More stories

  • in

    Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

    1.Ripple, W. J. et al. World Scientists’ Warning of a Climate Emergency 2021. BioScience. https://doi.org/10.1093/biosci/biab079 (2021).2.Liu, P. R. & Raftery, A. E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target. Commun. Earth Environ. 2, 1–10 (2021).
    Google Scholar 
    3.IPBES. (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) 56 (IPBES, 2019).4.CBD Secretariat. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets Vol. Document UNEP/CBD/COP/DEC/X/2 (Secretariat of the Convention on Biological Diversity, 2010).5.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 

    Google Scholar 
    6.United State of America. The United States of America Nationally Determined Contribution- Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. 24 (Submitted to the UNFCCC Secretariat under the Paris Agreement; https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf, 2021).7.Nelson, M. D. et al. Defining the United States land base: a technical document supporting the USDA Forest Service 2020 RPA assessment. Gen. Tech. Rep. NRS-191. 191, 1–70 (2020).
    Google Scholar 
    8.Pörtner, H. O. & et al. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. (IPBES and IPCC, https://doi.org/10.5281/zenodo.4782538, 2021).9.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
    Google Scholar 
    10.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).
    Google Scholar 
    11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 
    12.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. 114, 11645–11650 (2017).CAS 

    Google Scholar 
    13.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    14.Sexton, J. O. et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 6, 192–196 (2016).
    Google Scholar 
    15.Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).CAS 

    Google Scholar 
    16.Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009).
    Google Scholar 
    17.Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Chang. 25, 763–787 (2020).
    Google Scholar 
    18.Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecol. Appl.30, e02039 (2020).
    Google Scholar 
    19.Ruefenacht, B. et al. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing 74, 1379–1388 (2008).
    Google Scholar 
    20.USGS GAP. Protected Areas Database of the United States (PAD-US) 2.1: U.S. Geological Survey data release, https://doi.org/10.5066/P92QM3NT (2020).21.USGS. Gap Analysis Project Species Habitat Maps CONUS_2001. U.S. Geological Survey, https://doi.org/10.5066/F7V122T2 (2018).22.Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live tree species basal area of the contiguous United States (2000-2009). (USDA Forest Service, Rocky Mountain Research Station, 2013).23.Wilson, B. T., Woodall, C. & Griffith, D. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Management 8, 1–15 (2013).
    Google Scholar 
    24.Oleson, K. et al. Technical Descriptioin of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).25.Buotte, P. C. et al. Near‐future forest vulnerability to drought and fire varies across the western United States. Glob. Chang. Biol. 25, 290–303 (2019).
    Google Scholar 
    26.Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
    Google Scholar 
    27.Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc. Natl Acad. Sci. 95, 14839–14842 (1998).CAS 

    Google Scholar 
    28.Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 
    29.Lecina‐Diaz, J. et al. The positive carbon stocks–biodiversity relationship in forests: co‐occurrence and drivers across five subclimates. Ecol. Appl. 28, 1481–1493 (2018).
    Google Scholar 
    30.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    Google Scholar 
    31.Glaser, C., Romaniello, C. & Moskowitz, K. Costs and consequences: the real price of livestock grazing on America’s public lands. Tucson, AZ: Center for Biological Diversity (2015).32.Flather, C. H. Species endangerment patterns in the United States. Vol. 241 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and …, 1994).33.Beschta, R. L. et al. Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild, and feral ungulates. Environ. Manag. 51, 474–491 (2013).
    Google Scholar 
    34.Betts, M. G., Gutiérrez Illán, J., Yang, Z., Shirley, S. M. & Thomas, C. D. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00186 (2019).35.Berner, L. T., Law, B. E., Meddens, A. J. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).
    Google Scholar 
    36.Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. 115, 3663 (2018).CAS 

    Google Scholar 
    37.Ouren, D. S. et al. Environmental effects of off-highway vehicles on Bureau of land management lands: a literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources. US Geol. Survey Open-File Rep. 1353, 225 (2007).
    Google Scholar 
    38.Talty, M. J., Mott Lacroix, K., Aplet, G. H. & Belote, R. T. Conservation value of national forest roadless areas. Conserv. Sci. Pract. 2, e288 (2020).
    Google Scholar 
    39.Belote, R. T. & Wilson, M. B. Delineating greater ecosystems around protected areas to guide conservation. Conserv. Sci. Pract. 2, e196 (2020).
    Google Scholar 
    40.DellaSala, D. A., Karr, J. R. & Olson, D. M. Roadless areas and clean water. J. Soil Water Conserv. 66, 78–84 (2011).
    Google Scholar 
    41.McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond “net-zero”: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).
    Google Scholar 
    42.Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A. & Moomaw, W. R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 3, https://doi.org/10.3389/ffgc.2020.594274 (2020).43.Hudiburg, T. W., Luyssaert, S., Thornton, P. E. & Law, B. E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environ. Sci. Tech. 47, 13132–13140 (2013).CAS 

    Google Scholar 
    44.Noss, R. F. & Daly, K. M. In Connectivity Conservation (eds K. Crooks & M. Sanjayan) 587–619 (Cambridge Univ. Press, 2010).45.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    46.Omernik, J. M. Perspectives on the nature and definition of ecological regions. Environ. Manag. 34, S27–S38 (2004).
    Google Scholar 
    47.Hudiburg, T. et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 19, 163–180 (2009).
    Google Scholar 
    48.Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the west: a large‐scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).
    Google Scholar 
    49.Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).
    Google Scholar 
    50.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Chang. Biol. 17, 1022–1035 (2011).
    Google Scholar 
    51.Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Chang. 4, 138–142 (2014).CAS 

    Google Scholar 
    52.McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. 105, 16988–16993 (2008).CAS 

    Google Scholar 
    53.Scott, J. M. et al. Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Front. Ecol. Environ. 3, 383–389 (2005).
    Google Scholar 
    54.Miller, S. L. et al. Recent population decline of the Marbled Murrelet in the Pacific Northwest. Condor 114, 771–781 (2012).
    Google Scholar 
    55.Noon, B. R. & McKelvey, K. S. Management of the spotted owl: a case history in conservation biology. Annu. Rev. Ecol. System. 27, 135–162 (1996).
    Google Scholar 
    56.Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Chang. 4, 2–5 (2014).CAS 

    Google Scholar 
    57.King, T. W. et al. Will Lynx lose their edge? Canada Lynx occupancy in Washington. J. Wildl. Manag. 84, 705–725 (2020).
    Google Scholar 
    58.Cayan, D. R. et al. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. 107, 21271–21276 (2010).CAS 

    Google Scholar 
    59.Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).
    Google Scholar 
    60.Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).CAS 

    Google Scholar 
    61.Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western north America. Bull. Am. Meteorol. Soc. 86, 39–49 (2005).
    Google Scholar 
    62.Cook, B. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Futur. 8, e2019EF001461 (2020).
    Google Scholar 
    63.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    Google Scholar 
    64.Johnson, Z. C., Leibowitz, S. G. & Hill, R. A. Revising the index of watershed integrity national maps. Sci. Total Environ. 651, 2615–2630 (2019).CAS 

    Google Scholar 
    65.Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 

    Google Scholar 
    66.Buotte, P., Levis, S. & Law, B. E. NACP forest carbon stocks, fluxes, and productivity estimates, Western USA, 1979-2099. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1662 (2019).67.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2012).
    Google Scholar 
    68.McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2015).
    Google Scholar 
    69.Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).
    Google Scholar 
    70.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).CAS 

    Google Scholar 
    71.Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    72.Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. 114, 2946–2951 (2017).CAS 

    Google Scholar 
    73.Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. 114, 4582–4590 (2017).CAS 

    Google Scholar 
    74.Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Management 355, 4–14 (2015).
    Google Scholar 
    75.Donato, D. C., Campbell, J. L. & Franklin, J. F. Multiple successional pathways and precocity in forest development: can some forests be born complex? J. Veg. Sci. 23, 576–584 (2012).
    Google Scholar 
    76.Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
    Google Scholar 
    77.Harris, N. et al. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balanc. Management 11, 24 (2016).CAS 

    Google Scholar 
    78.Ghimire, B. et al. Large carbon release legacy from bark beetle outbreaks across Western United States. Glob. Chang. Biol. 21, 3087–3101 (2015).
    Google Scholar 
    79.Mitchell, S. R., Harmon, M. E. & O’connell, K. E. Forest fuel reduction alters fire severity and long‐term carbon storage in three Pacific Northwest ecosystems. Ecol. Appl. 19, 643–655 (2009).
    Google Scholar 
    80.Rhodes, J. J. & Baker, W. L. Fire probability, fuel treatment effectiveness and ecological tradeoffs in western US public forests. Open For. Sci. J. 1, 1–7 (2008).
    Google Scholar 
    81.Law, B. E. & Harmon, M. E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Management 2, 73–84 (2011).
    Google Scholar 
    82.Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nat. Clim. Chang. 1, 419–423 (2011).CAS 

    Google Scholar 
    83.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).
    Google Scholar 
    84.Law, B. E. Regional analysis of drought and heat impacts on forests: current and future science directions. Glob. Chang. Biol. 20, 3595–3599 (2014).
    Google Scholar 
    85.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).
    Google Scholar 
    86.Kullberg, P. & Moilanen, A. How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network? Natureza Conservacao 12, 3–10 (2014).
    Google Scholar 
    87.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).88.Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).89.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).90.O’Brien, J. gdalUtilities: Wrappers for ‘GDAL’ Utilities Executables. R package version 1. https://CRAN.R-project.org/package=gdalUtilities (2019).91.Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.8. https://CRAN.R-project.org/package=data.table. (2019).92.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlang New York, 2016).93.Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
    Google Scholar 
    94.Conservation Biology Institute. Protected Areas Database of the United States, CBI Edition Version 2. http://consbio.org/products/projects/pad-us-cbi-edition (2012).95.USDA Forest Service. Forests to Faucets 2.0 [spatial data set]. Retrieved from https://usfs-public.app.box.com/v/Forests2Faucets[Sept 21, 2021] (2019). More

  • in

    Potato leafroll virus reduces Buchnera aphidocola titer and alters vector transcriptome responses

    1.Remaudiere, G., & Remaudiere, M. Catalogue of the World’s Aphididae: Homoptera Aphidoidea. 473–1275. (Institut National de la Recherche Agronomique (INRA), 1997).2.Fereres, A., Irwin, M.E., & Kamppeier, G.E. Aphid movement: Process and consequences. in (van Emden H.F.R.H. ed.) Aphids as Crop Pests. 2nd edn. 196–200. (CABI, 2017).3.Ng, J. C. K. & Perry, K. L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 5(5), 505–511. https://doi.org/10.1111/j.1364-3703.2004.00240.x (2004).Article 
    PubMed 

