More stories

  • in

    Diet-driven mercury contamination is associated with polar bear gut microbiota

    1.Evariste, L. et al. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ. Pollut. 248, 989–999 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Guo, G., Yumvihoze, E., Poulain, A. J. & Chan, H. M. Monomethylmercury degradation by the human gut microbiota is stimulated by protein amendments. J. Toxicol. Sci. 43, 717–725 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Dempsey, J. L., Little, M. & Cui, J. Y. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 75, 41–69 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    4.Breton, J. Ô. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013).CAS 
    PubMed 

    Google Scholar 
    5.Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Nakamura, I., Hosokawa, K., Tamura, H. & Miura, T. Reduced mercury excretion with feces in germfree mice after oral administration of methyl mercury chloride. Bull. Environ. Contam. Toxicol. 17, 528–533 (1977).CAS 
    PubMed 

    Google Scholar 
    7.Rowland, I. R., Davies, M. J. & Evans, J. G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch. Environ. Health 35, 155–160 (1980).CAS 
    PubMed 

    Google Scholar 
    8.Seko, Y., Miura, T., Takahashi, M. & Koyama, T. Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol. Toxicol. (Copenh) 49, 259–265 (1981).CAS 

    Google Scholar 
    9.Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).CAS 
    PubMed 

    Google Scholar 
    11.Desforges, J.-P.W. et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 86, 126–139 (2016).CAS 
    PubMed 

    Google Scholar 
    12.Dietz, R. et al. What are the toxicological effects of mercury in Arctic biota?. Sci. Total Environ. 443, 775–790 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Amstrup, S. C., Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. The polar bear-Ursus maritimus biology, management, and conservation. Wild Mammals North Am. Biol. Manag. Conserv. 2, 587–610 (2003).
    Google Scholar 
    14.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633 (2017).
    Google Scholar 
    15.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    16.Routti, H. et al. Contaminants in Polar Bears from the Circumpolar Arctic State of Knowledge and Further Recommendations for Monitoring and Research-Action #42 of the Circumpolar Action Plan for polar Bear Conservation (2019).17.Letcher, R. J. et al. Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci. Total Environ. 408, 2995–3043 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Dietz, R. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001. Environ. Sci. Technol. 40, 1120–1125 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Borgå, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367 (2004).PubMed 

    Google Scholar 
    20.Hoekstra, P. F. et al. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas. Environ. Pollut. 124, 509–522 (2003).CAS 
    PubMed 

    Google Scholar 
    21.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (80–) 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    24.Ferguson, S. H., Stirling, I. & McLoughlin, P. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mammal Sci. 21, 121–135 (2005).
    Google Scholar 
    25.Thiemann, G., Iverson, S. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).
    Google Scholar 
    26.Muir, D. C., Norstrom, R. J. & Simon, M. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ. Sci. Technol. 22, 1071–1079 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Young, B. G., Loseto, L. L. & Ferguson, S. H. Diet differences among age classes of Arctic seals: Evidence from stable isotope and mercury biomarkers. Polar Biol. 33, 153–162 (2010).
    Google Scholar 
    28.Correa, L., Castellini, J. M., Quakenbush, L. T. & O’Hara, T. M. Mercury and selenium concentrations in skeletal muscle, liver, and regions of the heart and kidney in bearded seals from Alaska, USA. Environ. Toxicol. Chem. 34, 2403–2408 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Brown, T. M. et al. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet. Sci. Total Environ. 545–546, 503–511 (2016).ADS 
    PubMed 

    Google Scholar 
    30.McKinney, M. A., Atwood, T. C., Pedro, S. & Peacock, E. Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environ. Sci. Technol. 51, 7814–7822 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 20, 1–1 (2019).
    Google Scholar 
    32.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    33.Cattet, M. R., Caulkett, N. A., Obbard, M. E. & Stenhouse, G. B. A body-condition index for ursids. Can. J. Zool. 80, 1156–1161 (2002).
    Google Scholar 
    34.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    35.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Golzadeh, N. et al. Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta Canada. Chemosphere 250, 20 (2020).
    Google Scholar 
    40.Iverson, S. J., Field, C., DonBowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).
    Google Scholar 
    41.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    42.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
    Google Scholar 
    43.Grandjean, P. & Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 50, 712–719 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Dietz, R. et al. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ. Sci. Technol. 45, 1458–1465 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    45.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 209, 1–8 (2018).CAS 

    Google Scholar 
    48.Rothenberg, S. E. et al. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol. Lett. 242, 60–67 (2016).CAS 
    PubMed 

    Google Scholar 
    49.Wu, J. et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol. Sci. 151, 324–333 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    51.Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    52.Li, H. et al. Intestinal methylation and demethylation of mercury. Bull. Environ. Contam. Toxicol. 1025(102), 597–604 (2018).
    Google Scholar 
    53.Guo, X. et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112, 1–8 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Rowland, I., Davies, M. & Grasso, P. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health Int. J. 32, 24–28 (1977).CAS 

    Google Scholar 
    58.Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85–94 (2011).CAS 
    PubMed 

    Google Scholar 
    59.Setlow, P., Wang, S. & Li, Y. Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 71, 459–477 (2017).CAS 
    PubMed 

    Google Scholar 
    60.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of intestinal bacilli: A natural guard against pathologies. Front. Microbiol. 8, 25 (2017).
    Google Scholar 
    61.Hiller-Bittrolff, K., Foreman, K., Bulseco-McKim, A. N., Benoit, J. & Bowen, J. L. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. Environ. Pollut. 242, 797–806 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).CAS 
    PubMed 

    Google Scholar 
    63.Wei, Z. S. et al. Effect of gaseous mercury on nitric oxide removal performance and microbial community of a hybrid catalytic membrane biofilm reactor. Chem. Eng. J. 316, 584–591 (2017).CAS 

    Google Scholar 
    64.Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science (80–) 359, 568–572 (2018).ADS 
    CAS 

    Google Scholar 
    65.Van Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).
    Google Scholar 
    66.Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).CAS 
    PubMed 

    Google Scholar 
    67.Cowan, T. E. et al. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 25, 489–495 (2014).CAS 
    PubMed 

    Google Scholar 
    68.Bishara, J. et al. Obesity as a risk factor for Clostridium difficile infection. Clin. Infect. Dis. 57, 489–493 (2013).PubMed 

    Google Scholar 
    69.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. 10, 659 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    71.Castonguay-Paradis, S. et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 10, 1–11 (2020).
    Google Scholar  More

  • in

    Tropical bee species abundance differs within a narrow elevational gradient

    1.Galbraith, S. M., Griswold, T., Price, W. J. & Bosque-Pérez, N. A. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00274-8 (2020).Article 

    Google Scholar 
    2.Imbach, P. et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Change 141, 1–12 (2017).
    Google Scholar 
    3.HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts?. Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    4.Butt, N. et al. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 21, 3267–3277 (2015).ADS 
    PubMed 

    Google Scholar 
    5.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451-458.e4 (2021).CAS 
    PubMed 

    Google Scholar 
    7.Bezerra, E. S., Lopes, A. V. & Machado, I. C. Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no Nordeste do Brasil. Rev. Bras. Bot. 32, 95–108 (2009).
    Google Scholar 
    8.Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.12.010 (2020).Article 
    PubMed 

    Google Scholar 
    9.Hoiss, B., Krauss, J. & Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob. Chang. Biol. 21, 4086–4097 (2015).ADS 
    PubMed 

    Google Scholar 
    10.Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).MathSciNet 

    Google Scholar 
    11.Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24, 642–652 (2015).
    Google Scholar 
    12.Ramos-Jiliberto, R. et al. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    13.Dellinger, A. S. et al. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. https://doi.org/10.1111/nph.17390 (2021).Article 
    PubMed 

