1.Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011). Identifies the potential synegistic threat to marine ecosystems resulting from ocean warming, deoxygenation and acidification.ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 2.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 
 PubMed Central 
 Google Scholar 
 3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
 PubMed Central 
 Google Scholar 
 4.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 5.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
 Google Scholar 
 6.Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).PubMed 
 PubMed Central 
 Google Scholar 
 7.Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).ADS 
 Google Scholar 
 8.Sallée, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 9.Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).10.Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).ADS 
 Google Scholar 
 11.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
 PubMed Central 
 Google Scholar 
 12.Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
 Google Scholar 
 13.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
 PubMed Central 
 Google Scholar 
 14.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 15.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 
 Google Scholar 
 16.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
 CAS 
 Google Scholar 
 17.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).18.Lavell, A. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 25–64 (2012).19.Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteor. Soc. 81, 443–450 (2000).ADS 
 Google Scholar 
 20.Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
 Google Scholar 
 21.Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).PubMed 
 PubMed Central 
 Google Scholar 
 22.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). Quantifies the future evolution of marine heatwaves under different climate scenarios and their attribution to climate change.ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 23.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018). Highlights the strong increase in the occurrence and intensity of marine heatwaves in recent decades.ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 24.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
 Google Scholar 
 25.Benedetti-Cecchi, L. Complex networks of marine heatwaves reveal abrupt transitions in the global ocean. Sci. Rep. 11, 1739 (2021).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 26.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). Assesses the potential for global ocean ecosystem impacts of marine heatwaves.ADS 
 Google Scholar 
 27.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2012). Demonstrates marked ocean ecosystem changes in response to a heatwave.ADS 
 Google Scholar 
 28.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
 Google Scholar 
 29.Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 30.Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).ADS 
 Google Scholar 
 31.Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the west coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).ADS 
 Google Scholar 
 32.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016). A synthesis of the ecosystem impacts of the 2013–2015 Blob heatwave.33.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 north Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).ADS 
 Google Scholar 
 34.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).
 Google Scholar 
 35.Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 36.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 37.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013). Models the evolution of ocean-acidification-related extremes in the California Current System.ADS 
 Google Scholar 
 38.Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).ADS 
 CAS 
 Google Scholar 
 39.Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 113–128 (2014).
 Google Scholar 
 40.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
 Google Scholar 
 41.Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).ADS 
 Google Scholar 
 42.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
 Google Scholar 
 43.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).44.Limburg, K. E., Breitburg, D., Swaney, D. P. & Jacinto, G. Ocean deoxygenation: a primer. One Earth 2, 24–29 (2020).
 Google Scholar 
 45.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 
 Google Scholar 
 46.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
 Google Scholar 
 47.Allen, M. R. et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 49–91 (IPCC, 2018).48.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 49.Pilo, G. S., Holbrook, N. J., Kiss, A. E. & Hogg, A. M. C. sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 46, 14604–14612 (2019).ADS 
 Google Scholar 
 50.Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
 Google Scholar 
 51.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).52.Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).ADS 
 Google Scholar 
 53.Amaya, D. J., Miller, A. J., Xie, S. P. & Kosaka, Y. Physical drivers of the summer 2019 north Pacific marine heatwave. Nat. Commun. 11, 1903 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 54.Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Change 9, 313–317 (2019).ADS 
 Google Scholar 
 55.Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).ADS 
 Google Scholar 
 56.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).ADS 
 Google Scholar 
 57.Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).ADS 
 Google Scholar 
 58.Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 59.Frenger, I. et al. Biogeochemical role of subsurface coherent eddies in the ocean: tracer cannonballs, hypoxic storms, and microbial stewpots? Glob. Biogeochem. Cycles 32, 226–249 (2018).ADS 
 CAS 
 Google Scholar 
 60.Schütte, F. et al. Characterization of ‘dead-zone’ eddies in the eastern tropical north Atlantic. Biogeosciences 13, 5865–5881 (2016).ADS 
 Google Scholar 
 61.Lauvset, S. K. et al. Processes driving global interior ocean pH distribution. Glob. Biogeochem. Cycles 34, e2019GB006229 (2020).ADS 
 CAS 
 Google Scholar 
 62.Gaube, P., Chelton, D. B., Strutton, P. G. & Behrenfeld, M. J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370 (2013).ADS 
 CAS 
 Google Scholar 
 63.Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).ADS 
 Google Scholar 
 64.Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).ADS 
 CAS 
 Google Scholar 
 65.Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 66.Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 67.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 
 Google Scholar 
 68.Peterson, W. T., Bond, N. A. & Robert, M. The Blob (part three): going, going, gone? PICES Press 24, 46–48 (2016).