    Google Scholar 
    4.Whitfield, A. E., Falk, B. W. & Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 479–480, 278–289. https://doi.org/10.1016/j.virol.2015.03.026 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Elena, S. F., Bernet, G. P. & Carrasco, J. L. The games plant viruses play. Curr. Opin. Virol. 8, 62–67. https://doi.org/10.1016/j.coviro.2014.07.003 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Casteel, C.L., & Falk, B.W. Plant virus-vector interactions: More than just for virus transmission. in (Wang, A., & Zhou, X. eds.) Current Research Topics in Plant Virology. 2016. 217–240. https://doi.org/10.1007/978-3-319-32919-2_9 (2016).7.Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 16, 36–43. https://doi.org/10.1016/j.cois.2016.05.007 (2016).Article 
    PubMed 

    Google Scholar 
    9.Ingwell, L. L., Eigenbrode, S. D. & Bosque-Pérez, N. A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2(1), 578. https://doi.org/10.1038/srep00578 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Stafford, C. A., Yang, L. H., Mcmunn, M. S. & Ullman, D. E. Virus infection alters the predatory behavior of an omnivorous vector. Oikos 123, 1384–1390. https://doi.org/10.1111/oik.01148 (2014).Article 

    Google Scholar 
    11.Wang, Q. et al. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS ONE 13(9), 1–16. https://doi.org/10.1371/journal.pone.0203364 (2018).CAS 
    Article 

    Google Scholar 
    12.Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl. Acad. Sci. 108(23), 9350–9355. https://doi.org/10.1073/pnas.1100773108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Zhang, Y. C., Cao, W. J., Zhong, L. R., Godfray, H. C. J. & Liu, X. D. Host plant determines the population size of an obligate symbiont (Buchnera aphidicola) in aphids. Appl. Environ. Microbiol. 82(8), 2336–2346. https://doi.org/10.1128/AEM.04131-15 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hansen, A. K. & Moran, N. A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc. Natl. Acad. Sci. 108(7), 2849–2854. https://doi.org/10.1073/pnas.1013465108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Nakabachi, A. et al. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc. Natl. Acad. Sci. 102(15), 5477–5482. https://doi.org/10.1073/pnas.1013465108 (2005).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wernegreen, J. J. Strategies of genomic integration within insect-bacterial mutualisms. Biol Bull. 223(1), 112–122. https://doi.org/10.1086/BBLv223n1p112 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Zhang, Y. et al. Genetic structure of the bacterial endosymbiont, Buchnera aphidicola, from its host aphid, Schlechtendalia chinensis, and evolutionary implications. Curr. Microbiol. 75(3), 309–315. https://doi.org/10.1007/s00284-017-1381-0 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Zhang, F. et al. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F) (Homoptera: Aphididae). Front. Physiol. 6, 155. https://doi.org/10.3389/fphys.2015.00155 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Machado-Assefh, C. R., Lopez-Isasmendi, G., Tjallingii, W. F., Jander, G. & Alvarez, A. E. Disrupting Buchnera aphidicola, the endosymbiotic bacteria of Myzus persicae, delays host plant acceptance. Arthropod. Plant Interact. 9(5), 529–541. https://doi.org/10.1007/s11829-015-9394-8 (2015).Article 

    Google Scholar 
    20.Douglas, A. E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43(1), 17–37. https://doi.org/10.1146/annurev.ento.43.1.17 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296(5577), 2376–2379. https://doi.org/10.1126/science.1071278 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Van Ham, R. C. H. J. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl. Acad. Sci. 100(2), 581–586. https://doi.org/10.1073/pnas.0235981100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bouvaine, S., Boonham, N. & Douglas, A. E. Interactions between a Luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J. Gen. Virol. 92(6), 1467–1474. https://doi.org/10.1099/vir.0.029355-0 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Rana, V. S., Singh, S. T., Priya, N. G., Kumar, J. & Rajagopal, R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 7(8), e42168. https://doi.org/10.1371/journal.pone.0042168 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Kliot, A. & Ghanim, M. The role of bacterial chaperones in the circulative transmission of plant viruses by insect vectors. Viruses 5(6), 1516–1535. https://doi.org/10.3390/v5061516 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Filichkin, S. A., Brumfield, S., Filichkin, T. P. & Young, M. J. In vitro interactions of the aphid endosymbiotic SymL chaperonin with Barley yellow dwarf virus. J. Virol. 71(1), 569–577. https://doi.org/10.1128/JVI.71.1.569-577.1997 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.van den Heuvel, J. F., Verbeek, M. & van der Wilk, F. Endosymbiotic bacteria associated with circulative transmission of Potato leafroll virus by Myzus persicae. J. Gen. Virol. 75(Pt 10), 2559–2565. https://doi.org/10.1099/0022-1317-75-10-2559 (1994).Article 
    PubMed 

    Google Scholar 
    28.Gray, S. M. & Gildow, F. E. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 41(1), 539–566. https://doi.org/10.1146/annurev.phyto.41.012203.105815 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Li, C., Cox-Foster, D., Gray, S. M. & Gildow, F. Vector specificity of Barley yellow dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 286(1), 125–133. https://doi.org/10.1006/viro.2001.0929 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Dombrovsky, A., Gollop, N., Chen, S., Chejanovsky, N. & Raccah, B. In vitro association between the helper component-proteinase of Zucchini yellow mosaic virus and cuticle proteins of Myzus persicae. J. Gen. Virol. 88(5), 1602–1610. https://doi.org/10.1099/vir.0.82769-0 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.van den Heuvel, J. F. et al. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71(10), 7258–7265. https://doi.org/10.1128/JVI.71.10.7258-7265.1997 (1997).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Morin, S. et al. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256(1), 75–84. https://doi.org/10.1006/viro.1999.9631 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P. & Kaloshian, I. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc. Natl. Acad. Sci. 111(24), 8919–8924. https://doi.org/10.1073/pnas.1407687111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Vandermoten, S. et al. Comparative analyses of salivary proteins from three aphid species. Insect Mol. Biol. 23(1), 67–77. https://doi.org/10.1111/imb.12061 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Gray, S. M., Cilia, M. & Ghanim, M. Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv. Virus Res. 2014, 89. https://doi.org/10.1016/B978-0-12-800172-1.00004-5 (2014).Article 

    Google Scholar 
    36.Eigenbrode, S. D., Ding, H., Shiel, P. & Berger, P. H. Volatiles from potato plants infected with Potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. Biol. Sci. 269(1490), 455–460. https://doi.org/10.1098/rspb.2001.1909 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rajabaskar, D., Wu, Y., Bosque-Pérez, N. A. & Eigenbrode, S. D. Dynamics of Myzus persicae arrestment by volatiles from Potato leafroll virus-infected potato plants during disease progression. Entomol. Exp. Appl. 148(2), 2. https://doi.org/10.1111/eea.12087 (2013).Article 

    Google Scholar 
    38.Patton, M. F., Bak, A., Sayre, J. M., Heck, M. L. & Casteel, C. L. A polerovirus, Potato leafroll virus, alters plant–vector interactions using three viral proteins. Plant Cell Environ. 43(2), 387–399. https://doi.org/10.1111/pce.13684 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Sadowy, E., Juszczuk, M., David, C., Gronenborn, B. & Danuta Hulanicka, M. D. Mutational analysis of the proteinase function of Potato leafroll virus. J. Gen. Virol. 82(Pt 6), 1517–1527. https://doi.org/10.1099/0022-1317-82-6-1517 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.DeBlasio, S. L. et al. Insights into the polerovirus– plant interactome revealed by coimmunoprecipitation and mass spectrometry. Mol. Plant-Microbe Interact. 28(4), 467–481. https://doi.org/10.1094/MPMI-11-14-0363-R (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Zhong, S. et al. High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb. Protoc. 2011(8), 940–949. https://doi.org/10.1101/pdb.prot5652 (2011).Article 

    Google Scholar 
    42.Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat. Protoc. 8(9), 1765–1786. https://doi.org/10.1038/nprot.2013.099 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Morgan, M. et al. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25(19), 2607–2608. https://doi.org/10.1093/bioinformatics/btp450 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (2010).45.Gauthier, J. P., Legeai, F., Zasadzinski, A., Rispe, C. & Tagu, D. AphidBase: A database for aphid genomic resources. Bioinformatics 23(6), 783–784. https://doi.org/10.1093/bioinformatics/btl682 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015).CAS 
    Article 

    Google Scholar 
    48.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Patton, M. F., Arena, G. D., Salminen, J. P., Steinbauer, M. J. & Casteel, C. L. Transcriptome and defence response in Eucalyptus camaldulensis leaves to feeding by Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae): A stealthy psyllid does not go unnoticed. Austral. Entomol. 57(2), 247–254. https://doi.org/10.1111/aen.12319 (2017).Article 

    Google Scholar 
    51.Casteel, C. L. et al. Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiol. 169(1), 209–218. https://doi.org/10.1104/pp.15.00332 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Nikoh, N. et al. Bacterial genes in the aphid genome: Absence of functional gene transfer from Buchnera to its host. PLoS Genet. 6(2), e1000827. https://doi.org/10.1371/journal.pgen.1000827 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Hansen, A. K. & Degnan, P. H. Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 8(12), 2490–2502. https://doi.org/10.1038/ismej.2014.121 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W. & van den Heuvel, J. F. Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J. Virol. 72(1), 358–365. https://doi.org/10.1128/JVI.72.1.358-365.1998 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Camberg, J.L., Doyle, S.M., Johnston, D.M., & Wickner, S. Molecular Chaperones. in Brenner’s Encyclopedia of Genetics. 2nd Edn. 456–60. (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-809633-8.06723-6.56.Segal, G. & Ron, E. Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol. Lett. 138(1), 1–10. https://doi.org/10.1111/j.1574-6968.1996.tb08126.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Zhang, L., Pelech, S. & Uitto, V. J. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3. Exp. Cell Res. 292(1), 231–240. https://doi.org/10.1016/j.yexcr.2003.08.012 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nat. 407(6800), 81–86. https://doi.org/10.1038/35024074 (2000).CAS 
    Article 

