More stories

  • in

    Energetic and reproductive costs of coral recovery in divergent bleaching responses

    1.Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).
    Google Scholar 
    2.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).
    Google Scholar 
    6.Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).
    Google Scholar 
    7.Depczynski, M. et al. Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32, 233–238 (2013).ADS 

    Google Scholar 
    8.Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615. https://doi.org/10.1038/s41598-018-34686-z (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 266. https://doi.org/10.3389/fmars.2018.00226 (2018).Article 

    Google Scholar 
    10.Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).PubMed 

    Google Scholar 
    11.Rinkevich, B. The contribution of photosynthetic products to coral reproduction. Mar. Biol. 101, 259–263 (1989).CAS 

    Google Scholar 
    12.Lesser, M. P. Using energetic budgets to assess the effects of environmental stress on corals: Are we measuring the right things?. Coral Reefs 32, 25–33 (2013).ADS 

    Google Scholar 
    13.Muscatine, L., McCloskey, L. & Marian, R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 

    Google Scholar 
    14.Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).ADS 

    Google Scholar 
    15.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. USA 118, e2022653118. https://doi.org/10.1073/pnas.2022653118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B 282, 20151887. https://doi.org/10.1098/rspb.2015.1997 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Leuzinger, S., Willis, B. L. & Anthony, K. R. N. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).
    Google Scholar 
    19.Oren, U., Benayahu, Y., Lubinevsky, H. & Loya, Y. Colony integration during regeneration in the stony coral Favia favus. Ecology 82, 802–813 (2001).
    Google Scholar 
    20.Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).ADS 

    Google Scholar 
    21.Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).22.Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).ADS 

    Google Scholar 
    23.Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).
    Google Scholar 
    24.Szmant, A. M. & Gassman, N. J. The effects of prolonged ‘bleaching’ on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).ADS 

    Google Scholar 
    25.Jones, A. M. & Berkelmans, R. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium Type-D. J. Mar. Biol. 2011, 185890. https://doi.org/10.1155/2011/185890 (2011).Article 

    Google Scholar 
    26.Figueiredo, J. et al. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae. Coral Reefs 31, 613–619 (2012).ADS 

    Google Scholar 
    27.Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).CAS 

    Google Scholar 
    28.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19, 231–239 (2001).
    Google Scholar 
    29.Howells, E. J. et al. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories. Mar. Pollut. Bull. 105, 532–539 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Godoy, L. et al. Southwestern Atlantic reef-building corals Mussismilia spp. are able to spawn while fully bleached. Mar. Biol. 168, 15. https://doi.org/10.1007/s00227-021-03824-z (2021).CAS 
    Article 

    Google Scholar 
    31.Veron, J. E. Acropora hyacinthus. in Corals of the World, vol. 1–3. (ed. Veron, J. E.) 404–405 (Australian Institute of Marine Sciences, 2000).32.Pratchett, M. S., McCowan, D., Maynard, J. A. & Heron, S. F. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French polynesia. PLoS ONE 8, e70443. https://doi.org/10.1371/journal.pone.0070443 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Speare, K. E., Adam, T. C., Winslow, E. M., Lenihan, H. S. & Burkepile, D. E. Size-dependent mortality of corals during marine heatwave erodes recovery capacity of a coral reef. Glob. Change Biol. https://doi.org/10.1111/gcb.16000 (2021). Article 

    Google Scholar 
    34.Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French polynesia. Coral Reefs 25, 93–97 (2006).ADS 

    Google Scholar 
    36.Tsounis, G. et al. Anthropogenic effects on reproductive effort and allocation of energy reserves in the Mediterranean octocoral Paramuricea clavata. Mar. Ecol. Prog. Ser. 449, 161–172 (2012).ADS 

    Google Scholar 
    37.Wall, C. B., Ritson-Williams, R., Popp, B. N. & Gates, R. D. Spatial variation in the biochemical and isotopic composition of corals during bleaching and recovery. Limnol. Oceanogr. 64, 2011–2028 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Jung, E. M. U., Stat, M., Thomas, L., Koziol, A. & Schoepf, V. Coral host physiology and symbiont dynamics associated with differential recovery from mass bleaching in an extreme, macro-tidal reef environment in northwest Australia. Coral Reefs 40, 893–905 (2021).
    Google Scholar 
    39.Tremblay, P., Gori, A., Maguer, J. F., Hoogenboom, M. & Ferrier-Pagès, C. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci. Rep. 6, 38112. https://doi.org/10.1038/srep38112 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Baumann, J., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Bio. Ecol. 461, 469–478 (2014).CAS 

