More stories

  • in

    Snake escape: imported reptiles gobble an island’s lizards

    .readcube-buybox { display: none !important;}

    Two of the three native reptiles on to Gran Canaria have nearly vanished from some parts of the Spanish island — eaten by an invasive snake species originally imported as a pet1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-03647-4

    References1.Piquet, J. C. & López-Darias, M. Proc. R. Soc. B https://doi.org/10.1098/rspb.2021.1939 (2021).Article 

    Google Scholar 
    Download references

    Subjects

    Conservation biology

    Jobs

    Research Associate (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    PhD Position in Cybersecurity

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) position in Structural Proteomics with EU Training network ALLODD

    Karolinska Institutet, doctoral positions
    Solna, Sweden

    Post-doctoral Fellow

    Luxembourg Institute of Health (LIH)
    Esch Sur Alzette, Luxembourg More

  • in

    Impacts of hydropower on the habitat of jaguars and tigers

    1.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 

    Google Scholar 
    2.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).CAS 
    PubMed 

    Google Scholar 
    3.ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).4.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 
    5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).PubMed 

    Google Scholar 
    6.Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).
    Google Scholar 
    7.Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).
    Google Scholar 
    8.Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).9.Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).
    Google Scholar 
    10.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).
    Google Scholar 
    12.Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).13.Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).
    Google Scholar 
    14.Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).
    Google Scholar 
    15.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).CAS 
    PubMed 

    Google Scholar 
    16.Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).17.Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).
    Google Scholar 
    18.Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).19.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).
    Google Scholar 
    21.Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).23.Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).
    Google Scholar 
    24.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).CAS 
    PubMed 

    Google Scholar 
    25.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 

    Google Scholar 
    26.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).CAS 
    PubMed 

    Google Scholar 
    27.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).
    Google Scholar 
    29.Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).
    Google Scholar 
    30.Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).31.Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).
    Google Scholar 
    32.Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    33.Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).
    Google Scholar 
    34.Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).
    Google Scholar 
    36.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).
    Google Scholar 
    38.Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).
    Google Scholar 
    39.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).
    Google Scholar 
    40.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).
    Google Scholar 
    41.Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).42.Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
    Google Scholar 
    43.Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).
    Google Scholar 
    44.Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).PubMed 

    Google Scholar 
    45.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 

    Google Scholar 
    46.Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).
    Google Scholar 
    47.Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).
    Google Scholar 
    48.Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).49.Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).50.Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).PubMed 

    Google Scholar 
    51.Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).52.Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).
    Google Scholar 
    54.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).CAS 
    PubMed 

    Google Scholar 
    55.Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).56.Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).
    Google Scholar 
    57.Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).
    Google Scholar  More

  • in

    Include biodiversity representation indicators in area-based conservation targets

    1.Report of the Open-Ended Working Group on the Post-2020 Global Biodiversity Framework on its Third Meeting (Part I) CBD/WG2020/3/5 (CBD, 2021).2.Maxwell, S. L. et al. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    3.Protected Planet Live Report 2021 (UNEP-WCMC, IUCN, NGS, 2021).4.Díaz, S. et al. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    5.Visconti, P. et al. Science 364, 239–241 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Maron, M. et al. Conserv. Lett. 14, e12816 (2021).Article 

    Google Scholar 
    7.Pressey, R. L. et al. Trends Ecol. Evol. 36, 808–821 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Service (IPBES Secretariat, 2019).9.Living Planet Report 2020 (WWF, 2020).10.Jetz, W. et al. Nat. Ecol. Evol. 3, 539–551 (2019).Article 
    PubMed 

    Google Scholar 
    11.Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    12.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).13.Sala, E. et al. Nature 592, 397–402 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Rinnan, D. S., Sica, Y., Ranipeta, A., Wilshire, J. & Jetz, W. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).15.Beger, M. et al. Nat. Commun. 6, 8208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Armstrong, C. Conserv. Biol. 33, 554–560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines CBD/SBSTTA/24/3 (CBD, 2020).18.Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).19.Jung, M. et al. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Navarro, L. M. et al. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).Article 

    Google Scholar 
    21.Jantke, K., Kuempel, C. D., McGowan, J., Chauvenet, A. L. M. & Possingham, H. P. Divers. Distrib. 25, 170–175 (2019).Article 

    Google Scholar 
    22.Bhola, N. et al. Conserv. Biol. 35, 168–178 (2021).Article 
    PubMed 