    Google Scholar 
    59.Dombrovsky, A., Sobolev, I., Chejanovsky, N. & Raccah, B. Characterization of RR-1 and RR-2 cuticular proteins from Myzus persicae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146(2), 256–264. https://doi.org/10.1016/j.cbpb.2006.11.013 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Dombrovsky, A., Huet, H., Zhang, H., Chejanovsky, N. & Raccah, B. Comparison of newly isolated cuticular protein genes from six aphid species. Insect Biochem. Mol. Biol. 33(7), 709–715. https://doi.org/10.1016/s0965-1748(03)00065-1 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Liang, Y. & Gao, X. W. The cuticle protein gene MPCP4 of Myzus persicae (Homoptera: Aphididae) plays a critical role in cucumber mosaic virus acquisition. J. Econ. Entomol. 110(3), 848–853. https://doi.org/10.1093/jee/tox025 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Silva, A. X., Jander, G., Samaniego, H., Ramsey, J. S. & Figueroa, C. C. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7(6), e36366. https://doi.org/10.1371/journal.pone.0036366 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deshoux, M., Monsion, B. & Uzest, M. Insect cuticular proteins and their role in transmission of phytoviruses. Curr. Opin. Virol. 33, 137–143. https://doi.org/10.1016/j.coviro.2018.07.015 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gallot, A. et al. Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem. Mol. Biol. 40(3), 235–240. https://doi.org/10.1016/j.ibmb.2009.12.001 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Cilia, M. et al. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J. Virol. 85(5), 2148–2166. https://doi.org/10.1128/JVI.01504-10 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Wang, H., Wu, K., Liu, Y., Wu, Y. & Wang, X. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Sci. Rep. 5, 10971. https://doi.org/10.1038/srep10971 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Seddas, P. et al. Rack-1, GAPDH3, and actin: proteins of Myzus persicae potentially involved in the transcytosis of Beet western yellows virus particles in the aphid. Virology 325(2), 399–412. https://doi.org/10.1016/j.virol.2004.05.014 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Yang, Z., Zhang, F., Zhu, L. & He, G. Identification of differentially expressed genes in brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) responding to host plant resistance. Bull. Entomol. Res. 96(1), 53–59. https://doi.org/10.1079/ber2005400 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Bass, C. et al. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. 110(48), 19460–19465. https://doi.org/10.1073/pnas.1314122110 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Ramsey, J. S. et al. Adaptation to nicotine feeding in Myzus persicae. J. Chem. Ecol. 40(8), 869–877. https://doi.org/10.1007/s10886-014-0482-5 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Casteel, C. L. & Jander, G. New synthesis: Investigating mutualisms in virus-vector interactions. J. Chem. Ecol. 39(7), 809. https://doi.org/10.1007/s10886-013-0305-0 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Götz, M. et al. Implication of Bemisia tabaci HEAT SHOCK PROTEIN 70 in Begomovirus-whitefly interactions. J. Virol. 86(24), 13241–13252. https://doi.org/10.1128/JVI.00880-12 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Porras, M. F. et al. Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition. Nat. Commun. 11(1), 1184. https://doi.org/10.1038/s41467-020-14953-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Syller, J. The influence of temperature on transmission of potato leaf roll virus by Myzus persicae Sulz. Potato Res. 30(1), 47–58. https://doi.org/10.1007/BF02357683 (1987).Article 

    Google Scholar 
    75.Syller, J. The effects of temperature on the susceptibility of potato plants to infection and accumulation of Potato Leafroll Virus. J. Phytopathol. 133(3), 216–224. https://doi.org/10.1111/j.1439-0434.1991.tb00156.x (1991).Article 

    Google Scholar 
    76.Chung, B. N. et al. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32(4), 321–328. https://doi.org/10.5423/PPJ.OA.12.2015.0259 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23(6), 1473–96 (2014).Article 

    Google Scholar 
    78.Jiang, Z. et al. Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbion of the green peach aphid, Myzus persicae. BMC Genom. 14(1), 917. https://doi.org/10.1186/1471-2164-14-917 (2013).CAS 
    Article 

    Google Scholar 
    79.Enders, L. S. et al. Abiotic and biotic stressors causing equivalent mortality induce highly variable transcriptional responses in the soybean aphid. G3 (Bethesda) 5(2), 261–270. https://doi.org/10.1534/g3.114.015149 (2014).Article 

    Google Scholar 
    80.Wilcox, J. L., Dunbar, H. E., Wolfinger, R. D. & Moran, N. A. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol. Microbiol. 48(6), 1491–1500. https://doi.org/10.1046/j.1365-2958.2003.03522.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 20(4), 1085–1093. https://doi.org/10.1093/bib/bbx085 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    82.Zhang, B., Leonard, S. P., Li, Y. & Moran, N. A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl. Acad. Sci. 116(49), 24712–24718. https://doi.org/10.1073/pnas.1915307116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Chong, R. A. & Moran, N. A. Intraspecific genetic variation in hosts affects regulation of obligate heritable symbionts. PNAS 113(46),13114–13119. https://doi.org/10.1073/pnas.1610749113 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Pers, D. & Hansen, A. K. The boom and bust of the aphid’s essential amino acid metabolism across nymphal development. G3 (Bethesda). 11(9), jkab115. https://doi.org/10.1093/g3journal/jkab115 (2021).Article 

    Google Scholar 
    85.Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R. & Moran, N. A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5(5), e96. https://doi.org/10.1371/journal.pbio.0050096 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl. Acad. Sci. 112(7), 2093–2096. https://doi.org/10.1073/pnas.1420037112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Fares, M. A., Barrio, E., Sabater-Muñoz, B. & Moya, A. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. Mol. Biol. Evol. 19(7), 1162–1170. https://doi.org/10.1093/oxfordjournals.molbev.a004174 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Kliot, A., Cilia, M., Czosnek, H., & Ghanim, M. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with Tomato yellow leaf curl virus. J. Virol. 88(10), 5652–5660. https://doi.org/10.1128/JVI.00071-14 (2014).89.Dheilly, N. M. et al. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proc. R. Soc. B Biol. Sci. 2015(282), 20142773 (1803).
    Google Scholar 
    90.Mohan, P. & Sinu, P. A. Does the solitary parasitoid Microplitis pennatulae use a combinatorial approach to manipulate its host?. Entomol. Exp. Appl. 168(4), 295–303 (2020).CAS 
    Article 

    Google Scholar 
    91.Smith, T. E. & Moran, N. A. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc. Natl. Acad. Sci. 117(4), 2113–2121. https://doi.org/10.1073/pnas.1916748117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Learning of a mimic odor combined with nectar nonsugar compounds enhances honeybee pollination of a commercial crop

    1.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274(1608), 303–313 (2007).Article 

    Google Scholar 
    2.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 
    Article 

    Google Scholar 
    3.Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).ADS 
    Article 

    Google Scholar 
    4.Ribbands, C. R. The scent perception of the honey bee. Proc. R. Soc. Lond. B 143(912), 367–379 (1955).ADS 
    Article 

    Google Scholar 
    5.von Frisch, K. The Dance Language and Orientation of Bees (Harvard University Press, 1967).
    Google Scholar 
    6.Reinhard, J., Srinivasan, M. V., Guez, D. & Zhang, S. W. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 207(25), 4371–4381 (2004).Article 

    Google Scholar 
    7.Arenas, A., Fernández, V. M. & Farina, W. M. Floral odor learning within the hive affects honeybees’ foraging decisions. Naturwissenschaften 94, 218–222 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Farina, W. M., Grüter, C. & Díaz, P. C. Social learning of floral odours inside the honeybee hive. Proc. R. Soc. Lond. B. 272(1575), 1923–1928 (2005).
    Google Scholar 
    9.Farina, W. M., Grüter, C., Acosta, L. & Mc Cabe, S. Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften 94(1), 55–60 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Grüter, C., Acosta, L. E. & Farina, W. M. Propagation of olfactory information within the honeybee hive. Behav. Ecol. Sociobiol. 60(5), 707–715 (2006).Article 

    Google Scholar 
    11.Arenas, A., Fernández, V. M. & Farina, W. M. Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie 39, 714–722 (2008).Article 

    Google Scholar 
    12.Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).Article 

    Google Scholar 
    13.Farina, W. M., Arenas, A., Díaz, P. C., Susic Martin, C. & Estravis Barcala, M. C. Learning of a mimic odor within beehives improves pollination service efficiency in a commercial crop. Curr. Biol. 30, 4284–4290. https://doi.org/10.1016/j.cub.2020.08.018 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31(1), 65–75 (2017).Article 

    Google Scholar 
    15.Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8(4), 349–356 (1977).Article 

    Google Scholar 
    16.Chalisova, N. I. et al. Effect of encoding amino acids on associative learning of honeybee Apis mellifera. J. Evol. Biochem. Fisiol. 47(6), 607 (2011).Article 

    Google Scholar 
    17.Strauss, S. Y. & Whittall, J. B. Non-pollinator agents of selection on floral traits. In Ecology and Evolution of flowers (eds. Harder, L. D. & Barret, S. C. H.) 120–138 (Oxford University Press, 2006).18.McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).Article 

    Google Scholar 
    19.Gatica Hernández, I., Palottini, F., Macri, I., Galmarini, C. R. & Farina, W. M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. J. Exp. Biol. https://doi.org/10.1242/jeb.189910 (2019).Article 

    Google Scholar 
    20.Stevenson, P. C. For antagonists and mutualists: The paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19(3), 603–614 (2020).CAS 
    Article 

    Google Scholar 
    21.Carlesso, D., Smargiassi, S., Pasquini, E., Bertelli, G. & Baracchi, D. Nectar non-protein amino acids (NPAAs) do not change nectar palatability but enhance learning and memory in honey bees. Sci. Rep. 11(1), 1–14 (2021).Article 

    Google Scholar 
    22.Kretschmar, J. A. & Baumann, T. W. Caffeine in Citrus flowers. Phytochemistry 52(1), 19–23 (1999).CAS 
    Article 

    Google Scholar 
    23.Wright, G. A. et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339(6124), 1202–1204 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Couvillon, M. J. et al. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr. Biol. 25, 2815–2818 (2015).CAS 
    Article 

    Google Scholar 
    25.Arnold, S. E. et al. Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Curr. Biol. 31, 1–5 (2021).Article 

    Google Scholar 
    26.Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27(12), 2545–2558 (2001).CAS 
    Article 

    Google Scholar 
    27.Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743 (2018).Article 

    Google Scholar 
    28.Terrab, A. et al. Analysis of amino acids in nectar from Silene colorata Poiret (Caryophyllaceae). Bot. J. Linn. Soc. 155, 49–56 (2007).Article 

    Google Scholar 
    29.Taha, E. K. A., Al-Kahtani, S. & Taha, R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26, 232–237 (2019).CAS 
    Article 

    Google Scholar 
    30.Müller, U. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16, 541–549 (1996).Article 

    Google Scholar 
    31.Müller, U. The nitric oxide system in insects. Prog. Neurobiol. 51, 363–381 (1997).Article 

    Google Scholar 
    32.Lopatina, N. G., Zachepilo, T. H., Kamyshev, N. G. & Chalisova, N. I. The influence of combinations of encoded amino acids on associative learning in the honeybee Apis mellifera L. J. Evol. Biochem. Physiol. 53(2), 123–128 (2017).CAS 
    Article 

    Google Scholar 
    33.Marchi, I. L., Palottini, F. & Farina, W. M. Combined secondary compounds naturally found in nectars enhance honeybee cognition and survival. J. Exp. Biol. 224(6), jeb239616 (2021).Article 

