. Inst. Leningr. 187, 129–154 (1988) (in Russian).
    Google Scholar 
    37.Niemeyer, B. Vergleichende Untersuchungen zur bionomischen Strategie der Teichmuschelarten Anodonta cygnea L. und Anodonta anatina L. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1992) (in German).38.Harms, W. Postembryonale Entwicklungsgeschichte der Unioniden. Zool. Jb. 28, 325–386 (1909) (in German).
    Google Scholar 
    39.Hüby, B. Zur Entwicklungsbiologie der Fließgewässermuschel Pseudanodonta complanata. PhD thesis, Institut für Zoologie der Tierärztlichen Hochschule (1988) (in German).40.Nagel, K. O. Anatomische, morphologische und biochemische Untersuchungen zur Taxonomie und systematik der europäischer Unionacea (Mollusca: Bivalvia). PhD Dissertation, Universitat des Landes Hessen (1988) (in German).41.Nagel, K. O. Anatomische und morphologische Merkmale europäischer Najaden (Unionoidea: Margaritiferidae und Unionidae) und ihre Bedeutung für die Systematik. Heldia 2, 3–48 (1999) (in German).
    Google Scholar 
    42.Pekkarinen, M. & Englund, V. P. M. Sizes of intramarsupial unionacean glochidia in Finland. Arch. Hydrobiol. 134, 379–391. https://doi.org/10.1127/archiv-hydrobiol/134/1995/379 (1995).Article 

    Google Scholar 
    43.Escobar-Calderón, J. F. & Douda, K. Variable performance of metamorphosis success indicators in an in vitro culture of freshwater mussel glochidia. Aquaculture 513, 734404. https://doi.org/10.1016/j.aquaculture.2019.734404 (2019).CAS 
    Article 

    Google Scholar 
    44.Huber, V. M. M. Host Fish Suitability for the Endangered Native Anodonta and Impacts of the Invasive Sinanodonta Woodiana on Their Reproductive Success. PhD Thesis, Technische Universität München (2019).45.Scharsack, G. Licht-und Elektronenmikroskopische Untersuchungen an Larvalstadien einheimischer Unionacea (Bivalvia; Eulamellibranchiata). PhD Thesis, University of Hannover (1994) (in German).46.Hoggarth, M. A. Descriptions of some of the glochidia of the Unionidae (Mollusca: Bivalvia). Malacologia 41, 1–118 (1999).
    Google Scholar 
    47.Başçınar, N. S. & Düzgüneş, E. A preliminary study on reproduction and larval development of Swan Mussel [Anodonta cygnea (Linnaeus, 1758)] (Bivalvia: Unionidae) in Lake Çıldır (Kars, Turkey). Turk. J. Fish. Aquat. Sci. 9, 23–27 (2009).
    Google Scholar 
    48.Sayenko, E. M. The microsculpture of glochidia of some Anodontine bivalves (Unionidae). Biol. Bull. 43, 127–135. https://doi.org/10.1134/S1062359016020072 (2016).Article 

    Google Scholar 
    49.Claes, M. Untersuchungen zur Entwicklungsbiologie der Teichmuschel Anodonta cygnea. PhD Thesis, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).50.Maaß, S. Untersuchungen zur Fortpflanzungsbiologie einheimischer Süßwassermuscheln der Gattung Unio. PhD Dissertation, Institut für Zoologie, Tierärztliche Hochschule Hannover (1987) (in German).51.Heino, M. & Kaitala, V. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12, 423–429. https://doi.org/10.1046/j.1420-9101.1999.00044.x (1999).Article 

    Google Scholar 
    52.Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316. https://doi.org/10.1086/432265 (2005).Article 
    PubMed 

    Google Scholar 
    53.Hastie, L. C. & Young, M. R. Timing of spawning and glochidial release in Scottish freshwater pearl mussel (Margaritifera margaritifera) populations. Freshw. Biol. 48, 2107–2117. https://doi.org/10.1046/j.1365-2427.2003.01153.x (2003).Article 

    Google Scholar 
    54.Glazier, D. S. Smaller amphipod mothers show stronger trade-offs between offspring size and number. Ecol. Lett. 3, 142–149. https://doi.org/10.1046/j.1461-0248.2000.00132.x (2001).Article 

    Google Scholar 
    55.Reznick, D. Hard and soft selection revisited: How evolution by natural selection works in the real world. J. Hered. 107, 3–14. https://doi.org/10.1093/jhered/esv076 (2016).Article 
    PubMed 

    Google Scholar 
    56.Haldane, J. B. S. The effect of variation on fitness. Am. Nat. 71, 337–349 (1937).Article 

    Google Scholar 
    57.Aldridge, D. C. The morphology, growth and reproduction of Unionidae (Bivalvia) in a fenland waterway. J. Molluscan Stud. 65, 47–60. https://doi.org/10.1093/mollus/65.1.47 (1999).Article 

    Google Scholar 
    58.Chernyshev, A. V., Sayenko, E. M. & Bogatov, V. V. Superspecific taxonomy of the far eastern unionids (Bivalvia. Unionidae): Review and analysis. Biol. Bull. 47, 267–275. https://doi.org/10.1134/S1062359020010045 (2020).Article 

