More stories

  • in

    Estimating and predicting snakebite risk in the Terai region of Nepal through a high-resolution geospatial and One Health approach

    Our results showed that covariates at different geographical scales (national and local) may have important effects on the risk of snakebite, both for humans and animals. The results indicate that the risk of snakebite in the Terai varies at national scale between clusters and at local scale between households. The evaluation of the final models without spatial random components and the worsening of the models’ goodness of fit as a result highlighted how snakebite risk and its determining factors are indeed spatially structured.A strong association between high snakebite incidence and mortality, and poverty was established from the analysis of 138 countries affected by the disease32. In this study, we identified the PPI, an indicator for poverty, as a highly influential risk-increasing factor for humans. This not only confirms the critical role of poverty as a driver for this Neglected Tropical Disease, but also offers the possibility to use a standardized index at individual household scale for similar studies. Chaves et al.33 used the Poverty Gap, which is a simpler index expressing how far a person is from the average national poverty line, but to our knowledge, no study has used PPI for snakebite in any way. Applying PPI as a snakebite risk predictor also addresses previous expert calls for an Ecohealth approach to consider the relationship between the structural characteristics of houses, poverty, and snakebite34.Three of the survey covariates had significant effects on the odds of snakebite. Food storage and straw storage increased them, while sleeping on the floor reduce them. The effect of the first two covariates is likely to be related to prey availability, represented by rodents, which are attracted by food and shelter sources. Both food and straw are very often stored near dwellings, which in the end multiply the number of possible encounters between humans, domestic animals, and the hunting snakes20. The expected snakebite risk reduction effect by sleeping on the floor is more complex though. Previously, a higher snakebite incidence was reported among rural Hindus in Maharashtra, India, due to their custom of sleeping on the floor35,36, while in Nepal, Chappuis et al. did not find any protective effect or significant difference in snakebite cases between sleeping on a cot or on the floor37. This result, nevertheless, might be influenced again by regional customs that make sleeping on the floor more common in eastern Terai (71.1% of all affirmative answers to this question), and second, by the commonly acknowledged prevalence of kraits (Bungarus spp.) in western Terai, which are the species most commonly linked to bites to people sleeping on the floor while hunting at night inside houses22,38. This geographic separation, between the human behaviour and the distribution of the species considered to cause most bites linked to it, could explain the observed shift in the odds towards a reduction effect. This effect should be further explored in localized studies designed to capture behavioural differences in humans and snakes.For both the general human risk model and its equivalent prediction model, the covariate Distance to water had a significant risk-increasing effect. For each additional km in distance from permanent water sources, the odds of snakebite increased by 1.38 and 1.51 times, respectively. From a human perspective and in this socio-economic framework, it would be important to consider not only the distance to water, but also the path taken to get the water (or any other resource). If this path would lead a person through grasslands and open fields, this could imply an increased risk of snakebite. From an ecological perspective, there are two important aspects to consider in relation to water sources. One is, as in this study, the distance from large, constant water sources, which usually represent stable environments subject to less hydric stress. The second (not considered here) are the human-made water sources, such as ponds, reservoirs, and paddy fields that change often, are usually closer to human dwellings, and are known to attract some medically important venomous snakes (MIVS)5. Studies on snake migration and home range use have concluded that depending on species and ecological conditions, snakes can move between a few tens of meters per day and more than 10 km between seasons, while searching for water and prey resources38,39,40,41. In sub-tropical regions like the Terai, snakes living closer to continuous sources of water and vegetation should have easier access to a wider variety of prey. On the contrary, those living in agricultural areas might need to scout farther in the search for resources, encountering human-made waterbodies and prey, such as rodents42 and amphibians, abundant in this region10. Further studies considering all sources of water, and species ecology, biology and richness would be necessary to completely understand the effect of this and similar eco-physiological covariates.Another important factor was the NDVI, which is a commonly used value to express photosynthetic activity, leaf production and in summary the ‘greenness’ of the environment43. As is the case for other covariates, its interpretation depends on the study circumstances. In Iran, it was considered an indicator of prey availability for snakes and linked to snake habitat suitability14. Elevated NDVI values have been associated with higher number of hospitalizations in Nigeria and northern Ghana, in particular during the periods of high agricultural activity, which is also related to higher snake-human contact and higher snakebite incidence43. In our study, its ‘protective’ effect can indeed be the consequence of better access to prey associated with healthier ecosystems, explained in the Terai by the higher NDVI values of the multiple dense forests distributed along the region. In addition, the averaged NDVI values for agricultural areas should be lower than those for perennial forests, because they include the highs and lows of production and harvest.Environmental drivers like temperature and precipitation are common factors in geospatial analyses of snakebite13,14,17,44. They are found in many cases to be the main factors modulating the incidence or risk of snakebite, while varying in importance according to study conditions. For example, in Iran, precipitation seasonality was the most prevalent climatic covariate determining the habitat suitability leading to snakebite risk14, while in Mozambique, temperature seasonality was the predominant covariate13. Despite the Terai’s sub-tropical climate, the range of the average minimum temperature of the coldest month (BIO6) was 1.8–10.9 °C. For our snakebite risk analysis in animals, an increase of 10 °C of BIO6 between any two points represented an increase in the odds of snakebite of 23.41 times. For snakes, this range could be the difference between total lethargy and partial activity45, which could lead to increased numbers of snakebites. In addition, and according to the production and holding practices of domestic animals in the Terai, this temperature range can also represent the difference between animals (mainly ruminants) being kept in sheds when at the lower range limits, or being let out of them at the upper limits, which would again increase the chances of encounters with snakes.Similarly, for the animal model, pig density and sheep density, significantly influenced the variation in the risk of snakebite for animals in the Terai. This could be due to the conditions in which the animals and their feed are kept, favouring environments that are beneficial for either snakes or their prey. At more local scales, rather than the distribution, the presence of other animal species could instead be the factor associated with higher snakebite rates12. However, since the available data on domestic animal density was produced more than 10 years ago, and the animal population has grown substantially in the last years in Nepal, this outcome should be interpreted with caution.For the animal risk, the possession of an animal shed also significantly increased the odds of snakebite. Similar to straw storage, animal sheds and similar constructions offer some shelter and at the same time attract small (prey) animals, both of which are likely to attract snakes, increasing snakebite risk for the animals using the shed. If in addition, the sheds function as poultry coops, the snake hunting behaviour might be instead targeted towards chicks and chickens12. Mitigation measures such as raising the coop’s floor or securing openings with fine metal mesh have been suggested to reduce this risk12.The human modification of terrestrial systems was the only non-significant covariate in the animal risk model. However, as its strong, risk-reducing effect still seems to explain a lot of the response variation, it was retained. Its change in one unit, i.e., going from a pristine to fully modified environment, decreased the odds of snakebite by 0.13 (equivalent to 7.69 times), which agrees with previous national survey results from Sri Lanka21.For our human risk prediction model, four covariates were either significant or helped to explain the changes in the response. Distance to water and NDVI were clearly significant, and precipitation of the driest quarter (BIO17) and the mean annual temperature (BIO1) helped to explain some of the response variation with convincing, unambiguous effects. For BIO17, an increase of 100 mm of rain during the driest months of the year represented an odds-reduction effect equivalent to 8.33 times. This agrees with the results of distance to water, suggesting that the additional availability of resources during water shortage periods, i.e., almost four times more rain (BIO17 range: 18–71 mm), could locally improve ecological conditions for snakes also leading to less scouting and fewer human encounters. Previous studies have analysed the multilevel ecological effects of droughts, e.g., reducing snake prey and leading snakes to engage in riskier behaviours46,47. For BIO1, the protective effect was weaker. An increase of 10 °C represented a reduction of the odds of snakebite equivalent to 3.57 times. Average temperatures for specific locations are difficult to interpret, since they might depend on mild highs and lows, strong highs and lows, or relative combinations of both. Thus, despite having a relatively important effect on the response, this effect still might be the consequence of confounding and unknown interactions.Several other evaluated covariates, for both humans and animals, showed a negligible effect on describing the response, were not significant while having very large uncertainties, or both. Consequently, they were discarded as predicting factors. For the list of baseline covariates evaluated, see supplementary Table S1. For a complete list of available survey covariates, see Alcoba et al.27.Some of our discarded covariates have been important in other studies, for example, to quantify snakebite risk based on reclassification methods of covariates such as habitat suitability, species presence, or envenoming severity13,14,17,44,48. These methods are especially relevant when one species (or very few) is the cause of most snakebite cases, and has differentiated optimal and sub-optimal habitats. In Nepal, and particularly in the Terai, there are at least two, and sometimes more than 10 MIVS with overlapping distributions49. Thus, it could be said that practically the whole region offers suitable habitat for multiple MIVS. In addition, the impossibility of reliably identifying the species having bitten the surveyed victims hindered the use of single species in the analysis. In our analysis, species richness was removed, as it showed almost no effect on the response. A recent meta-analysis reported an equivalent result at global scale, finding no significant difference between the number of venomous snake species in tropical and temperate locations, while the number of snakebites is clearly higher in tropical areas50. These results suggested that high incidence of snakebite is unrelated to species richness, but instead related to other factors like the number of people working in agricultural environments21,32,50. Another important driver of snakebite incidence has been population density50. In our study, however, any possible effect from population density on the risk was diminished by the random selection of households at specific numbers during study design. This was later confirmed by the minimal effect of population density as covariate in the human risk analysis.This study presents a few limitations. For instance, despite the capacity of the INLA method to borrow strength from neighbouring observations and areas, the selection of adequate covariates with enough explanatory power still depends greatly on the number of snakebite cases, which even for a national scale study like this remains small. Also, some of the covariates with the strongest explanatory power came from our household survey, which prevented their use for generalized spatial prediction models. Concerning the animal risk analysis, due to the small number of snakebite cases we opted to aggregate all animal species and consider a grouped response. Thus, for a spatial analysis of animal risk, it was not worth it to consider each species, since that would dilute further an already sparse dataset in individual models and selection processes. Moreover, the data gathered for animals was dependent on the random selection of (human) households and unrelated to the current distribution of animal populations. This, in addition to the possible number of dry bites that go unnoticed, might be responsible for the low number of animal victims recorded (even combined across all species), making a more detailed analysis unfeasible.Despite the large number of covariates examined during our analysis, very few were useful to predict snakebite risk along the Terai. It is possible that confounders or other difficult-to-measure covariates could better explain the complex relationship between the ecology and biology of MIVS, socio-economic factors, human behavioural traits, and the circumstances around domestic animal keeping. This needs to be further explored, following a recent call for an overarching One Health and Ecohealth approach to better understand the drivers for snakebite risk, incidence, and mortality under specific situations34.In conclusion, snakebite is a multi-factorial disease and there is no possible universal approach to model its risk. Each model should be individually designed for each set of socio-economical, geographic, ecological, cultural, and environmental circumstances19. To better understand and address the snakebite problem, it is necessary to approach it, whenever possible, with local data collected at a national scale, so that the conclusions drawn can fuel appropriate national public health policies and actions. As long as people work, live, and keep their domestic animals in close contact with natural environments with MIVS, the risk of snakebite will be present. However, better understanding of the factors influencing that risk at the most granular scale possible, and the estimation of the populations at risk, can help to better target prevention and mitigation measures. For humans, this evidence can channel efforts towards improved access to treatment through the optimized stockpiling of antivenom, and the improvement, relocation or new construction of treating facilities, but more importantly, towards community education and sensitization in preventive campaigns51. Part of that preventive and educative efforts can be done at household level, by promoting and facilitating the use of protective equipment such as rubber boots, or the guidance on how to improve and adapt their immediate surroundings to make them ecologically less attractive for snakes and their prey. For domestic animals, this information could help better target awareness-raising activities for animal owners and implement mitigation strategies. For animals at higher risk, tailored interventions such as the improvement of housing conditions, regular cleaning of sheds and surrounding areas (e.g., from food waste and surrounding vegetation), and using light when animals are walked out of the enclosure at night could be deployed specifically as snakebite prevention measures52. It is also important to highlight that many of the factors analysed in this study affect most directly the snakes themselves, not only as snakebite agents, but also as a diverse group of species, differently affected by ecological, climatic and environmental factors in a multiplicity of settings shared with humans and domestic animals. It is therefore necessary to further investigate how those factors influence the behavioural and ecological traits of MIVS in order to truly understand this disease from a One Health viewpoint. At stake is the reduction of snakebite envenoming incidence rates in humans and animals, and of its possible long-term sequelae on human populations. More