    Google Scholar 
    34.Müller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1), 159–168 (2000).Article 

    Google Scholar 
    35.Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44(5), 575–585 (2013).CAS 
    Article 

    Google Scholar 
    36.Lu, Y. H. et al. Identification of immune regulatory genes in Apis mellifera through caffeine treatment. Insects 11(8), 516 (2020).Article 

    Google Scholar 
    37.Delaplane, K. S. & Mayer, D. F. Crop Pollination by Bees (CAB International, 2000).
    Google Scholar 
    38.Cabrera, A. L. & Willink, A. Biogeografía de América Latina (Organización de Estados Americanos, 1973).
    Google Scholar 
    39.Gabai, A. et al. Protocol for Using Pollinators in Hybrid Seed Production: An Outline for Improving Pollinator Effectiveness. (International Seed Federation, 2018).40.Torretta, J. P., Medan, D., Roig Alsina, A. H. & Montaldo, N. H. Visitantes florales diurnos del girasol (Helianthus annuus L., Asterales: Asteraceae) en la Argentina. Rev. Soc. Entomol. Argent. 69(1–2), 17–32 (2010).
    Google Scholar 
    41.Sáez, A., Sabatino, M. & Aizen, M. A. Interactive effects of large-and small-scale sources of feral honeybees for sunflower in the Argentine Pampas. PLoS One 7(1), e30968 (2012).ADS 
    Article 

    Google Scholar 
    42.Farina, W. M., Díaz, P. C. & Arenas, A. Patent AR082846B1: Una Formulación que Promueve la Polinización Dirigida de Abejas Melíferas Hacia Cultivos de Girasol (Instituto Nacional de Propiedad Intelectual, 2017).43.Noetzel, D. M. Insect Pollination Results on Sunflower 108–112 (Department of Entomology North Dakota State University Fargo USA, 1968).44.Johannsmeier, M. F. & Mostert, J. N. Crop pollination. In Beekeeping in South Africa, 3rd ed. 235–250 (ed. Johannsmeier, M. F.) (Plant Protection Research Institute handbook 14. Agricultural Research Council of South Africa, 2001).45.R Development Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org/ (2021).46.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).Article 

    Google Scholar 
    47.Crawley, M. J. The R Book (Wiley, 2013).MATH 

    Google Scholar 
    48.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2.7. https://CRAN.R-project.org/package=DHARMa (2021).49.Chambers, J. M. & Hastie, T. J. Statistical Models in S (Chapman and Hall, 1992).MATH 

    Google Scholar 
    50.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.4., https://CRAN.R-project.org/package=emmeans (2021). More

  • in

    Attachment of zebra and quagga mussel adhesive plaques to diverse substrates

    1.Hebert, P. D. N., Muncaster, B. W. & Mackie, G. L. Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46, 1587–1591 (1989).
    Google Scholar 
    2.May, B. & Marsden, J. E. Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49, 1501–1506 (1992).
    Google Scholar 
    3.Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G. & Spelt, J. K. Attachment strength of zebra mussels on natural, polymeric, and metallic materials. J. Environ. Eng. ASCE 122, 141–148 (1996).CAS 

    Google Scholar 
    4.Kobak, J. Attachment strength of Dreissena polymorph on artificial substrates. In The Zebra Mussel in Europe (eds van der Velde, G. et al.) 349–354 (Margraf Publishers, 2010).
    Google Scholar 
    5.Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).CAS 

    Google Scholar 
    6.Karatayev, V. A., Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2013.09.007 (2013).Article 

    Google Scholar 
    7.Peyer, S. M., McCarthy, A. J. & Lee, C. E. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. J. Exp. Biol. https://doi.org/10.1242/jeb.028688 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Amini, S. et al. Preventing mussel adhesion using lubricant-infused materials. Science 357, 668–673 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Matsui, Y. et al. Attachment strength of Limnoperna fortunei on substrates, and their surface properties. Biofouling 17, 29–39 (2001).
    Google Scholar 
    10.Marsden, J. E. & Lansky, D. M. Substrate selection by settling zebra mussels, Dreissena polymorpha, relative to material, texture, orientation, and sunlight. Can. J. Zool. 78, 787–793 (2000).
    Google Scholar 
    11.Kobak, J. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22, 141–150 (2006).
    Google Scholar 
    12.Ackerman, J. D., Ethier, C. R., Allen, D. G. & Spelt, J. K. Investigation of zebra mussel adhesion strength using rotating disks. J. Environ. Eng. 118, 708–724 (1992).
    Google Scholar 
    13.Ackerman, J. D., Ethier, C. R., Spelt, J. K., Allen, D. G. & Cottrell, C. M. A wall jet to measure the attachment strength of zebra mussels. Can. J. Fish. Aquat. Sci. 52, 126–135 (1995).
    Google Scholar 
    14.Balogh, C., Serfőző, Z., bij de Vaate, A., Noordhuis, R. & Kobak, J. Biometry, shell resistance and attachment of zebra and quagga mussels at the beginning of their co-existence in large European lakes. J. Great Lakes Res. 45, 777–787 (2019).
    Google Scholar 
    15.Grutters, B. M. C., Verhofstad, M. J. J. M., van der Velde, G., Rajagopal, S. & Leuven, R. S. E. W. A comparative study of byssogenesis on zebra and quagga mussels: The effects of water temperature, salinity and light–dark cycle. Biofouling 28, 121–129 (2012).PubMed 

    Google Scholar 
    16.Naddafi, R. & Rudstam, L. G. Predator-induced behavioural defences in two competitive invasive species: The zebra mussel and the quagga mussel. Anim. Behav. 86, 1275–1284 (2013).
    Google Scholar 
    17.Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).CAS 
    PubMed 

    Google Scholar 
    18.Brazee, S. L. & Carrington, E. Interspecific comparison of the mechanical properties of mussel byssus. Biol. Bull. 211, 263–274 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    19.Burkett, J. R., Wojtas, J. L., Cloud, J. L. & Wilker, J. J. A method for measuring the adhesion strength of marine mussels. J. Adhes. 85, 601–615 (2009).CAS 

    Google Scholar 
    20.Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Hamada, N., Roman, V., Howell, S. & Wilker, J. Examining potential active tempering of adhesive curing by marine mussels. Biomimetics 2, 16 (2017).
    Google Scholar 
    22.Farsad, N. & Sone, E. D. Zebra mussel adhesion: Structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. J. Struct. Biol. 177, 613–620 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    23.Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010).CAS 

    Google Scholar 
    24.Claxton, W. T., Wilson, A. B., Mackie, G. L. & Boulding, E. G. A genetic and morphological comparison of shallow- and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276 (1998).
    Google Scholar 
    25.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213, 2602–2609 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    26.Sprung, M. Field and laboratory observations of Dreissena polymorpha larvae: Abundance, growth, mortality and food demands. Arch. Hydrobiol. 115, 537–561 (1989).
    Google Scholar 
    27.Nichols, S. J. Maintenance of the zebra mussel (Dreissena polymorpha) under laboratory conditions. In Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis Publishers, 1992).
    Google Scholar 
    28.Porter, A. E. & Marsden, J. E. Adult zebra mussels (Dreissena polymorpha) avoid attachment to mesh materials. Northeast. Nat. 15, 589–594 (2008).
    Google Scholar 
    29.Kimmins, K. M., James, B. D., Nguyen, M. T., Hatton, B. D. & Sone, E. D. Oil-infused silicone prevents zebra mussel adhesion. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00832 (2019).Article 

    Google Scholar 
    30.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion. J. Exp. Biol. 214, 2226–2236 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    31.Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions https://doi.org/10.1023/A:1010088925713 (2000).Article 

    Google Scholar 
    32.Skaja, A., Tordonato, D. & Merten, B. Coatings for invasive mussel control: Colorado river field study. In Biol. Manag. Invasive Quagga Zebra Mussels West. United States 451–466 (2015) https://doi.org/10.1201/b18447-37https://doi.org/10.1201/b18447-37.33.Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. https://doi.org/10.1074/jbc.M510792200 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kimmins, K. Freshwater Mussel Adhesion: Interfacial Structures & Antifouling Surfaces (Univesity of Toronto, 2020).
    Google Scholar 
    35.Kobak, J. Behavior of juvenile and adult zebra mussels (Dreissena polymorpha). In Quagga Zebra Mussel Biol. Impacts, Control 331–344 (2013) https://doi.org/10.1201/b15437-28.36.Waite, J. H. Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983).CAS 

    Google Scholar 
    37.Lachance, A. A., Myrand, B., Tremblay, R., Koutitonsky, V. & Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129 (2008).
    Google Scholar 
    38.Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999–13003 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Rzepecki, L. M. & Waite, J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol. Mar. Biol. Biotechnol. 2, 255–266 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Waite, J. H. & Qin, X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zhao, H. & Waite, J. H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150–26158 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Petrone, L. et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Waite, J. H. Mussel adhesion—Essential footwork. J. Exp. Biol. 220, 517–530 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ou, X. et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 6, eabb7620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bilotto, P. et al. Adhesive properties of adsorbed layers of two recombinant mussel foot proteins with different levels of DOPA and tyrosine. Langmuir 35, 15481–15490 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Kim, S. et al. Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B 3, 738–743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology

    1.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nature Microbiol. 2018;3:977–82.CAS 

    Google Scholar 
    2.Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400.3.Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    4.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.5.Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.PubMed 
    PubMed Central 

    Google Scholar 
    6.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:1344–57.CAS 

    Google Scholar 
    7.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 

    Google Scholar 
    8.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    9.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci. 2011;108:E757–E764.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    11.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.CAS 
    PubMed 

    Google Scholar 
    12.Rosenwasser S, Ziv C, Creveld SG, van, Vardi A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.CAS 
    PubMed 

    Google Scholar 
    13.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:1–21.
    Google Scholar 
    15.Zhong Z-P, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li Y-F, et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome. 2021;9:160.PubMed 
    PubMed Central 

    Google Scholar 
    16.Zhong Z-P, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, et al. Viral ecogenomics of arctic cryopeg brine and sea ice. mSystems. 2020;5:e00246–20.17.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757–60.CAS 
    PubMed 

    Google Scholar 
    18.Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021;19:501–13.CAS 
    PubMed 

    Google Scholar 
    20.Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. ISME J. 2021;1–10.21.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23. e14CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host and Microbe. 2020;28:724–40. e8CAS 
    PubMed 

    Google Scholar 
    23.Roux S, Páez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2021;49:1–12.24.Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roux S, Matthijnssens J, Dutilh BE. Metagenomics in virology. Encycloped Virol. 2021;133–40. Published online 2021 Mar 1. https://doi.org/10.1016/B978-0-12-809633-8.20957-6.26.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed 
    PubMed Central 

    Google Scholar 
    27.Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ. 2016;4:e2777.PubMed 
    PubMed Central 

    Google Scholar 
    28.Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CAS 
    PubMed 