    Google Scholar 
    14.González-Vanegas, P. A., Rös, M., García-Franco, J. G. & Aguirre-Jaimes, A. Buzz-pollination in a tropical montane cloud forest: Compositional similarity and plant-pollinator interactions. Neotrop. Entomol. https://doi.org/10.1007/s13744-021-00867-1 (2021).Article 
    PubMed 

    Google Scholar 
    15.Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U. S. A. 113, 680–685 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Sheldon, K. S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303–333 (2019).
    Google Scholar 
    18.McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).PubMed 

    Google Scholar 
    19.Aguilar, I., Herrera, E. & Zamora, G. Stingless bees of Costa Rica. Pot-Honey https://doi.org/10.1007/978-1-4614-4960-7 (2012).Article 

    Google Scholar 
    20.Köppler, K., Vorwohl, G. & Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38, 341–353 (2007).
    Google Scholar 
    21.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    22.Ortiz-Mora, R. A., Van Veen, J. W., Corrales, G. & Sommeijer, M. J. Influence of altitude on the distribution of stingless bees (Hymenoptera Apidae: Meliponinae). Apiacta 30, 101–105 (1995).
    Google Scholar 
    23.Michener, C. D. The Bees of the World (The Johns Hopkins University Press, 2007).
    Google Scholar 
    24.Rehan, S. M., Tierney, S. M. & Wcislo, W. T. Evidence for social nesting in Neotropical ceratinine bees. Insectes Soc. 62, 465–469 (2015).
    Google Scholar 
    25.Gonzalez, V. H. et al. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol. 45, 688–696 (2020).
    Google Scholar 
    26.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    27.Theobald, E. J., Gabrielyan, H. & HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 103, 189–197 (2016).PubMed 

    Google Scholar 
    28.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Bode, R. F., Linhart, R. D. & Dufresne, C. Variation in the pollinator community visiting invasive Cytisus scoparius L. Link (Fabaceae) along an elevation gradient. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-020-09755-8 (2020).Article 

    Google Scholar 
    30.Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).PubMed 

    Google Scholar 
    31.Dymond, K. et al. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. https://doi.org/10.1111/jen.12869 (2021).Article 

    Google Scholar 
    32.Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013).
    Google Scholar 
    33.Ashworth, L., Quesada, M., Casas, A., Aguilar, R. & Oyama, K. Pollinator-dependent food production in Mexico. Biol. Conserv. 142, 1050–1057 (2009).
    Google Scholar 
    34.Tepedino, V. J. The Pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377 (1981).
    Google Scholar 
    35.Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
    Google Scholar 
    36.Barrantes, G. The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Rev. Biol. Trop. 57, 333–346 (2009).
    Google Scholar 
    37.Macedo, M. V. et al. Insect elevational specialization in a tropical biodiversity hotspot. Insect Conserv. Divers. 11, 240–254 (2018).
    Google Scholar 
    38.Frankie, G. W. et al. Diversity and abundance of bees visiting a mass flowering tree species in disturbed seasonal dry forest, Costa Rica. Kansas Entomol. Soc. 70, 281–296 (1997).
    Google Scholar 
    39.Heard, T. A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Abrol, D. P. Wild bees and crop pollination. In Pollination Biology: Biodiversity Conservation and Agricultural Production 111–184 (Springer, 2012).
    Google Scholar 
    41.Tucker, E. M. & Rehan, S. M. Farming for bees: Annual variation in pollinator populations across agricultural landscapes. Agric. For. Entomol. 20, 541–548 (2018).
    Google Scholar 
    42.Peters, V. E., Mordecai, R., Carroll, C. R., Cooper, R. J. & Greenberg, R. Bird community response to fruit energy. J. Anim. Ecol. 79, 824–835 (2010).PubMed 

    Google Scholar 
    43.Baker, C. P. Moon Costa Rica (Moon Travel, 2007).
    Google Scholar 
    44.Hinton, C. R. & Peters, V. E. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol. Evol. 11, 2346–2359 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    45.Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).
    Google Scholar 
    46.Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Museum Nat. Hist. 3296, 1–11 (2000).
    Google Scholar 
    47.Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the Africanized honey bee invasion of the Americas. bioRxiv https://doi.org/10.1101/2020.03.17.994632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Davila, Y. C. & Wardle, G. M. Variation in native pollinators in the absence of honeybees: Implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156, 479–490 (2008).
    Google Scholar 
    49.Chen, H., Morrell, P. L., Ashworth, V. E. T. M., De La Cruz, M. & Clegg, M. T. Tracing the geographic origins of major avocado cultivars. J. Hered. 100, 56–65 (2009).PubMed 

    Google Scholar 
    50.Bender, G. S. Avocado flowering and pollination. Avocado Prod. Calif. 1, 39–49 (2002).ADS 

    Google Scholar 
    51.Bergh, B. O. The remarkable avocado flower. Calif. Avocado Soc. Yearb. 57, 40–41 (1973).
    Google Scholar 
    52.Wilson, H. D. Gene flow in squash species. Bioscience 40, 449–455 (1990).
    Google Scholar 
    53.Hurd, P. D., Linsley, E. G. & Whitaker, T. W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234 (1971).PubMed 

    Google Scholar 
    54.Willis, S. D. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Google Scholar 
    55.Gómez-Escobar, E., Liedo, P., Montoya, P., Vandame, R. & Sánchez, D. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J. Econ. Entomol. 107, 1447–1449 (2014).PubMed 

    Google Scholar 
    56.Jarau, S. & Barth, F. G. Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 88, 267–276 (2008).
    Google Scholar 
    57.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    58.Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).59.Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    61.Salim, H. M. W. et al. Stingless bee (Hymenoptera: Apidae: Meliponini) diversity in dipterocarp forest reserves in Peninsular Malaysia. Raffles Bull. Zool. 60, 213–219 (2012).MathSciNet 

    Google Scholar 
    62.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    63.Baselga, A. et al. Partitioning Beta Diversity into Turnover and Nestedness Components (Wiley, 2021).
    Google Scholar 
    64.Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).
    Google Scholar 
    65.Wang, Y. et al. Statistical Methods for Analysing Multivariate Abundance Data. (2021).66.Kindt, R. & Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre (ICRAF), 2005).
    Google Scholar  More

  • in

    Soundscape and ambient noise levels of the Arctic waters around Greenland

    1.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).2.Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).ADS 

    Google Scholar 
    3.Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).ADS 

    Google Scholar 
    4.Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science (80-). 371, eaba4658 (2021).CAS 
    PubMed 

    Google Scholar 
    5.Tyack, P., Frisk, G., Boyd, I., Urban, E. & Seeyave, S. (eds). An International Quiet Ocean Experiment Science Plan. Scientific Committee on Oceanic Research / Partnership for Observation of the Global Oceans (2015).6.Kaplan, M. B. & Solomon, S. A coming boom in commercial shipping? The potential for rapid growth of noise from commercial ships by 2030. Mar. Policy 73, 119–121 (2016).
    Google Scholar 
    7.McDonald, M. A., Hildebrand, J. A. & Wiggins, S. M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 120, 711 (2006).ADS 
    PubMed 

    Google Scholar 
    8.Kyhn, L. A. et al. Basin-wide contributions to the underwater soundscape by multiple seismic surveys with implications for marine mammals in Baffin Bay, Greenland. Mar. Pollut. Bull. 138, 474–490 (2019).CAS 
    PubMed 

    Google Scholar 
    9.Bailey, H. et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar. Pollut. Bull. 60, 888–897 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P. & Fox, C. G. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. J. Acoust. Soc. Am. 115, 1832–1843 (2004).ADS 
    PubMed 