    Google Scholar 
    59.Pfeiffer, J. M. III. & Graf, D. L. Evolution of bilaterally asymmetrical larvae in freshwater mussels (Bivalvia: Unionoida: Unionidae). Zool. J. Linnean Soc. 175, 307–318. https://doi.org/10.1111/zoj.12282 (2015).Article 

    Google Scholar  More

  • in

    Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas

    1.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).4.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).Article 

    Google Scholar 
    8.Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).Article 

    Google Scholar 
    9.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).Article 

    Google Scholar 
    10.Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).ADS 
    Article 

    Google Scholar 
    13.Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).
    Google Scholar 
    14.Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).Article 

    Google Scholar 
    16.Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).Article 

    Google Scholar 
    17.Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    18.Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).Article 

    Google Scholar 
    19.Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).21.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).ADS 
    Article 

    Google Scholar 
    22.Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).Article 

    Google Scholar 
    23.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).Article 
    PubMed 

    Google Scholar 
    24.Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).
    Google Scholar 
    26.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).Article 

    Google Scholar 
    27.CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).28.UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).29.Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).30.Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).Article 
    PubMed 

    Google Scholar 
    32.Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).Article 

    Google Scholar 
    33.Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).
    Google Scholar 
    34.Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).Article 

    Google Scholar 
    36.Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).Article 

    Google Scholar 
    37.Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).Article 

    Google Scholar 
    38.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).Article 

    Google Scholar 
    40.Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).Article 

    Google Scholar 
    41.Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).Article 
    PubMed 

    Google Scholar 
    42.Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).ADS 
    Article 

    Google Scholar 
    43.Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).Article 

    Google Scholar 
    44.Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).Article 

    Google Scholar 
    45.Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).Article 

    Google Scholar 
    46.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).
    Google Scholar 
    49.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).52.Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).Article 

    Google Scholar 
    53.Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).
    Google Scholar 
    54.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).55.Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).
    Google Scholar 
    58.Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).
    Google Scholar 
    59.Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).Article 

    Google Scholar 
    60.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).63.Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).64.Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).65.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    66.Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).Article 

    Google Scholar 
    67.Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).Article 

    Google Scholar 
    70.Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).
    Google Scholar 
    71.Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).
    Google Scholar  More

  • in

    Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem

    1.Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.CAS 
    PubMed 

    Google Scholar 
    2.Gast RJ, Sanders RW, Caron DA. Ecological strategies of protists and their symbiotic relationships with prokaryotic microbes. Trends Microbiol. 2009;17:563–9.CAS 
    PubMed 

    Google Scholar 
    3.Wein T, Romero Picazo D, Blow F, Woehle C, Jami E, Reusch TBH, et al. Currency, exchange, and inheritance in the evolution of symbiosis. Trends Microbiol. 2019;27:836–49.CAS 
    PubMed 

    Google Scholar 
    4.Ushida K, Newbold CJ, Jouany J-P. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol. 1997;43:129–31.CAS 
    PubMed 

    Google Scholar 
    5.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 

    Google Scholar 
    6.Graf JS, Schorn S, Kitzinger K, Ahmerkamp S, Woehle C, Huettel B, et al. Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature. 2021;591:445–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell T, Bonsall MB, Buckling A, Whiteley AS, Goodall T, Griffiths RI. Protists have divergent effects on bacterial diversity along a productivity gradient. Biol Lett. 2010;6:639–42.PubMed 
    PubMed Central 

    Google Scholar 
    8.Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator bdellovibriot. Front Ecol Evol. 2017;5:536.
    Google Scholar 
    9.Leibold MA. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. Am Nat. 1996;147:784–812.
    Google Scholar 
    10.Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    11.Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The impact of protozoan predation on the pathogenicity of Vibrio cholerae. Front Microbiol. 2020;11:17.PubMed 
    PubMed Central 

    Google Scholar 
    12.Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    13.Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–84.CAS 
    PubMed 

    Google Scholar 
    14.Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 2016;167:444–.e14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nieves-Ramírez ME, Partida-Rodríguez O, Laforest-Lapointe I, Reynolds LA, Brown EM, Valdez-Salazar A, et al. Asymptomatic intestinal colonization with protist blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems. 2018;3:e00007–18.PubMed 
    PubMed Central 

    Google Scholar 
    16.Mizrahi I. Rumen symbioses. In: Eugene Rosenberg, Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Thompson F, editors. The Prokaryotes. Springer Berlin Heidelberg; 2013. p. 533–44.17.Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr. 2004;134:3378–84.CAS 
    PubMed 

    Google Scholar 
    18.Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6:1313.PubMed 
    PubMed Central 

    Google Scholar 
    19.Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority’s perspectives on the role of ciliate protozoa in the rumen. Front Microbiol. 2020;11:123.PubMed 
    PubMed Central 

    Google Scholar 
    20.Williams AG, Coleman GS. The rumen protozoa. New York, NY: Springer Science & Business Media; 2012.21.Solomon R, Jami E. Rumen protozoa: from background actors to featured role in microbiome research. Environ Microbiol Rep. 2021;13:45–49.PubMed 

    Google Scholar 
    22.Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10:2958.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lima J, Auffret MD, Stewart RD, Dewhurst RJ, Duthie C-A, Snelling TJ, et al. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Front Genet. 2019;10:701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE. 2014;9:e85423.PubMed 
    PubMed Central 