    Google Scholar 
    29.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum Information about an Uncultivated Virus Genome (MIUViG): a community consensus on standards and best practices for describing genome sequences from uncultivated viruses. Nat Biotechnol. 2018;37:29–37.PubMed 
    PubMed Central 

    Google Scholar 
    30.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
    Google Scholar 
    31.Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017;33:2379–80.32.Moraru C, Varsani A, Kropinski AM. VIRIDIC-a novel tool to calculate the intergenomic similarities of prokaryote-infecting. Viruses. 2020;12:1268.CAS 
    PubMed Central 

    Google Scholar 
    33.Pons JC, Paez-Espino D, Riera G, Ivanova N, Kyrpides NC, Llabrés M. VPF-Class: taxonomic assignment and host prediction of uncultivated viruses based on viral protein families. Bioinformatics. 2021;37:1805–13.34.Bolduc B, Youens-Clark K, Roux S, Hurwitz BL, Sullivan MB. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 2017;11:7–14.PubMed 

    Google Scholar 
    35.Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, et al. The iPlant Collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLOS Biol. 2016;14:e1002342.PubMed 
    PubMed Central 

    Google Scholar 
    36.Teytelman L, Stoliartchouk A, Kindler L, Hurwitz BL. Protocols.io: virtual communities for protocol development and discussion. PLOS Biol. 2016;14:e1002538.PubMed 
    PubMed Central 

    Google Scholar 
    37.Kindler L, Stoliartchouk A, Gomez C, Thornton J, Teytelman L, Hurwitz BL. VERVENet: the viral ecology research and virtual exchange network. PeerJ. 2021; in press.38.Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Sousa AL de, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, et al. PhageWeb—web interface for rapid identification and characterization of prophages in bacterial genomes. Front Genet. 2018; 9.40.Tynecki P, Guziński A, Kazimierczak J, Jadczuk M, Dastych J, Onisko A. PhageAI—bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv 2020; 2020.07.11.198606.41.Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Standards Genom Sci. 2012;6:427–39.
    Google Scholar 
    42.Roux S, Faubladier M, Mahul A, Paulhe N, Bernard A, Debroas D, et al. Metavir: a web server dedicated to virome analysis. Bioinformatics. 2011;27:3074–5.CAS 
    PubMed 

    Google Scholar 
    43.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States department of energy systems biology knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    45.Bolduc B, Jang HB, Doulcier G, You Z-QZ, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243.PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci. 2014;111:10714–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    48.Ren J, Kai S, Chao D, Nathan A, Ahlgren, JA, Fuhrman, YL, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77. https://doi.org/10.1007/s40484-019-0187-4.49.Amgarten D, Braga LPP, da Silva AM, Setubal JC. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 2018;9:1–8.
    Google Scholar 
    50.Pratama A, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ. 2021; In Press.51.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90. https://doi.org/10.1186/s40168-020-00867-0.52.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    53.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CCC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    54.Vik D, Bolduc B, Roux S, Krupovic M, Sullivan MB. MArVDv2: a machine learning approach to metagenomic archaeal virus detection. bioRxiv 2021; In Press..55.Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, et al. Discovery of several thousand highly diverse circular DNA viruses. eLife. 2020;9:1–26.
    Google Scholar 
    56.Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evolut. 2021;7:1–12.
    Google Scholar 
    57.Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–8900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 

    Google Scholar 
    59.Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–14.60.Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S & Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021;39:578–85. https://doi.org/10.1038/s41587-020-00774-7.61.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genom. 2016;17:930.
    Google Scholar 
    62.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    63.Gregory AC, Gerhardt K, Zhong Z-P, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro- and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020; 2020.11.01.363960.64.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    65.Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 2019;48:D570–D578.PubMed Central 

    Google Scholar 
    66.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    67.Wood-Charlson EM, Anubhav, Auberry D, Blanco H, Borkum MI, Corilo YE, et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat Rev Microbiol. 2020;18:313–4.CAS 
    PubMed 

    Google Scholar  More

  • in

    Conventional agriculture and not drought alters relationships between soil biota and functions

    1.Baer, S. G. & Birgé, H. E. Soil ecosystem services: An overview. Manag. Soil Health Sustain. Agric. 1, 1–22 (2018).
    Google Scholar 
    2.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biol. 21, 973–985 (2015).ADS 

    Google Scholar 
    5.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 

    Google Scholar 
    6.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Smith, P. et al. Global change pressures on soils from land use and management. Global Change Biol. 22, 1008–1028 (2016).ADS 

    Google Scholar 
    9.Birkhofer, K., Smith, H. G. & Rundlöf, M. Environmental Impacts of Organic Farming. in eLS. 1–7 (John Wiley & Sons Ltd, 2016).10.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).
    Google Scholar 
    11.Abbott, L. K. & Manning, D. A. C. Soil health and related ecosystem services in organic agriculture. Sustain. Agric. Res. 4, 116 (2015).
    Google Scholar 
    12.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. in Advances in Agronomy vol. 155 1–44 (Elsevier, 2019).13.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).ADS 

    Google Scholar 
    15.Iglesias, A. & Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manage. 155, 113–124 (2015).
    Google Scholar 
    16.Pörtner, H. O. et al. IPBES-IPCC Co-sponsored Workshop Report Synopsis on Biodiversity and Climate Change. https://zenodo.org/record/4920414 (2021).17.Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).ADS 
    PubMed 

    Google Scholar 
    18.Holmstrup, M. et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Sci. Rep. 7, 41388 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).PubMed 

    Google Scholar 
    20.Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Schimel, J. P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    22.Kundel, D. et al. Drought effects on nitrogen provisioning in different agricultural systems: Insights gained and lessons learned from a field experiment. Nitrogen 2, 1–17 (2021).
    Google Scholar 
    23.Abbasi, A. O. et al. Reviews and syntheses: Soil responses to manipulated precipitation changes: An assessment of meta-analyses. Biogeosciences 17, 3859–3873 (2020).ADS 
    CAS 

    Google Scholar 
    24.Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Yin, R. et al. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 147, 107847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS 
    CAS 

    Google Scholar 
    28.Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).
    Google Scholar 
    29.Iizumi, T. & Wagai, R. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 9, 19744 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).
    Google Scholar 
    31.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. PNAS 109, 18226–18231 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: A novel experimental infrastructure. Ecosphere 10, e02635 (2019).
    Google Scholar 
    33.Birkhofer, K. et al. Ecosystem services: Current challenges and opportunities for ecological research. Front. Ecol. Evol. 2, 87 (2015).
    Google Scholar 
    34.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).
    Google Scholar 
    35.Chabert, A. & Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 292, 106815 (2020).CAS 

    Google Scholar 
    36.Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS 117, 28140–28149 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity: A meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Kundel, D. et al. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiol. Ecol. 96, fiaa205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen, Q.-L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).CAS 

    Google Scholar 
    40.Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).
    Google Scholar 
    41.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil. Sci. 72, 1624–1639 (2020).
    Google Scholar 
    43.Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil. Sci. 72, 1640–1654 (2020).
    Google Scholar 
    44.Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).PubMed 

    Google Scholar 
    45.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Meyer, S., Kundel, D., Birkhofer, K., Fliessbach, A. & Scheu, S. Soil microarthropods respond differently to simulated drought in organic and conventional farming systems. Ecol. Evol. 11, 10369–10380 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    47.De Smedt, P. et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecol. 33, 407–421 (2018).
    Google Scholar 
    48.Liu, W. P. A., Phillips, L. M., Terblanche, J. S., Janion-Scheepers, C. & Chown, S. L. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 195, 873–885 (2021).ADS 
    PubMed 

    Google Scholar 
    49.Birkhofer, K. et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 40, 2297–2308 (2008).CAS 

    Google Scholar 
    50.Mäder, P. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).ADS 
    PubMed 

    Google Scholar 
    51.Birkhofer, K., Bezemer, T. M., Hedlund, K. & Setälä, H. Community composition of soil organisms under different wheat farming systems. in Microbial Ecology in Sustainable Agroecosystems 89–111 (CRC press Boca Raton, 2012).52.Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).CAS 

    Google Scholar 
    53.Siebert, J. et al. Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Adv. Ecol. Res. 60, 25–58 (2019).
    Google Scholar 
    54.de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS 

    Google Scholar 
    55.Torode, M. D. et al. Altered precipitation impacts on above-and below-ground grassland invertebrates: Summer drought leads to outbreaks in spring. Front. Plant Sci. 7, 1468 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Jonas, J. L., Wilson, G. W. T., White, P. M. & Joern, A. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol. Biochem. 39, 2594–2602 (2007).CAS 

    Google Scholar 
    57.Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. 9, 9027–9039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    58.Seres, A. et al. Collembola decrease the nitrogen uptake of maize through arbuscular mycorrhiza. ekol 28, 242–247 (2009).
    Google Scholar 
    59.Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 

    Google Scholar 
    60.Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Krause, H.-M., Fliessbach, A., Mayer, J. & Mäder, P. Implementation and management of the DOK long-term system comparison trial. in Long-Term Farming Systems Research 37–51, (Elsevier, 2020).62.Richner, W. et al. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8, 47–66 (2017).
    Google Scholar 
    63.Kundel, D. et al. Design and manual to construct rainout-shelters for climate change experiments in agroecosystems. Front. Environ. Sci. 6, 14 (2018).
    Google Scholar 
    64.Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021).
    Google Scholar 
    65.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15.66.Fletcher, D. J. & Underwood, A. J. How to cope with negative estimates of components of variance in ecological field studies. J. Exp. Mar. Biol. Ecol. 273, 89–95 (2002).
    Google Scholar 
    67.Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org.69.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar  More

  • in

    Species ethnobotanical values rather than regional species pool determine plant diversity in agroforestry systems

    1.Swenson, N. G. et al. The biogeography and filtering of woody plant functional diversity in North and South America. Glob. Ecol. Biogeogr. 21, 798–808. https://doi.org/10.1111/j.1466-8238.2011.00727.x (2012).Article 

    Google Scholar 
    2.Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).
    Google Scholar 
    3.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111(982), 1119–1144 (1977).Article 

    Google Scholar 
    4.Michalet, R. & Pugnaire, F. I. Facilitation in Communities: Underlying Mechanisms, Community and Ecosystem Implications (Wiley Online Library, 2016).
    Google Scholar 
    5.Connell, J. H. Diversity in tropical rain forests and coral reefs. Sci. Am. Nat. 199, 1302–1310 (1978).CAS 

    Google Scholar 
    6.Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242(5396), 344–347 (1973).ADS 
    Article 

    Google Scholar 
    7.Wilkinson, D. M. The disturbing history of intermediate disturbance. Oikos 84, 145–147 (1999).Article 

    Google Scholar 
    8.Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P. & Band, S. R. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J. Ecol. 65, 759–791 (1977).Article 