    Google Scholar 
    11.Guerra, M., Thode, A. M., Blackwell, S. B. & Michael Macrander, A. Quantifying seismic survey reverberation off the Alaskan North Slope. J. Acoust. Soc. Am. 130, 3046–3058 (2011).ADS 
    PubMed 

    Google Scholar 
    12.OSPAR Commission. The North-East Atlantic Environment Strategy: Strategy of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic 2010–2020. OSPAR Secretariat, London (2010).13.UN. General Assembly (74th sess.: 2019–2020). Oceans and the law of the sea: Resolution/adopted by the General Assembly. A/RES/74/19 (2019).14.Arctic Council. Arctic Marine Shipping Assessment 2009 Report, second printing. Arctic Council, Tromsø, Norway (2009).15.International Maritime Organization. Guidelines from the International Maritime Organization for the reduction of underwater noise from commercial shipping, to address adverse impacts on marine life. MEPC. 1/Circ. 833. IMO, London (2014).16.European Commission. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). European Commission, Brussels (2008).17.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. https://doi.org/10.1139/er-2019-0033 (2020).Article 

    Google Scholar 
    18.PAME. Underwater Noise in the Arctic: A State of Knowledge Report, Roveniemi, May 2019. Protection of the Arctic Marine Environment (PAME) Secretariat, Akureyri (2019).19.Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    20.Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).ADS 

    Google Scholar 
    21.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. PNAS 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ebinger, C. K. & Zambetakis, E. The geopolitics of Arctic melt. Int. Aff. 85, 1215–1232 (2009).
    Google Scholar 
    23.Huntington, H. P. A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    24.Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    25.Baumgartner, M. F., Stafford, K. M. & Latha, G. Near real-time underwater passive acoustic monitoring of natural and anthropogenic sounds. In Observing the Oceans in Real Time (eds Venkatesan, R. et al.) 203–226 (Springer Oceanography, 2018). https://doi.org/10.1007/978-3-319-66493-4_10.Chapter 

    Google Scholar 
    26.Mellinger, D. K. & Clark, C. W. Blue whale (Balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108 (2003).ADS 
    PubMed 

    Google Scholar 
    27.Mustonen, M. et al. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    28.Pieretti, N. & Danovaro, R. Acoustic indexes for marine biodiversity trends and ecosystem health. Philos. Trans. R. Soc. B 375, 20190447 (2020).
    Google Scholar 
    29.Palmer, K. J., Brookes, K. L., Davies, I. M., Edwards, E. & Rendell, L. Habitat use of a coastal delphinid population investigated using passive acoustic monitoring. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 254–270 (2019).
    Google Scholar 
    30.Sigray, P. et al. BIAS: A regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II (eds. Popper A., Hawkins A.) 1015–1023. Advances in Experimental Medicine and Biology. 875. (Springer New York, 2016).31.Farcas, A., Powell, C. F., Brookes, K. L. & Merchant, N. D. Validated shipping noise maps of the Northeast Atlantic. Sci. Total Environ. 735, 139509 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Caruso, F. et al. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    34.Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Soc. Am. 142, EL512–EL517 (2017).PubMed 

    Google Scholar 
    35.Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.ANSI S1.11-2004. Specification for Octave, Half-Octave, and Third Octave Band Filters. American National Standards Institute Inc., New York (2004).37.Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    38.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. J. Acoust. Soc. Am. 30, 54–62 (2008).
    Google Scholar 
    39.Gillespie, D., Caillat, M., Gordon, J. & White, P. Automatic detection and classification of odontocete whistles. J. Acoust. Soc. Am. 134, 2427–2437 (2013).ADS 
    PubMed 

    Google Scholar 
    40.Mellinger, D. K. et al. Ishmael 3.0 User Manual ISHMAEL 3.O User Guide. (2018).41.Jensen, F. H., Johnson, M., Ladegaard, M., Wisniewska, D. M. & Madsen, P. T. Narrow acoustic field of view drives frequency scaling in toothed whale biosonar. Curr. Biol. 28, 3878-3885.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    42.Madsen, P. T., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behav. Ecol. Sociobiol. 53, 31–41 (2002).
    Google Scholar 
    43.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS ONE 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Source Arct. 70, 59–76 (2017).
    Google Scholar 
    45.Commission, E. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. Off. J. Eur. Union 125, 43–74 (2017).
    Google Scholar 
    46.Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110 (1998).ADS 

    Google Scholar 
    47.McGrath, J. R. Depth and Seasonal Dependence of Ambient Sea Noise Near the Marginal Ice Zone of the Greenland Sea. Naval Research Laboratory. Washington DC (1976).48.Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).CAS 
    PubMed 

    Google Scholar 
    49.Merchant, N. D. et al. Underwater noise levels in UK waters. Sci. Rep. 6, 36942, (2016).50.Urick, R. J. Ambient Noise in the Sea (Undersea Warfare Technology Office, Naval Sea Systems Command, Department of the Navy, 1984).
    Google Scholar 
    51.Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034 (2015).ADS 
    PubMed 

    Google Scholar 
    52.Urick, R. J. The noise of melting icebergs. J. Acoust. Soc. Am. 50, 337–341 (1971).ADS 

    Google Scholar 
    53.Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).ADS 
    PubMed 

    Google Scholar 
    54.Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).ADS 
    PubMed 

    Google Scholar 
    55.Boye, T. K., Simon, M. J., Laidre, K. L., Rigét, F. & Stafford, K. M. Seasonal detections of bearded seal (Erignathus barbatus) vocalizations in Baffin Bay and Davis Strait in relation to sea ice concentration. Polar Biol. 43, 1493–1502 (2020).
    Google Scholar 
    56.De Vreese, S. et al. Marine mammal acoustic detections in the Greenland and Barents Sea, 2013–2014 seasons. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    57.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).ADS 
    PubMed 

    Google Scholar 
    58.Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Møhl, B. Masking effects of noise: their distribution in time and space. In The question of sound from icebreaker operations: The proceedings of a workshop (ed. Peterson, N. M.) 259–266. Arctic Pilot Project. Calgary, AB (1981).60.Erbe, C. & Farmer, D. M. Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 1373–1388 (1998).ADS 

    Google Scholar 
    61.Gordon, J. C. D. et al. A review of the effects of seismic survey on marine mammals. Mar. Technol. Soc. J. 37, 14–32 (2004).
    Google Scholar 
    62.Nowacek, D. P., Thorne, L. H., Johnston, D. W. & Tyack, P. L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 37, 81–115 (2007).
    Google Scholar 
    63.Southall, B. L. et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 45, 125–232 (2019).
    Google Scholar 
    64.Frid, A. & Dill, L. Human-caused Disturbance Stimuli as a Form of Predation Risk. Conserv. Ecol. 6, 11 (2002). More