    Google Scholar 
    25.Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 2019;9:11.PubMed 
    PubMed Central 

    Google Scholar 
    26.Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci Adv. 2019;5:eaav8391.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Belanche A, de la Fuente G, Pinloche E, Newbold CJ, Balcells J. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis. J Anim Sci. 2012;90:3924–36.CAS 
    PubMed 

    Google Scholar 
    28.Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. J Anim Sci. 2012;90:4495–504.CAS 
    PubMed 

    Google Scholar 
    29.Belanche A, de la Fuente G, Newbold CJ. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol. 2015;91:fiu026.PubMed 

    Google Scholar 
    30.Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol. 2015;6:465.PubMed 
    PubMed Central 

    Google Scholar 
    31.Popova M, Martin C, Rochette Y, Graviou D, Morgavi DP. Methanogenesis kinetics and fermentation patterns in the rumen of sheep with or without protozoa. In: Ruminant physiology: digestion, metabolism and effects of nutrition on reproduction and welfare. Netherlands: Wageningen Academic publishers; 2009. 320.32.Levy B, Jami E. Exploring the prokaryotic community associated within the rumen ciliate protozoa population. Front Microbiol. 2018;9:2526.PubMed 
    PubMed Central 

    Google Scholar 
    33.Borrel G, Brugère J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nat Rev Microbiol. 2020;18:622–36.CAS 
    PubMed 

    Google Scholar 
    34.Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR. Intracellular prokaryotes in rumen ciliate protozoa: Detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol. 1996;32:523–31.
    Google Scholar 
    35.Jouany JP. Effect of rumen protozoa on nitrogen utilization by ruminants. J Nutr. 1996;126:1335S–46S.CAS 
    PubMed 

    Google Scholar 
    36.Coleman GS, Sandford DC. The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in-vivo. J Agric Sci. 1979;92:729–42.
    Google Scholar 
    37.Zachut M, Honig H, Striem S, Zick Y, Boura-Halfon S, Moallem U. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss. J Dairy Sci. 2013;96:5656–69.CAS 
    PubMed 

    Google Scholar 
    38.National Research Council. 2001. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition. Washington, DC: The National Academies Press; 2001.39.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CAS 
    PubMed 

    Google Scholar 
    40.Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75:165–74.CAS 
    PubMed 

    Google Scholar 
    41.NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.
    Google Scholar 
    42.Tapio I, Shingfield KJ, McKain N, Bonin A, Fischer D, Bayat AR, et al. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS ONE. 2016;11:e0151220.PubMed 
    PubMed Central 

    Google Scholar 
    43.Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: Association for Computing Machinery; 2011. p. 143–6.44.Elkin LA, Kay M, Higgins JJ, Wobbrock JO. An aligned rank transform procedure for multifactor contrast tests. https://arxiv.org/abs/2102.11824.45.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    48.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
    Google Scholar 
    49.Oksanen J. vegan: community ecology package. R package version 2.5-7. 2011. http://cran.r-project.org/package=vegan.50.van den Boogaart KG, Tolosana-Delgado R. ‘compositions’: a unified R package to analyze compositional data. Comput Geosci. 2008;34:320–38.
    Google Scholar 
    51.Krzywinski M, Altman N, Blainey P. Points of significance: nested designs. For studies with hierarchical noise sources, use a nested analysis of variance approach. Nat Methods. 2014;11:977–8.CAS 
    PubMed 

    Google Scholar 
    52.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.53.Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.PubMed 
    PubMed Central 

    Google Scholar 
    54.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
    Google Scholar 
    55.Belanche A, de la Fuente G, Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol. 2014;90:663–77.CAS 
    PubMed 

    Google Scholar 
    56.Ungerfeld EM. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol. 2020;11:589.PubMed 
    PubMed Central 

    Google Scholar 
    57.Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–12.CAS 
    PubMed 

    Google Scholar 
    58.Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep.2015;5:1–15.
    Google Scholar 
    59.Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Google Scholar 
    60.Shaani Y, Zehavi T, Eyal S, Miron J, Mizrahi I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 2018;12:2446–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Paul RG, Williams AG, Butler RD. Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol. 1990;136:1981–9.CAS 
    PubMed 

    Google Scholar 
    62.Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 2019;13:2617–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Gong J, Qing Y, Zou S, Fu R, Su L, Zhang X, et al. Protist-bacteria associations: gammaproteobacteria and alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front Microbiol. 2016;7:498.PubMed 
    PubMed Central 

    Google Scholar 
    64.Park T, Yu Z. Do ruminal ciliates select their preys and prokaryotic symbionts? Front Microbiol. 2018;9:1710.PubMed 
    PubMed Central 

    Google Scholar 
    65.Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS ONE. 2011;6:e20275.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Kamke J, Soni P, Li Y, Ganesh S, Kelly WJ, Leahy SC, et al. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep. BMC Res Notes. 2017;10:367.PubMed 
    PubMed Central 

    Google Scholar 
    67.Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE. 2012;7:e33306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106:1948–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol. 2017;17:190.PubMed 
    PubMed Central 

    Google Scholar 
    70.Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science. 2011;333:646–8.CAS 
    PubMed 