    Google Scholar 
    23.Hansen, A. J. et al. Conserv. Lett. 14, e12822 (2021).Article 

    Google Scholar 
    24.Measuring Ecosystem Integrity (Goal A) in the Post-2020 Global Biodiversity Framework: The Geo Bon Species Habitat Index CBD/WG2020/3/INF/6 (CBD Secretariat, 2021).25.Rondinini, C. & Visconti, P. Conserv. Biol. 29, 1028–1036 (2015).Article 

    Google Scholar 
    26.McGeoch, M. A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.08.26.457851 (2021).27.Hoskins, A. J. et al. Environ. Model. Softw. 132, 104806 (2020).Article 

    Google Scholar 
    28.Adams, V. M., Visconti, P., Graham, V. & Possingham, H. P. One Earth 4, 901–906 (2021).Article 

    Google Scholar 
    29.Heiner, M. et al. Conserv. Sci. Pract. 1, e110 (2019).
    Google Scholar  More

  • in

    Global warming and China’s crop pests

    1.Tian, H. et al. Proc. Natl Acad. Sci. USA 108, 14521–14526 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Sugihara, G. Nature 378, 559–560 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    4.Bebber, D. P. et al. Glob. Change Biol. 25, 2703–2713 (2019).ADS 
    Article 

    Google Scholar 
    5.Wang, C. et al. Nat. Food https://doi.org/10.1038/s43016-021-00428-0 (2021).6.Pasiecznik, N. M. et al. EPPO Bull. 35, 1–7 (2005).Article 

    Google Scholar 
    7.Paini, D. R. et al. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).CAS 
    Article 

    Google Scholar 
    8.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Nat. Clim. Change 11, 710–715 (2021).ADS 
    Article 

    Google Scholar 
    9.Deutsch, C. A. et al. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delgado-Baquerizo, M. et al. Nat. Clim. Change 10, 550–554 (2020).ADS 
    Article 

    Google Scholar 
    11.Wright, B. D. Appl. Econ. Perspect. Policy 33, 32–58 (2011).Article 

    Google Scholar  More

  • in

    Pending bill could devastate Brazil’s Serra do Divisor National Park

    1.Barbosa, L. C., Alves, M. A. S. & Grelle, C. E. V. Land Use Policy 104, 105384 (2021).Article 

    Google Scholar 
    2.PL 6024/2019 (Câmara dos Deputados, 2021); https://go.nature.com/3p8ygLo3.Serra do Divisor National Park. https://go.nature.com/3rcbdSg (UNESCO, 2021).4.F. A. Obermüller et al. Lista de espécies de plantas vasculares do Parque Nacional da Serra do Divisor. Catálogo de Plantas das Unidades de Conservação do Brasil https://go.nature.com/3HTJjAs (Jardim Botânico do Rio de Janeiro, 2020).5.Livro Temático/Recursos naturais: Biodiversidade e ambientes do Acre (ACRE, 2010).6.Hansen, M. C. et al. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    7.Grilli, M. Base de dados do DNIT prevê expansão da BR-364 dentro de unidade de conservação. Revista Globo Rural https://go.nature.com/3DUgQYX (2021).8.Orlando, S. A Estrada do Pacífico no comércio exterior do Acre. ac24horas.com https://go.nature.com/3raofzL (2020).9.Mascarenhas, F. et al. Desenvolv e Meio Ambient 48, 236–262 (2018).Article 

    Google Scholar 
    10.Castro, W. Reserva Extrativista Chico Mendes lidera lista de Áreas Protegidas que mais perdem floresta por desmatamento desde Agosto de 2020. SOS Amazonia https://go.nature.com/3CU5jra (2021).11.Fá, J. E. et al. Front. Ecol. Environ. 18, 135–140 (2020).Article 

    Google Scholar 
    12.Bernard, E., Penna, L. A. & Araújo, E. Conserv. Biol. 28, 939–950 (2014).CAS 
    Article 

    Google Scholar 
    13.Kroner, R. E. G. et al. Science 364, 881–886 (2019).Article 

    Google Scholar 
    14.Ferrante, L. & Fearnside, P. M. Science 369, 634 (2020).Article 

    Google Scholar 
    15.Laurance, W. F. & Balmford, A. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    16.Kehoe, L. et al. One Earth 3, 268–272 (2020).Article 

    Google Scholar  More

  • in

    The UN must get on with appointing its new science board

    EDITORIAL
    08 December 2021

    The UN must get on with appointing its new science board

    The decision to appoint a board of advisors is welcome — and urgent, given the twin challenges of COVID and climate change.