  • in

    Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms

    Systemic co-infections of commensal Pseudomonas with an individual pathogenTo examine the ability of commensal Pseudomonas strains to protect host plants from members of a pathogenic Pseudomonas lineage, we made use of a local isolate collection [16]. We henceforth refer to an operational taxonomic unit (OTU) as reported in that study as “ATUE” (isolates from Around TUEbingen), and following previous findings [16, 17], we refer to the lineage ATUE5 as pathogenic, and to all non-ATUE5 lineages as commensals.We grew plants on MS agar and monitored plant growth and health by extracting the number of green pixels from images over time (illustration in Fig. 1A). Green pixel count and rosette fresh weight were strongly correlated (Supplementary Fig. S1; R2 = 0.92, p value  More

  • in

    Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis

    1.Doney S, Abbott MR, Cullen JJ, Karl DM, Rothstein L. From genes to ecosystems: the ocean’s new frontier. Ecol Environ. 2004;2:457–66.
    Google Scholar 
    2.Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 

    Google Scholar 
    3.Eppley RW, Petersen BJ. Particulate organic matter flux and planktonic new production in the deep ocean. Nature. 1979;282:677–80.
    Google Scholar 
    4.Ducklow H, Steinberg DK, Buessler KO. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:56–58.
    Google Scholar 
    5.Carlson C, Ducklow H. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Res II. 1995;42:639–56.CAS 

    Google Scholar 
    6.Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 

    Google Scholar 
    7.Duarte CM, Cebrian J. The fate of marine autotrophic production. Limnol Oceanogr. 1996;41:1758–66.CAS 

    Google Scholar 
    8.Ducklow H. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol. 1999;30:1–30.CAS 

    Google Scholar 
    9.Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594.PubMed 

    Google Scholar 
    11.Grossart HP, Rojas-Jimenez K. Aquatic fungi: targeting the forgotten in microbial ecology. Curr Opin Microbiol. 2016;31:140–5.PubMed 

    Google Scholar 
    12.Richards TA, Jones MD, Leonard G, Bass D. Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci. 2012;4:495–522.PubMed 

    Google Scholar 
    13.Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol. 2010;73:121–33.CAS 
    PubMed 

    Google Scholar 
    14.Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11:1588–1600.PubMed 

    Google Scholar 
    15.Redou V, Navarri M, Meslet-Cladiere L, Barbier G, Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol. 2015;81:3571–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hyde KD, Jones EBG, Leao E, Pointing SB, Poonyth AD, Vrjmoed LLP. Role of fungi in marine ecosystems. Biodivers Conserv. 1998;7:1147–61.
    Google Scholar 
    17.Jones EB. Marine fungi: some factors influencing biodiversity. Fungal Diversity. 2000;4:53–73.
    Google Scholar 
    18.Priest T, Fuchs B, Amann R, Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom. Environ Microbiol. 2021;23:448–63.CAS 
    PubMed 

    Google Scholar 
    19.Gutierrez MH, Jara AM, Pantoja S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol. 2016;18:1646–53.PubMed 

    Google Scholar 
    20.Gutierrez MH, Pantoja S, Tejos E. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol. 2011;158:205–19.
    Google Scholar 
    21.Bochdansky AB, Clouse MA, Herdl GJ. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–73.PubMed 

    Google Scholar 
    22.Becker S, Tebben J, Coffinet S, Wittshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 

    Google Scholar 
    24.Hassett BT, Gradinger R. Chytrids dominate arctic fungal communities. Environ Microbiol. 2016;18:2001–9.CAS 
    PubMed 

    Google Scholar 
    25.Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.CAS 
    PubMed 

    Google Scholar 
    26.Ortega-Arbulu AS, Pichler M, Vuillemin A, Orsi WD. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol 2019;21:374–88.CAS 
    PubMed 

    Google Scholar 
    27.Orsi WD, Morard R, Vuillemin A, Eitel M, Wörheide G, Milucka J, et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME J. 2020;14:2580–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Orsi WD, Vuillemin A, Rodriguez P, Coskun OK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.CAS 
    PubMed 

    Google Scholar 
    29.Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography. Methods. 2008;6:230–5.CAS 

    Google Scholar 
    30.Green NW, Perdue EM, Aiken GR, Butler KD, Chen H, Dittmar T, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar Chem. 2014;161:14–19.CAS 

    Google Scholar 
    31.Riedel T, Dittmar T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014;86:8376–82.CAS 
    PubMed 

    Google Scholar 
    32.Merder J, Freund JA, Feudel U, Hansen CT, Hawkes JA, Jacob B, et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal Chem. 2020;92:6832–8.CAS 
    PubMed 

    Google Scholar 
    33.Koch BP, Dittmar T. From mass to structure: an aromaticity index for high resolution mass data of natural organic matter. Rapid Commun Mass Spectrom. 2006;20:926–32.CAS 

    Google Scholar 
    34.Koch BP, Dittmar T. Erratum: from mass to structure: an aromaticity index for high resolution mass data of natural organic matter. Rapid Commun Mass Spectrom. 2016;20:250–250.
    Google Scholar 
    35.Oksanen J, Blanchen FG, Friendly M, Kindt R, Legendre R, McGlinn D, et al. Vegan: community ecology package. R package version 2 4-3 2017. (https://CRAN.R-project.org/package=vegan). Accessed June 2020.36.Hansen CT, Niggemann J, Giebel HA, Simon M, Bach W, Dittmar T. Biodegradability of hydrothermally altered deep-sea dissolved organic matter. Mar Chem. 2019;217. https://doi.org/10.1016/j.marchem.2019.103706.37.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 

    Google Scholar 
    39.White TJ, Bruns S, Lee S, Taylor J “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics”. In: M Innis, D Gelfand, K Sninsky, T White, editors. PCR Protocols: a guide to methods and applications. Academic Pres, New York, NY; 1990. pp. 315–22.40.Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.PubMed 

    Google Scholar 
    41.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    42.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264.CAS 
    PubMed 

    Google Scholar 
    43.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Coskun OK, Pichler M, Vargas S, Gilder S, Orsi WD. Linking uncultivated microbial populations and benthic carbon turnover by using quantitative stable isotope probing. Appl Environ Microbiol. 2018;84:e01083–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Chemidlin Prevost-Boure N, Christen R, Dequiedt S, Mougel C, Lellevre M, Jolivet C, et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One. 2011;6:e24166.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Banos S, Lentendu G, Kopf A, Wubet T, Glockner FO, Reich M. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol. 2018;18:190.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 

    Google Scholar 
    48.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    49.Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.PubMed 
    PubMed Central 

    Google Scholar 
    50.Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.CAS 
    PubMed 

    Google Scholar 
    51.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 
    PubMed 

    Google Scholar 
    53.Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.CAS 
    PubMed 

    Google Scholar 
    54.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–495.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Tamames J, Puente-Sanchez F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol. 2018;9:3349.PubMed 

    Google Scholar 
    56.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 

    Google Scholar 
    58.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    59.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS 
    PubMed 

    Google Scholar 
    61.Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:1–19.
    Google Scholar 
    62.Guillard RRL, Hargraves PE. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993;32:234–6.
    Google Scholar 
    63.Inthorn M, Wagner T, Scheeder G, Zabel M. Lateral transport controls distribution, quality and burial of organic matter along continental slopes in high-productivity areas. Geology. 2006;34:205–8.CAS 

    Google Scholar 
    64.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Igarza M, Dittmar T, Graco M, Niggemann J. Dissolved organic matter cycling in the coastal upwelling system off central Peru during an “El Niño” year. Front Mar Sci. 2019;6:198.
    Google Scholar 
    66.Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 

    Google Scholar 
    68.Rossel PE, Stubbins A, Hach PF, Dittmar T. Bioavailability and molecular composition of dissolved organic matter from a diffuse hydrothermal system. Mar Chem. 2015;177:257–66.CAS 

    Google Scholar 
    69.Schmidt F, Koch BP, Goldhammer T, Elvert M, Witt M, Lin Y, et al. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments. Geochim Cosmochim Acta. 2017;207:57–80.CAS 

    Google Scholar 
    70.Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90:1–17.CAS 
    PubMed 

    Google Scholar 
    71.Jones MD, Richards TA, Hawksworth DL, Bass D. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus. 2011;2:173–5.PubMed 
    PubMed Central 

    Google Scholar 
    72.Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–46.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Morand SC, Bertignac M, Iltis A, Kolder ICRM, Pirovano W, Jourdain R, et al. Complete genome sequence of Malassezia restricta CBS 7877, an opportunist pathogen involved in dandruff and seborrheic dermatitis. Microbiol Resour Announc. 2019;8:e01543–18.PubMed 
    PubMed Central 

    Google Scholar 
    74.Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl Environ Microbiol. 2007;73:3189–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Tedersoo L, Sanchez-Ramirez S, Kõljalg U, Bahram M, Döring M, Schigel D, et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity. 2018;90:135–59.
    Google Scholar 
    76.Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S, et al. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89.PubMed 

    Google Scholar 
    77.Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol. 2014;5:112.PubMed 
    PubMed Central 

    Google Scholar 
    78.Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature. 2011;474:200–3.CAS 
    PubMed 

    Google Scholar 
    79.Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, et al. Phylogenomic analyses indicate that early Fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol. 2015;7:1590–601.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Loron CC, Francois C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ. Early fungi from the Proterozoic era in Arctic Canada. Nature. 2019;570:232–5.CAS 
    PubMed 

    Google Scholar 
    81.Lyons TW, Reinhard CT, Planavsky NJ. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 2014;506:307–15.CAS 
    PubMed 

    Google Scholar 
    82.Passow U. Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Mar Ecol Prog Ser. 2002;236:1–12.
    Google Scholar 
    83.Takahashi E, Ledauphin J, Goux D, Orvain F. Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res. 2009;60:1201–10.CAS 

    Google Scholar 
    84.de Brouwer JFC, Wolfstein K, Stal J. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom. Eur J Phycol. 2002;37:37–44.
    Google Scholar 
    85.Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, et al. Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B. 2007;274:3069–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 2014;10:e1004277.PubMed 
    PubMed Central 

    Google Scholar 
    87.Meeboon J, Takamatsu S. Microidium phyllanthi-reticulati sp. nov. on Phyllanthus reticulatus. Mycotaxon. 2017;132:289–97.
    Google Scholar 
    88.Lueders T, Wagner B, Claus P, Friedrich MW. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol. 2004;6:60–72.CAS 
    PubMed 

    Google Scholar 
    89.Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Let. 2011;38:94–97.
    Google Scholar 
    92.Starzynska-Janiszewska A, Dulinski R, Stodolak B. Fermentation with edible Rhizopus strains to enhance the bioactive potential of hull-less pumpkin oil cake. Molecules. 2020;25:5782.CAS 
    PubMed Central 