    Google Scholar 
    71.Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1305.PubMed 

    Google Scholar 
    72.Simek K, Vrba J, Pernthaler J, Posch T, Hartman P, Nedoma J, et al. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol. 1997;63:587–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Socolar J, Washburne A. Prey carrying capacity modulates the effect of predation on prey diversity. Am Nat. 2015;186:333–47.PubMed 

    Google Scholar 
    74.Gutierrez J. Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J Protozool. 1958;5:122–6.
    Google Scholar 
    75.Coleman GS. The metabolism of Escherichia coli and other bacteria by Entodinium caudatum. J Gen Microbiol. 1964;37:209–23.CAS 
    PubMed 

    Google Scholar 
    76.Canter EJ, Cuellar-Gempeler C, Pastore AI, Miller TE, Mason OU. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves. Ecology. 2018;99:652–60.PubMed 

    Google Scholar 
    77.Paine RT. Food web complexity and species diversity. Am Nat. 1966;100:65–75.
    Google Scholar 
    78.Audebert C, Even G, Cian A, Loywick A, Merlin S, Blastocystis Investigation Group,et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33:925–34.PubMed 

    Google Scholar 
    80.Asgari M, Steiner CF. Interactive effects of productivity and predation on zooplankton diversity. Oikos. 2017;126:1617–24.CAS 

    Google Scholar 
    81.Tokura M, Ushida K, Miyazaki K, Kojima Y. Methanogens associated with rumen ciliates. FEMS Microbiol Ecol. 1997;22:137–43.CAS 

    Google Scholar 
    82.Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol. 2004;50:203–12.CAS 
    PubMed 

    Google Scholar 
    83.Karakoç C, Radchuk V, Harms H, Chatzinotas A. Interactions between predation and disturbances shape prey communities. Sci Rep. 2018;8:2968.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration

    1.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).CAS 

    Google Scholar 
    2.Raich, J. W., Potter, C. S. & Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002).
    Google Scholar 
    3.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition feedbacks to climate change. Nature 440, 165–173 (2006).CAS 

    Google Scholar 
    4.Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).CAS 

    Google Scholar 
    5.Heimann, H. & Reichstein, R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).CAS 

    Google Scholar 
    6.Fang, C. et al. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agr. Forest Meteorol. 248, 449–457 (2018).
    Google Scholar 
    7.Wang, Q., Liu, S., Wang, Y., Tian, P. & Sun, T. Influences of N deposition on soil microbial respiration and its temperature sensitivity depend on N type in a temperate forest. Agr. Forest Meteorol. 260–261, 240–246 (2018).
    Google Scholar 
    8.Zhong, Y. Q. W., Yan, W. M., Zong, Y. Z. & Shangguan, Z. P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Global Ecol. Biogeogr. 25, 475–488 (2016).
    Google Scholar 
    9.Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).CAS 

    Google Scholar 
    10.Coucheney, E., Strömgren, M., Lerch, T. Z. & Herrmann, A. M. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization. Ecol. Evol. 3, 5177–5188 (2013).
    Google Scholar 
    11.Jiang, J. S., Guo, S. L., Wang, R., Liu, Q. F. & Sun, Q. Q. Effects of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on loess plateau. Environ. Sci. 36, 1802–1809 (2015).
    Google Scholar 
    12.Wang, Q., Zhao, X., Tian, P., Liu, S. & Sun, Z. Bioclimate and arbuscular mycorrhizal fungi regulate continental biogeographic variations in effect of nitrogen deposition on the temperature sensitivity of soil organic carbon decomposition. Land Degrad. Dev. 32, 936–945 (2021).
    Google Scholar 
    13.Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–903 (2009).
    Google Scholar 
    14.Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. 113, 13797–13802 (2016).CAS 

    Google Scholar 
    15.Lyu, M., Giardina, C. P. & Litton, C. M. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. Glob. Change Biol. 27, 3824–3836 (2021).
    Google Scholar 
    16.Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct. Ecol. 33, 514–523 (2019).
    Google Scholar 
    17.Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).
    Google Scholar 
    18.Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
    Google Scholar 
    19.Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).
    Google Scholar 
    20.Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).
    Google Scholar 
    21.Ding, J. Y. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. 39, 125460 (2019).
    Google Scholar 
    22.Eldridge, D. J. & Delgado-Baquerizo, M. The influence of climatic legacies on the distribution of dryland biocrust communities. Glob. Change Biol. 25, 327–336 (2019).
    Google Scholar 
    23.Pärtel, M., Chiarucci, A., Chytrý, M. & Pillar, V. D. Mapping plant community ecology. J. Veg. Sci. 26, 1–3 (2017).
    Google Scholar 
    24.Richter, D. D. & Yaalon, D. H. “The changing model of soil” revisited. Soil Sci. Soc. Am. J. 76, 766–778 (2012).CAS 

    Google Scholar 
    25.Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
    Google Scholar 
    26.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS 

    Google Scholar 
    27.Delgado-Baquerizo, M. et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol. Monogr. 86, 373–390 (2016).
    Google Scholar 
    28.Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J. & Singh, B. K. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. 112, 15684–15689 (2015).CAS 