    Google Scholar 
    9.Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95(9), 2382–2396 (2014).Article 

    Google Scholar 
    10.Silvcrtown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611. https://doi.org/10.1016/j.tree.2004.09.003 (2004).Article 

    Google Scholar 
    11.Zobel, M. The relative of species pools in determining plant species richness: An alternative explanation of species coexistence?. Trends Ecol. Evol. 12(7), 266–269. https://doi.org/10.1016/S0169-5347(97)01096-3 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87(6), 1465–1471 (2006).Article 

    Google Scholar 
    13.Kraft, N. J., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322(5901), 580–582. https://doi.org/10.1126/science.1160662 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Swenson, G. & Enquist, B. J. Opposing assembly mechanisms in a neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology 90(8), 2161–2170 (2009).Article 

    Google Scholar 
    15.Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12(7), 693–715 (2009).Article 

    Google Scholar 
    16.Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32(6), 429–437. https://doi.org/10.1016/j.tree.2017.03.004 (2017).Article 
    PubMed 

    Google Scholar 
    17.Cariton, J. T. & Geller, J. B. Ecological roulette: The global transport of nonindigenous marine organisms. Science 261(5117), 78–82. https://doi.org/10.1126/science.261.5117.78 (1993).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Connolly, L. M. T. S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150. https://doi.org/10.1111/ele.12019 (2013).Article 
    PubMed 

    Google Scholar 
    19.Mccann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    Article 

    Google Scholar 
    20.Baliddawa, C. W. Plant species diversity and crop pest control. An analytical review. Int. J. Trop. Insect Sci. 6(04), 479–487. https://doi.org/10.1017/s1742758400004306 (1985).Article 

    Google Scholar 
    21.Clara Nicholls, M. A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev 33, 257–274. https://doi.org/10.1007/s13593-012-0092-y (2015).Article 

    Google Scholar 
    22.Haddad, N. M., Crutsinger, G. M., Gross, K., Haarstad, J. & Tilman, D. Plant diversity and the stability of foodwebs. Ecol. Lett. 14, 42–46. https://doi.org/10.1111/j.1461-0248.2010.01548.x (2011).Article 
    PubMed 

    Google Scholar 
    23.Guyot, V., Castagneyrol, B., Vialatte, A. & Deconchat, M. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 1–5 (2016).Article 

    Google Scholar 
    24.Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217. https://doi.org/10.1016/j.scitotenv.2019.06.092 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.MacDougall, A. S. et al. The Neolithic Plant Invasion Hypothesis: The role of preadaptation and disturbance in grassland invasion. New Phytol. 220(1), 94–103. https://doi.org/10.1111/nph.15285 (2018).Article 
    PubMed 

    Google Scholar 
    26.Mouquet, N., Munguia, P., Kneitel, J. M. & Miller, T. E. Community assembly time and the relationship between local and regional species richness. Oikos 103(3), 618–626. https://doi.org/10.1034/j.1600-0706.2003.12772.x (2003).Article 

    Google Scholar 
    27.Sferra, C. O., Hart, J. L. & Howeth, J. G. Habitat age influences metacommunity assembly and species richness in successional pond ecosystems. Ecosphere 8(6), e01871 (2017).Article 

    Google Scholar 
    28.Macarthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Int. J. Org. Evol. 17(4), 373–387 (1963).Article 

    Google Scholar 
    29.Simberloff, D. S. Equilibrium theory of island biogeography and ecology. Annu. Rev. Ecol. Syst. 5(1), 161–182. https://doi.org/10.1146/annurev.es.05.110174.001113 (1974).Article 

    Google Scholar 
    30.Vijay, V., & Armsworth, P. R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. PNAS 118(4), e2010121118 (2021).31.Batisse, M. Action plan for biosphere reserves. Environmental conservation 12(1), 17–27 (1985).Article 

    Google Scholar 
    32.MAB. Criteria for Designation and Evaluation of Unesco Biosphere Reserves in Germany. German National Committee for the UNESCO Programme (2007).33.UNESCO. Biosphere Reserves. The Seville Strategy and the Statutory Framework of the World Network. Paris, France (1995).34.Hadush, M., Holden, S. T. & Tilahun, M. Does population pressure induce farm intensification? Empirical evidence from Tigrai Region, Ethiopia. Agric. Econ. 50(3), 259–277. https://doi.org/10.1111/agec.12482 (2019).Article 

    Google Scholar 
    35.Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292(5515), 281–284. https://doi.org/10.1126/science.1057544 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Holden, E., Linnerud, K., & Banister, D. Sustainable development: Our common future revisited. Global Environmental Change, 26, 130–139 (2014)Article 

    Google Scholar 
    37.M’Woueni, D., Gaoue, O. G., Balagueman, R. O., Biaou, H. S. & Natta, A. K. Road mediated spatio-temporal tree decline in traditional agroforests in an African biosphere reserve. Glob. Ecol. Conserv. 20, e00796. https://doi.org/10.1016/j.gecco.2019.e00796 (2019).Article 

    Google Scholar 
    38.Yaméogo, G., Yélémou, B., & Traoré, D. Pratique et perception paysannes dans la création de parc agroforestier dans le terroir de Vipalogo (Burkina Faso). Base (2005).39.Vodouhè, F. G., Adegbidi, A., Coulibaly, O. & Sinsin, B. Parkia biglobosa (Jacq.) R. Br. Ex Benth. Harvesting as a tool for conservation and source of income for local people in Pendjari Biosphere Reserve. Acta Botanica Gallica 158(4), 595–608 (2011).Article 

    Google Scholar 
    40.Vodouhè, F. G., Coulibaly, O., Biaou, G. & Sinsin, B. Traditional agroforestry systems and biodiversity conservation in Benin (West Africa). Agrofor. Syst. 82(1), 1–13 (2011).Article 

    Google Scholar 
    41.Bee, J. N., Kunstler, G. & Coomes, D. A. Resistance and resilience of New Zealand tree species to browsing. J. Ecol. 95(5), 1014–1026. https://doi.org/10.1111/j.1365-2745.2007.01261.x (2007).Article 

    Google Scholar 
    42.Hoffmann, W. A. The effects of fire and cover on seedling establishment in a neotropical savanna. J. Ecol. https://doi.org/10.2307/2261200 (1996).Article 

    Google Scholar 
    43.Gnangle, P. C. et al. Perceptions locales du changement climatique et mesures d’adaptation dans la gestion des parcs à karité au Nord-Bénin. Int. J. Biol. Chem. Sci. 6(1), 136–149. https://doi.org/10.4314/ijbcs.v6i1.13 (2012).Article 

    Google Scholar 
    44.Ouoba, H. Y., Bastide, B., Coulibaly-Lingani, P., Kabore, S. A. & Boussim, J. I. Connaissances et perceptions des producteurs sur la gestion des parcs à Vitellaria paradoxa CF Gaertn. (Karité) au Burkina Faso. Int. J. Biol. Chem. Sci. 12(6), 2766–2783 (2018).Article 

    Google Scholar 
    45.Alencar, N. L., de Sousa Araújo, T. A., de Amorim, E. L. C. & de Albuquerque, U. P. The inclusion and selection of medicinal plants in traditional pharmacopoeias—Evidence in support of the diversification hypothesis. Econ. Bot. 64(1), 68–79. https://doi.org/10.1007/s12231-009-9104-5 (2010).Article 

    Google Scholar 
    46.Gaoue, O. G. et al.. Theories and major hypotheses in ethnobotany. Economic Botany, 71(3), 269–287 (2017).Article 

    Google Scholar 
    47.Helm, J. et al. Recovery of Mediterranean steppe vegetation after cultivation: Legacy effects on plant composition, soil properties and functional traits. Appl. Veg. Sci. 22(1), 71–84. https://doi.org/10.1111/avsc.12415 (2019).Article 

    Google Scholar 
    48.Nash, K. L., Graham, N. A., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53(3), 646–655. https://doi.org/10.1111/1365-2664.12430 (2016).Article 

    Google Scholar 
    49.Lambin, E. F. et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 11(4), 261–269. https://doi.org/10.1016/S0959-3780(01)00007-3 (2001).Article 

    Google Scholar 
    50.Camou-Guerrero, A., Reyes-García, V., Martínez-Ramos, M. & Casas, A. Knowledge and use value of plant species in a rarámuri community : A gender perspective for conservation. Hum. Ecol. 36(2), 259–272. https://doi.org/10.1007/s10745-007-9152-3 (2008).Article 

    Google Scholar 
    51.de Wet, H., Nkwanyana, M. N. & Vuuren, V. S. F. Medicinal plants used for the treatment of diarrhoea in northern Maputaland, KwaZulu-Natal Province, South Africa. J. Ethnopharmacol. J. 130, 284–289. https://doi.org/10.1016/j.jep.2010.05.004 (2010).Article 

    Google Scholar 
    52.Toledo, V. M., Ortiz-Espejel, B., Cortéz, L., Moguel, P., A., & Ordoñez, M. D. J. The multiple use of tropical forests by indigenous peoples in Mexico: A case of adaptive management. Conserv. Ecol. 7(3), 9. https://www.ecologyandsociety.org/vol7/iss3/art9/ (2003).53.Azihou, F. A. Elephants’ (Loxodonta africana) Impacts on Vegetation Structure and Availability of Plant Species that Other Animals Feed on in the Biosphere Reserve of Pendjari (University of Abomey-Calavi, 2008).
    Google Scholar 
    54.Faure, P. V. B. Some factors affecting regional differentiation of the soils in the Republic of Benin (West Africa). CATENA 32, 281–306 (1998).Article 

    Google Scholar 
    55.Tiomoko, D. Gestion de la Réserve de Biosphère de la Pendjari : Modes de gestion et proposition d’un modèle conceptuel de durabilité (Universite d’Abomey-Calavi, 2014).
    Google Scholar 
    56.ASECNA. Données climatiques, station de Natitingou. Bénin (2010).57.PNP. Plan d’Amenagement Participatif et de Gestion du Parc National de la Pendjari, Bénin 2004–2013 (2009).58.Assédé, E. P., Adomou, A. C. & Sinsin, B. Magnoliophyta, biosphere reserve of Pendjari, Atacora province, Benin. Check List 8(4), 642–661 (2012).Article 

    Google Scholar 
    59.Houinato, M. & Sinsin, B. La pression agro-pastorale sur la zone riveraine de la Réserve de la Biosphère de la Pendjari. Tropicultura 18(3), 112–117 (2000).
    Google Scholar 
    60.Gaoue, O. G. Determinant factors for the integrated management of Pendjari hunting reserve northern Benin (Université d’Abomey Calavi, 2000).61.Adomou, C. A. Vegetation patterns and environmental gradients in Benin: Implications for biogeography and conservation. PhD. Dissertation, Wageningen University. PhD. Dissertation, Wageningen University (2005).62.Inoussa, M. et al. Contrasting population structures of two keystone woodland species of W National Park, Niger. S. Afr. J. Bot. 112, 95–101 (2017).Article 