    Google Scholar 
    93.Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN. Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol. 2010;114:151–9.CAS 
    PubMed 

    Google Scholar 
    94.Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 

    Google Scholar 
    95.Rossel PE, Bienhold C, Hehemann JH, Dittmar T, Boetius A. Molecular composition of dissolved organic matter in sediment porewater of the arctic deep-sea observatory HAUSGARTEN (Fram Strait). Front Mar Sci. 2020;7:428.
    Google Scholar 
    96.Fenchel T, Finlay BJ. Ecology and evolution in anoxic worlds. In: RM May, PH Harvey, editors. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford; 1–288, 1995.97.Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The polar night shift: seasonal dynamics and drivers of Arctic Ocean microbiomes revealed by autonomous sampling

    1.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Bunse C, Pinhassi J. Marine Bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:494–505.CAS 
    PubMed 

    Google Scholar 
    3.Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.PubMed 

    Google Scholar 
    4.Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 

    Google Scholar 
    5.Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 

    Google Scholar 
    6.Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2021.7.Alonso-Saez L, Sanchez O, Gasol JM, Balague V, Pedros-Alio C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ Microbiol. 2008;10:2444–54.CAS 
    PubMed 

    Google Scholar 
    8.Rokkan Iversen K, Seuthe L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 2011;34:731–49.
    Google Scholar 
    9.Grzymski JJ, Riesenfeld CS, Williams TJ, Dussaq AM, Ducklow H, Erickson M, et al. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters. ISME J. 2012;6:1901–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Pedrós-Alió C, Potvin M, Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 2015;139:233–43.
    Google Scholar 
    11.Wilson B, Müller O, Nordmann E-L, Seuthe L, Bratbak G, Øvreås L. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front Mar Sci. 2017;4:95.
    Google Scholar 
    12.Sandaa R-A, E Storesund J, Olesin E, Lund Paulsen M, Larsen A, Bratbak G, et al. Seasonality drives microbial community structure, shaping both eukaryotic and prokaryotic host−viral relationships in an Arctic marine ecosystem. Viruses. 2018;10:715.CAS 
    PubMed Central 

    Google Scholar 
    13.Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Freyria NJ, Joli N, Lovejoy C. A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels. Sci Rep. 2021;11:8413.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A, Mundy CJ, et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci Rep. 2017;7:40850.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Hegseth EN, Assmy P, Wiktor JM, Wiktor J, Kristiansen S, Leu E, et al. Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds). The ecosystem of Kongsfjorden, Svalbard. 2019. Springer International Publishing, Cham, pp 173–227.17.Liu Y, Blain S, Crispi O, Rembauville M, Obernosterer I. Seasonal dynamics of prokaryotes and their associations with diatoms in the Southern Ocean as revealed by an autonomous sampler. Environ Microbiol. 2020;22:3968–84.CAS 
    PubMed 

    Google Scholar 
    18.Randelhoff A, Lacour L, Marec C, Leymarie E, Lagunas J, Xing X, et al. Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci Adv. 2020;6:eabc2678.PubMed 
    PubMed Central 

    Google Scholar 
    19.Randelhoff A, Reigstad M, Chierici M, Sundfjord A, Ivanov V, Cape M, et al. Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Front Mar Sci. 2018;5:224.
    Google Scholar 
    20.Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr. 2015;139:258–71.
    Google Scholar 
    21.Müller O, Wilson B, Paulsen ML, Rumińska A, Armo HR, Bratbak G, et al. Spatiotemporal dynamics of ammonia-oxidizing thaumarchaeota in distinct arctic water masses. Front Microbiol. 2018;9:24.PubMed 
    PubMed Central 

    Google Scholar 
    22.Johnsen G, Leu E, Gradinger R. Marine micro- and macroalgae in the polar night. In: Berge J, Johnsen G, Cohen JH (eds). Polar night marine ecology: life and light in the dead of night. 2020. Springer International Publishing, Cham, pp 67–112.23.Vader A, Marquardt M, Meshram A, Gabrielsen T. Key Arctic phototrophs are widespread in the polar night. Polar Biol. 2014;38:13–21.
    Google Scholar 
    24.Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, et al. Arctic spring awakening—steering principles behind the phenology of vernal ice algal blooms. Prog Oceanogr. 2015;139:151–70.
    Google Scholar 
    25.Soltwedel T, Bauerfeind E, Bergmann M, Bracher A, Budaeva N, Busch K, et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol Indic. 2016;65:89–102.
    Google Scholar 
    26.Nöthig E-M, Ramondenc S, Haas A, Hehemann L, Walter A, Bracher A, et al. Summertime chlorophyll a and particulate organic carbon standing stocks in surface waters of the Fram Strait and the Arctic Ocean (1991–2015). Front Mar Sci. 2020;7:350.
    Google Scholar 
    27.Nöthig E-M, Bracher A, Engel A, Metfies K, Niehoff B, Peeken I, et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 2015;34:23349.
    Google Scholar 
    28.Engel A, Bracher A, Dinter T, Endres S, Grosse J, Metfies K, et al. Inter-annual variability of organic carbon concentration in the Eastern Fram Strait during summer (2009-17). Front Mar Sci. 2019;6:187.
    Google Scholar 
    29.Fadeev E, Salter I, Schourup-Kristensen V, Nöthig E-M, Metfies K, Engel A, et al. Microbial communities in the east and west Fram Strait during sea ice melting season. Front Mar Sci. 2018;5:429.
    Google Scholar 
    30.von Jackowski A, Grosse J, Nöthig E-M, Engel A. Dynamics of organic matter and bacterial activity in the Fram Strait during summer and autumn. Philos Trans R Soc Math Phys Eng Sci. 2020;378:20190366.
    Google Scholar 
    31.Metfies K, Bauerfeind E, Wolf C, Sprong P, Frickenhaus S, Kaleschke L, et al. Protist communities in moored long-term sediment traps (Fram Strait, Arctic)–preservation with mercury chloride allows for PCR-based molecular genetic analyses. Front Mar Sci. 2017;4:301.
    Google Scholar 
    32.Cardozo-Mino MG, Fadeev E, Salman-Carvalho V, Boetius A. Spatial distribution of Arctic bacterioplankton abundance is linked to distinct water masses and summertime phytoplankton bloom dynamics (Fram Strait, 79°N). Front Microbiol. 2021;12:658803.PubMed 
    PubMed Central 

    Google Scholar 
    33.Richter ME, von Appen W-J, Wekerle C. Does the East Greenland Current exist in the northern Fram Strait? Ocean Sci. 2018;14:1147–65.CAS 

    Google Scholar 
    34.Tuerena RE, Hopkins J, Buchanan PJ, Ganeshram RS, Norman L, von Appen W-J, et al. An Arctic strait of two halves: the changing dynamics of nutrient uptake and limitation across the Fram Strait. Glob Biogeochem Cycles. 2021;35:e2021GB006961.35.Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 2017;356:285–91.CAS 
    PubMed 

    Google Scholar 
    36.Lannuzel D, Tedesco L, van Leeuwe M, Campbell K, Flores H, Delille B, et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat Clim Change. 2020;10:983–92.
    Google Scholar 
    37.Carter-Gates M, Balestreri C, Thorpe SE, Cottier F, Baylay A, Bibby TS, et al. Implications of increasing Atlantic influence for Arctic microbial community structure. Sci Rep. 2020;10:19262.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 

    Google Scholar 
    39.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011;17:10–2.
    Google Scholar 
    40.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS 
    PubMed 

    Google Scholar 
    42.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.CAS 
    PubMed 

    Google Scholar 
    43.Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6.
    Google Scholar 
    44.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
    Google Scholar 
    45.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Andersen KSS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018.47.Lawlor J. PNWColors: A Pacific Northwest inspired R color palette package. 2020 https://github.com/jakelawlor/PNWColors.48.von Appen W-J, Schauer U, Hattermann T, Beszczynska-Möller A. Seasonal cycle of mesoscale instability of the west Spitsbergen Current. J Phys Oceanogr. 2016;46:1231–54.
    Google Scholar 
    49.Wekerle C, Wang Q, von Appen W-J, Danilov S, Schourup-Kristensen V, Jung T. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J Geophys Res Oceans. 2017;122:8385–405.
    Google Scholar 
    50.Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35.PubMed 

    Google Scholar 
    51.Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, Sebastián M, et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 2021;6:1561–74.52.Priest T, Orellana LH, Huettel B, Fuchs BM, Amann R. Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms. PeerJ. 2021;9:e11721.PubMed 
    PubMed Central 

    Google Scholar 
    53.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    54.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 

    Google Scholar 
    55.Monier A, Comte J, Babin M, Forest A, Matsuoka A, Lovejoy C. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 2015;9:990–1002.CAS 
    PubMed 

    Google Scholar 
    56.Leeuwe M, van, Tedesco L, Arrigo KR, Assmy P, Campbell K, Meiners KM, et al. Microalgal community structure and primary production in Arctic and Antarctic sea ice: a synthesis. Elem Sci Anth. 2018;6:4.
    Google Scholar 
    57.Fadeev E, Rogge A, Ramondenc S, Nöthig E-M, Wekerle C, Bienhold C, et al. Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean. Commun Biol. 2021;4:1–13.
    Google Scholar 
    58.Wasmund N, Göbel J, von Bodungen B. 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). J Mar Syst. 2008;73:300–22.
    Google Scholar 
    59.Stoecker DK, Lavrentyev PJ. Mixotrophic plankton in the polar seas: a pan-Arctic review. Front Mar Sci. 2018;5:292.
    Google Scholar 
    60.Lampe V, Nöthig E-M, Schartau M. Spatio-temporal variations in community size structure of Arctic protist plankton in the Fram Strait. Front Mar Sci. 2021;7:579880.
    Google Scholar 
    61.Brichta M, Nöthig E-M. The role of life cycle stages of diatoms in decoupling carbon and silica cycles in polar regions. In: Proceedings of SCAR Open Science Conference Bremen, Germany. 2004.62.Not F, Siano R, Kooistra WHCF, Simon N, Vaulot D, Probert I. Diversity and ecology of eukaryotic marine phytoplankton. In: Piganeau G (ed). Advances in botanical research. 2012. Academic Press, pp 1–53.63.Raghukumar S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol. 2002;38:127–45.
    Google Scholar 
    64.Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, et al. Zoosporic parasites infecting marine diatoms—a black box that needs to be opened. Fungal Ecol. 2016;19:59–76.PubMed 
    PubMed Central 

    Google Scholar 
    65.Choi DH, Park K-T, An SM, Lee K, Cho J-C, Lee J-H, et al. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLOS One. 2015;10:e0116271.PubMed 
    PubMed Central 

    Google Scholar 
    66.Wemheuer B, Wemheuer F, Hollensteiner J, Meyer F-D, Voget S, Daniel R. The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches. Front Microbiol. 2015;6:805.PubMed 
    PubMed Central 

    Google Scholar 
    67.Delpech L-M, Vonnahme TR, McGovern M, Gradinger R, Præbel K, Poste A. Terrestrial inputs shape coastal bacterial and archaeal communities in a high Arctic Fjord (Isfjorden, Svalbard). Front Microbiol. 2021;12:614634.PubMed 
    PubMed Central 

    Google Scholar 
    68.Alldredge AL, Gotschalk CC. Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res Part A. Oceanogr Res Pap. 1989;36:159–71.CAS 

    Google Scholar 
    69.Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.CAS 

    Google Scholar 
    70.Underwood GJC, Michel C, Meisterhans G, Niemi A, Belzile C, Witt M, et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat Clim Change. 2019;9:170–6.
    Google Scholar 
    71.Graham E, Tully BJ. Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning. ISME J. 2021;15:1248–56.72.Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.CAS 
    PubMed 