    Google Scholar 
    41.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).ADS 
    PubMed 

    Google Scholar 
    42.Graham, E. M., Baird, A. H., Connolly, S. R., Sewell, M. A. & Willis, B. L. Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs 32, 539–549 (2013).ADS 

    Google Scholar 
    43.Michalek-Wagner, K. & Willis, B. L. Impacts of bleaching on the soft coral Lobophytum compactum. II. Biochemical changes in adults and their eggs. Coral Reefs 19, 240–246 (2001).
    Google Scholar 
    44.Harii, S., Nadaoka, K., Yamamoto, M. & Iwao, K. Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Mar. Ecol. Prog. Ser. 346, 89–96 (2007).ADS 
    CAS 

    Google Scholar 
    45.Wallace, C. C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar. Biol. 88, 217–233 (1985).
    Google Scholar 
    46.Ziegler, R. & Ibrahim, M. M. Formation of lipid reserves in fat body and eggs of the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 47, 623–627 (2001).CAS 
    PubMed 

    Google Scholar 
    47.Baliña, S., Temperoni, B., Greco, L. S. L. & Tropea, C. Losing reproduction: effect of high temperature on female biochemical composition and egg quality in a freshwater crustacean with direct development, the red cherry shrimp, Neocaridina davidi (Decapoda, Atyidae). Biol. Bull. 234, 139–151 (2018).PubMed 

    Google Scholar 
    48.Levitan, D. R. The relationship between egg size and fertilization success in broadcast-spawning marine invertebrates. Integr. Comp. Biol. 46, 298–311 (2006).PubMed 

    Google Scholar 
    49.Caballes, C. F., Pratchett, M. S., Kerr, A. M. & Rivera-Posada, J. A. The role of maternal nutrition on oocyte size and quality, with respect to early larval development in the coral-eating starfish, Acanthaster planci. PLoS ONE 11, e0158007. https://doi.org/10.1371/journal.pone.0158007 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 4, 160017. https://doi.org/10.1038/sdata.2016.17 (2017).Article 

    Google Scholar 
    51.Foster, T. & Gilmour, J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci. Rep. 10, 12313. https://doi.org/10.1038/s41598-020-68289-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Harriott, V. J. Reproductive ecology of four scleratinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2, 9–18 (1983).ADS 

    Google Scholar 
    53.Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).ADS 

    Google Scholar 
    54.Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963 (1996).
    Google Scholar 
    55.Brandt, M. E. The effect of species and colony size on the bleaching response of reef-building corals in the Florida Keys during the 2005 mass bleaching event. Coral Reefs 28, 911–924 (2009).ADS 

    Google Scholar 
    56.Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 2019, e8138. https://doi.org/10.7717/peerj.8138 (2019).Article 

    Google Scholar 
    57.Nozawa, Y. & Lin, C. H. Effects of colony size and polyp position on polyp fecundity in the scleractinian coral genus Acropora. Coral Reefs 33, 1057–1066 (2014).ADS 

    Google Scholar 
    58.Álvarez-Noriega, M. et al. Fecundity and the demographic strategies of coral morphologies. Ecology 97, 3485–3493 (2016).PubMed 

    Google Scholar 
    59.Bena, C. & Van Woesik, R. The impact of two bleaching events on the survival of small coral colonies (Okinawa, Japan). Bull. Mar. Sci. 75, 115–125 (2004).
    Google Scholar 
    60.Shenkar, N., Fine, M. & Loya, Y. Size matters: Bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).ADS 

    Google Scholar 
    61.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    62.McClanahan, T. R., Maina, J., Moothien-Pillay, R. & Baker, A. C. Effects of geography, taxa, water flow, and temperature variation on coral bleaching intensity in Mauritius. Mar. Ecol. Prog. Ser. 298, 131–142 (2005).ADS 

    Google Scholar 
    63.Hoogenboom, M. O. et al. Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Front. Mar. Sci. 4, 376. https://doi.org/10.3389/fmars.2017.00376 (2017).Article 

    Google Scholar 
    64.Schoepf, V. et al. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Front. Mar. Sci. 7, 245. https://doi.org/10.3389/fmars.2020.00245 (2020).Article 