  • in

    Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins

    Porewater concentrations of dissolved oxygen and nutrientsThe sampling location and appearance of the microbial mats used in this study in cross section are shown in Fig. 1. Profound changes in dissolved oxygen concentration were observed over the diel cycle because of high rates of oxygenic photosynthesis in the daytime and oxygen-requiring respiration at night (Table 1). Briefly, Layer 1 was characterized by oxygen concentration fluctuations in the range of 200–800 µM. Layers 2 and 3 ranged from 0–1200 µM and 0–200 µM, respectively. Mat Layer 4 (3–4 mm below the surface) may contain some dissolved oxygen near noon on days when there is high solar irradiance but stays anoxic for most hours of most days. Layers 5–7 (4–7 mm from the surface) remain anoxic.Table 1 Oxygen concentrations throughout the first 4 mm of the mat measured at 100 µm resolution using microsensors, measured on 22 August, 2019.Full size tableConcentrations of ammonium (Table 1) reveal a pattern of increasing concentration with depth (34–124 µM) through the layers examined here. Nitrate concentrations ranged between 26–33 µM, with low variation across depths. The concentration of phosphate ranged between 3–6 µM, with the highest concentration detected in Layer 1 (0–1 mm from surface) at 5.5 µM.Analysis of genes and transcripts in mat layers by qPCR and RT-qPCRGene-copy number ranges for both DNA and cDNA across all layers for all genes examined are summarized as follows: Bacteria, 104−1010 per g mat and 101−105, per ng nucleic acid; Archaea, 106−108 and 102−104; nifH, 108−1011 and 104−107; archaeal-amoA, 104−105 and 2–3; bacterial-amoA, 104−107 and 3–335; Nitrospira-nxrB, 105−107 and 27–372; nosZ, 103−105 and 2–10; nirS, 105−107 and 33–1941; Planctomycetes-16S rRNA gene and cDNA of transcripts, 104−106 and 6–66 (Fig. 2, S1).Fig. 2: Vertical patterns in the abundance (DNA) and expression (cDNA) of Bacterial and Archaeal ribosomal and nitrogen cycling genes.Number of copies of DNA and cDNA genes recovered for Bacteria (A), Archaea (B), nifH (C), Archaeal-amoA (D), Bacterial-amoA (E), Nitrospira-nxrB (F), nosZ (G), nirS (H) and Planctomycetes-16S rRNA gene marker (anammox proxy) (I), per g of microbial mat, quantified by qPCR and RT-qPCR in hypersaline microbial mat profiles from different depths. P-values from Kruskal–Wallis test are overlain on each, and different letters indicate significantly different values for the given gene based on a Conover-Iman test p-value of  0.8, Table 2).Fig. 4: Non-metric multidimensional scaling (NMDS) plots of quantification of all nitrogen genes across all layers examined in this study.Genes associated with the following nitrogen transformations were examined: nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy). The biotic data was standardized, and a sample resemblance matrix was generated using Bray-Curtis coefficient of similarity. In order to analyze the influence of abiotic variables (porewater nutrient and oxygen concentration) on the patterns of the biotic data, monotonic correlations of the abiotic variables were performed. In the plots, the distance between the samples’ points reflects their relative similarity, according to Bray-Curtis similarity matrices based on cDNA/DNA ratios of nitrogen genes examined. The vectors in panel A represent the cDNA/DNA ratios of nitrogen gene examined. In panel B, the vectors represent the environmental variables.Full size imageTable 2 (A) Spearman correlations coefficient (r) between the ratios of cDNA/DNA of nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy) and oxygen, ammonium, nitrate and phosphate concentrations. (B) Spearman correlation p-value.Full size tablenifH, Bacterial-amoA and Archaeal-amoA were positively correlated with oxygen concentration (r ≥ 0.22, Table 2), while Nitrospira-nxrB was negatively correlated with oxygen (r = −0.68, Table 2). Denitrification genes (nosZ, nirS) and Planctomycetes-16S rRNA genes were all positively correlated with ammonium (r ≥ 0.5) and orthophosphate (r ≥ 0.13) and negatively correlated with oxygen (r  > −0.70).Metagenome analysis of nitrogen cyclingA total number of 922 324 genes were identified; 1305 of these genes were annotated with KOs that are part of KEGG’s Nitrogen Metabolism pathway (Table S2, S3). A dendrogram based on Bray-Curtis similarities of normalized coverages of all recovered nitrogen metabolism genes is shown in Fig. 5A. Overall, the similarity between the layers was >75%. According to SIMPROF analysis, there was a significant difference in the N-related gene coverages (based on an alpha value of 0.05) between Layers 1-Layer 2, Layer 3, and Layer 4 (p = 0.001) and Layer 2-Layer 3, and Layer 4 (p = 0.001), but not between Layers 3 and Layer 4 (p = 1), where the similarity was >90%.Fig. 5: Functional nitrogen gene distribution based on metagenome analysis.A Cluster analysis illustrating the similarity of normalized coverages of all recovered nitrogen metabolism genes across the uppers 4 layers examined [(Layer 1 (0–1 mm from surface), Layer 2 (1–2 mm from surface), Layer 3 (2–3 mm from surface), Layer 4 (3–4 mm from surface)]. Red lines show non-significant differences, according to SIMPROF analysis (p  > 0.05). B The bar plots show the genes of the metabolic pathways in the nitrogen cycle identified in the mat, according metagenome analysis, with relative coverage of each nitrogen cycling gene across depths examined (Fraction of Depth Integrated Coverage, FDIC). 355 unique genes were recovered from KEGG’s Nitrogen Metabolism pathway: 60 annotated as involved in nitrogen fixation, 15 in assimilatory nitrate reduction, 38 in dissimilatory nitrate reduction to ammonia (DNRA), 52 in hydroxylamine dehydrogenase EC 1.7.2.6, 121 in hydroxylamine reductase, 69 in denitrification pathway. C Values of Nitrogen-focused Coverage per Million (N-CPM). The following enzymes perform nitrogen transformation in the mat: nitrogenase molybdenum-iron protein alpha chain (nifD), nitrogenase iron protein NifH, nitrogenase molybdenum-iron protein beta chain (nifK), hydroxylamine dehydrogenase EC 1.7.2.6 (hao), hydroxylamine reductase (hcp), nitrate reductase/nitrite oxidoreductase, alpha subunit (narG, narZ, nxrA), nitrate reductase/nitrite oxidoreductase, beta subunit (narH, narY, nxrB), nitrate reductase (cytochrome) (napA), nitrate reductase (cytochrome), electron transfer subunit (napB), nitrite reductase (NO-forming) / hydroxylamine reductase (nirS), nitrogenase molybdenum-iron protein beta chain (nirK), nitric oxide reductase subunit B (norB), nitric oxide reductase subunit C (norC), nitrous-oxide reductase (nosZ), nitrate reductase gamma subunit (narI, narV), cytochrome c nitrite reductase small subunit (nrfH), nitrite reductase (cytochrome c-552) (nrfA), ferredoxin-nitrite reductase (nirA), ferredoxin-nitrate reductase (narB), MFS transporter, NNP family, nitrate/nitrite transporter (NRT, nark, nrtP, nasA). D Nitrogen cycling genes recovered in this study and the transformation that they catalyze.Full size imageThe nitrogen fixation pathway was identified with nifD, nifH, and nifK genes (Fig. 5B, C, Table S4). Of the 60 genes detected in this metabolic pathway 17 genes were annotated as nifD, 22 genes as nifH, and 21 genes as nifK. The normalized coverage of these genes showed a decreasing trend with depth. Layer 1 was characterized by the highest values of Nitrogen-focused coverage per million (N-CPM, see Supplementary Text 1) of nifD, nifH, and nifK genes: 56264.7, 54934.2 and 60059.2, respectively. On average, the three genes involved in nitrogen fixation, nifD, nifH, and nifK, decreased with depth, (2.7-fold from Layer 1 to Layer 4, with a nearly 2-fold difference solely between Layer 1 and Layer 2).Genes involved in nitrate assimilation, annotated as nirA and narB which code for ferredoxin nitrate reductase, were 3 times as abundant in Layer 1 than Layer 2, but decreased less markedly from Layer 2 to Layers 3 and 4.Genes for dissimilatory nitrite reduction (nrfA, and nrfH) were 4 and 16 times more abundant in Layer 4 than Layer 1. Similarly, the nitrate/nitrite regulator protein genes narl and narV displayed a nearly inverse pattern, with Layer 1 having the least proportion of genes, a large increase from Layer 1 to Layer 2, and additional increases from Layer 2 to Layers 3 and Layer 4 (Fig. 5B, C, Table S4).Genes associated with nitrification were very poorly represented in the metagenome. No genes associated with ammonia oxidation (amoA) were detected. Genes associated with nitrite oxidation (nrxA, nrxB) that were detected are so closely related to denitrifier genes (narG, narZ, narH, narY) as to be annotated with the same KEGG KO models (K00370 representing narG, narZ, nxrA; and K00371 representing narH, narY, nxrB).The following genes involved in denitrification were detected: napA, napB, narG, narZ, narH, narY, narI, narV, nirK, nirS, norB, norC, and nosZ (Fig. 5B, C). The nitrate reduction metabolic pathway was represented by 4 genes encoding the nitrate reductase-nitrite oxidoreductase-alpha subunit (narG, narZ, nxrA genes), 6 genes encoding the nitrate reductase-nitrite oxidoreductase-beta subunit (narH, narY, nxrB genes), 31 genes encoding the nitrate reductase gamma subunit (narI, narV), 5 genes encoding the nitrate reductase -cytochrome electron transfer subunit (napB) and 7 genes encoding the nitrate reductase -cytochrome (napA) (Table S4). The N-CPM of nitrate reductase increased with depth, but with a similar proportion of those genes in Layers 3 and 4. With respect to nitrite reductase (nirk and nirS genes, 2 and 1 genes, respectively), no nirK genes were detected in Layer 1, where the highest N-CPM of nirS was recovered (Fig. 5B). In contrast, Layer 3 had no detected nirS and the highest N-CPM of nirK. Regarding nitric oxide reductase (norB and norC genes, 6 and 1 genes, respectively), the highest normalized coverage of norB was detected in Layer 3, while highest for norC was in Layer 1. Finally, nosZ (6 genes) was detected in all the layers, steadily decreasing in normalized coverage from the top layer to the deepest (Fig. 5B, C; Table S4).DNRA metabolism was represented by nrfA (26 genes) and nrfH (12 genes), and by narI, narV (31). Layer 1 was characterized by the lowest normalized coverage of narI, narV, nrfA, and nrfH genes (6880.2, 3724.6, and 284.6 N-CPM, respectively), while Layer 3 was characterized by the greatest coverage of narI, narV, nrfA, and nrfH genes (32760.5, 14417.9 and 4504.1, respectively; Fig. 5B, C; Table S4).Genes for hydroxylamine dehydrogenase EC 1.7.2.6 and hydroxylamine reductase (hao and hcp, respectively) were the most abundant nitrogen metabolism genes in the mat: hao having a cumulative N-CPM of ~150000 and hcp having a cumulative N-CPM of nearly 350,000 across the 4 depths (Fig. 5C). Both genes increased in abundance with depth; hcp increased two-fold between Layer 1 and Layer 2, and more gradually in Layer 3 and Layer 4. Hao exhibited a three-fold increase in relative abundance from Layer 1 to Layer 2 and remained relatively constant through Layer 3 and Layer 4 (Fig. 5B, C; Table S4). More