    Google Scholar 
    73.Randelhoff A, Sundfjord A, Reigstad M. Seasonal variability and fluxes of nitrate in the surface waters over the Arctic shelf slope. Geophys Res Lett. 2015;42:3442–9.CAS 

    Google Scholar 
    74.García FC, Alonso-Sáez L, Morán XAG, López-Urrutia Á. Seasonality in molecular and cytometric diversity of marine bacterioplankton: the re-shuffling of bacterial taxa by vertical mixing. Environ Microbiol. 2015;17:4133–42.PubMed 

    Google Scholar 
    75.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed 
    PubMed Central 

    Google Scholar 
    76.Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 2020;14:437–49.PubMed 

    Google Scholar 
    77.Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.
    Google Scholar 
    78.Williams TJ, Lefevre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol. 2012;62:2443–50.CAS 
    PubMed 

    Google Scholar 
    79.von Friesen LW, Riemann L. Nitrogen fixation in a changing Arctic Ocean: an overlooked source of nitrogen? Front Microbiol. 2020;11:596426.
    Google Scholar 
    80.Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, et al. Role for urea in nitrification by polar marine archaea. Proc Natl Acad Sci USA. 2012;109:17989–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Martínez-Pérez C, Greening C, Zhao Z, Lappan RJ, Bay SK, De Corte D, et al. Lifting the lid: nitrifying archaea sustain diverse microbial communities below the Ross Ice Shelf. Cell Rev. 2020; SSRN: https://ssrn.com/abstract=3677479 or https://doi.org/10.2139/ssrn.3677479.82.Mohamed NM, Saito K, Tal Y, Hill RT. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J. 2010;4:38–48.CAS 
    PubMed 

    Google Scholar 
    83.Mussmann M, Pjevac P, Kruger K, Dyksma S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 2017;11:1276–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Burow LC, Kong Y, Nielsen JL, Blackall LL, Nielsen PH. Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology. 2007;153:178–85.CAS 
    PubMed 

    Google Scholar 
    85.Lucas J, Koester I, Wichels A, Niggemann J, Dittmar T, Callies U, et al. Short-term dynamics of North Sea Bacterioplankton-dissolved organic matter coherence on molecular level. Front Microbiol. 2016;7:321.86.Stecher A, Neuhaus S, Lange B, Frickenhaus S, Beszteri B, Kroth PG, et al. rRNA and rDNA based assessment of sea ice protist biodiversity from the central Arctic Ocean. Eur J Phycol. 2016;51:31–46.CAS 

    Google Scholar 
    87.Lalande C, Nöthig E-M, Somavilla R, Bauerfeind E, Shevchenko V, Okolodkov Y. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob Biogeochem Cycles. 2014;28:571–83.CAS 

    Google Scholar 
    88.Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front Microbiol. 2017;8:266.PubMed 
    PubMed Central 

    Google Scholar 
    89.Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.CAS 
    PubMed 

    Google Scholar 
    90.Izaguirre I, Unrein F, Schiaffino MR, Lara E, Singer D, Balagué V, et al. Phylogenetic diversity and dominant ecological traits of freshwater Antarctic Chrysophyceae. Polar Biol. 2021;44:941–57.
    Google Scholar 
    91.Humphry DR, George A, Black GW, Cummings SP. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol. 2001;51:1235–43.CAS 
    PubMed 

    Google Scholar 
    92.Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.93.Ardyna M, Mundy CJ, Mayot N, Matthes LC, Oziel L, Horvat C, et al. Under-ice phytoplankton blooms: shedding light on the “invisible” part of Arctic primary production. Front Mar Sci. 2020;7:608032.
    Google Scholar 
    94.Alonso-Sáez L, Zeder M, Harding T, Pernthaler J, Lovejoy C, Bertilsson S, et al. Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front Microbiol. 2014;5:425.95.Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B, et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat Commun. 2017;8:1507.PubMed 
    PubMed Central 

    Google Scholar 
    96.Berdjeb L, Parada A, Needham DM, Fuhrman JA. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 2018;12:1907–17.PubMed 
    PubMed Central 

    Google Scholar 
    97.Singh A, Divya DT, Tripathy SC, Naik RK. Interplay of regional oceanography and biogeochemistry on phytoplankton bloom development in an Arctic fjord. Estuar Coast Shelf Sci. 2020;243:106916.CAS 

    Google Scholar 
    98.Engel A, Piontek J, Metfies K, Endres S, Sprong P, Peeken I, et al. Inter-annual variability of transparent exopolymer particles in the Arctic Ocean reveals high sensitivity to ecosystem changes. Sci Rep. 2017;7:4129.PubMed 
    PubMed Central 

    Google Scholar 
    99.Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, et al. Zooplankton grazing on Phaeocystis: a quantitative review and future challenges. Biogeochemistry. 2007;83:147–72.
    Google Scholar 
    100.Lampitt RS, Salter I, Johns D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycles. 2009;23:GB1010.
    Google Scholar 
    101.Luria CM, Amaral-Zettler LA, Ducklow HW, Rich JJ. Seasonal succession of free-living bacterial communities in coastal waters of the western Antarctic Peninsula. Front Microbiol. 2016;7:1731.PubMed 
    PubMed Central 

    Google Scholar 
    102.Taylor JD, Cunliffe M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ Microbiol Rep. 2017;9:151–7.CAS 
    PubMed 

    Google Scholar 
    103.Gómez-Gutiérrez J, Kawaguchi S, Nicol S. Epibiotic suctorians and enigmatic ecto- and endoparasitoid dinoflagellates of euphausiid eggs (Euphausiacea) off Oregon, USA. J Plankton Res. 2009;31:777–85.
    Google Scholar 
    104.Cardman Z, Arnosti C, Durbin A, Ziervogel K, Cox C, Steen AD, et al. Verrucomicrobia: candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl Environ Microbiol. 2014;80:3749–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol. 2018;94:fiy034.
    Google Scholar 
    106.Fahrbach E, Meincke J, Østerhus S, Rohardt G, Schauer U, Tverberg V, et al. Direct measurements of volume transports through Fram Strait. Polar Res. 2001;20:217–24.
    Google Scholar 
    107.Comeau AM, Li WK, Tremblay JE, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Lalande C, Bauerfeind E, Nöthig E-M, Beszczynska-Möller A. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog Oceanogr. 2013;109:70–7.
    Google Scholar 
    109.Dybwad C, Assmy P, Olsen LM, Peeken I, Nikolopoulos A, Krumpen T, et al. Carbon export in the seasonal sea ice zone north of Svalbard from winter to late summer. Front Mar Sci. 2021;7:525800.
    Google Scholar 
    110.Glud RN, Rysgaard S, Turner G, McGinnis DF, Leakey RJG. Biological- and physical-induced oxygen dynamics in melting sea ice of the Fram Strait. Limnol Oceanogr. 2014;59:1097–111.CAS 

    Google Scholar 
    111.Shiozaki T, Ijichi M, Fujiwara A, Makabe A, Nishino S, Yoshikawa C, et al. Factors regulating nitrification in the Arctic Ocean: potential impact of sea ice reduction and ocean acidification. Glob Biogeochem Cycles. 2019;33:1085–99.CAS 

    Google Scholar  More

  • in

    Assessment of leaf morphological, physiological, chemical and stoichiometry functional traits for understanding the functioning of Himalayan temperate forest ecosystem

    1.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Lourens, P. & Frans, B. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).
    Google Scholar 
    3.Domínguez, M. T. et al. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357, 407–424 (2012).
    Google Scholar 
    4.Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests Mechanisms and influencing factors. Sci. Rep. 6, 19703 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Paź-Dyderska, S. et al. Leaf traits and aboveground biomass variability of forest understory herbaceous plant species. Ecosystems 23, 555–569 (2020).
    Google Scholar 
    6.Lusk, C. H. Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. PeerJ 7, e6855 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    7.Liu, C., Li, Y., Xu, L., Chen, Z. & He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 9, 1–8 (2019).ADS 

    Google Scholar 
    8.Qin, J. & Shangguan, Z. Effects of forest types on leaf functional traits and their interrelationships of Pinus massoniana coniferous and broad-leaved mixed forests in the subtropical mountain, Southeastern China. Ecol. Evol. 9, 6922–6932 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    9.Smart, S. M. et al. Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Funct. Ecol. 31, 1336–1344 (2017).
    Google Scholar 
    10.Osnas, J. L. D., Lichstein, J. W., Reich, P. B. & Pacala, S. W. Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science 340, 741–744 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    11.Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017).
    Google Scholar 
    12.Grime, J. P. Plant strategy theories: A comment on Craine (2005). J. Ecol. 95, 227–230 (2007).
    Google Scholar 
    13.Nam, K. J. & Lee, E. J. Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea. J. Ecol. Environ. 42, 33 (2018).
    Google Scholar 
    14.Li, Y. et al. Spatiotemporal variation in leaf size and shape in response to climate. J. Plant Ecol. 13, 87–96 (2020).
    Google Scholar 
    15.Liu, W., Zheng, L. & Qi, D. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 10, 8166–8175 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    16.Zhu, Z., Wang, X., Li, Y., Wang, G. & Guo, H. Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Sci. China Earth Sci. 55, 837–851 (2012).ADS 

    Google Scholar 
    17.Wang, J. et al. Response of plant functional traits to grazing for three dominant species in alpine steppe habitat of the Qinghai-Tibet Plateau, China. Ecol. Res. 31, 515–524 (2016).
    Google Scholar 
    18.Negi, G. C. S. Leaf and bud demography and shoot growth in evergreen and deciduous trees of central Himalaya, India. Trees 20, 416–429 (2006).
    Google Scholar 
    19.Osnas, J. L. D. et al. Divergent drivers of leaf trait variation within species, among species, and among functional groups. PNAS 115, 5480–5485 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Liu, C., Li, Y., Xu, L., Chen, Z. & He, N. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 9, 5803 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Zobel, D. B. & Singh, S. P. Himalayan forests and ecological generalizations. Bioscience 47, 735–745 (1997).
    Google Scholar 
    22.Kattge, J. et al. TRY—A global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).ADS 

    Google Scholar 
    23.Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167 (2013).
    Google Scholar 
    24.Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. PNAS 94, 13730–13734 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Güsewell, S. & Verhoeven, J. T. A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 287, 131–143 (2006).
    Google Scholar 
    26.Niinemets, U. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol. 205, 79–96 (2015).PubMed 

    Google Scholar 
    27.Devi, A. F. & Garkoti, S. C. Variation in evergreen and deciduous species leaf phenology in Assam, India. Trees 27, 985–997 (2013).
    Google Scholar 
    28.Givnish, T. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn. 36, 703–743 (2002).
    Google Scholar 
    29.Liu, Y. et al. Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Ann. Bot. 118, 1329–1336 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    30.Derroire, G., Powers, J. S., Hulshof, C. M., Varela, L. E. C. & Healey, J. R. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci. Rep. 8, 285 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Bai, K., He, C., Wan, X. & Jiang, D. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain. AoB Plants 7, plv064. https://doi.org/10.1093/aobpla/plv064 (2015).
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Ma, S. et al. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 15, 693–702 (2018).ADS 
    CAS 