    Google Scholar 
    65.Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).
    Google Scholar 
    66.van Woesik, R. et al. Climate-change refugia in the sheltered bays of Palau: Analogs of future reefs. Ecol. Evol. 2, 2474–2484 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    67.Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).PubMed 

    Google Scholar 
    68.Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).PubMed 

    Google Scholar 
    69.Brown, B. E., Downs, C. A., Dunne, R. P. & Gibb, S. W. Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar. Ecol. Prog. Ser. 242, 119–129 (2002).ADS 

    Google Scholar 
    70.Kenkel, C. D. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).CAS 
    PubMed 

    Google Scholar 
    71.Burt, J. A. & Bauman, A. G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf. Aquat. Ecosyst. Heal. Manag. 23, 166–174 (2020).
    Google Scholar 
    72.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    73.Edmunds, P., Gates, R. & Gleason, D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar. Biol. 139, 981–989 (2001).
    Google Scholar 
    74.Edmunds, P. J. Spatiotemporal variation in coral recruitment and its association with seawater temperature. Limnol. Oceanogr. 66, 1394–1408 (2021).ADS 

    Google Scholar 
    75.Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).
    Google Scholar 
    76.Edmunds, P. J. MCR LTER: Coral reef: Long-term population and community dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.38. 10.6073/pasta/10ee808a046cb63c0b8e3bc3c9799806 (2020).77.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 

    Google Scholar 
    78.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Leichter, J., Seydel, K. & Gotschalk, C. MCR LTER: Coral reef: Benthic water temperature, ongoing since 2005. knb-lter-mcr.1035.13. 10.6073/pasta/2087a33cdd16986352bed443fecc7fd7 (2020).80.Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    81.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1955).
    Google Scholar 
    82.Masuko, T. et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).CAS 
    PubMed 

    Google Scholar 
    83.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Bio. Ecol. 153, 63–74 (1991).
    Google Scholar 
    84.Szmant-Froelich, A., Rhetter, M. & Riggs, L. Sexual reproduction of Favis fragum (ESPER): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
    Google Scholar  More

  • in

    Patterns of livestock depredation and Human–wildlife conflict in Misgar valley of Hunza, Pakistan

    1.Amaja, L. G., Feyssa, D. H. & Gutema, T. M. Assessment of types of damage and causes of Human–wildlife conflict in Gera district, southwestern Ethiopia. J. Ecol. Nat. Environ. 8, 49–54 (2016).Article 

    Google Scholar 
    2.Decker, D. J., Laube, T. B. & Siemer, W. F. Human–Wildlife Conflict Management: A Practitioner’s Guide (Northeastern Wildlife Damage Management Research and Outreach Cooperative, 2002).
    Google Scholar 
    3.Habib, A., Nazir, I., Fazili, M. F. & Bhat, B. A. Human–wildlife conflict-causes, consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2015).
    Google Scholar 
    4.Eklund, A., Lopez-Bao, J. V., Tourani, M., Chapron, G. & Frank, J. Author Correction: Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 8, 5770 (2018).ADS 
    Article 

    Google Scholar 
    5.Hussain, S. The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 37, 26–33 (2003).Article 

    Google Scholar 
    6.Miller, J. R., Jhala, Y. V. & Schmitz, O. J. Human perceptions mirror realities of carnivore attack risk for livestock: Implications for mitigating human-carnivore conflict. PLoS ONE 11, e0162685 (2016).Article 

    Google Scholar 
    7.Aryal, P. et al. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).Article 

    Google Scholar 
    8.Khan, B. et al. Pastoralist experience and tolerance of snow leopard, wolf and lynx predation in Karakoram Pamir Mountains. J. Biol. Environ. Sci. 5, 214–229 (2014).
    Google Scholar 
    9.Jackson, R. M., Ahlborn, G., Gurung, M. & Ale, S. Reducing livestock depredation losses in the Nepalese Himalaya. In Proc. 17th Vertebrate Pest Conference (eds Timm, R. M. & Crabb, A. C.) 241–247 (University of California, 1996).
    Google Scholar 
    10.Qamar, Q. Z. et al. Human leopard conflict: An emerging issue of common leopard conservation in Machiara National Park, Azad Jammu, and Kashmir, Pakistan. Pak. J. Wildl. 1, 50–56 (2010).
    Google Scholar 
    11.Atickem, A., Williams, S., Bekele, A. & Thirgood, S. Livestock predation in the Bale Mountains, Ethiopia. Afr. J. Ecol. 48, 1076–1082 (2010).Article 