    Twitter

    Facebook

    Email

    Download PDF

    UN secretary-general António Guterres announced plans for a new science board in September, but is yet to release further details.Credit: Juancho Torres/Anadolu Agency/Getty

    Scientists helped to create the United Nations system. Today, people look to UN agencies — such as the UN Environment Programme or the World Health Organization — for reliable data and evidence on, say, climate change or the pandemic. And yet, shockingly, the UN leader’s office has not had a department for science advice for most of its 76-year history. That is about to change.UN secretary-general António Guterres is planning to appoint a board of scientific advisers, reporting to his office. The decision was announced in September in Our Common Agenda (see go.nature.com/3y1g3hp), which lays out the organization’s vision for the next 25 years, but few other details have been released.Representatives of the scientific community are excited about the potential for science to have a position at the centre of the UN, but are rightly anxious for rapid action, given the twin challenges of COVID-19 and climate change, which should be urgent priorities for the board. The International Science Council (ISC), the Paris-based non-governmental body representing many of the world’s scientists, recommended such a board in its own report on science and the intergovernmental system, published last week (see go.nature.com/3rjdjos). Council president Peter Gluckman, former chief science adviser to New Zealand’s prime minister, has written to Guterres to say the ISC is ready to help.
    COP26 didn’t solve everything — but researchers must stay engaged
    But it’s been more than two months since the announcement, and the UN has not yet revealed the names of the board members. Nature spoke to a number of serving and former UN science advisers who said they know little about the UN chief’s plans. So far, there are no terms of reference and there is no timeline.Nature understands that the idea is still being developed, and that Guterres is leaning towards creating a board that would draw on UN agencies’ existing science networks. Guterres is also aware of the need to take into account that both the UN and the world have changed since the last such board was put in place. All the same, the UN chief needs to end the suspense and set out his plans. Time is of the essence.Guterres’s predecessor, Ban Ki-moon, had a science advisory board between 2014 and 2016. Its members were tasked with providing advice to the secretary-general on science, technology and innovation for sustainable development. But COVID-19 and climate change have pushed science much higher up the international agenda. Moreover, global challenges are worsening — the pandemic has put back progress towards the UN’s flagship Sustainable Development Goals (SDGs), a plan to end poverty and achieve sustainability by 2030. There is now widespread recognition that science has an important part to play in addressing these and other challenges.
    How science can put the Sustainable Development Goals back on track
    Research underpins almost everything we know about the nature of the virus SARS-CoV-2 and the disease it causes. All countries have access to similar sets of findings, but many are coming to different decisions on how to act on those data — for example, when to mandate mask-wearing or introduce travel restrictions. The UN’s central office needs advice that takes this socio-cultural-political dimension of science into account. It needs advice from experts who study how science is applied and perceived by different constituencies and in different regions.Science advice from the heart of the UN system could also help with another problem highlighted by the pandemic — how to reinvigorate the idea that it is essential for countries to cooperate on solving global problems.Climate change is one example. Advice given by the Intergovernmental Panel on Climate Change (IPCC) is being read and applied in most countries, albeit to varying degrees. But climate is also an area in which states are at odds. Despite Guterres’s calls for solidarity, there were times during last month’s climate conference in Glasgow when the atmosphere was combative. Science advisers could help the secretary-general’s office to find innovative ways to encourage cooperation between countries in efforts to meet the targets of the 2015 Paris climate agreement.
    Reset Sustainable Development Goals for a pandemic world
    The SDGs are also, to some extent, impeded by competition within the UN system. To tackle climate change, manage land and forests, and protect biodiversity, researchers and policymakers need to work collegially. But the UN’s scientific bodies, such as the IPCC, are set up along disciplinary lines with their own objectives, work programmes and rules, all guided by their own institutional histories. The IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), for example, have only begun to collaborate in the past few years .Independence will be key for an advisory role to be credible. Guterres needs to consider an organizational architecture through which UN agencies are represented, and funding could come from outside the UN. But all of those involved would have to accept that their contributions were for common goals — not to promote their own organization’s interests.Leadership matters, as do communication and support. Guterres should ensure that his scientific advisers are chosen carefully to represent individuals from diverse disciplines and across career stages, and to ensure good representation from low-income countries. The board needs to be well staffed and have a direct line to his office. And it will need a decent budget. Guterres should quickly publish the terms of reference so that the research community has time to provide input and critique.At its most ambitious, a scientific advisory board to the secretary-general could help to break the culture of individualism that beleaguers efforts to reach collective, global goals, and bring some coherence to the current marketplace of disciplines, ideas and outcomes. This will be a monumental task, requiring significant resources and the will to change. But if the advisers succeed, there will also be valuable lessons for the practice of science, which, as we know all too well, still largely rewards individual effort.