    Google Scholar 
    29.Monger, C. et al. Legacy effects in linked ecological–soil–geomorphic systems of drylands. Front. Ecol. Environ. 13, 13–19 (2016).
    Google Scholar 
    30.Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).CAS 

    Google Scholar 
    31.Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy. 20, GB3026 (2006).
    Google Scholar 
    32.Peng, S., Piao, S., Wang, T., Sun, J. & Shen, Z. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol. Biochem. 41, 1008–1014 (2009).CAS 

    Google Scholar 
    33.Xu, Z. et al. Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Appl. Soil Ecol. 93, 105–110 (2015).
    Google Scholar 
    34.Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7, eabc7358 (2021).
    Google Scholar 
    35.Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).CAS 

    Google Scholar 
    36.Yan, G. Y. et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agr. Forest Meteorol. 248, 70–81 (2018).
    Google Scholar 
    37.Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS 

    Google Scholar 
    38.Chen, Z. M. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).CAS 

    Google Scholar 
    39.Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest Meteorol. 271, 336–345 (2019).
    Google Scholar 
    40.Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).CAS 

    Google Scholar 
    41.Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).CAS 

    Google Scholar 
    42.Li, Y. et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 615, 1535–1546 (2018).CAS 

    Google Scholar 
    43.Sanderman, J. Comment on “Climate legacies drive global soil carbon stocks in terrestrial ecosystems”. Sci. Adv. 4, e1701482 (2018).
    Google Scholar 
    44.Ding, J. et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 10, 4195 (2019).
    Google Scholar 
    45.Gershenson, A., Bader, N. E. & Cheng, W. X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Change Biol. 15, 176–183 (2009).
    Google Scholar 
    46.Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).CAS 

    Google Scholar 
    47.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    Google Scholar 
    48.Li, J., Ziegler, S. E., Lane, C. S. & Billings, S. A. Legacies of native climate regime govern responses of boreal soil microbes to litter stoichiometry and temperature. Soil Biol. Biochem. 66, 204–213 (2013).CAS 

    Google Scholar 
    49.Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Chang. Biol. 27, 2061–2075 (2021).
    Google Scholar 
    50.Du, Y. et al. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Chang. Biol. 26, 6015–6024 (2020).
    Google Scholar 
    51.Meier, I. C. & Leuschner, C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11, 655–669 (2008).CAS 

    Google Scholar 
    52.Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675 (2020).CAS 

    Google Scholar 
    53.Katz, M. H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers (Cambridge Univ. Press, Cambridge, 2006).54.Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. 112, 10967–10972 (2015).CAS 

    Google Scholar 
    55.Grace, J. B. Structural Equation Modeling Natural Systems (Cambridge Univ. Press, Cambridge, 2006).56.Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol 7, 573–579 (2016).
    Google Scholar 
    57.Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–13 (2017).
    Google Scholar  More

  • in

    Large diatom bloom off the Antarctic Peninsula during cool conditions associated with the 2015/2016 El Niño