    Google Scholar 
    12.Gittleman, J. L., Funk, S. M., Macdonald, D. W. & Wayne, R. K. Carnivore conservation. Cambridge University Press, Cambridge consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2001).
    Google Scholar 
    13.Treves, A. K. & Karanth, K. U. Human–carnivore conflict—Local solutions with global applications (Special section): Introduction. Conserv. Biol. 17, 1489–1490 (2003).Article 

    Google Scholar 
    14.Li, J., Yin, H., Wang, D., Jiagong, Z. & Lu, Z. Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biol. Conserv. 166, 118–123 (2013).Article 

    Google Scholar 
    15.McCarthy, T. M. & Chapron, G. Snow Leopard Survival Strategy (IT and SLN, 2003).
    Google Scholar 
    16.Suryawanshi, K.R. Human carnivore conflicts: Understanding predation ecology and livestock damage by snow leopards. Ph.D. Thesis. Manipal University, India (2013).17.Bocci, A., Lovari, S., Khan, M. Z. & Mori, E. Sympatric snow leopards and Tibetan wolves: coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).Article 

    Google Scholar 
    18.Wang, S. W. & Macdonald, D. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    19.Khan, M. Z., Khan, B., Awan, M. S. & Begum, F. Livestock depredation by large predators and its implications for conservation and livelihoods in the Karakoram Mountains of Pakistan. Oryx 52, 519–525 (2018).Article 

    Google Scholar 
    20.Ali, H., Younus, M., Din, J. U., Bischof, R. & Nawaz, M. A. Do Marco Polo argali Ovis ammon polii persist in Pakistan?. Oryx 53, 329–333 (2019).Article 

    Google Scholar 
    21.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions, and causes of human-carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076 (2009).Article 

    Google Scholar 
    22.RC Team. R: A Language and Environment for Statistical Computing (2013).23.Din, J. U. et al. A Tran’s boundary study of spatiotemporal patterns of livestock predation and prey preferences by snow leopard and wolf in the Pamir. Glob. Ecol. Conserv. 20, e00719 (2019).Article 

    Google Scholar 
    24.Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management 418 (Lewis Publishers, 2002).
    Google Scholar 
    25.Graham, K., Beckerman, A. P. & Thirgood, S. Human–predator–prey conflicts: Ecological correlates, prey losses and patterns of management. Biol. Conserv. 122, 159–171 (2005).Article 

    Google Scholar 
    26.Li, X., Buzzard, P., Chen, Y. & Jiang, X. Patterns of livestock predation by carnivores: Human–wildlife conflict in Northwest Yunnan, China. Environ. Manage. 52, 1334–1340 (2013).ADS 
    Article 

    Google Scholar 
    27.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions and causes of human–carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076–2082 (2009).Article 

    Google Scholar 
    28.Mishra, C., Prins, H. H. T. & van Wieren, S. E. Overstocking in the trans-Himalayan rangelands of India. Environ. Conserv. 28, 279–283 (1997).Article 

    Google Scholar 
    29.Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera Leo). J. Zool. (Lond.) 267(267), 309–322 (2005).Article 

    Google Scholar 
    30.Mc Guinness, S. & Taylor, D. Farmers’ perceptions and actions to decrease crop raiding by forest-dwelling primates around a Rwandan Forest fragment. Hum. Dimens. Wildl. 19, 361–372 (2014).Article 

    Google Scholar 
    31.ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal (Gland, 2011).Book 

    Google Scholar 
    32.Distefano, E. Human–Wildlife Conflict Worldwide: Collection of Case Studies, Analysis of Management Strategies and Good Practices (Food and Agricultural Organization of the United Nations (FAO), 2005).
    Google Scholar 
    33.Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 1–14 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Butyrate producing microbiota are reduced in chronic kidney diseases