    Google Scholar 
    33.Singh, N. D. Leaf litter decomposition of evergreen and deciduous Dillenia species in humid tropics of north-east India. J. Trop. For. Sci. 14, 105–115 (2002).
    Google Scholar 
    34.Liang, X., Liu, S., Wang, H. & Wang, J. Variation of carbon and nitrogen stoichiometry along a chronosequence of natural temperate forest in northeastern China. J. Plant Ecol. 11, 339–350 (2018).
    Google Scholar 
    35.Lübbe, T., Schuldt, B. & Leuschner, C. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: Alternative strategies among the saplings of five temperate deciduous tree species. Tree Physiol. 37, 456–468 (2017).PubMed 

    Google Scholar 
    36.Young-Robertson, J. M., Bolton, W. R., Bhatt, U. S., Cristóbal, J. & Thoman, R. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    37.Hogan, K. P., Smith, A. P. & Samaniego, M. Gas exchange in six tropical semi-deciduous forest canopy tree species during the wet and dry seasons. Biotropica 27, 324–333 (1995).
    Google Scholar 
    38.Keel, S. G., Pepin, S., Leuzinger, S. & Körner, C. Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees 21, 151 (2006).
    Google Scholar 
    39.Kosugi, Y. & Matsuo, N. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest. Tree Physiol. 26, 1173–1184 (2006).PubMed 

    Google Scholar 
    40.Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol. 149, 247–264 (2001).CAS 
    PubMed 

    Google Scholar 
    41.Catovsky, S., Holbrook, N. M. & Bazzaz, F. A. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species. Can. J. For. Res. 32, 295–309 (2002).
    Google Scholar 
    42.Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J. & Pandey, R. Associations of plant functional diversity with carbon accumulation in a temperate forest ecosystem in the Indian Himalayas. Ecol. Ind. 98, 861–868 (2019).
    Google Scholar 
    43.Weraduwage, S. M. et al. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 6, 167 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    44.Sirisampan, S., Hiyama, T., Takahashi, A., Hashimoto, T. & Fukushima, Y. Diurnal and seasonal variations of stomatal conductance in a secondary temperate forest. J. Jpn. Soc. Hydrol. Water Resour. 16, 113–130 (2003).
    Google Scholar 
    45.Ghimire, C. P. et al. Transpiration and stomatal conductance in a young secondary tropical montane forest: Contrasts between native trees and invasive understorey shrubs. Tree Physiol. 38, 1053–1070 (2018).PubMed 

    Google Scholar 
    46.Kirschbaum, M. U. F. & McMillan, A. M. S. Warming and elevated CO2 have opposing influences on transpiration. Which is more important?. Curr. For. Rep. 4, 51–71 (2018).
    Google Scholar 
    47.Saha, S., Rajwar, G. S. & Kumar, M. Soil properties along altitudinal gradient in Himalayan temperate forest of Garhwal region. Acta Ecol. Sin. 38, 1–8 (2018).ADS 

    Google Scholar 
    48.Raina, A. K. & Gupta, M. K. Soil characteristics in relation to vegetation and parent material under different forest covers in Kempty forest range, Uttarakhand. Indian Forester 135, 331–341 (2009).CAS 

    Google Scholar 
    49.Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India. (1968).50.Belluau, M. & Shipley, B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS ONE 13, e0193130 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Rita, A. et al. Coordination of morphological and physiological traits in naturally recruited Abies alba Mill. saplings: Insights from a structural equation modeling approach. Ann. For. Sci. 74, 49 (2017).
    Google Scholar 
    52.Kumar, U., Singh, P. & Boote, K. J. Chapter two—effect of climate change factors on processes of crop growth and development and yield of groundnut (Arachis hypogaea L.). In Advances in Agronomy Vol. 116 (ed. Sparks, D. L.) 41–69 (Academic Press, 2012).
    Google Scholar 
    53.Gratani, L., Pesoli, P. & Crescente, M. F. Relationship between photosynthetic activity and chlorophyll content in an isolated Quercus ilex L. tree during the year. Photosynthetica 35, 445–451 (1998).
    Google Scholar 
    54.Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 31, 2202–2211 (2017).
    Google Scholar 
    55.Damm, A., Haghighi, E., Paul-Limoges, E. & van der Tol, C. On the seasonal relation of sun-induced chlorophyll fluorescence and transpiration in a temperate mixed forest. Agric. For. Meteorol. 304–305, 108386 (2021).ADS 

    Google Scholar 
    56.Zhang, X. et al. Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity. PeerJ 8, e8927 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    57.Wang, C., Zhou, J., Xiao, H., Liu, J. & Wang, L. Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. J. For. Res. https://doi.org/10.1007/s11676-016-0290-6 (2016).Article 

    Google Scholar 
    58.Cornelissen, J. H. C., Castro Diez, P. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).
    Google Scholar 
    59.Zhang, S., Zhang, Y. & Ma, K. The association of leaf lifespan and background insect herbivory at the interspecific level. Ecology 98, 425–432 (2017).PubMed 

    Google Scholar 
    60.Cunningham, S., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69(4), 569–588. https://doi.org/10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2 (1999).Article 

    Google Scholar 
    61.Reich, P. B. et al. Generality of leaf trait relationships: A test across six biomes. Ecology 80, 1955–1969 (1999).
    Google Scholar 
    62.Fyllas, N. M. et al. Functional trait variation among and within species and plant functional types in mountainous Mediterranean forests. Front. Plant Sci. 11, 212 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    63.De Long, J. R. et al. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. J. Ecol. 107, 1704–1719 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia

    1.Baker, A. & Brooks, R. Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126 (1989).CAS 

    Google Scholar 
    2.Reeves, R. D. et al. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 218, 407–411 (2018).PubMed 

    Google Scholar 
    3.Reeves, R. D., Baker, A. J. M., Borhidi, A. & Berazaín, R. Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol. 133, 217–224 (1996).CAS 
    PubMed 

    Google Scholar 
    4.Reeves, R., Baker, A., Borhidi, A. & Berazaín Iturralde, R. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann. Bot. 83, 29–38 (1999).CAS 

    Google Scholar 
    5.Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).
    Google Scholar 
    6.Jaffré, T., Pillon, Y., Thomine, S. & Merlot, S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front. Plant Sci. 4, 279 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    7.Losfeld, G. et al. Leaf-age and soil–plant relationships: Key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ. Sci. Pollut. Res. Int. 22, 5620–5632 (2015).CAS 
    PubMed 

    Google Scholar 
    8.Gei, V. et al. Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In Agromining: Farming for metals: Extracting unconventional resources using plants (eds Van der Ent, A. et al.) 117–133 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-61899-9_7.Chapter 

    Google Scholar 
    9.Gei, V. et al. A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot. J. Linn. Soc. 194, 1–22 (2020).
    Google Scholar 
    10.Grison, C., Escande, V. & Biton, J. Ecocatalysis: A New Integrated Approach to Scientific Ecology (Elsevier, 2015).
    Google Scholar 
    11.Grison, C. Special issue in environmental science and pollution research: Combining phytoextraction and ecocatalysis: an environmental, ecological, ethic and economic opportunity. Environ. Sci. Pollut. Res. 22, 5589–5698 (2015).
    Google Scholar 
    12.Grison, C., Escande, V. & Olszewski, T. K. Ecocatalysis: A new approach toward bioeconomy, chapter 25. In Bioremediation and Bioeconomy (ed. Prasad, M. N. V.) 629–663 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-802830-8.00025-3.Chapter 

    Google Scholar 
    13.Deyris, P.-A. & Grison, C. Nature, ecology and chemistry: An unusual combination for a new green catalysis, ecocatalysis. Curr. Opin. Green Sustain. Chem. 10, 6–10 (2018).
    Google Scholar 
    14.Grison, C. & LockToyKi, Y. Ecocatalysis, a new vision of green and sustainable chemistry. Curr. Opin. Green Sustain. Chem. 29, 100461 (2021).
    Google Scholar 
    15.Chaney, R. L., Angle, J. S., Li, Y.-M. & Baker, A. J. M. Recuperation de metaux presents dans des sols (2000).16.Chaney, R. L. et al. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429–1443 (2007).CAS 
    PubMed 

    Google Scholar 
    17.Li, Y.-M. et al. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil 249, 107–115 (2003).CAS 

    Google Scholar 
    18.Strawn, K. Unearthing the habitat of a hyperaccumulator: Case study of the invasive plant yellowtuft (Alyssum; Brassicaceae) in Southwest Oregon, USA. Manag. Biol. Invasions 4, 249–259 (2013).
    Google Scholar 
    19.Grison, C. et al. Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv. 3, 22340–22345 (2013).ADS 
    CAS 

    Google Scholar 
    20.Lange, B. et al. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere 146, 75–84 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Grison, C. M. et al. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ. Sci. Pollut. Res. 22, 5667–5676 (2015).CAS 

    Google Scholar 
    22.Escande, V. et al. Ecological catalysis and phytoextraction: Symbiosis for future. Appl. Catal. B 146, 279–288 (2014).CAS 

    Google Scholar 
    23.Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (Springer, 2018). https://doi.org/10.1007/978-3-319-61899-9_1924.Lahl, U. & Hawxwell, K. A. REACH—The new European chemicals law. Environ. Sci. Technol. 40, 7115–7121 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    25.Sarrailh, J.-M. La revégétalisation des exploitations minières: l’exemple de la Nouvelle-Calédonie. Bois For. Trop. (2002).26.Losfeld, G. et al. Phytoextraction from mine spoils: Insights from New Caledonia. Environ. Sci. Pollut. Res. 22, 5608–5619 (2015).CAS 

    Google Scholar 
    27.Garel, C. et al. Structure and composition of first biosourced Mn-rich catalysts with a unique vegetal footprint. Mater. Today Sustain. https://doi.org/10.1016/j.mtsust.2019.100020 (2019).Article 

    Google Scholar 
    28.Jaffré, T. Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. Compt. Rend. Acad. Sci. (Paris) Sér. D 289, 425–428 (1979).
    Google Scholar 
    29.Jaffré, T. Plantes de Nouvelle Calédonie permettant de revégétaliser des sites miniers (SLN, 1992).
    Google Scholar 
    30.Jaffré, T. Accumulation du manganèse par des espèces associées aux terrains ultrabasiques de Nouvelle Calédonie. Compt. Rend. Acad. Sci. Paris Sér. D 284, 1573–1575 (1977).
    Google Scholar 
    31.Luçon, S., Marion, F., Niel, J. F. & Pelletier, B. Réhabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. In Ecologie des milieux sur roches ultramafiques et sur sols métallifères: actes de la deuxième conférence internationale sur l’écologie des milieux serpentiniques Vol. III (eds Jaffré, T. et al.) 297–303 (ORSTOM, 1997).
    Google Scholar 
    32.Reeves, R. D. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249, 57–65 (2003).CAS 

    Google Scholar 
    33.L’Huillier, L. et al. La restauration des sites miniers. In Mines et environnement en Nouvelle Calédonie: les milieux sur substrats ultramafiques et leur restauration (eds L’Huillier, L. et al.) 147–230 (IAC, 2010).
    Google Scholar 
    34.Udo, H., Barrault, J. & Gâteblé, G. Multiplication et valorisation horticole de plantes indigènes à la Nouvelle-Calédonie: Compte-rendu des essais 2011 (2011).35.Jaffré, T. Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie (ORSTOM, 1980).
    Google Scholar 
    36.Baker, A., Mcgrath, S., Reeves, R. & Smith, J. A. C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediat. Contamin. Soil Water. https://doi.org/10.1201/9780367803148-5 (2000).Article 

    Google Scholar 
    37.Bihanic, C., Richards, K., Olszewski, T. K. & Grison, C. Eco-Mn ecocatalysts: Toolbox for sustainable and green Lewis acid catalysis and oxidation reactions. ChemCatChem 12, 1529–1545 (2020).CAS 