    Due to contrasts in oceanographic properties along the NAP24, the sampling grid was split in two subregions: north and south (Fig. 1; see “Methods”). The north and south subregions showed from the satellite data a much higher spring/summer (November–February) mean chlorophyll-a (Chl-a) in 2015/2016 than the decadal average time series (2010–2019; Table 1). In agreement with the El Niño effects10,16, the sea surface temperature (SST) and the air temperature showed substantially lower mean values during the spring/summer of 2015/2016 along the subregions (Table 1). However, there was an evident spatial/temporal variability in sea ice concentration/duration between the subregions, with a northward (southward) lower (higher) mean value during 2015/2016 in relation to the decadal average (Table 1). Along the south subregion during the spring/summer of 2015/2016, the increased Chl-a during January followed the decline in the sea ice concentration over the spring and early summer, concurrent with increased SST, which was markedly colder throughout the seasonal phytoplankton succession (Fig. 2a). These results to the south subregion are consistent with previous studies along the WAP, in which years characterized by longer sea ice cover in winter have led to higher phytoplankton biomass in the following summer associated with a more stable water column11,16,26. To the north subregion, however, although there was a similar pattern between Chl-a and SST, the increased Chl-a during January was not related with the sea ice retreat (Fig. 2b). Moreover, there was a clear difference between the Chl-a peaks (the highest Chl-a value reached) along the subregions from the satellite data. The Chl-a peak in the south subregion occurred in early January (10 January 2016, reaching 1.73 mg m–3), whereas in the north subregion the Chl-a peak was observed in late January (29 January 2016, reaching 2.23 mg m–3).Fig. 1: Study area.Location of hydrographic stations is marked by open circles (November), stars (January), and blue circles (February). The black dashed lines indicate the subregions (north and south) along the NAP and delimit the areas used to estimate average remote sensing measurements. The decadal-mean (2010–2019) remote sensing chlorophyll-a (Chl-a) is exhibited in the background, indicating the biomass (Chl-a) distribution of phytoplankton along the NAP in the last decade. An inset map in the lower right corner shows the location of the NAP within the Atlantic sector of the Southern Ocean.Full size imageTable 1 Biological production and ocean/atmosphere parameters by measurements of remote sensing and local meteorological stations during spring/summer in the NAP subregions.Full size tableFig. 2: Biological production and sea ice dynamics in the NAP seasonal phytoplankton succession of 2015/2016.Continuum remote sensing measurements of chlorophyll-a (Chl-a; solid green line), sea surface temperature (SST; solid blue line), and sea ice concentration (gray area) along the NAP, in south (a) and north (b) subregions during spring/summer of 2015/2016. The dashed green, blue and gray lines indicate the decadal average (2010–2019) of Chl-a, SST, and sea ice concentration, respectively. The solid light green lines represent the Chl-a interpolated values. The background shades show the in situ data sampling periods. It is important to note that Chl-a remote sensing data in Antarctic coastal waters are typically underestimated in respect to in situ Chl-a data (see Supplementary Fig. 1)12,29.Full size imageIt has been estimated that drifters entrained in the Gerlache Strait Current and the Bransfield Strait Current exit the Bransfield Strait in 10–20 days17, which is consistent with the interval of 19 days between both Chl-a peaks when considering the extreme distance between the subregions (see Fig. 1). These authors also estimated that drifters deployed in the Gerlache Strait Current were quickly advected out of the Gerlache Strait in less than 1 week (i.e., low residence time)17, which supports the similar diatom species assemblages identified in our microscopic analysis between stations of the Gerlache Strait and southwestern Bransfield Strait24. Therefore, it is plausible that phytoplankton growth in the north of the Gerlache Strait may be laterally advected northward into the Bransfield Strait, explaining the observed concomitant increase of satellite Chl-a data in both subregions from spring, associated with sea ice retreat southward (Fig. 2). In addition, as phytoplankton biomass tends to accumulate northward17,27,28, the advection processes could also explain the temporal and intensity differences of the Chl-a peaks along the subregions (see Fig. 2). This suggests that there was a link between the sea ice dynamics, phytoplankton biomass (Chl-a) and advection processes along the NAP during the spring/summer of 2015/2016, in which the sea ice melting first triggered an increase in phytoplankton biomass through water column stratification along the south subregion, and the advection processes led to a subsequent increase northward.The satellite Chl-a data require extensive validation with in situ data, especially in polar regions, where cloud cover is ubiquitous and performance is typically poor, due to not properly accurate Chl-a algorithms12,29. For that, although the mean Chl-a in 2015/2016 from the satellite data was approximately twice as large as the decadal average, there was a severe discrepancy in the mean Chl-a values observed between the in situ and remote sensing data (see Table 1 and Supplementary Table 1). This highlights the importance of the in situ dataset reported here, especially evident during February 2016, when the signal of an intense diatom bloom ( > 40 mg m–3 Chl-a)24 was not captured in the satellite data (Supplementary Fig. 1), supporting that phytoplankton biomass accumulation during this summer was much higher than recorded by remote sensing observations (see Table 1). In general, the in situ Chl-a achieved its maximum (40 mg m–3) and higher mean value (17.4 mg m–3) during February comparing to November and January (Supplementary Table 1).Phytoplankton community structure during the spring/summer of 2015/2016 was assessed through Chemical taxonomy (CHEMTAX) software, using accessory pigments versus in situ Chl-a concentrations measured via high-performance liquid chromatography (HPLC; see “Methods”). The main phytoplankton group over the season were diatoms, followed by haptophytes (Phaeocystis antarctica), cryptophytes, and dinoflagellates, according to the succession stage (Fig. 3a). Diatoms dominated the phytoplankton community composition in relation to the other groups along the whole in situ sampling period, although their relative biomass (to the total in situ Chl-a) was lower in some stations compared to others in different moments during spring/summer (Fig. 3a). To assess the degree to which the water column structure was a primary driver for development and intensity of diatom growth3,24, the mixed layer depth (MLD) and water column stability were calculated as a function of seawater potential density (see “Methods”). There was an inverse polynomial relationship between MLD and mean upper ocean stability (averaged over 5−150 m depth; hereafter referred to as upper ocean stability) (Fig. 3b). The significant positive exponential relationship between the upper ocean stability and diatom absolute concentrations (in situ Chl-a) demonstrates that stability, associated with MLD, was an important driver of diatom dynamics (Fig. 3b). This elucidates the increase in biological production during summer months of 2016, when upper ocean physical structures (MLD and stability) were sufficiently shallow and stable to produce the high phytoplankton biomass (in situ Chl-a) registered here. However, as MLD and stability showed similar values between summer months (Supplementary Table 1), only the upper ocean physical structures cannot be accounted for the high differences of in situ Chl-a values observed between diatom blooms in January (maximum of 12 mg m–3) and February (maximum of 40 mg m–3). Likewise, also not explaining these differences of in situ Chl-a values between summer months, macronutrients were highly abundant throughout the seasonal phytoplankton succession (Supplementary Table 1). Furthermore, although no measurements of dissolved iron, which can be considered as a limiting factor to primary productivity30, were carried out here, the Antarctic Peninsula continental shelves have been depicted as a substantial source of this micronutrient to the upper ocean, not limiting phytoplankton growth even during intense blooms31,32.Fig. 3: Phytoplankton community composition and upper ocean physical structures along the NAP seasonal phytoplankton succession of 2015/2016.a Relative biomass (to the total in situ chlorophyll-a; Chl-a) distribution of phytoplankton groups on surface, via HPLC/CHEMTAX analysis, during spring/summer of 2015/2016 along the NAP subregions. The black open circles indicate diatoms, the blue squares indicate Phaeocystis antarctica, the gray diamonds with crosses indicate cryptophytes, the green triangles indicate dinoflagellates, and the light gray open circles indicate green flagellates. b Exponential curve (R2 = 0.57; p 40% the community composition proportion in respect to the total Chl-a (considering the three fractionated size classes). Symbol color indicates the sampling month in respect to November (brown), January (gray), and February (black). The inset shows the polynomial inverse relationship (R2 = 0.51; p  70 µm in length; ref. 24), during January a large number ( > 2.5 × 106 cells L–1) of small ( More