    PatientsStool samples from a total of 52 patients with varying stages of CKD were collected in this study: CKD3A (n = 12), CKD3B (n = 11), CKD4 (n = 15), CKD5 (n = 4) and ESRD (n = 10) (Table 1). Patients’ characteristics are summarized in Table 1. Among 52 patients, 31 were reported to have Type 2 diabetes mellitus and 7 patients were reported to have human immunodeficiency virus (HIV) infection. As expected, urine protein creatinine ratio, serum creatinine and blood urea nitrogen level increased with progressing stages of CKD (CKD 3A to ESRD). There was no significant difference in fat, protein, carbohydrates, dietary fiber and calorie intake between CKD patients with different stages (Supplementary Table S1).Table 1 Patients’ characteristics.Full size tableAlpha and beta-diversityRichness and Shannon index were not significantly different between different patient groups, meanwhile the CKD5 group showed a significant decrease in Simpson diversity compared with CKD 3A (FDR  More

  • in

    Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater

    1.Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247–60.CAS 
    PubMed 

    Google Scholar 
    2.Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5.CAS 
    PubMed 

    Google Scholar 
    3.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 

    Google Scholar 
    4.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.
    Google Scholar 
    5.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    6.Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB. The global volume and distribution of modern groundwater. Nat Geosci. 2016;9:161–7.CAS 

    Google Scholar 
    7.Akob DM, Küsel K. Where microorganisms meet rocks in the Earth’s Critical Zone. Biogeosciences. 2011;8:3531–43.CAS 

    Google Scholar 
    8.Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar 
    9.Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, Xiong WL, et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 2020;14:1260–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Einsiedl F, Mayer B. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, Southern Germany. Environ Sci Technol. 2006;40:6697–702.CAS 
    PubMed 

    Google Scholar 
    11.Schlesinger WH. On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA. 2009;106:203–8.CAS 
    PubMed 

    Google Scholar 
    12.McCollom TM, Seewald JS. Serpentinites, hydrogen, and life. Elements. 2013;9:129–34.CAS 

    Google Scholar 
    13.Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703.CAS 
    PubMed 

    Google Scholar 
    14.Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment- hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wegner CE, Gaspar M, Geesink P, Herrmann M, Marz M, Küsel K. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl Environ Microbiol. 2019;85:1–18.
    Google Scholar 
    17.Herrmann M, Rusznyak A, Akob DM, Schulze I, Opitz S, Totsche KU, et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol. 2015;81:2384–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.CAS 
    PubMed 

    Google Scholar 
    19.Jewell TNM, Karaoz U, Brodie EL, Williams KH, Beller HR. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 2016;10:2106–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Handley KM, Bartels D, O’Loughlin EJ, Williams KH, Trimble WL, Skinner K, et al. The complete genome sequence for putative H2- and S-oxidizer Candidatus Sulfuricurvum sp., assembled de novo from an aquifer-derived metagenome. Environ Microbiol. 2014;16:3443–62.CAS 
    PubMed 

    Google Scholar 
    21.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 

    Google Scholar 
    22.von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J. 2013;7:1877–85.
    Google Scholar 
    23.Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6:2291–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taubert M, Baumann S, von Bergen M, Seifert J. Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP). Anal Bioanal Chem. 2011;401:1975–82.CAS 
    PubMed 

    Google Scholar 
    25.Rimstidt JD, Vaughan DJ. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta. 2003;67:873–80.CAS 

    Google Scholar 
    26.Schippers A, Jozsa PG, Sand W. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol. 1996;62:3424–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Kohlhepp B, Lehmann R, Seeber P, Küsel K, Trumbore SE, Totsche KU. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany. Hydrol Earth Syst Sci. 2017;21:6091–116.CAS 

    Google Scholar 
    28.Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich CG, editors. Microbial Sulfur Metabolism. Berlin, Heidelberg: Springer; 2008. p. 101–16.29.Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse Bacteria and Archaea. FEMS Microbiol Rev. 2009;33:999–1043.CAS 
    PubMed 

    Google Scholar 
    30.Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol. 2018;94:fiy141.CAS 

    Google Scholar 
    31.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Core Team; 2019 [cited 2021]; Available from: https://www.R-project.org/.32.Ryabchykov O, Bocklitz T, Ramoji A, Neugebauer U, Foerster M, Kroegel C, et al. Automatization of spike correction in Raman spectra of biological samples. Chemom Intell Lab. 2016;155:1–6.CAS 

    Google Scholar 
    33.Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J. Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem. 2011;225:753–64.
    Google Scholar 
    34.Bocklitz TW, Dörfer T, Heinke R, Schmitt M, Popp J. Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochim Acta A. 2015;149:544–9.CAS 