    Nature 600, 189-190 (2021)
    doi: https://doi.org/10.1038/d41586-021-03615-y

    Related Articles

    COP26 didn’t solve everything — but researchers must stay engaged

    Ending Hunger: Science must stop neglecting smallholder farmers

    Reset Sustainable Development Goals for a pandemic world

    How science can put the Sustainable Development Goals back on track

    Subjects

    Sustainability

    Biodiversity

    Climate change

    Government

    Latest on:

    Sustainability

    Battery-powered trains offer a cost-effective ride to a cleaner world
    Research Highlight 22 NOV 21

    All aboard the climate train! Scientists join activists for COP26 trip
    News 02 NOV 21

    Machine learning enables global solar-panel detection
    News & Views 27 OCT 21

    Biodiversity

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    The answer to the biodiversity crisis is not more debt
    Editorial 26 OCT 21

    Climate change

    An IPCC reviewer shares his thoughts on the climate debate
    Career Q&A 08 DEC 21

    Brazil is in water crisis — it needs a drought plan
    Comment 08 DEC 21

    Build solar-energy systems to last — save billions
    Comment 07 DEC 21

    Jobs

    Postdoc in Formulation Development for Gene Delivery Therapies

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    ​​​​​​​Postdoc in Molecular Biology for Gene Delivery Project

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    Post-doctoral Research Fellows

    Brigham and Women’s Hospital (BWH)
    Boston, MA, United States

    HPC/Research Computing Engineer

    Francis Crick Institute
    London, United Kingdom More

  • in

    Fish predators control outbreaks of Crown-of-Thorns Starfish

    Large-scale, long-term field data from the GBR Marine ParkThe field data for CoTS, hard coral cover (here referred to as coral cover) and coral reef fish were obtained from the Australian Institute of Marine Science’s (AIMS) Long-Term Monitoring Programme (LTMP), while fisheries retained catch data were supplied by the Queensland Department of Agriculture and Fisheries (QDAF). The LTMP has been surveying CoTS populations and coral cover at reefs across the length and breadth of the GBR Marine Park since 198350 and has quantified the status and trend of benthic and reef fish assemblages since 1995. Specific examination of the effectiveness of zoning within the GBR Marine Park has also been undertaken24. The surveyed reefs are located within zones open to fishing (i.e. General Use, Habitat Protection and Conservation Park) and zones closed to fishing (i.e. Marine National Park Zones, Preservation and Scientific Research Zones) (Supplementary Table 1). The QDAF fisheries data comprise annual retained catch data from the Coral Reef Fin Fish Fishery including commercial, recreational (including charters) and Indigenous fisheries, as well as the Marine Aquarium Fish Fishery (Supplementary Data 1–3). Monthly catch return logbooks became compulsory for all trawlers and line fisheries on 1 January 198830. Retained catch data from each of these fisheries is collected separately and differently by QDAF (please see details below). Use of these data is by courtesy of the State of Queensland, Australia, through the Department of Agriculture and Fisheries.For both the LTMP and QDAF data, the data sets are chronologically divided into report (LTMP) or financial (QDAF) years, respectively, from 01 July to 30 June. This means that, for instance, the second semester of 2017 belongs to the 2018 report or financial year. Hereafter we will refer to report or financial year as simply year. Below we explain each of these data sets in more detail.LTMP CoTS and coral cover dataLTMP CoTS and coral cover data are available from 1983 to 2020. Both observed CoTS and coral cover data are based on field observations that employ manta tow surveys around the perimeter of each reef following AIMS’ Standard Operational Procedure51. Within this period, manta tows were conducted once per year but not all reefs were sampled every year. Briefly, manta tow surveys are a broad-scale technique that covers large areas of reef quickly and provides an assessment of broad changes in the distribution and abundance of corals and CoTS. During surveys, two boats each tow an observer clockwise and anti-clockwise around reef perimeters in a series of 2-min tows until they meet at the other end of the reef. Each observer records categorical coral cover (Supplementary Table 8) and the number and size of any CoTS observed (Supplementary Table 9) at the end of each 2-min tow51. Manta tow surveys are a non-targeting, rapid assessment method, and therefore it under-samples CoTS individuals that are More