  • in

    Sustainable intensification for a larger global rice bowl

    Data sourcesEighteen rice-producing countries were selected for our analysis (Supplementary Table 1). Those countries account for 88 and 86% of global rice production and harvested rice area2, respectively (FAOSTAT, 2015–2017). We followed two steps to select the dominant cropping systems in each country. Within each country, our study focused on the main rice-producing area(s) (Supplementary Tables 2 and 3). For example, in the case of Brazil, we selected the southern and northern regions, which together account for nearly all rice production in this country. In the case of Vietnam, we selected the Mekong Delta region, which accounts for nearly 60% of national rice production57. While we tried to cover all major rice cropping systems in each country, this was not possible in the case of rainfed lowland rice cropping systems in northeastern Thailand and eastern India because of lack of reliable estimates of yield potential and access to farmer yield and management data. Once the main rice-producing region(s) in each country was (were) identified, we then determined the dominant rice cropping system(s) for each of them (Supplementary Table 3). We note that “cropping system” refers to a unique combination of a number of rice crops planted on the same piece of land within a 12-month period (and their temporal arrangement), water regime (rainfed or irrigated), and ecosystem (upland or lowland) (Supplementary Fig. 1 and Supplementary Table 2). In our study, rice cropping systems are single-, double-, or triple-season rice; none of the cropping systems are ratoon rice. Following the previous examples, two cropping systems were selected for Brazil (rainfed upland single rice and lowland irrigated single rice in the northern and southern regions, respectively) and two systems (double and triple) were selected for the Mekong Delta region in Vietnam. These systems account for nearly all rice harvested areas in these regions. We distinguished between rice-based cropping systems sowing hybrid versus inbred cultivars in the southern USA. Across the 18 countries, this study included a total of 32 rice cropping systems, which, in turn, covered 51% of the global rice harvested area (Supplementary Tables 1 and 3). Note that the area coverage reported here corresponds to that accounted by 32 cropping systems (and not by the countries where the cropping systems were located). These systems portrayed a wide range of biophysical and socio-economic backgrounds (Supplementary Figs. 1 and 2 and Supplementary Tables 1 and 2), leading to average rice yields ranging from 2–10.4 Mg ha−1 (Supplementary Fig. 3). For data analysis purposes, rice cropping systems were classified into tropical and non-tropical9,58,59 and also based upon water regime and crop season.Agronomic information was collected via structure questionnaires completed by agricultural specialists in each country or region (Supplementary Table 6). The collected data included field size, tillage method, crop establishment method, degree of mechanization for each field operation, seeding rate, crop establishment, and harvest dates, nutrient fertilizer rates, manure type, and rate, pesticides (number of applications, products, and rates), irrigation amount (in irrigated systems), energy source for irrigation pumping, labor input, and straw management (Supplementary Tables 4 and 5). Average values for each cropping system reported by country experts were retrieved from survey data available from previous projects (Supplementary Table 7). Rice grain yield was reported at a standard moisture content of 140 g H2O kg−1 grain, separately for each crop cycle, using data from, at least, three recent cropping seasons in each cropping system. In the case of irrigated rice cropping system in Nigeria and Mali, data were only available for one crop cycle in double-season rice. In this case, we assumed management and actual yield to be identical in the two crop cycles.In all cases, and wherever possible, data were cross-validated with other independent datasets (e.g., FAOSTAT, World Bank, IFA, and published journal papers), which gives confidence about the representativeness and accuracy of the survey data. For example, we estimated area-weighted national yield according to actual yield provided for each cropping system and annual rice harvested area in each system for each of the 18 countries. Comparison of these yields against those reported by FAOSTAT2 showed a strong association and agreement between data sources (Supplementary Fig. 10). We also cross-validated actual yield, N fertilizer, labor, and irrigation from our database with those reported by previous studies (published after the year 2000) based on on-farm data collected in ten selected countries. Due to the lack of on-farm data on irrigation, we used published data collected from experiments that follow typical farmer irrigation practices. In the case of irrigation, our cross-validation differentiated between crop seasons (wet versus dry) in the case of irrigated double-season rice cropping systems. In all cases, average yield, N fertilizer, labor, and irrigation from our database fell within (or very close) the range of values reported in previously published studies for those same cropping systems (Supplementary Table 8). Measured daily weather data, including daily solar radiation, minimum and maximum temperatures, and precipitation, were derived from representative weather stations in each region (Supplementary Fig. 2 and Supplementary Table 9). Data on per-capita gross domestic product (GDP) during 2015–2017 were retrieved for each country to explore relationships between yield gap and economic development60 (Supplementary Fig. 9 and Supplementary Table 1).Estimation of yield gapsThe yield gap is defined as the difference between yield