    Google Scholar 
    35.Guo SX, Heinke R, Stöckel S, Rösch P, Bocklitz T, Popp J. Towards an improvement of model transferability for Raman spectroscopy in biological applications. Vib Spectrosc. 2017;91:111–8.CAS 

    Google Scholar 
    36.Liland KH, Almoy T, Mevik BH. Optimal choice of baseline correction for multivariate calibration of spectra. Appl Spectrosc. 2010;64:1007–16.CAS 
    PubMed 

    Google Scholar 
    37.Taubert M, Stöckel S, Geesink P, Girnus S, Jehmlich N, von Bergen M, et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol. 2018;20:369–84.CAS 
    PubMed 

    Google Scholar 
    38.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 

    Google Scholar 
    39.Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev. 2012;31:683–97.CAS 
    PubMed 

    Google Scholar 
    40.Taubert M. SIsCA. 2020 [updated 23.10.2020; cited 2021]; Available from: https://github.com/m-taubert/SIsCA.41.MacCoss MJ, Wu CC, Matthews DE, Yates JR. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal Chem. 2005;77:7646–53.CAS 
    PubMed 

    Google Scholar 
    42.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 
    43.Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol. 2001;67:2873–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek. 1997;71:95–107.CAS 
    PubMed 

    Google Scholar 
    45.Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol. 2006;188:7005–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. J Bacteriol. 2006;188:1473–88.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci USA. 2010;107:11669–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosyn Res. 1999;60:1–28.CAS 

    Google Scholar 
    49.Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Overholt WA, Trumbore S, Xu X, Bornemann TL, Probst AJ, Krüger M, et al. Rates of primary production in groundwater rival those in oligotrophic marine systems. bioRxiv 2021 [Preprint]. 2021. Available from: https://doi.org/10.1101/2021.10.13.464073.51.Alfreider A, Vogt C, Geiger-Kaiser M, Psenner R. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes. Syst Appl Microbiol. 2009;32:140–50.CAS 
    PubMed 

    Google Scholar 
    52.Herrmann M, Geesink P, Yan L, Lehmann R, Totsche KU, Küsel K. Complex food webs coincide with high genetic potential for chemolithoautotrophy in fractured bedrock groundwater. Water Res. 2020;170:115306.CAS 
    PubMed 

    Google Scholar 
    53.Yan LJ, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 2020;170:115341.CAS 
    PubMed 

    Google Scholar 
    54.Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, et al. The genome of Polaromonas sp. strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol. 2008;74:6405–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics. 2009;10:1–23.
    Google Scholar 
    56.Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol. 2005;55:341–4.PubMed 

    Google Scholar 
    57.Jin CZ, Zhuo Y, Wu XW, Ko SR, Li TH, Jin FJ, et al. Genomic and metabolic insights into denitrification, sulfur oxidation, and multidrug efflux pump mechanisms in the bacterium Rhodoferax sediminis sp. nov. Microorganisms. 2020;8:262.CAS 
    PubMed Central 

    Google Scholar 
    58.Geisel N. Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS ONE. 2011;6:e27033.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS 
    PubMed 

    Google Scholar 
    60.Katayama-Fujimura Y, Tsuzaki N, Hirata A, Kuraishi H. Polyhedral inclusion-bodies (Carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol. 1984;30:211–22.CAS 

    Google Scholar 
    61.Küsel K, Totsche KU, Trumbore SE, Lehmann R, Steinhäuser C, Herrmann M. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a Central German Muschelkalk landscape. Front Earth Sci. 2016;4:32.
    Google Scholar 
    62.Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci. 2019;12:755–61.CAS 

    Google Scholar 
    63.Herrmann M, Wegner CE, Taubert M, Geesink P, Lehmann K, Yan LJ, et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front Microbiol. 2019;10:1407.PubMed 
    PubMed Central 

    Google Scholar 
    64.Gray CM, Monson RK, Fierer N. Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res Biogeosci. 2010;115:G03015.
    Google Scholar 
    65.Benk SA, Yan LJ, Lehmann R, Roth VN, Schwab VF, Totsche KU, et al. Fueling diversity in the subsurface: composition and age of dissolved organic matter in the Critical Zone. Front Earth Sci. 2019;7:296.
    Google Scholar 
    66.Schwab VF, Nowak ME, Elder CD, Trumbore SE, Xu XM, Gleixner G, et al. 14C-free carbon is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour Res. 2019;55:2104–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: Implications and consequences. Appl Environ Microbiol. 2006;72:7431–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hansson TH, Grossart HP, del Giorgio PA, St-Gelais NF, Beisner BE. Environmental drivers of mixotrophs in boreal lakes. Limnol Oceanogr. 2019;64:1688–705.CAS 