    Google Scholar 
    38.Pillon, Y., Munzinger, J., Amir, H. & Lebrun, M. Ultramafic soils and species sorting in the flora of New Caledonia. J. Ecol. 98, 1108–1116 (2010).
    Google Scholar 
    39.Bidwell, S. D., Woodrow, I. E., Batianoff, G. N. & Sommer-Knudsen, J. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct. Plant Biol. 29, 899–905 (2002).CAS 
    PubMed 

    Google Scholar 
    40.Fernando, D. R. et al. Foliar Mn accumulation in eastern Australian herbarium specimens: Prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann. Bot. 103, 931–939 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Mizuno, T. et al. Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J. Plant Nutr. 31, 1811–1819 (2008).CAS 

    Google Scholar 
    42.Xue, S. G. et al. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut. 131, 393–399 (2004).CAS 
    PubMed 

    Google Scholar 
    43.Yang, S. X., Deng, H. & Li, M. S. Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ. 54, 441–446 (2008).CAS 

    Google Scholar 
    44.Proctor, J., Phillipps, C., Duff, G. K., Heaney, A. & Robertson, F. M. Ecological studies on Gunung Silam, a small ultrabasic Mountain in Sabah, Malaysia. II. Some Forest Processes. J. Ecol. 77, 317–331 (1989).CAS 

    Google Scholar 
    45.Graham, R. D., Hannam, R. J. & Uren, N. C. Manganese in Soils and Plants. https://doi.org/10.1007/978-94-009-2817-6 (Springer Netherlands, 1988).46.Loneragan, J. F. Distribution and movement of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 113–124 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_9.Chapter 

    Google Scholar 
    47.Taiz, L. & Zeiger, E. Plant Physiology 3rd edn. (Sinauer Associates Inc., 2002).
    Google Scholar 
    48.Burnell, J. N. The biochemistry of manganese in plants. In Manganese in Soils and Plants (eds Graham, R. D. et al.) 125–137 (Springer Netherlands, 1988). https://doi.org/10.1007/978-94-009-2817-6_10.Chapter 

    Google Scholar 
    49.Lidon, F. C., Barreiro, M. G. & Ramalho, J. C. Manganese accumulation in rice: Implications for photosynthetic functioning. J. Plant Physiol. 161, 1235–1244 (2004).CAS 
    PubMed 

    Google Scholar 
    50.Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 15, 397–409 (2015).
    Google Scholar 
    51.Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).CAS 
    PubMed 

    Google Scholar 
    52.Wissemeier, A. H. & Horst, W. J. Simplified methods for screening cowpea cultivars for manganese leaf-tissue tolerance. Crop Sci. 31, 435–439 (1991).CAS 

    Google Scholar 
    53.Joardar Mukhopadhyay, M. & Sharma, A. Manganese in cell metabolism of higher plants. Bot. Rev. 57, 117–149 (1991).
    Google Scholar 
    54.Lynch, J. & St. Clair, S. Mineral stress: The missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res. 90, 101–115 (2004).
    Google Scholar 
    55.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci 11, 300 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    56.Shao, J. F., Yamaji, N., Shen, R. F. & Ma, J. F. The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends Plant Sci. 22, 215–224 (2017).CAS 
    PubMed 

    Google Scholar 
    57.Millaleo, R., Reyes-Diaz, M., Ivanov, A. G., Mora, M. L. & Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10, 470–481 (2010).
    Google Scholar 
    58.Vázquez, M. D. et al. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol. 140, 350–355 (1992).
    Google Scholar 
    59.Krämer, U., Grime, G. W., Smith, J. A. C., Hawes, C. R. & Baker, A. J. M. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instrum. Methods Phys. Res. Sect. B 130, 346–350 (1997).ADS 

    Google Scholar 
    60.Küpper, H., Lombi, E., Zhao, F.-J. & McGrath, S. P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, 75–84 (2000).PubMed 

    Google Scholar 
    61.Küpper, H., Lombi, E., Zhao, F.-J., Wieshammer, G. & McGrath, S. P. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52, 2291–2300 (2001).PubMed 

    Google Scholar 
    62.Mesjasz-Przybyłowicz, J., Przybyłowicz, W. & Pineda, C. Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S. Afr. J. Sci. 97, 591 (2001).
    Google Scholar 
    63.Robinson, B. H., Lombi, E., Zhao, F. J. & McGrath, S. P. Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol. 158, 279–285 (2003).CAS 

    Google Scholar 
    64.Bidwell, S. D., Crawford, S. A., Woodrow, I. E., Sommer-Knudsen, J. & Marshall, A. T. Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ. 27, 705–716 (2004).CAS 

    Google Scholar 
    65.Memon, A. R., Chino, M., Takeoka, Y., Hara, K. & Yatazawa, M. Distribution of manganese in leaf tissues of manganese accumulator: Acanthopanax sciadophylloides as revealed by Electronprobe X-Ray Microanalyzer. J. Plant Nutr. 2, 457–476 (1980).CAS 

    Google Scholar 
    66.Memon, A. R., Chino, M., Hara, K. & Yatazawa, M. Microdistribution of manganese in the leaf tissues of different plant species as revealed by X-ray microanalyzer. Physiol. Plant. 53, 225–232 (1981).CAS 

    Google Scholar 
    67.Xu, X. et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 285, 323–331 (2006).CAS 

    Google Scholar 
    68.Fernando, D. R. et al. Novel pattern of foliar metal distribution in a manganese hyperaccumulator. Funct. Plant Biol. 35, 193 (2008).CAS 
    PubMed 

    Google Scholar 
    69.Fernando, D. R. et al. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: Populational variation and localization by X-ray microanalysis. New Phytol. 177, 178–185 (2008).CAS 
    PubMed 

    Google Scholar 
    70.Fernando, D. R. et al. Manganese accumulation in the leaf mesophyll of four tree species: A PIXE/EDAX localization study. New Phytol. 171, 751–757 (2006).CAS 
    PubMed 

    Google Scholar 
    71.Fernando, D. R. et al. Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293, 145–152 (2007).CAS 

    Google Scholar 
    72.Fernando, D. R., Marshall, A., Baker, A. J. M. & Mizuno, T. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions. Front. Plant Sci. 4, 319 (2013).73.Fernando, D. R., Woodrow, I. E., Baker, A. J. M. & Marshall, A. T. Plant homeostasis of foliar manganese sinks: Specific variation in hyperaccumulators. Planta 236, 1459–1470 (2012).CAS 
    PubMed 

    Google Scholar 
    74.Fernando, D. R., Marshall, A. T. & Green, P. T. Cellular ion interactions in two endemic tropical rainforest species of a novel metallophytic tree genus. Tree Physiol. 38, 119–128 (2018).CAS 
    PubMed 

    Google Scholar 
    75.Bihanic, C. et al. Eco-CaMnOx: A greener generation of eco-catalysts for eco-friendly oxidation processes. ACS Sustain. Chem. Eng. 8, 4044–4057 (2020).CAS 

    Google Scholar 
    76.Park, Y. J. & Doeff, M. M. Synthesis and electrochemical characterization of M2Mn3O8 (M = Ca, Cu) compounds and derivatives. Solid State Ion. 177, 893–900 (2006).CAS 

    Google Scholar 
    77.Harper, F. A. et al. Metal coordination in hyperaccumulating plants studied using EXAFS. In Synchrotron Radiation Department Scientific Reports 102 (eds Murphy, B. et al.) (Central Laboratory of Research Councils, 1999).
    Google Scholar 
    78.Rabier, J., Laffont-Schwob, I., Notonier, R., Fogliani, B. & Bouraïma-Madjèbi, S. Anatomical element localization by EDXS in Grevillea exul var. exul under nickel stress. Environ. Pollut. 156, 1156–1163 (2008).CAS 
    PubMed 

    Google Scholar 
    79.Fernando, D. R., Mizuno, T., Woodrow, I. E., Baker, A. J. M. & Collins, R. N. Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol. 188, 1014–1027 (2010).CAS 
    PubMed 

    Google Scholar 
    80.Fritsch, E. Les sols. In Atlas de la Nouvelle Calédonie (eds Bonvallot, J. et al.) 73–76 (IRD, 2012).
    Google Scholar 
    81.Isnard, S., L’huillier, L., Rigault, F. & Jaffré, T. How did the ultramafic soils shape the flora of the New Caledonian hotspot?. Plant Soil 403, 53–76 (2016).CAS 

    Google Scholar 
    82.Jaffré, T. Composition chimique et conditions de l’alimentation minérale des plantes sur roches ultrabasiques (Nouvelle Calédonie). Cah. ORSTOM. Sér. Biol. 11, 53–63 (1976).
    Google Scholar 
    83.Majourau, P. & Pillon, Y. A review of Grevillea (Proteaceae) from New Caledonia with the description of two new species. Phytotaxa 477, 243–252 (2020).
    Google Scholar 
    84.Jaffré, T. & Latham, M. Contribution à l’étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle Calédonie: le Boulinda. Adansonia. Série 2(14), 311–336 (1974).
    Google Scholar 
    85.L’Huillier, L. et al. Mines et environnement en Nouvelle-Caledonie: les milieux sur substrats ultramafiques et leur restauration (IAC, 2010).
    Google Scholar 
    86.Purnell, H. M. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust. J. Bot. 8, 38–50 (1960).
    Google Scholar 
    87.Lamont, B. B. Structure, ecology and physiology of root clusters—A review. Plant Soil 248, 1–19 (2003).CAS 

    Google Scholar 
    88.Shane, M. W. & Lambers, H. Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol. Plant. 124, 441–450 (2005).CAS 

    Google Scholar 
    89.Dinkelaker, B., Hengeler, C. & Marschner, H. Distribution and function of proteoid roots and other root clusters. Bot. Acta 108, 183–200 (1995).
    Google Scholar 
    90.Castillo-Michel, H. A., Larue, C., Pradas del Real, A. E., Cotte, M. & Sarret, G. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol. Biochem. 110, 13–32 (2017).CAS 
    PubMed 

    Google Scholar 
    91.Vantelon, D. et al. The LUCIA beamline at SOLEIL. J. Synchrotron Radiat. 23, 635–640 (2016).CAS 
    PubMed 

    Google Scholar 
    92.Solé, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B 62, 63–68 (2007).ADS 

    Google Scholar 
    93.Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).CAS 
    PubMed 

    Google Scholar 
    94.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 

    Google Scholar 
    95.Losfeld, G. L’association de la phytoextraction et de l’écocatalyse : un nouveau concept de chimie verte, une opportunité pour la remédiation de sites miniers. (Montpellier 2, 2014).96.van der Ent, A. et al. X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant Soil. https://doi.org/10.1007/s11104-019-04386-2 (2020).Article 

    Google Scholar 
    97.Belli, M. et al. X-ray absorption near edge structures (XANES) in simple and complex Mn compounds. Solid State Commun. 35, 355–361 (1980).ADS 
    CAS 

    Google Scholar 
    98.van der Ent, A. et al. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol. 218, 432–452 (2018).PubMed 

    Google Scholar 
    99.Neumann, G. & Martinoia, E. Cluster roots—An underground adaptation for survival in extreme environments. Trends Plant Sci. 7, 162–167 (2002).CAS 
    PubMed 

    Google Scholar 
    100.Memon, A. R. & Yatazawa, M. Nature of manganese complexes in manganese accumulator plant—Acanthopanax sciadophylloides. J. Plant Nutr. 7, 961–974 (1984).CAS 

    Google Scholar 
    101.Xu, X., Shi, J., Chen, X., Chen, Y. & Hu, T. Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant Soil 318, 197 (2008).
    Google Scholar 
    102.Fernando, D. R., Baker, A. J. M. & Woodrow, I. E. Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Aust. J. Bot. 57, 406 (2009).CAS 