  • in

    Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

    1.Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecol. Freshw. Fish. 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x (2003).Article 

    Google Scholar 
    2.Elliott, J. M. Quantitative Ecology and the Brown Trout (Oxford University Press, 1994).
    Google Scholar 
    3.ICES. Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Sci. Rep. 2(22), 261. https://doi.org/10.17895/ices.pub.5974 (2020).Article 

    Google Scholar 
    4.Berrebi, P., Horvath, Á., Splendiani, A., Palm, S. & Bernaś, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544, 737043. https://doi.org/10.1016/j.aquaculture.2021.737043 (2021).CAS 
    Article 

    Google Scholar 
    5.Jonsson, B. & Jonsson, N. Partial migration: Niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365. https://doi.org/10.1007/BF00043384 (1993).Article 

    Google Scholar 
    6.Jonsson, B. Diadromous and resident Trout Salmo Trutta: Is their difference due to genetics?. Oikos 38, 297–300. https://doi.org/10.2307/3544668 (1982).Article 

    Google Scholar 
    7.Olsson, I. C., Greenberg, L. A., Bergman, E. & Wysujack, K. Environmentally induced migration: The importance of food. Ecol. Lett. 9, 45–51. https://doi.org/10.1111/j.1461-0248.2006.00909.x (2006).Article 

    Google Scholar 
    8.Wysujack, K., Greenberg, L. A., Bergman, E. & Olsson, I. C. The role of the environment in partial migration: Food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol. Freshw. Fish. 18, 52–59. https://doi.org/10.1111/j.1600-0633.2008.00322.x (2009).Article 

    Google Scholar 
    9.Charles, K., Roussel, J. M. & Cunjak, R. A. Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production. Mar. Freshw. Res. 55, 185–191. https://doi.org/10.1071/MF03173 (2004).CAS 
    Article 

    Google Scholar 
    10.Youngson, A. F., Mitchell, A. I., Noack, P. T. & Laird, L. M. Carotenoid pigment profiles distinguish anadromous and nonanadromous brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 54, 1064–1066. https://doi.org/10.1139/f97-023 (1997).CAS 
    Article 

    Google Scholar 
    11.Eek, D. & Bohlin, T. Strontium in scales verifies that sympatric sea-run and stream-resident brown trout can be distinguished by coloration. J. Fish Biol. 51, 659–661. https://doi.org/10.1111/j.1095-8649.1997.tb01522.x (1997).Article 

    Google Scholar 
    12.Veinott, G., Northcote, T., Rosenau, M. & Evans, R. D. Concentrations of strontium in the pectoral fin rays of the white sturgeon (Acipenser transmontanus) by laser ablation sampling—inductively coupled plasma—mass spectrometry as an indicator of marine migrations. Can. J. Fish. Aquat. Sci. 56, 1981–1990. https://doi.org/10.1139/f99-120 (1999).CAS 
    Article 

    Google Scholar 
    13.Jardine, T. D., Cartwright, D. F., Dietrich, J. P. & Cunjak, R. A. Resource use by salmonids in riverine, lacustrine and marine environments: Evidence from stable isotope analysis. Environ. Biol. Fishes. 73, 309–319. https://doi.org/10.1007/s10641-005-2259-8 (2005).Article 

    Google Scholar 
    14.Jones, A. G. & Ardren, W. R. Methods of parentage analysis in natural populations. Mol. Ecol. 12, 2511–2523. https://doi.org/10.1046/j.1365-294X.2003.01928.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Goodwin, J. C. A., King, R. A., Jones, J. I., Ibbotson, A. & Stevens, J. R. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream. Freshw. Biol. 61, 1075–1089. https://doi.org/10.1111/fwb.12768 (2016).Article 

    Google Scholar 
    16.Charles, K., Guyomard, R., Hoyheim, B., Ombredane, D. & Baglinière, J.-L. Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in a Normandy population. Aquat. Living Resour. 18, 65–69. https://doi.org/10.1051/alr:2005006 (2005).CAS 
    Article 

    Google Scholar 
    17.Charles, K., Roussel, J.-M., Lebel, J.-M., Bagliniere, J.-L. & Ombredane, D. Genetic differentiation between anadromous and freshwater resident brown trout (Salmo trutta L.): Insights obtained from stable isotope analysis. Ecol. Freshw. Fish. 15, 255–263. https://doi.org/10.1111/j.1600-0633.2006.00149.x (2006).Article 

    Google Scholar 
    18.Jarry, M. et al. Sea trout (Salmo trutta L.) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934. https://doi.org/10.1007/s00300-018-2253-1 (2018).Article 