    Google Scholar 
    69.Perez-Riverol Y, Csordas A, Bai JW, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D50.CAS 
    PubMed 

    Google Scholar  More

  • in

    Glacier retreat creating new Pacific salmon habitat in western North America

    Sub-regionsThe study region focuses on 18 sub-regions within the Pacific mountain ranges of North American overlapping with the range of Pacific Salmon with >1.5% glacier cover (Figs. 1 and 2). The term “sub-region” here refers to either a single major salmon watershed or aggregates of small coastal watersheds, which range in area from ~13,000 to ~68,000 km2. For sub-regions within Alaska, USA, we accessed boundary data from the Watershed Boundary Database at the USGS (https://www.usgs.gov/). For sub-regions within British Columbia, Canada, we accessed boundary data from the Freshwater Atlas of British Columbia (https://catalogue.data.gov.bc.ca/). Pacific salmon range data were from the National Center for Ecological Analysis and Synthesis (Fig. 1). The study region covers ~623,000 km2 across British Columbia, Canada and Alaska, USA and ~20% of the total North American range of Pacific salmon.Glacier outlinesOutlines for the 45,963 glaciers within the study region were obtained from the Randolph Glacier Inventory v6.0 (https://www.glims.org/RGI/; RGI v6.0), which provides a globally complete data set of glacier outlines outside of Greenland and Antarctic ice sheets17. These glaciers cover a total area of ~81,000 km2, which corresponds to 80% of the total glacier area in the Pacific mountain ranges within North America. The glacier outlines refer roughly to the years 2009 ± 2 for Alaska, and 2004 ± 5 for Western Canada17,53. Glacierization for each of 18 sub-regions ranges from 1.5 to 52%.Present-day streamsSynthetic stream networks were constructed from Digital Elevation Models (DEMs) for each of the 18 sub-regions using Geographic Information Systems (GIS; ArcGIS 10.6 and QGIS 2.18) hydrology tools to represent present-day streams throughout the study region. Specifically, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEMs v2.0 with a spatial resolution of ~30 m54. Open access synthetic stream network datasets such as the National Hydrography Dataset (NHD) from the USGS and the Freshwater Atlas from the British Columbia government are available but were not used due to inconsistencies in spatial resolution across the study region. From our synthetic stream networks, we eliminated all stream segments that overlapped with the RGI glacier outlines because the ASTER global DEMs used to create the synthetic stream networks represent glacier surface elevation rather than estimated deglaciated terrain. All present-day streams within our study region are void of any major dams that inhibit salmon movement based on existing databases of dams55. To summarize present-day stream kms, and all subsequent analyses, we used rstudio: 1.4.1103-4, R: ‘Mirrors’.Identifying and verifying stream gradient thresholds for migrating salmon and for determining accessible glaciersWe used stream gradient-based thresholds the determine constraints in salmon migration and the number of glaciers that would be accessible and create future streams for migrating adult salmon. Based on the large body of literature suggesting stream gradients (e.g., ranging from More

  • in

    Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish

    Araújo MS, Perez SI, Magazoni MJC, Petry AC (2014) Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation. BMC Evol Biol 14:251PubMed 

    Google Scholar 
    Arendt JD (2010) Morphological correlates of sprint swimming speed in five species of spadefoot toad tadpoles: comparison of morphometric methods. J Morphol 271:1044–1052PubMed 

    Google Scholar 
    Arendt JD, Reznick DN (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32PubMed 

    Google Scholar 
    Arnett HA, Kinnison MT (2017) Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr Zool 63:369–378PubMed 

    Google Scholar 
    Arnett HA (2016) Sources of ecologically important trait variation in mosquitofish (Gambusia affinis and Gambusia holbrooki). Thesis, University of MaineArnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361
    Google Scholar 
    Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208PubMed 