  • in

    A constraint on historic growth in global photosynthesis due to increasing CO2

    1.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    2.Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 

    Google Scholar 
    4.Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    5.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    6.Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    7.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2383–2385 (2020).
    Google Scholar 
    8.Sun, Z. et al. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 668, 696–713 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).ADS 

    Google Scholar 
    10.Li, W. et al. Recent changes in global photosynthesis and terrestrial ecosystem respiration constrained from multiple observations. Geophys. Res. Lett. 45, 1058–1068 (2018).ADS 

    Google Scholar 
    11.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).PubMed 
    ADS 

    Google Scholar 
    12.Ehlers, I. et al Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proc. Natl Acad. Sci. USA 112, 15585–15590 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    13.Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).ADS 

    Google Scholar 
    15.Winkler, A. J., Myneni, R. B. & Brovkin, V. Investigating the applicability of emergent constraints. Earth Syst. Dyn. 10, 501–523 (2019).ADS 

    Google Scholar 
    16.Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).ADS 

    Google Scholar 
    17.Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).
    Google Scholar 
    18.Ryu, Y., Berry, J. A. & Baldocchi, D. D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 223, 95–114 (2019).ADS 

    Google Scholar 
    19.Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 95 (2019).ADS 

    Google Scholar 
    20.Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).PubMed 

    Google Scholar 
    21.De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. & Terrer, C. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat Clim. Change 6, 892–893 (2016).ADS 

    Google Scholar 
    22.Cernusak, L. A. et al Robust response of terrestrial plants to rising CO2. Trends Plant Sci. 24, 578–586 (2019).CAS 
    PubMed 

    Google Scholar 
    23.Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).ADS 

    Google Scholar 
    24.Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).ADS 

    Google Scholar 
    25.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 

    Google Scholar 
    26.Zhao, F. et al. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences 13, 5121–5137 (2016).CAS 
    ADS 

    Google Scholar 
    27.Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).ADS 

    Google Scholar 
    28.Running, S. W. & Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm User’s Guide v. 3 (MODIS Land Team, 2015).29.Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, https://doi.org/10.1029/2010JG001566 (2011).30.Zeng, N. et al. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515, 394–397 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    31.Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).CAS 

    Google Scholar 
    32.Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).ADS 

    Google Scholar 
    33.Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    ADS 

    Google Scholar 
    34.Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).ADS 

    Google Scholar 
    35.Cernusak, L. A. et al. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct. Plant Biol. 40, 531–551 (2013).CAS 
    PubMed 

    Google Scholar 
    36.Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).CAS 
    PubMed 

    Google Scholar 
    37.Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).ADS 

    Google Scholar 
    38.Yang, J. et al. Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland. Biogeosciences 17, 265–279 (2020).CAS 
    ADS 

    Google Scholar 
    39.McMurtrie, R. E., Comins, H. N., Kirschbaum, M. U. F. & Wang, Y. P. Modifying existing forest growth models to take account of effects of elevated CO2. Aust. J. Bot. 40, 657–677 (1992).CAS 

    Google Scholar 
    40.Luo, Y., Sims, D. A., Thomas, R. B., Tissue, D. T. & Ball, J. T. Sensitivity of leaf photosynthesis to CO2 concentration is an invariant function for C3 plants: a test with experimental data and global applications. Global Biogeochem. Cycles 10, 209–222 (1996).CAS 
    ADS 

    Google Scholar 
    41.Li, Q. et al. Leaf area index identified as a major source of variability in modeled CO2 fertilization. Biogeosciences 15, 6909–6925 (2018).CAS 
    ADS 

    Google Scholar 
    42.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    43.Zaehle, S. et al. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    45.Stocker, B. D. et al Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).CAS 
    ADS 