    Google Scholar 
    19.Brauer, C. J. & Beheregaray, L. B. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol. Appl. 13, 2857–2869. https://doi.org/10.1111/eva.13128 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Griffiths, A. M., Koizumi, I., Bright, D. & Stevens, J. R. A case of isolation by distance and shortterm temporal stability of population structure in brown trout (Salmo trutta) within the River Dart, southwest England. Evol. Appl. 2, 537–554. https://doi.org/10.1111/j.1752-4571.2009.00092.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.HELCOM. Sea Trout and Salmon Populations and Rivers in Poland—HELCOM Assessment of Salmon (Salmo salar) and Sea Trout (Salmo trutta) Populations and Habitats in Rivers Flowing to the Baltic Sea. Balt. Sea Environ. Proc. No. 126B. 2011.22.Dębowski, P. Fish assemblages in the Parsęta River drainage basin. Pol. Arch. Hydrobiol. 46, 161–172 (1999).
    Google Scholar 
    23.Kuligowski, D. R., Ford, M. J. & Berejikian, B. A. Breeding structure of steelhead inferred from patterns of genetic relatedness among nests. Trans. Am. Fish. Soc. 134, 1202–2121. https://doi.org/10.1577/T04-187.1 (2005).Article 

    Google Scholar 
    24.Dauphin, G., Prévost, E., Adams, C. E. & Boylan, P. Using redd counts to estimate salmonids spawner abundances: A Bayesian modelling approach. Fish. Res. 106, 32–40. https://doi.org/10.1016/j.fishres.2010.06.014 (2010).Article 

    Google Scholar 
    25.Cairney, M., Taggart, J. B. & Hoyheim, B. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol. Ecol. 9, 2175–2178. https://doi.org/10.1046/j.1365-294X.2000.105312.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Estoup, A., Presa, P., Krieg, F., Vaiman, D. & Guyomard, R. (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L. brown trout. Heredity 71, 488–496. https://doi.org/10.1038/hdy.1993.167 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.O’Reilly, P. T., Hamilton, L. C., McConnell, S. K. & Wright, J. M. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53, 2292–2298. https://doi.org/10.1139/f96-192 (1996).Article 

    Google Scholar 
    28.Poteaux, C., Bonhomme, F. & Berrebi, P. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82, 645–653. https://doi.org/10.1046/j.1365-2540.1999.00519.x (1999).Article 
    PubMed 

    Google Scholar 
    29.Presa, P. & Guyomard, R. Conservation of microsatellites in three species of salmonids. J. Fish Biol. 49, 1326–1329. https://doi.org/10.1111/j.1095-8649.1996.tb01800.x (1996).Article 

    Google Scholar 
    30.Scribner, K. T., Gust, J. R. & Fields, R. L. Isolation and characterization of novel salmon microsatellite loci: Cross species amplification and population genetics applications. Can. J. Fish. Aquat. Sci. 53, 833–841. https://doi.org/10.1139/cjfas-53-4-833 (1996).CAS 
    Article 

    Google Scholar 
    31.Slettan, A., Olsaker, I. & Lie, O. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim. Genet. 26, 281–282. https://doi.org/10.1111/j.1365-2052.1995.tb03262.x (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Slettan, A., Olsaker, I. & Lie, O. Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL429 and SSOSL444 loci. Anim. Genet. 27, 57–58 (1996).CAS 
    Article 

    Google Scholar 
    33.Linløkken, A. N., Haugen, T. O., Kent, M. P. & Lien, S. Genetic differences between wild and hatchery-bred brown trout (Salmo trutta L.) in single nucleotide polymorphisms linked to selective traits. Ecol. Evol. 7, 4963–4972. https://doi.org/10.1002/ece3.3070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bernaś, R. et al. Genetic differentiation in hatchery and stocked populations of sea trout in the Southern Baltic: Selection evidence at SNP loci. Genes 11, 184. https://doi.org/10.3390/genes11020184 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    35.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    36.Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).CAS 
    Article 

    Google Scholar 
    38.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    39.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x (1989).Article 
    PubMed 

    Google Scholar 
    42.Bernaś, R., Burzyński, A., Dębowski, P., Poćwierz-Kotus, A. & Wenne, R. Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fish. Manage. Ecol. 21, 398–409. https://doi.org/10.1111/fme.12090 (2014).Article 

    Google Scholar 
    43.Bernaś, R. & Wąs-Barcz, A. Genetic structure of important resident brown trout breeding lines in Poland. J. Appl. Genet. 61, 239–247. https://doi.org/10.1007/s13353-020-00548-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ostergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish. 21, 119–133 (2012).Article 

    Google Scholar 
    45.Lehtonen, P. K., Tonteri, A., Sendek, D., Titov, S. & Primmer, C. R. Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conserv. Genet. 10, 281–289. https://doi.org/10.1007/s10592-008-9577-2 (2009).Article 

    Google Scholar 
    46.Cross, T. F., Mills, C. P. R. & de CourcyWilliams, M. An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. J. Fish Biol. 40, 25–32. https://doi.org/10.1111/j.1095-8649.1992.tb02550.x (1992).CAS 
    Article 

    Google Scholar 
    47.Stelkens, R., Jaffuel, G., Escher, M. & Wedekind, C. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol. Ecol. 21, 2896–2915. https://doi.org/10.1111/j.1365-294X.2012.05581.x (2012).Article 
    PubMed 

    Google Scholar 
    48.Hansen, M. M., Limborg, M. T., Ferchaud, A.-L. & Pujolar, J.-M. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol. Biol. 14, 122. https://doi.org/10.1186/1471-2148-14-122 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kohlmann, K. & Wüstemann, O. Tracing the genetic origin of brown trout (Salmo trutta) re-colonizing the Ecker reservoir in the Harz National Park, Germany. Environ. Biotechnol. 8, 39–44 (2012).
    Google Scholar 
    50.Dellefors, C. & Faremo, U. Early sexual maturation in males of wild sea trout, Salmo trutta L. inhibits smoltification. J. Fish Biol. 33, 741–749. https://doi.org/10.1111/j.1095-8649.1988.tb05519.x (1988).Article 

    Google Scholar 
    51.Jonsson, B. & Jonsson, N. Differences in growth between offspring of anadromous and freshwater brown trout Salmo trutta. J. Fish Biol. 20, 1–7. https://doi.org/10.1111/jfb.14693 (2021).Article 

    Google Scholar  More

  • in

    Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient

    1.Schimel J, Schaeffer S. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 
    2.Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.CAS 
    PubMed 

    Google Scholar 
    3.Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.CAS 
    PubMed 

    Google Scholar 
    4.Xu X, Schimel JP, Janssens IA, Song X, Song C, Yu G, et al. Global pattern and controls of soil microbial metabolic quotient. Ecol Monogr. 2017;87:429–41.
    Google Scholar 
    5.Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat commun. 2018;9:3951.PubMed 
    PubMed Central 

    Google Scholar 
    6.Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biol. 2021;27:2039–48.
    Google Scholar 
    7.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change. 2013;3:909–12.CAS 

    Google Scholar 
    8.Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett. 2013;16:930–9.PubMed 

    Google Scholar 
    9.Xu M, Li X, Cai X, Gai J, Li X, Christie P, et al. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. Eur J Soil Biol. 2014;64:6–14.
    Google Scholar 
    10.Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.PubMed 
    PubMed Central 

    Google Scholar 
    11.Malik AA, Swenson T, Weihe C, Morrison EW, Martiny JBH, Brodie EL, et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 2020;14:2236–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 

    Google Scholar 
    13.Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biol. 2019;25:827–38.
    Google Scholar 
    14.Feng J, Wei K, Chen Z, Lü X, Tian J, Wang C, et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry. Global Biogeochem Cycles. 2019;33:559–69.CAS 