 Google Scholar 
 69.Frischknecht, M., Münnich, M. & Gruber, N. Local atmospheric forcing driving an unexpected California Current System response during the 2015–2016 El Niño. Geophys. Res. Lett. 44, 304–311 (2017).ADS 
 Google Scholar 
 70.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 71.Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).72.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 73.Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar. Ecol. Progr. Ser. 373, 203–217 (2008).ADS 
 Google Scholar 
 74.Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 75.Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
 Google Scholar 
 76.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). Demonstrates the global-scale impact of marine heatwaves on warm-water corals.ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 77.Donovan, M. K. et al. Local conditions magnify coral loss following marine heatwaves. Science 372, 977–980 (2021).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 78.Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. https://doi.org/10.1111/gcb.15818 (2021).79.McMahon, B. R. Physiological responses to oxygen depletion in intertidal animals. Am. Zool. 28, 39–53 (1988).
 Google Scholar 
 80.Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).ADS 
 Google Scholar 
 81.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 82.Spisla, C. et al. Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study. Front. Mar. Sci. 7, 611157 (2021).
 Google Scholar 
 83.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 84.Bednaršek, N. et al. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018). Shows the impact of a compound event on pteropods, a keystone zooplankton species in many marine ecosystems.
 Google Scholar 
 85.Calderón-Liévanos, S. et al. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar. Freshw. Behav. Physiol. 52, 1–15 (2019).
 Google Scholar 
 86.Mieszkowska, N., Burrows, M. T., Hawkins, S. J. & Sugden, H. Impacts of pervasive climate change and extreme events on rocky intertidal communities: evidence from long-term data. Front. Mar. Sci. 8, 642764 (2021).87.Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several northeast Pacific marine ecosystems. Glob. Chang. Biol. 27, 506–520 (2020).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 88.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 89.Garrabou, J. et al. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS 
 Google Scholar 
 90.Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).ADS 
 Google Scholar 
 91.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).ADS 
 Google Scholar 
 92.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the Northern Gulf of Alaska. Front. Mar. Sci. 8, 556820 (2021).93.Samuels, T., Rynearson, T. A. & Collins, S. Surviving heatwaves: thermal experience predicts life and death in a Southern Ocean Diatom. Front. Mar. Sci. 8, 600343 (2021).94.Vajedsamiei, J., Wahl, M., Schmidt, A. L., Yazdanpanahan, M. & Pansch, C. The higher the needs, the lower the tolerance: extreme events may select ectotherm recruits with lower metabolic demand and heat sensitivity. Front. Mar. Sci. 8, 660427 (2021).
 Google Scholar 
 95.Bindoff, N. L. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2021).96. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 6 (Cambridge Univ. Press, 2014).97.Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).PubMed 
 PubMed Central 
 Google Scholar 
 98.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 99.Seifert, M., Rost, B., Trimborn, S. & Hauck, J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2. Glob. Change Biol. 26, 6787–6804 (2020).ADS 
 Google Scholar 
 100.Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).PubMed 
 PubMed Central 
 Google Scholar 
 101.Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments: adaptation to changing environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454 (2020).
 Google Scholar 
 102.Somero, G. N. The cellular stress response and temperature: function, regulation, and evolution. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 379–397 (2020).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 103.Fordyce, A. J., Ainsworth, T. D., Heron, S. F. & Leggat, W. Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 6, 498 (2019).