    Google Scholar 
    103.Fernando, D. R., Batianoff, G. N., Baker, A. J. & Woodrow, I. E. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ. 29, 1012–1020 (2006).CAS 
    PubMed 

    Google Scholar 
    104.Léon, V. et al. Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine Proteaceae. Ann. Bot. https://doi.org/10.1093/aob/mci066 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Jaffré, T., Latham, M. & Schmid, M. Aspects de l’influence de l’extraction du minerai de nickel sur la végétation et les sols en Nouvelle-Calédonie. Cah. ORSTOM. Sér. Biol. 12, 307–321 (1977).
    Google Scholar 
    106.Boyd, R. S. & Martens, S. The raison d’etre for metal hyperaccumulation by plants (1992).107.Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I. & Salt, D. E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122, 1343–1353 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    108.Asemaneh, T., Ghaderian, S. M., Crawford, S. A., Marshall, A. T. & Baker, A. J. M. Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225, 193–202 (2006).CAS 
    PubMed 

    Google Scholar 
    109.Küpper, H., Jie Zhao, F. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).PubMed Central 

    Google Scholar 
    110.Abubakari, F. et al. Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt and zinc in the genus Gossia (Myrtaceae). Metallomics https://doi.org/10.1093/mtomcs/mfab008 (2021).Article 
    PubMed 

    Google Scholar 
    111.White, P. J. Long-distance transport in the xylem and phloem, chapter 3. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 49–70 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384905-2.00003-0.Chapter 

    Google Scholar 
    112.Marschner, H. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, 2012). https://doi.org/10.1016/C2009-0-63043-9.Book 

    Google Scholar 
    113.Fernando, D. R. et al. Does foliage metal accumulation influence plant-insect interactions? A field study of two sympatric tree metallophytes. Funct. Plant Biol. 45, 945–956 (2018).CAS 
    PubMed 

    Google Scholar 
    114.Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 45, 581 (1968).CAS 

    Google Scholar 
    115.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 11, 300 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    116.Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L. & Wagner, G. J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125–134 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    117.Wu, Z. et al. An endoplasmic reticulum-bound Ca(2+)/Mn(2+) pump, ECA1, supports plant growth and confers tolerance to Mn(2+) stress. Plant Physiol. 130, 128–137 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Pittman, J. K. Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. New Phytol. 167, 733–742 (2005).CAS 
    PubMed 

    Google Scholar 
    119.Mills, R. F. et al. ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol. 146, 116–128 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.Mizuno, T., Emori, K. & Ito, S. Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation. Soil Sci. Plant Nutr. 59, 591–602 (2013).CAS 

    Google Scholar 
    121.Tordoff, G. M., Baker, A. J. M. & Willis, A. J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41, 219–228 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    122.Grossnickle, S. & Ivetic, V. Direct seeding in reforestation—A field performance review. REFORESTA https://doi.org/10.21750/REFOR.4.07.46 (2017).Article 

    Google Scholar 
    123.Bermúdez-Contreras, A. I., Ede, F., Waymouth, V., Miller, R. & Aponte, C. Revegetation technique changes root mycorrhizal colonisation and root fungal communities: The advantage of direct seeding over transplanting tube-stock in riparian ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-020-01031-2 (2020).Article 

    Google Scholar  More

  • in

    Elevated growth and biomass along temperate forest edges

    OverviewWe used data from the national forest inventory conducted by the US Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) program to quantify tree biomass and growth along forest edges and within the forest interior. We estimated the causal impact of the forest edge environment on patterns of tree biomass and growth, while accounting for potentially confounding variables. We then used the regression models to estimate the aggregate difference in growth attributable to forest edges throughout the northeastern U.S. Finally, to better understand the implications of our findings, we quantified the degree of forest fragmentation throughout temperate and tropical forest biomes world-wide, using a 30 m forest cover map.Study areaOur analyses of edge impacts on forest biomass and growth were conducted throughout twenty-states (1.7 million km2) in the northeastern and upper mid-west of the United States (Supplementary Fig. 1). This region contains 765,000 km2 of forest and encompasses gradients of dominant land-uses, climatic conditions, and forest composition while remaining within deciduous, coniferous, and mixed temperate forest ecosystems.Identifying edges in forest inventory dataThe FIA collects measurements of tree size, growth, and land-use within a nested plot design across the country19. Each FIA plot is composed of four individual subplots; within each subplot, the diameter at breast height (dbh) of every tree >12.7 cm is measured during each measurement period. The re-measurement frequency for FIA plots in our study area is between 5 and 7 years, but this can differ between Forest Service regions. In addition to tree measurements, the database details land-use condition data that includes the proportion of the area that is forested and, on some plots, the land-cover class of the non-forest area (FIA User’s Manual, Condition Table). FIA plots are considered forested if some portion of the plot includes a contiguous forest patch (including potentially outside of the plot area) of greater than 4047 m2 that has more than 10% canopy cover. With a memorandum of understanding between the USFS and Harvard University, we had access to the true, unfuzzed plot coordinates, which are not publicly available. Evaluating >48,000 plots in the USFS Northern Region sampled from 2010 to 2020 and selecting the most recent measurement cycle for each plot, we identified subplots that contained both a forest and a non-forest condition and categorized these as edges (Supplementary Table 1). Only subplots that included a forest condition in both the most recent and previous measurement were included. Subplots where the mapped condition changed from forest to non-forest were excluded. Changes in the amount of mapped forest condition were included and are incorporated into the calculation of response variables using the most recent condition area. We identified FIA plots where all four subplots were fully forested as interior plots to be used for comparison. Subplots located within the same plot as an edge subplot (i.e., edge-proximate subplots) were excluded from this study due to limitations in our ability to quantify their distance from an edge. The spatial configuration of subplots is such that a fully forested subplot may be up to ~65 m away from an identified forest edge within another subplot. Studies suggest that the distance of edge influence in temperate forest does not extend more than 30 m into the forest interior15,33. Since the FIA does not contain information about the geometry of non-forest conditions beyond the subplot boundary, we deemed that the large uncertainty in the relationship between these subplots to a non-forest edge precluded their inclusion in the study. The FIA plot configuration prevented quantification of the distance of edge influence in our analysis; the exclusion of subplots adjacent to edge-subplots may limit direct comparisons with other fragmentation studies.We used the FIA condition data to characterize the non-forest land use in edge subplots. Information on adjacent non-forest land cover is not collected on all FIA plots (4327 of 6607 edge subplots). We aggregated FIA land-cover classification to a binary anthropogenic or unknown edge type designation and present results from all edge subplots and the anthropogenic edge subset (FIA User’s Manual Condition Table, Section 2.4.50).For each subplot (168 m2 in area), we calculated two primary response variables of interest: total live tree BA and BAI. Notably, trees smaller than 12.7 cm dbh) in m2. BAI was calculated on a per-tree basis as the difference in radial growth of live adult trees between the most recent and previous measurements, and then divided by the number of years between measurements (m2 yr−1). In addition, we aggregated individual tree diameter measurements to calculate mean stem density (stems ha−1) and mean tree diameter for each subplot (Fig. 2).We accounted for variable subplot area by normalizing both BA and BAI to a per-hectare of forested area basis, resulting in units of m2 ha−1 and m2 ha−1 yr−1, respectively. To account for potential small-area bias, we performed a sensitivity analysis on the relationship between BA and subplot forested area (Supplementary Fig. 2). We subsequently excluded 1284 subplots under 30 m2 in area as the area to BA relationship asymptotes relationship above this threshold. Finally, we accounted for errors in field dbh measurements, sometimes resulting in negative BAI values, by excluding the 97.5% quantiles of both BA and BAI distributions.Given their spatial configuration, FIA subplots are not fully independent measurements, potentially introducing issues with pseudo-replication and spatial autocorrelation within our dataset. To test for spatial autocorrelation we examined the semivariance of model residuals36, and found that there was high correlation only at distances of less than 1 km. The spatial stratification of the FIA plot design minimizes issues of plot–plot proximity within our study. However, to account for autocorrelation between subplots, we filtered our pre-matched dataset to only including one subplot from each FIA plot. For plots containing multiple edge subplots, we selected the subplot with the largest forested area. For interior plots, we selected the central subplot and excluded all others.Isolating the effect of edges on growthAbiotic controlsTo account for environmental controls on forest growth we included the most critical abiotic predictors of terrestrial vegetation productivity (light, water, temperature, and nitrogen deposition) as covariates in the regression models (Supplementary Fig. 4, Supplementary Table 2). Light, water, and temperature data were drawn from spatial raster maps (0.5° resolution) as unit-less indices of relative limitation on vegetation productivity, ranging from 0 to 13. Nitrogen data were drawn from the 2018 NADP gridded inorganic wet nitrogen deposition product (4 km spatial resolution; kg of N ha−1)37. To interpolate across small gaps in the raster data (usually along water bodies), we used the Nibble tool from ArcGis Pro (ESRI Team). We then used FIA plot locations to extract values from each raster layer for all FIA subplots.Forest compositionTree species may vary in their responses to biogeochemical changes that occur on forest edges. Overall forest community response emerges from complex interactions between species. We used aggregations of tree species, termed forest composition groups (or forest types)38, to assess if species composition influenced the response to altered edge condition. Forest type classifications for each subplot are provided by the FIA (FIA User’s Manual, Condition Table) and are defined in Appendix D therein. We aggregated the FIA forest types into eight broader species groups, following Thompson et al.23, and defined in Supplementary Table 1.Matching, GLM regressions, and model selectionAll statistical analyses and most of the data processing were conducted in R, version 3.439. Using a causal inference framework, we created a quasi-experimental statistical design that included pre-matching followed by a GLM regression analysis40. Matching emulates an experimental design using observational data by identifying control groups of untreated (forest interior) plots that were as similar as possible to treated (forest edge) plots in terms of observable confounders. By capturing key differences in abiotic variables we control for the fundamental drivers of forest productivity, allowing for a direct estimation of the average treatment effect of edges. Similarity was defined by nearest-neighbor covariate matching determined by Malahanobis distance, implemented in the MatchIt library in R41, the simplest and best method when the dataset is robust enough to find a match for every treated plot20. This method excludes forest interior plots that are not matched with an edge plot. Given differences in sample size between the full edge dataset and the subset designated as anthropogenic edges, we performed matching separately on the two datasets. To assess the efficacy of matching on reducing the differences in covariate distributions, we used summary statistics calculated with the MatchIt library and report the pre- and post-matched covariate balance in Supplementary Table 4 and Supplementary Table 5 (sensu Schleicher et al.42). Matching was highly successful, largely eliminating differences in all covariate distributions in both datasets.Our primary response variables of interest, BA and BAI, were right-skewed, non-normally distributed and violated the assumptions of normality necessary for ordinary least squares regression43. We, therefore, used a GLM to better fit the structure of our data. GLMs are an extension of linear regression that allow more freedom in the choice of probability distribution function through the use of a link function to model relationships between predictors and response variables44. The gamma probability distribution is frequently chosen to model BA, given its assumptions of positive, continuous values and flexible model form23,45. We performed a series of GLM regressions on our post-matched datasets, using a gamma probability distribution with an inverse link function to model the relationship of BA and BA with a suite of predictor variables, using the glm function as implemented in the R Core stats package39. Due to differences in sample size between the all-edge dataset and the anthropogenic-edge subset, we modeled these two datasets separately for each of BA and BAI, resulting in four separate regression analyses. We used a model selection framework to identify the most parsimonious model within each of the model sets based on the Akaike Information Criterion (AIC) and residual deviance statistic46,47. We report the model-selection and model-fit results for each of our separate analyses, including model forms, AIC, Nagelkerke Pseudo-R2, and residual deviance in Supplementary Table 2. Across all four regression analyses, the best-performing model was one that included an interaction between the edge-status and forest type categorical variables, as well as the variables of temperature-limitation, light-limitation, water-limitation, and nitrogen deposition.We then used the best performing model from each analysis to compare the differences in BA and BAI between forest edge and interior across each forest type. We estimated the treatment effect of edge-state within each forest type using the ggeffects package48 to calculate marginal effects with the continuous predictors (temperature, light, water, and nitrogen deposition) held at their within-forest type regional means. The results of this analysis are displayed in Fig. 1 and Supplementary Table 3; primary error bars on the interior point show the 95% confidence interval of the marginal effect from the full edge model, while secondary error bars show the CI from the anthropogenic edge model. Due to the smaller sample size in the anthropogenic model, estimates of the mean marginal effect of the interior plots vary slightly (though non-significantly) from those from the full dataset. The main text description reports outputs from both models, calculated from separate interior mean estimates. For visual clarity, we only display one set of interior means in Fig. 1.Mortality and timber harvestIn tropical forests, large reductions in productivity along edges are associated with increased tree mortality.9 To assess differences in tree mortality across our study region, we applied a simplified GLM analysis, including edge-state as our only predictor variable. The FIA differentiates between mortality attributed to timber harvest and that attributed to other, non-harvest causes. The results of this analysis are presented as marginal effects of each edge category in Supplementary Fig. 3. There are no significant differences in biogenic mortality between edge groups and no difference in overall mortality (combined biogenic and anthropogenic); there is a small, but statistically significant (p  More