    Google Scholar 
    63.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x (1948).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    64.R Core Team.R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2015).65.Chao, A. & Lee, S.-M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87(417), 210–217 (1992).MathSciNet 
    Article 

    Google Scholar 
    66.Bernard, H. R. Research Methods in Anthropology: Qualitative and Quantitative Approaches (Rowman & Littlefield, 2017).
    Google Scholar 
    67.Ceuterick, M., Vandebroek, I., Torry, B. & Pieroni, A. Cross-cultural adaptation in urban ethnobotany: The Colombian folk pharmacopoeia in London. J. Ethnopharmacol. 120(3), 342–359 (2008).Article 

    Google Scholar 
    68.Cohen, N. & Arieli, T. Field research in conflict environments: Methodological challenges and snowball sampling. J. Peace Res. 48(4), 423–435 (2011).Article 

    Google Scholar 
    69.Tongco, M. D. C. Purposive sampling as a tool for informant selection. Ethnobot. Res. Appl. 5, 147–158 (2007).Article 

    Google Scholar 
    70.Phillips, O. & Gentry, A. H. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ. Bot. 47(1), 15–32 (1993).Article 

    Google Scholar 
    71.Whitney, C. EthnobotanyR: Calculate Quantitative Ethnobotany Indices. Package Version 0.1.8
    https://CRAN.R-project.org/package=ethnobotanyR (2021).72.Oksanen, M. et al. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell. Mol. Life Sci. 76(14), 2739–2760. https://doi.org/10.1007/s00018-019-03111-7 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Canty, A. J. Resampling methods in R: The boot package. R News 2(3): 2–7 (2002).74.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).MathSciNet 
    Article 

    Google Scholar 
    75.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Modulation of MagR magnetic properties via iron–sulfur cluster binding