    Google Scholar 
    15.Allison S, Weintraub M, Gartner T, & Waldrop M. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A., editors Soil enzymology. Soil Biology, vol 22. Berlin, Germany: Springer Berlin Heidelberg; 2011, pp 229–43.16.Tribelli PM, López NI. Reporting key features in cold-adapted bacteria. Life. 2018;8:8.PubMed Central 

    Google Scholar 
    17.Allison SD. A trait-based approach for modelling microbial litter decomposition. Ecol Lett. 2012;15:1058–70.CAS 
    PubMed 

    Google Scholar 
    18.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    PubMed Central 

    Google Scholar 
    19.Li H, Yang S, Semenov MV, Yao F, Ye J, Bu R, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biol. 2021;27:2763–79.
    Google Scholar 
    20.Arce E, Archaimbault V, Mondy CP, Usseglio-Polatera P. Recovery dynamics in invertebrate communities following water-quality improvement: taxonomy- vs trait-based assessment. Freshw Sci. 2014;33:1060–73. 1014
    Google Scholar 
    21.Bench SR, Ilikchyan IN, Tripp HJ, Zehr JP. Two strains of crocosphaera watsonii with highly conserved genomes are distinguished by strain-specific features. Front Microbiol. 2011;2:261–261.PubMed 
    PubMed Central 

    Google Scholar 
    22.Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du B, Kang H, Pumpanen J, Zhu P, Yin S, Zou Q, et al. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecol Res. 2014;29:433–9.CAS 

    Google Scholar 
    24.Yao T, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change. 2012;2:663–7.
    Google Scholar 
    25.Zhuo G, Ciren B, Wang J, Lan X. Analysis of regional climate characteristics of Tibetan herbal products growing on Mt. Seqilha. Resour Sci. 2010;32:1452–61.
    Google Scholar 
    26.Chen L, Flynn DFB, Zhang X, Gao X, Lin L, Luo J, et al. Divergent patterns of foliar δ13C and δ15N in Quercus aquifolioides with an altitudinal transect on the Tibetan Plateau: an integrated study based on multiple key leaf functional traits. J Plant Ecol. 2014;8:303–12.
    Google Scholar 
    27.Xu M, Wang G, Li X, Cai X, Li X, Christie P, et al. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. Front Plant Sci. 2015;3:961.
    Google Scholar 
    28.Du J, Gao R, Ma PF, Liu YM, Zhou KS. Analysis of stereoscopic climate features on Mt. Seqiha, Tibet. Plateau Mt Meteorol Res. 2009;19:14–18.
    Google Scholar 
    29.Hu Q-W, Wu Q, Cao G-M, Li D, Long R-J, Wang Y-S. Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. J Integr Plant Biol. 2008;50:271–9.CAS 
    PubMed 

    Google Scholar 
    30.IUSS Working Group. World reference base for soil resources 2006, first update 2007. World soil resources reports no.103. in World soil resources reports no. 103. Rome, Italy: FAO; 2007.31.Walkley A. A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947;63:251–64.CAS 

    Google Scholar 
    32.Bray RH, Kurtz L. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945;59:39–46.CAS 

    Google Scholar 
    33.Olsen SR, Cole CV, Watanabe FS. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: United States Department of Agriculture; 1954.34.Liu YR, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41.CAS 

    Google Scholar 
    35.Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem. 2017;110:56–67.CAS 

    Google Scholar 
    36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 

    Google Scholar 
    37.Marx M-C, Wood M, Jarvis S. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem. 2001;33:1633–40.CAS 

    Google Scholar 
    38.Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol Biochem. 2016;93:1–7.CAS 

    Google Scholar 
    39.Wardle DA, Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem. 1995;27:1601–10.CAS 

    Google Scholar 
    40.Wang Q, Liu S, Tian P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob Change Biol. 2018;24:2841–9.
    Google Scholar 
    41.Xu M, Li X, Kuyper TW, Xu M, Zhang J. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biol. 2021;27:2061–75.
    Google Scholar 
    42.Li Y, Lv W, Jiang L, Zhang L, Wang S, Wang Q, et al. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming. Global Change Biol. 2019;25:3438–49.
    Google Scholar 
    43.Vance E, Brookes P, Jenkinson D. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    44.Sinsabaugh RL, Shah JJF. Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol S. 2012;43:313–43.
    Google Scholar 
    45.Cui Y, Wang X, Zhang X, Ju W, Duan C, Guo X, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem. 2020;147:107814.CAS 

    Google Scholar 
    46.Breiman L. Random forests. Mach Learn. 2001;45:5–32.
    Google Scholar 
    47.Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
    Google Scholar 
    48.Delgado-Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology. 2018;99:583–96.PubMed 

    Google Scholar 
    49.Cui Y, Moorhead DL, Guo X, Peng S, Wang Y, Zhang X, et al. Stoichiometric models of microbial metabolic limitation in soil systems. Glob Ecol Biogeogr. 2021;30:2297–311.
    Google Scholar 
    50.Nedwell DB. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. Fems Microbiol Ecol. 1999;30:101–11.CAS 
    PubMed 

    Google Scholar 
    51.Weinstein RN, Montiel PO, Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia. 2000;92:222–9.CAS 

    Google Scholar 
    52.Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from antarctica and the high arctic. Appl Environ Microb. 2012;78:549–59.
    Google Scholar 
    53.Nichols CM, Bowman JP, Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol. 2005;71:3519–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ren C, Zhang W, Zhong Z, Han X, Yang G, Feng Y, et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci Total Environ. 2018;610-1:750–8.
    Google Scholar 
    55.Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS ONE. 2019;14:e0213844.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Ruuskanen MO, Colby G, St Pierre KA, St Louis VL, Aris-Brosou S, Poulain AJ. Microbial genomes retrieved from high arctic lake sediments encode for adaptation to cold and oligotrophic environments. Limnol Oceanogr. 2020;65:S233–S247.CAS 

    Google Scholar 
    57.Feng L-j, Jia R, Sun J-y, Wang J, Lv Z-h, Mu J, et al. Response of performance and bacterial community to oligotrophic stress in biofilm systems for raw water pretreatment. Biodegradation. 2017;28:231–44.CAS 
    PubMed 

    Google Scholar 
    58.Robinson CH. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001;151:341–53.CAS 

    Google Scholar 
    59.Shahryari Z, Fazaelipoor M, Ghasemi Y, Lennartsson P, Taherzadeh M. Amylase and xylanase from edible fungus neurospora intermedia: production and characterization. Molecules. 2019;24:721.CAS 
    PubMed Central 

    Google Scholar 
    60.Turner BC, Perkins DD, Fairfield A. Neurospora from natural populations: a global study. Fungal Genet Biol. 2001;32:67–92.CAS 
    PubMed 

    Google Scholar 
    61.Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun. 2018;9:3591.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    In vitro interaction network of a synthetic gut bacterial community

    Probing directional interactions of OMM12 strains using spent culture mediaTo characterize directional interactions of the OMM12 consortium members, we chose an in vitro approach to explore how the bacterial strains alter their chemical environment by growth to late stationary phase.Growth of the individual monocultures in a rich culture medium that supports growth of all members (AF medium, Methods, Table S1) was monitored over time (Fig. S1; SI data table 1) and growth rates (Table S2) were determined. Strains were grouped by growth rate (GR) into fast growing strains (GR  > 1.5 h–1, E. faecalis KB1, B. animalis YL2, C. innocuum I46 and B. coccoides YL58), strains with intermediate growth rate (GR  > 1 h–1, M. intestinale YL27, F. plautii YL31, E. clostridioformis YL32, B. caecimuris I48 and L.reuteri I49) and slow growing strains (GR  More