  • in

    Community similarity and species overlap between habitats provide insight into the deep reef refuge hypothesis

    1.Wilson, E. O. Introduction. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 1–3 (Joseph Henry Press, 1997).2.Lovejoy, T. E. Biodiversity: what is it? in Biodiversity II: Understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 7–14 (Joseph Henry Press, 1997).3.Ehrlich, P. R. & Wilson, E. O. Biodiversity studies: Science and policy. Science 253, 758–762 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Myers, R. A. & Ottensmeyers, C. A. Extinction risk in marine species. in Marine Conservation Biology: The Science of Maintaining the Sea’s Biodiversity (eds. Norse, E. A. & Crowder, L. B.) 58–79 (Island Press, 2005).5.Reaka-Kudla, M. L. The global biodiversity of coral reefs: a comparison with rain forests. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 83–108 (Joseph Henry Press, 1997).6.Briggs, J. C. Marine extinctions and conservation. Mar. Biol. 158, 485–488 (2011).Article 

    Google Scholar 
    7.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems: Climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 
    Article 

    Google Scholar 
    8.Dupont, S., Dorey, N. & Thorndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification?. Estuar. Coast. Shelf Sci. 89, 182–185 (2010).ADS 
    Article 

    Google Scholar 
    9.Stork, N. E. Measuring global biodiversity and its decline. in Biodiversity II: understanding and protecting our biological resources (eds. Reaka-Kudla, M. L., Wilson, D. E. & Wilson, E. O.) 41–68 (Joseph Henry Press, 1997).10.Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—How adequately is it protected? PeerJ 6, e4747 (2018).11.Pyle, R. L. & Copus, J. M. Mesophotic Coral Ecosystems: introduction and overview. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 3–27 (Springer International Publishing, 2019).12.Hinderstein, L. M. et al. Theme section on ‘Mesophotic coral ecosystems: Characterization, ecology, and management’. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    13.Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. Assessing the ‘deep reef refugia’ hypothesis: Focus on Caribbean reefs. Coral Reefs 29, 309–327 (2010).Article 

    Google Scholar 
    14.Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 881–895 (Springer International Publishing, 2019).15.Vermeij, G. J. Survival during biotic crises: the properties and evolutionary significance of refuges. Dyn. Extinct. 231–246 (1986).16.Glynn, P. W. Coral reef bleaching: Facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).ADS 
    Article 

    Google Scholar 
    17.Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).Article 

    Google Scholar 
    18.Halfar, J., Godinez-Orta, L., Riegl, B., Valdez-Holguin, J. E. & Borges, J. M. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions. Coral Reefs 24, 582–592 (2005).ADS 
    Article 

    Google Scholar 
    19.Loya, Y., Eyal, G., Treibitz, T., Lesser, M. P. & Appeldoorn, R. Theme section on mesophotic coral ecosystems: Advances in knowledge and future perspectives. Coral Reefs 35, 1–9 (2016).ADS 
    Article 

    Google Scholar 
    20.Laverick, J. H. et al. To what extent do mesophotic coral ecosystems and shallow reefs share species of conservation interest? A systematic review. Environ. Evid. 7, 15 (2018).Article 

    Google Scholar 
    21.Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673 (2014).Article 

    Google Scholar 
    22.Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Change Biol. 22, 2756–2765 (2016).ADS 
    Article 

    Google Scholar 
    23.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: Deep reproductive refugia for threatened shallow corals. Sci. Rep. 5 (2015).24.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    25.Holstein, D. M., Smith, T. B. & Paris, C. B. Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11, e0146068 (2016).26.Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. J. Biogeogr. 43, 833–844 (2016).Article 

    Google Scholar 
    27.Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).28.Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: Shall the deep inherit the reef?. Proc. R. Soc. B. 284, 20171551 (2017).Article 

    Google Scholar 
    29.Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs?. Coral Reefs 36, 433–444 (2017).ADS 
    Article 

    Google Scholar 
    30.Kavousi, J. & Keppel, G. Clarifying the concept of climate change refugia for coral reefs. ICES J. Mar. Sci. 75, 43–49 (2018).Article 

    Google Scholar 
    31.Morais, J. & Santos, B. A. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere 9, e02281 (2018).32.Pereira, P. H. C., Macedo, C. H., Nunes, J. de A. C. C., Marangoni, L. F. de B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13, e0203072 (2018).33.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Slattery, M. et al. The Pulley Ridge deep reef is not a stable refugia through time. Coral Reefs 37, 391–396 (2018).ADS 
    Article 

    Google Scholar 
    35.Kavousi, J. Biological interactions: The overlooked aspects of marine climate change refugia. Glob. Change Biol. 25, 3571–3573 (2019).ADS 
    Article 

    Google Scholar 
    36.Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: Species replacement and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).Article 

    Google Scholar 
    37.Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).CAS 
    Article 

    Google Scholar 
    38.Montgomery, A. D., Fenner, D. & Toonen, R. J. Annotated checklist for stony corals of American Sāmoa with reference to mesophotic depth records. ZK 849, 1–170 (2019).39.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    40.Rooney, J. et al. Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29, 361–367 (2010).ADS 
    Article 

    Google Scholar 
    41.Bridge, T. C. L. et al. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31, 179–189 (2012).ADS 
    Article 

    Google Scholar 
    42.Pyle, R. L. et al. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4, e2475 (2016).43.Muir, P. R. & Pichon, M. Biodiversity of reef-building, Scleractinian corals. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 589–620 (Springer International Publishing, 2019).44.Spalding, H. L. et al. The Hawaiian Archipelago. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 445–464 (Springer International Publishing, 2019).45.Turak, E. & DeVantier, L. Reef-building corals of the upper mesophotic zone of the Central Indo-West Pacific. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 621–651 (Springer International Publishing, 2019).46.Vermeij, G. J. & Grosberg, R. K. Rarity and persistence. Ecol. Lett. 21, 3–8 (2018).Article 

    Google Scholar 
    47.Kammer, T. W., Baumiller, T. K. & Ausich, W. I. Evolutionary significance of differential species longevity in Osagean-Meramecian (Mississippian) crinoid clades. Paleobiology 24, 155–176 (1998).
    Google Scholar 
    48.Jones, G. P., Julian, C. M. & Munday, P. L. Rarity in coral reef fish communities. in Coral reef fishes: dynamics and diversity in a complex ecosystem (ed. Sale, P. F.) 81–102 (Academic Press, 2006).49.Yang, Q., Liu, G., Casazza, M., Gonella, F. & Yang, Z. Three dimensions of biodiversity: New perspectives and methods. Ecol. Indic. 130, 108099 (2021).50.Richards, Z. T. Rarity in the coral genus Acropora: Implications for biodiversity conservation. (James Cook University, 2009).51.Soares, M. de O. Marginal reef paradox: A possible refuge from environmental changes? Ocean Coast. Manag. 185, 105063 (2020).52.Soares, M. de O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).53.White, K. N. et al. Typhoon damage on a shallow mesophotic reef in Okinawa, Japan. PeerJ 1, e151 (2013).54.Smith, T. B., Holstein, D. M. & Ennis, R. S. Disturbance in mesophotic coral ecosystems and linkages to conservation and management. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 911–929 (Springer International Publishing, 2019).55.Pinheiro, H. T., Eyal, G., Shepherd, B. & Rocha, L. A. Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere 10, e02666 (2019).56.Veron, J. E. N. Corals of the world. (Australian Institute of Marine Science, 2000).57.Luzon, K. S., Lin, M.-F., Ablan Lagman, Ma. C. A., Licuanan, W. R. Y. & Chen, C. A. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; Family Euphyllidae; clade V). PeerJ 5, e4074 (2017).58.Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).ADS 
    Article 

    Google Scholar 
    59.Eyal, G., Tamir, R., Kramer, N., Eyal-Shaham, L. & Loya, Y. The Red Sea: Israel. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12, 199–214 (Springer International Publishing, 2019).60.Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10 (2019).61.Fujii, T., Kitano, Y. F. & Tachikawa, H. New distributional records of three species of Euphylliidae (Cnidaria, Anthozoa, Hexacorallia, Scleractinia) from the Ryukyu Islands, Japan. Spec. Div. 25, 275–282 (2020).Article 

    Google Scholar 
    62.Longenecker, K., Roberts, T. E. & Colin, P. L. Papua New Guinea. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 321–336 (Springer International Publishing, 2019).63.NOAA, [National Oceanic and Atmospheric Administration]. Endangered and threatened species; Critical habitat for the threatened Indo-Pacific corals. 85 FR 76262 (50 CFR Part 223 and 226) 76262–76299 (2020).64.Maragos, J. E., Hunter, C. L. & Meier, K. Z. Reefs and corals observed during the 1991–92 American Samoa coastal resources inventory. 50 (1994).65.Coles, S. et al. Introduced marine species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa. 182 (2003).66.Montgomery, A. D. et al. American Samoa. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) vol. 12 387–407 (Springer International Publishing, 2019).67.Wallace, C. C. Staghorn corals of the world: A revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. (Csiro Publishing, 1999).68.Hoeksema, B. W. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinina: Fungiidae). Zoologische Verhandelingen 254, 1–295 (1989).
    Google Scholar 
    69.World Register of Marine Species: WoRMS. Available online: http://www.marinespecies.org/. Accessed on 9/9/2020 (2020). https://doi.org/10.14284/170.70.Hsieh, T. C., Ma, K. H. & Chao, A. Interpolation and extrapolation for species diversity. (2020).71.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    72.Baselga, A. et al. Partitioning beta diversity into turnover and nestedness components ver. 1.5.2. (2020).73.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for Primer: Guide to software and statistical methods. 218 (2008).74.Clarke, K. R. & Gorley, R. N. Getting started with PRIMER 7. 18 http://updates.primer-e.com/primer7/manuals/Getting_started_with_PRIMER_7.pdf (2015).75.Gaston, K. What is rarity? in Rarity 1–21 (Chapman & Hall, 1994). More