 Google Scholar 
 104.Krueger, T. et al. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50, 1035–1047 (2014).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 105.Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 
 PubMed Central 
 Google Scholar 
 106.Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, e1501660 (2016).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 107.Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4, 1024–1030 (2014).ADS 
 Google Scholar 
 108.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 109.Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 
 PubMed Central 
 Google Scholar 
 110.Hinder, S. L. et al. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Glob. Change Biol. 20, 140–146 (2014).ADS 
 Google Scholar 
 111.Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 118, e2017105118 (2021).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 112.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
 Google Scholar 
 113.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 114.Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
 Google Scholar 
 115.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
 PubMed Central 
 Google Scholar 
 116.Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).ADS 
 Google Scholar 
 117.Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).PubMed 
 PubMed Central 
 Google Scholar 
 118.Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 5–8 (2017).ADS 
 Google Scholar 
 119.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
 Google Scholar 
 120.Vallina, S. M. & Le Quéré, C. Stability of complex food webs: resilience, resistance and the average interaction strength. J. Theor. Biol. 272, 160–173 (2011).ADS 
 MathSciNet 
 PubMed 
 PubMed Central 
 MATH 
 Google Scholar 
 121.Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 122.Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 123.Nagelkerken, I., Goldenber, S. U., Ferreir, C. M., Ullah, H. & Conne, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 124.Carpenter, S. R. et al. Cascading trophic interactions and lake productivity. Bioscience 35, 634–639 (1985).
 Google Scholar 
 125.Bideault, A. et al. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Glob. Change Biol. 27, 257–269 (2021).ADS 
 Google Scholar 
 126.Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. Temperature variability alters the stability and thresholds for collapse of interacting species: species interactions facing variability. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190457 (2020).
 Google Scholar 
 127.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a south central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 128.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 
 Google Scholar 
 129.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).ADS 
 Google Scholar 
 130.Ainsworth, T. D., Hurd, C. L., Gates, R. D. & Boyd, P. W. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? Glob. Change Biol. 26, 343–354 (2020).ADS 
 Google Scholar 
 131.Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010). Develops the concept of how other stressors can interact with each other in marine ectotherms.PubMed 
 PubMed Central 
 Google Scholar 
 132.Deutsch, C., Ferrel, A., Seibel, B., Portner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 133.Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 134.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
 Google Scholar 
 135.Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).
 Google Scholar 
 136.Le Gland, G., Vallina, S. M., Smith, S. L. & Cermeño, P. SPEAD 1.0—simulating plankton evolution with adaptive dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea. Geosci. Model Dev. 14, 1949–1985 (2021).ADS 
 Google Scholar 
 137.Merico, A., Bruggeman, J. & Wirtz, K. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol. Modell. 220, 3001–3010 (2009).CAS 
 Google Scholar 
 138.Walworth, N. G., Zakem, E. J., Dunne, J. P., Collins, S. & Levine, N. M. Microbial evolutionary strategies in a dynamic ocean. Proc. Natl Acad. Sci. USA 117, 5943–5948 (2020).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 139.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS 
 CAS 
 Google Scholar 
 140.Collins, M. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 6 (IPCC, 2021).141.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 142.Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science 354, 1591–1594 (2016).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 143.Rashid Sumaila, U. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 144.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
 Google Scholar 
 145.Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).PubMed 
 PubMed Central 
 Google Scholar 
 146.Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020).ADS 
 Google Scholar 
 147.Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
 Google Scholar 
 148.Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 149.Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 150.Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).ADS 
 Google Scholar 
 151.Boyd, P. & Hutchins, D. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 
 Google Scholar 
 152.Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).ADS 
 Google Scholar 
 153.Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).
 Google Scholar 
 154.Bruggeman, J. & Kooijman, S. A. L. M. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Oceanogr. 52, 1533–1544 (2007).ADS 
 Google Scholar 
 155.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).ADS 
 Google Scholar 
 156.Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 157.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 158.Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 159.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
 Google Scholar 
 160.Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE 8, e67737 (2013).ADS 
 CAS 
 PubMed 
 PubMed Central 
 Google Scholar 
 161.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8, 181–191 (1990).ADS 
 Google Scholar 
 162.Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 163.Gardner, J., Manno, C., Bakker, D. C. E., Peck, V. L. & Tarling, G. A. Southern Ocean pteropods at risk from ocean warming and acidification. Mar. Biol. 165, 8 (2018).PubMed 
 PubMed Central 
 Google Scholar  More