potential and average farmer yield. Estimates of yield potential for irrigated rice or water-limited yield potential for rainfed rice were adopted from Global Yield Gap Atlas (GYGA)61 (Supplementary Table 7). Yield potential simulation in GYGA was performed using crop growth and development model ORYZA2000 or ORYZA (v3) (except for APSIM in the case of India) and based on actual data on crop management, soil data, measured daily weather data, and representative rice varieties planted in each region (see details for yield potential simulation in Supplementary Information Text Section 1). Data on yield potential were not available for Australia (AUIS) in GYGA; hence, we used estimates of yield potential from Lacy et al.62. Yield potential (or water-limited yield potential for rainfed rice) and average yields were computed separately for each rice crop in each rice cropping system (Supplementary Fig. 3). The coefficient of variation (CV) of yield potential (or water-limited yield potential) was estimated for each cropping system (Supplementary Fig. 4). In this study, average rice yield was expressed as percentage of the yield potential (or water-limited yield potential for rainfed rice) for each cropping system (Fig. 1 and Supplementary Fig. 5). In those cropping systems where more than one rice crop is grown within a 12-month period, we estimated yield potential and average yield on both per-crop and annual basis by averaging and summing up the estimates for each rice crop, respectively. In the case of per-crop averages, for those cropping systems in which the harvested rice area changed between crop cycles, we weighted the values for each cycles based on the associated harvested rice area. However, for simplicity, the main text reports only the values on a per-crop basis; annual estimates are provided in the Supplementary Information. Normalizing average yield by the yield potential at each site provides a direct comparison of yield gap closure across systems with diverse biophysical backgrounds (e.g., variation in solar radiation, temperature, and water supply). Without this normalization, one might make biased assessment in relation to the available room for improving yield. For example, an actual yield of 8 Mg ha−1 is equivalent to 80% of yield potential in the cropping system of central China, whereas a yield of 8 Mg ha−1 achieved by irrigated rice farmers in Brazil only represents 55% of yield potential (Supplementary Fig. 3).Quantifying resource-use efficiencyWe assessed the performance of rice production by calculating the following metrics: global warming potential (GWP), fossil-fuel energy inputs, water supply (irrigation plus in-season precipitation), number of pesticide applications, nitrogen (N) balance, and labor input, each expressed on an area and yield-scaled basis (Figs. 2, 3 and 4 and Supplementary Figs. 6, 7 and 11). We estimated metrics on both per-crop and annual basis and report the values on a per-crop basis in the main text while the annual estimates are provided in the Supplementary Information. In the case of GWP, it includes CO2, CH4, and N2O emissions (expressed as CO2-eq) from (i) production, packaging, and transportation of agricultural inputs (seed, fertilizer, pesticides, machinery, etc.), (ii) fossil-fuel energy directly used for farm operations (including irrigation pumping), and (iii) CH4 and N2O emission during rice cultivation63. Emissions from agricultural inputs were calculated on application rates and associated GHG emissions factors (see details in Supplementary Information Text Section 2, Supplementary Table 10). In the case of fossil fuel used for field operations, it was calculated based on the number and type of farm operations and associated fuel requirements (Supplementary Table 11). Total N2O emissions were calculated as the sum of direct and indirect N2O emissions. A previous meta-analysis including rice showed that direct soil N2O emissions can be estimated from the magnitude of N-surplus, which was calculated as applied N inputs minus accumulated N in aboveground biomass at physiological maturity21. Therefore, direct soil N2O emissions for a given rice crop cycle were estimated following van Groenigen et al. N-balance approach21. Indirect N2O emissions were estimated based on the Intergovernmental Panel on Climate Change (IPCC) methodology64, assuming indirect N2O emissions represent 20% of direct N2O emissions. The CH4 emissions from rice paddy field were calculated following IPCC65. Following this approach, CH4 emissions are estimated considering the duration of the rice cultivation period, water regime during the cultivation period and during the pre-season before the cultivation period, and type and amount of organic amendment applied (e.g., straw, manure, compost) based on a baseline emission factor. We assumed no net change in soil carbon stocks as soil organic matter is typically at steady state in lowland rice66. We did not attempt to estimate changes on soil C in the upland rice system in Brazil. All emissions were converted to CO2-eq, with GWP for CH4 set at 25 relatives to CO2 and 298 for N2O on a per mass basis over a 100-year time horizon67. For each rice crop cycle in each of the 32 rice systems, GWP was calculated as the sum of CO2, CH4, and N2O emissions expressed as CO2-eq. (Details on N2O and CH4 emissions estimates and GWP calculations are provided in Supplementary Information Text Section 2).Calculation of energy inputs was similar to that of GWP and was based on the reported rates of agricultural inputs and field operations and associated embodied energy (see details for energy input estimates in Supplementary Information Text Section 2, Supplementary Table 12). Human labor was also included in the calculation of energy inputs. There was a strong positive relationship between energy input and GWP on both per-crop (r = 0.81; p  More