    Google Scholar 
    46.Williamson, M. S. et al Emergent constraints on climate sensitivities. Rev. Mod. Phys. 93, 025004 (2021).MathSciNet 
    CAS 
    ADS 

    Google Scholar 
    47.Sanderson, B. et al. On structural errors in emergent constraints. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2020-85 (2021).48.Fisher, J. B., Huntzinger, D. N., Schwalm, C. R. & Sitch, S. Modeling the terrestrial biosphere. Annu. Rev. Environ. Resour. 39, 91–123 (2014).
    Google Scholar 
    49.Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Clim. 26, 5289–5314 (2013).ADS 

    Google Scholar 
    50.Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).CAS 
    ADS 

    Google Scholar 
    51.Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    52.Friedlingstein, P. et al. On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem. Cycles 9, 541–556 (1995).CAS 
    ADS 

    Google Scholar 
    53.Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 

    Google Scholar 
    54.Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 
    ADS 

    Google Scholar 
    55.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    ADS 

    Google Scholar 
    56.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    57.Ukkola, A. M., Keenan, T. F., Kelley, D. I. & Prentice, I. C. Vegetation plays an important role in mediating future water resources. Environ. Res. Lett. 11, 094022 (2016).ADS 

    Google Scholar 
    58.Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).CAS 
    ADS 

    Google Scholar 
    59.Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).ADS 

    Google Scholar 
    60.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).PubMed 

    Google Scholar 
    61.Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e0038345 (2012).ADS 

    Google Scholar 
    62.Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least-cost optimality theory. Glob. Change Biol. 26, 806–834 (2020).
    Google Scholar 
    63.Lloyd, J. & Farquhar, G. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct. Ecol. 10, 4–32 (1996).
    Google Scholar 
    64.Ehleringer, J. & Björkman, O. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol. 59, 86–90 (1997).
    Google Scholar 
    65.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, SP. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).CAS 

    Google Scholar 
    66.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 

    Google Scholar 
    67.Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Huber, M. L. et al. New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38, 101–125 (2009).CAS 
    ADS 

    Google Scholar 
    69.Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles 17, 6-1–6-14 (2003).ADS 

    Google Scholar 
    70.Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2. Remote Sens. 5, 927–948 (2013).ADS 

    Google Scholar 
    71.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    ADS 

    Google Scholar 
    72.Gallego-Sala, A. et al. Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Clim. Res. 45, 151–162 (2010).
    Google Scholar 
    73.Veroustraete, F. On the use of a simple deciduous forest model for the interpretation of climate change effects at the level of carbon dynamics. Ecol. Modell. 75–76, 221–237 (1994).
    Google Scholar 
    74.Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 186, 528–547 (2016).ADS 

    Google Scholar 
    75.Zhang, S. et al. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe. Ecol. Modell. 368, 205–232 (2018).CAS 

    Google Scholar 
    76.Liu, Y., Hejazi, M., Li, H., Zhang, X. & Leng, G. A hydrological emulator for global applications-HE v1.0.0. Geosci. Model Dev. 11, 1077–1092 (2018).ADS 

    Google Scholar 
    77.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, aax1396 (2019).ADS 

    Google Scholar 
    78.Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).CAS 
    ADS 

    Google Scholar 
    79.Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).CAS 
    ADS 

    Google Scholar 
    80.Oleson, K. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).81.Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    82.Jain, A. K., Meiyappan, P., Song, Y. & House, J. I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Change Biol. 19, 2893–2906 (2013).ADS 

    Google Scholar 
    83.Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model Earth Syst. 5, 459–482 (2013).ADS 

    Google Scholar 
    84.Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).ADS 

    Google Scholar 
    85.Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).ADS 

    Google Scholar 
    86.Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).ADS 

    Google Scholar 
    87.Keller, K. M. et al. 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).CAS 
    ADS 

    Google Scholar 
    88.Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 

    Google Scholar 
    89.Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).CAS 
    ADS 

    Google Scholar 
    90.Zeng, N., Mariotti, A. & Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002273 (2005).91.Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).
    Google Scholar 
    92.Fernández-Martínez, M. et al. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    93.Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).CAS 
    ADS 

    Google Scholar 
    94.Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    95.Ueyama, M. et al. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environ. Res. Lett. 15, 084009 (2020).CAS 
    ADS 

    Google Scholar 
    96.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).PubMed 
    PubMed Central 

    Google Scholar  More