    The binding of [2Fe–2S] and [3Fe–4S] in clMagRThree conserved cysteines (C60, C124, and C126) of clMagR in a CXnCGC sequence motif (n is 63–65 in most cases) play critical roles in iron–sulfur cluster binding18 (Fig. 1a), which has been further validated by alanines substitution mutant clMagR3M (C60A, C124A, and C126A mutation of clMagRWT). Strep-tagged clMagRWT and clMagR3M were freshly prepared (labeled as “as-isolated”) and purified to homogeneity under aerobic conditions. The clMagRWT protein showed brown color and clMagR3M appeared colorless in the solution, indicating the presence or absence of iron–sulfur cluster, respectively. Consistently, the Ultraviolet–visible (UV–Vis) spectrum of as-isolated clMagRWT showed absorption from 300-to-600-nm region, and with an absorption peak at 325 and 415 nm, and a shoulder at 470 nm, whereas these absorption peaks were abolished in clMagR3M (Fig. 1b). Circular dichroism (CD) spectroscopy was applied to characterize the types of iron–sulfur cluster and their protein environments during cluster maturation42,43,44. As shown in Fig. 1c, clMagRWT shows distinct positive peaks at 371 nm and 426 nm and three negative peaks at 324 nm, 396 nm, and 463 nm, respectively, suggesting the presence of [2Fe–2S] cluster45. However, it is worth pointing out that [4Fe–4S] or [3Fe–4S] clusters usually exhibit negligible CD intensity compared to [2Fe–2S] as shown previously in NifIscA45,46, thus CD spectroscopy cannot exclude the existence of [4Fe–4S] or [3Fe–4S]. Electron paramagnetic resonance (EPR) spectroscopy was then used to analyze different states of as-isolated clMagRWT. The oxidized clMagRWT was S = 1/2 species, characterized by a rhombic EPR signal with g values at g1 = 2.016, g2 = 2.002, and g3 = 1.997 (Fig. 1d) which disappeared at 45 K, suggesting the presence of [3Fe–4S]1+ cluster47,48. After reduced with sodium dithionite (Fig. 1e), EPR signal from [2Fe–2S] cluster can be observed until the temperature increased to 60K49,50,51. Thus, two distinct iron–sulfur clusters were assigned by EPR spectroscopy of clMagRWT. Figure 1Characterization of iron–sulfur clusters in as-isolated clMagR. (a) Sequence alignment of MagR in eight representative species. Predicted secondary structures are shown in the upper lines, with two alpha-helices (orange cylinders) and seven beta-strands (green arrows). Conserved residues with iron–sulfur cluster binding properties are shown in the red background (100% conserved), indicated by stars. Other conserved residues are shown in the gray background and bold fonts. Species’ common name, Latin name and sequence ID in NCBI are listed as follows: Pigeon (Columba livia), XP_005508102.1*; Zebra finch(Taeniopygia guttata), XP_002194930.1*; Fly(Drosophila melanogaster), NP_573062.1*; Monarch butterfly(Danaus plexippus), AVZ24723.1*; Salmon(Salmo salar), XP_013999046.1*; Octopus(Octopus bimaculoides), XP_014786756.1*; Little brown bat(Myotis lucifugus), XP_006102189.1*; Human(Homo sapiens), NP_112202.2*. (b) UV–Vis absorption spectrum of as-isolated pigeon MagR (clMagRWT, black) and C60AC124AC126A substitution mutant (clMagR3M, red), indicating three cysteines contribute to the iron–sulfur cluster binding. SDS-PAGEs of protein preparation are shown as inserts, theoretical mass of the clMagR monomer and clMagR3M monomer were 16.41 kDa, 16.31 kDa, respectively. (c) CD spectrum of as-isolated clMagRWT(black) and clMagR3M(red). (d, e) X-band EPR spectrum of as-isolated clMagRWT at oxidized (d) and reduced status (e). The samples were frozen in TBS buffer and the spectrums were recorded at various temperatures (10 K, 25 K, 45 K, 60 K). (f) Low-temperature resonance Raman spectra of as-isolated clMagRWT. Spectra were recorded at 17 K using 488 nm laser excitation.Full size imageConsidering some iron–sulfur clusters in proteins are diamagnetic and therefore EPR silent, low-temperature Resonance Raman (RR) spectroscopy was then utilized as a probe to characterize those clusters52. With 488 nm excitation, the RR spectra of clMagRWT in the iron–sulfur stretching region (240–450 cm−1) show the presence of [3Fe–4S]1+ cluster (represented by two bridging modes at 286 and 347 cm−1, and one terminal modes at 364 cm−1) and [2Fe–2S]2+ cluster (represented by three iron–sulfur bridging mode at 293, 308 and 330 cm−1 and two terminal modes at 407 and 422 cm−1, as shown in Fig. 1f)52,53,54,55,56. Taking together, we conclude that as-isolated clMagRWT contains both cystine-ligated [2Fe–2S] cluster and [3Fe–4S] cluster.The assembly and conversion of [2Fe–2S] and [3Fe–4S] in clMagRIron–sulfur cluster assembly of IscA, an clMagR homology protein in bacteria, is mediated by cysteine desulfurase IscS2. To elucidate how iron–sulfur cluster assembles in clMagR, time-course experiment was performed, and UV–Vis absorption and CD spectrum were used to monitor the IscS-catalyzed iron–sulfur cluster assembly in clMagR (Fig. 2). No signal of the iron–sulfur cluster was recorded when the reaction begins (0 min), and then the characteristic visible absorption peak and CD spectrum of clMagRWT appeared after 5 min, indicating [2Fe–2S] cluster assembled. As the reaction proceeds, the UV–Vis absorption intensity increased and after 180 min the signal was dominated by a broad shoulder centered at 415 nm (Fig. 2a). Concomitantly, the CD spectrum of the [2Fe–2S] center decreased and then almost disappeared after 180 min, indicating that [2Fe–2S] had been converted to [3Fe–4S] clusters and the reconstitution finished (Fig. 2b).Figure 2Iron–sulfur cluster assembly on clMagR. (a, b) IscS-mediated iron–sulfur cluster assembly on clMagR monitored as a function of time by UV–Vis absorption (a) and CD spectroscopy (b). The spectra shown were taken with samples of pretreated clMagR to remove iron–sulfur clusters before reconstitution (apo-clMagR, 0 min, light green), incubated with IscS after 5 min (green), and after 180 min (dark green). (c, d) chemical reconstitution-mediated iron–sulfur cluster assembly on clMagR monitored as a function of time by UV–Vis absorption (c) and CD spectroscopies (d). The spectra shown were taken with samples of pretreated clMagR to remove iron–sulfur clusters before reconstitution (apo-clMagR, light green) and chemically reconstituted clMagR (chem re clMagR, purple). (e) X-band EPR spectrum of chemically reconstituted clMagRWT. The spectrum was recorded at 10 K. (f) Low-temperature resonance Raman spectra of chemically reconstituted clMagR. Protein and reagent concentrations are described in the Methods. Spectra were recorded at 17 K using 488 nm laser excitation.Full size imageIron–sulfur cluster assembly can be achieved by chemical reconstitution as well, since iron–sulfur apo-proteins are able to spontaneously form iron–sulfur clusters in vitro when supplied with iron and sulfide under reducing conditions1,43,57. With this approach, started with apo-clMagRWT, we successfully reconstituted [3Fe–4S] cluster in clMagR protein, confirmed by UV–Vis absorption and CD spectrum result (Fig. 2c,d). To further validate if [3Fe–4S] is the sole type of iron–sulfur cluster in clMagR after chemical reconstitution, EPR and low-temperature Resonance Raman spectroscopy were applied (Fig. 2e,f). The chemically reconstituted clMagRWT was S = 1/2 species, characterized by a rhombic EPR signal with g values at g1 = 2.017, g2 = 2.002, and g3 = 1.994 (Fig. 2e). The signal is assigned to a S = 1/2 [3Fe–4S]1+ cluster. The Low-temperature Resonance Raman spectrum showed an intense band at 346 cm−1 and additional bands at 406 and 420 cm−1, which demonstrated that chemically reconstituted clMagRWT only contains [3Fe–4S]1+ cluster (Fig. 2f).We further investigated if clMagR could serve as an iron–sulfur carrier protein to accept [2Fe–2S] cluster from scaffold protein such as IscU58. Briefly, 400 µM holo-IscU was mixed with 400 µM strep-tagged apo-clMagRWT and incubated for 180 min under reduced condition, then, after desalting and strep-tactin affinity column separation, UV–Vis absorption and CD spectroscopy were applied the iron–sulfur cluster transfer process (Fig. 3a). The intensity of UV–Vis spectrum decreased in IscU (Fig. 3b) but significantly increased in clMagR after reaction (Fig. 3d), indicating [2Fe–2S] cluster was transferred from IscU to clMagR59. Consistently, CD spectrum of IscU and clMagR also confirmed that [2Fe–2S] transfer occurred between IscU and clMagR (Fig. 3c,e). The resulting spectrum is very similar to that of the [2Fe–2S] intermediate assembled on IscS mediated reconstituted apo-clMagR (Fig. 2b).Figure 3clMagR serve as carrier protein to accept [2Fe–2S] cluster from IscU in vitro. (a) A cartoon schematically illustrates the experimental procedures of in vitro iron–sulfur cluster transfer from IscU to clMagR. (b, c) The UV–Vis absorption (b) and CD spectra (c) of IscU. IscU protein samples were taken before mixing with apo-clMagR (holo-IscU, black lines) and after incubated with apo-clMagR for 180 min (pink lines). (d, e) The UV–Vis absorption (d) and CD spectra (e) of clMagR. clMagR samples were taken before mixing with holo-IscU (apo-clMagR, light green lines) and after incubated with holo-IscU for 180 min (holo-clMagR, brown lines).Full size imageCys-60 is essential for clMagR to bind [3Fe–4S] cluster, not [2Fe–2S] clusterThree conserved cysteines (C60, C124, and C126) of clMagR play critical roles in iron–sulfur cluster binding, and the substitute mutation of these three residues abolished iron–sulfur binding (Fig. 1b,c)18. To elucidate if three cysteines bind [2Fe–2S] and [3Fe–4S] differently, single Cys-to-Ala substitutions (C60A, C124A, and C126A) were made and their iron–sulfur binding properties were characterized.Freshly purified as-isolated clMagRC60A showed light brown color, and [2Fe–2S] cluster binding was verified by UV–Vis absorption and CD spectrum (Fig. 4a,b). A typical protein-bound [2Fe–2S] cluster absorption peak at 325 nm and a shoulder at 415 nm are visible in UV–Vis absorption (Fig. 4a, light orange line). Consistently, the CD spectrum of as-isolated clMagRC60A mutant had a negative peak at 397 nm and a positive peak at 451 nm (Fig. 4b, light orange line), confirmed the [2Fe–2S] cluster binding, similar to clMagRWT. However, in contrast to clMagRWT, chemical reconstitution failed to convert [2Fe–2S] cluster to [3Fe–4S] cluster in clMagRC60A. As shown in Fig. 4a,b (orange line), chemically reconstituted clMagRC60A showed similar and characteristic [2Fe–2S] UV–Vis absorption peaks and CD spectrum, but not [3Fe–4S] (Fig. 4a,b, orange lines), suggesting that C60A mutation abolished [3Fe–4S] cluster binding ability in clMagR.Figure 4Three conserved cysteines play different roles in iron–sulfur binding in clMagR. (a, b) Chemical reconstitution-mediated iron–sulfur cluster assembly on apo-clMagRC60A monitored by UV–Vis absorption (a) and CD spectroscopies (b). The samples of spectra shown are as-isolated clMagRC60A (light orange) and chemically reconstituted clMagRC60A (chem re clMagRC60A, orange). (c, d) chemical reconstitution-mediated iron–sulfur cluster assembly on clMagRC124A monitored by UV–Vis absorption (c) and CD spectroscopies (d). The samples of spectra shown are as-isolated clMagRC124A (light purple) and chemically reconstituted clMagRC124A (chem re clMagRC124A, purple). (e, f) chemical reconstitution-mediated iron–sulfur cluster assembly on pigeon clMagRC126A monitored by UV–Vis absorption (e) and CD spectroscopies (f). The samples of spectra shown are as-isolated clMagRC126A (light blue) and chemically reconstituted clMagRC126A (chem re clMagRC126A, blue). SDS-PAGE results were shown in the right of corresponding UV–Vis spectra as inserts (a, c, e). The theoretical mass of the clMagRC60A monomer, clMagRC124A monomer and clMagRC126A monomer were 16.38 kDa. (g, h) The UV–Vis absorption (c) and CD spectra (d) of clMagRC60A obtained by mixing apo-clMagRC60A and holo-IscU which was recorded before the addition of apo-clMagRC60A (dotted orange lines) and after incubation with apo-clMagRC60A for 180 min (orange lines). Protein and reagent concentrations are described in the Experimental procedures.Full size imageIn contrast, purified as-isolated clMagRC124A and clMagRC126A were colorless, and the binding of iron–sulfur clusters was barely detectable by UV–Vis and CD spectrum (Fig. 4c–f, light purple, and light blue lines, respectively). However, chemical reconstitution successfully reconstituted [3Fe–4S] cluster binding in both clMagRC124A and clMagRC126A (Fig. 4c–f, purple and blue lines, respectively). After chemical reconstitution, the UV–Vis absorption of both clMagRC124A and clMagRC126A mutants showed the signal of iron–sulfur cluster binding (Fig. 4c,e). Parallel CD spectrum studies confirmed both chemically reconstituted clMagRC124A and clMagRC126A have [3Fe–4S] cluster binding (Fig. 4d,f), similar to chemically reconstituted clMagRWT. The results demonstrated that Cys-124 and Cys-126 in clMagR play important roles in [2Fe–2S] cluster binding, thus, mutating these two residues lead to clMagR favors [3Fe–4S] binding.Considering clMagR can act as a carrier protein to accept iron–sulfur cluster from IscU (Fig. 3), it is worth testing if three cysteines play a different role in this process as well. Holo-IscU was mixed with apo-clMagR single cysteine mutants in a reduced state for 180 min. The apo status of all three mutants (labeled as apo-clMagRC60A, apo-clMagRC124A, and apo-clMagRC126A) had no iron–sulfur cluster binding before mixing with holo-IscU, as shown by negligible UV absorption and CD intensities (Fig. 4g,h and Supplementary Fig. 1a–d, dotted lines). After incubation with holo-IscU and separation of IscU and clMagR mutants, clMagRC60A showed distinct changes in UV–Vis absorption and CD spectrum (Fig. 4g,h). The UV–Vis absorption increased and showed better-resolved peaks at 322 nm, 410 nm, 504 nm (Fig. 4g, orange line), and parallel CD spectra had distinct positive peaks (319 nm, 355 nm, 445 nm, and 534 nm) and four negative peaks (333 nm, 392 nm, 477 nm, and 579 nm, Fig. 4h), indicating [2Fe–2S] cluster was transferred from IscU to clMagRC60A. Interestingly, clMagRC124A and clMagRC126A could also accept [2Fe–2S] cluster transferred from holo-IscU, though the binding efficiency is much lower than clMagRWT and clMagRC60A, as verified by UV–Vis and CD spectrum (Supplementary Fig. 1a–d). It seems that clMagRC60A accept [2Fe–2S] cluster from scaffold protein IscU more effectively compared with clMagRC124A and clMagRC126A. And after incubation with clMagR mutants, UV–Vis absorption of IscU significantly decreased, confirmed that iron–sulfur cluster transfer occurred in between holo-IscU and three clMagR mutants (Supplementary Fig. 1e).Again, our data demonstrated that three conserved cystines of clMagR played different roles on the iron–sulfur cluster binding, and especially Cys-60 is essential for clMagR to bind [3Fe–4S] cluster, not [2Fe–2S] cluster. Therefore, it is possible to obtain a [2Fe–2S] cluster binding only clMagR by mutating Cys-60. Thus, we labeled clMagR protein samples based on their iron–sulfur cluster in later experiments. For example, we labeled the chemically reconstituted clMagRWT as [3Fe–4S]-clMagRWT, and clMagRC60A that accepted [2Fe–2S] cluster from holo-IscU as [2Fe–2S]-clMagRC60A, to investigate the magnetic property of clMagR when it binds different iron–sulfur clusters.[3Fe–4S]-clMagR shows different magnetic properties from [2Fe–2S]-clMagRMagR has been reported as a putative magnetoreceptor and exhibits intrinsic magnetic moment experimentally and theoretically when forms complex with cryptochrome (Cry)18,20,21. To elucidate if different iron–sulfur clusters binding in clMagR have different magnetic features and respond to external magnetic fields differently, we obtained [3Fe–4S] and [2Fe–2S] bound only clMagR protein by chemical reconstitution of clMagRWT (as [3Fe–4S]-clMagRWT) and holo-IscU incubated and re-purified clMagRC60A (as [2Fe–2S]-clMagRC60A), respectively, and measured the magnetic moment of these proteins with Superconducting Quantum Interference Device (SQUID) magnetometry. SQUID is a highly sensitive magnetometry to measure extremely subtle magnetic fields and to study the magnetic properties of a range of samples, including extremely low magnetic moment biological samples. Therefore, it has been regularly used as a first test to identify the specific kind of magnetism of a given specimen, such as ferromagnetic, antiferromagnetic, paramagnetic or diamagnetic, by measuring at different temperatures and external magnetic field strength. For example, B-DNA was identified as paramagnetic under low temperature by SQUID60.Purified clMagR3M was utilized as a control since it had no iron–sulfur cluster binding due to lack of cysteine residues (Fig. 1b,c). The magnetic measurement was done at different temperatures (5 K and 300 K) and MH curves (magnetization (M) curves measured versus applied fields (H)) were generated for three proteins to reflect the protein magnetic anisotropy. The MH curves of clMagR3M clearly exhibited diamagnetic property at both 5 K and 300 K, suggesting that magnetism of clMagR is dependent on the iron–sulfur cluster (Fig. 5a,b, red lines). In contrast, [3Fe–4S]-clMagRWT showed superparamagnetic behavior at 5 K which has saturation magnetization (MS) at 2 T about 0.22771 emu/g protein (Fig. 5a, purple line), [2Fe–2S]-clMagRC60A is paramagnetic at 5 K (Fig. 5a, orange line). Interestingly, at higher temperature such as 300 K, [2Fe–2S]-clMagRC60A is diamagnetic while [3Fe–4S]-clMagRWT is paramagnetic (Fig. 5b, orange line and purple line). The different magnetism, as well as the different saturation magnetization of clMagR with different iron–sulfur binding, are clearly important features of this putative magnetoreceptor, and worth further investigation and validation in vivo in the future.Figure 5[3Fe–4S]-clMagRWT shows different magnetic properties from [2Fe–2S]-clMagRC60A. (a) Field-dependent magnetization curves (MH) at 5 K for [2Fe–2S]-clMagRC60A (orange), [3Fe–4S]-clMagRWT (chem re clMagRWT, purple), and clMagR3M (red). The magnetic susceptibility of [2Fe–2S]-clMagRC60A is 2.27749E−6 and the magnetic susceptibility of clMagR3M is − 4.0438E−7. (b) Field-dependent magnetization curves (MH) at 300 K for [2Fe–2S]-clMagRC60A (orange), [3Fe–4S]-clMagRWT (chem re clMagRWT, purple), and clMagR3M (red). And the magnetic susceptibility is − 1.83638E−7, 5.93483E−8, − 3.26432E−7, respectively.Full size image More