  • in

    Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis

    1.Food and Agriculture Organization & World Health Organization. Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO food and nutrition paper, 85, 2001).2.Barba-Vidal, E., Martín-Orúe, S. M. & Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets?. Animal 12, 2489–2498 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Bernardeau, M., Lehtinen, M. J., Forssten, S. D. & Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54, 2570–2584 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Hong, H. A., Duc, L. H. & Cutting, S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 (2005).CAS 
    PubMed 

    Google Scholar 
    5.Duc, L. H., Hong, H. A. & Cutting, S. M. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21, 4215–4224 (2003).CAS 

    Google Scholar 
    6.Leser, T. D., Knarreborg, A. & Worm, J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104, 1025–1033 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214–220 (2011).PubMed 

    Google Scholar 
    8.Prieto, M. L. et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs 10, 2280–2299 (2012).CAS 
    PubMed 

    Google Scholar 
    9.Prieto, M. L. et al. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12, 2422–2445 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    10.Prieto, M. L. et al. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS ONE 9, e88599 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.National Research Council. Nutrient Requirements of Swine (The National Academies Press, 2012).
    12.Berends, B. R., Urlings, H. A. P., Snijders, J. M. A. & Van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30, 37–53. https://doi.org/10.1016/0168-1605(96)00990-7 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Miller, M. F., Carr, M. A., Bawcom, D. B., Ramsey, C. B. & Thompson, L. D. Microbiology of pork carcasses from pigs with differing origins and feed withdrawal times†. J. Food Prot. 60, 242–245. https://doi.org/10.4315/0362-028x-60.3.242 (1997).Article 
    PubMed 

    Google Scholar 
    14.Adewole, D. I., Kim, I. H. & Nyachoti, C. M. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—A review. Asian-Austr. J. Anim. Sci. 29, 909–924 (2016).CAS 

    Google Scholar 
    15.Department of Agriculture and Food and Rural Development. European communities (pig carcase (grading)) (amendment) regulations. (S.I. No. 413/2001, 2001).16.Gardiner, G. E. et al. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70, 1895–1906 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.McCormack, U. M. et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83, e00380-e417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Buzoianu, S. G. et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol. 78, 4217–4224 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).20.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).24.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar 
    25.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    26.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Jadamus, A., Vahjen, W. & Simon, O. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch. Tierernahr. 54, 1–17 (2001).CAS 
    PubMed 

    Google Scholar 
    28.Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O. & Cutting, S. M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70, 2161–2171 (2004).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Tam, N. K. M. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Casula, G. & Cutting, S. M. Bacillus Probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68, 2344–2352 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kidder, D. E. & Manners, M. J. Digestion in the pig. (Scientechnica, 1978).32.Crespo-Piazuelo, D. et al. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. https://doi.org/10.1017/S0007114521001203 (2021).Article 
    PubMed 

    Google Scholar 
    33.Zhou, H., Wang, C., Ye, J., Chen, H. & Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86, 790–799 (2015).CAS 
    PubMed 

    Google Scholar 
    34.Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y. & Han, J. H. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J. Anim. Sci. Technol. 57, 4 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pérez, V. G. et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89, 414–425 (2011).PubMed 

    Google Scholar 
    36.Ventrella, D. et al. The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 13, 23 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thorn, C. E. Hematology of the pig. in Schalm’s Veterinary Hematology, 6th edition (eds. Weiss, D. J. & Wardrop, K. J.) 843–851 (2010). https://doi.org/10.1111/j.1939-165X.2011.00324.x38.Morrow-Tesch, J. L., McGlone, J. J. & Salak-Johnson, J. L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72, 2599–2609 (1994).CAS 
    PubMed 

    Google Scholar 
    39.Schmid, L., Heit, W. & Flury, R. Agranulocytosis associated with semisynthetic penicillins and cephalosporins. Report of 7 cases. Blut 48, 11–18 (1984).CAS 
    PubMed 

    Google Scholar 
    40.Kloubert, V. et al. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 49, 231–240 (2018).CAS 
    PubMed 

    Google Scholar 
    41.The European Agency for the Evaluation of Medicinal Products (EMEA). Commitee for veterinary medicinal products: Apramycin. (1999).42.Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    43.Slifierz, M. J., Friendship, R. M. & Weese, J. S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15, 184 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    44.Ivarsson, E., Roos, S., Liu, H. Y. & Lindberg, J. E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787 (2014).CAS 
    PubMed 

    Google Scholar 
    45.Pajarillo, E. A. B., Chae, J.-P., Balolong, M. P., Bum Kim, H. & Kang, D.-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60, 140–146 (2014).CAS 

    Google Scholar 
    46.Yu, T. et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 8, 1–9 (2017).
    Google Scholar 
    47.Shen, J. et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 111, 2123–2134 (2014).CAS 
    PubMed 

    Google Scholar 
    48.Rattigan, R., Sweeney, T., Vigors, S., Rajauria, G. & O’Doherty, J. V. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 104, 1471–1483 (2020).CAS 

    Google Scholar 
    49.López-Colom, P., Estellé, J., Bonet, J., Coma, J. & Martín-Orúe, S. M. Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota. Animals 10, 242 (2020).PubMed Central 

    Google Scholar 
    50.Wei, X. et al. ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms 8, 146 (2020).CAS 
    PubMed Central 

    Google Scholar 
    51.Vahjen, W., Pieper, R. & Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89, 2430–2439 (2011).CAS 
    PubMed 

    Google Scholar 
    52.Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G. & Zentek, J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 96, 825–833 (2012).CAS 

    Google Scholar 
    53.Yu, T. et al. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    54.Xia, T. et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 8, 64878–64891 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Poulsen, A.-S.R. et al. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE 13, e0207382 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    56.Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15, e0229204 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    58.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Ryden, R. & Moore, B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J. Antimicrob. Chemother. 3, 609–613 (1977).CAS 
    PubMed 

    Google Scholar 
    60.Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).CAS 
    PubMed 

    Google Scholar 
    61.Gardiner, G. E., Metzler-Zebeli, B. U. & Lawlor, P. G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 8, 1886 (2020).CAS 
    PubMed Central 

    Google Scholar 
    62.Ghanbari, M., Klose, V., Crispie, F. & Cotter, P. D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 9, 4062 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Zeineldin, M., Aldridge, B. & Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10, 1035 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    64.On, S. L. W. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Bergström, S., Garon, C. F., Barbour, A. G. & MacDougall, J. Extrachromosomal elements of spirochetes. Res. Microbiol. 143, 623–628 (1992).PubMed 

    Google Scholar 
    66.Oh, J. K. et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim. Sci. J. 91, e13418 (2020).CAS 
    PubMed 

    Google Scholar 
    67.Ruiz, V. L. A. et al. Case–control study of pathogens involved in piglet diarrhea. BMC Res. Notes 9, 22 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    68.Yang, Q. et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiologyopen 8, e923 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    69.Wang, S. et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 15, 239 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Looft, T. et al. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Quan, J. et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci. Rep. 8, 4536 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    73.Che, L. et al. Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model. J. Nutr. Biochem. 74, 108246 (2019).CAS 
    PubMed 

    Google Scholar 
    74.Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 47, 397–403 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Roediger, W. E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet (London, England) 2, 712–715 (1980).CAS 

    Google Scholar 
    77.Jewell, K. A., Scott, J. J., Adams, S. M. & Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 36, 376–382. https://doi.org/10.1016/j.syapm.2013.04.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Abdul Rahman, N. et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front. Microbiol. 6, 1469–1469. https://doi.org/10.3389/fmicb.2015.01469 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More