    Google Scholar 
    Baldwin BG (1997) Adaptive radiation of the Hawaiian silversword alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations. In: Givnish TJ, Sytsma KJ (eds.) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, UK, p 103–128Belk MC, Tuckfield RC (2010) Changing costs of reproduction: age‐based differences in reproductive allocation and escape performance in a livebearing fish. Oikos 119:163–169
    Google Scholar 
    Blount ZD, Lenski RE, Losos JB (2018) Contingency and determinism in evolution: replaying life’s tape. Science 362:eaam5979.PubMed 

    Google Scholar 
    Bryant EH, Meffert LM (1993) The effect of serial founder-flush cycles on quantitative genetic variation in the housefly. Heredity 70:122–129
    Google Scholar 
    Calsbeek R, Kuchta S (2011) Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica). BMC Evol Biol 11:353PubMed 

    Google Scholar 
    Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CAS 
    PubMed 

    Google Scholar 
    Chenoweth SF, Blows MW (2008) QST meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evolution 62:1437–1449PubMed 

    Google Scholar 
    Constantz GD (1989) Reproductive biology of poeciliid fishes. In: Meffe GK Jr, Snelson FF (eds.) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, NJ, p 33–50Cunha RL, Tenorio MJ, Afonso C, Castilho R, Zardoya R (2008) Replaying the tape: recurring biogeographical patterns in Cape Verde Conus after 12 million years. Mol Ecol 17:885–901PubMed 

    Google Scholar 
    Dale MR, Fortin M-J (2014) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge, UKDarwin CE (1859) The origin of species and the descent of man. The Modern Library, New York, NYDay T, Pritchard J, Schluter D (1994) A comparison of two sticklebacks. Evolution 48:1723–1734PubMed 

    Google Scholar 
    Dayton GH, Saenz D, Baum KA, Langerhans RB, DeWitt TJ (2005) Body shape, burst speed and escape behavior of larval anurans. Oikos 111:582–591
    Google Scholar 
    DeWitt TJ, Fuentes JI, Ioerger TR, Bishop MP (2021) Rectifying I: three point and continuous fit of the spatial autocorrelation metric, Moran’s I, to ideal form. Landsc Ecol 36:2897–2918
    Google Scholar 
    DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes: a primer. In: DeWitt TJ, Scheiner SM (eds.) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, NY, p 1–9DeWoody J, Avise J (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CAS 

    Google Scholar 
    Dobzhansky T (1955) A review of some fundamental concepts and problems of population genetics. Cold Spring Harb Symp Quant Biol 20:1–15CAS 
    PubMed 

    Google Scholar 
    Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJEroukhmanoff F, Hargeby A, Arnberg NN, Hellgren O, Bensch S, Svensson EI (2009) Parallelism and historical contingency during rapid ecotype divergence in an isopod. J Evol Biol 22:1098–1110CAS 
    PubMed 

    Google Scholar 
    Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford, UKFranssen NR (2011) Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evol Appl 4:791–804PubMed 

    Google Scholar 
    Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233
    Google Scholar 
    Futuyma DJ (2021) How does phenotypic plasticity fit into evolutionary theory? In: Pfennig DW (ed) Phenotypic plasticity & evolution. CRC Press, Boca Raton, FL, p 349–366Ghalambor CK, Reznick DN, Walker JA (2004) Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). Am Nat 164:38–50PubMed 

    Google Scholar 
    Givnish TJ, Knox E, Patterson TB, Hapeman JR, Palmer JB, Sytsma KJ (1996) The Hawaiian lobelioids are monophyletic and underwent a rapid initial radiation roughly 15 million years ago. Am J Bot 83:159
    Google Scholar 
    Gomes JL, Montiero L (2008) Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm Biol J Linn Soc 93:799–812
    Google Scholar 
    Gompel N, Prud’homme B (2009) The causes of repeated genetic evolution. Dev Biol 332:36–47CAS 
    PubMed 

    Google Scholar 
    Grant PR, Grant BR (2014) 40 years of evolution: Darwin’s finches on Daphne Major Island. Princeton University Press, Princeton, NJGreenway R, Barts N, Henpita C, Brown AP, Rodriguez LA, Peña CMR et al. (2020) Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proc Natl Acad Sci USA 117:16424–16430CAS 
    PubMed 

    Google Scholar 
    Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer, Sunderland, MA
    Google Scholar 
    Haynes JL (1993) Annual reestablishment of mosquitofish populations in Nebraska. Copeia 1993:232–235
    Google Scholar 
    Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650CAS 
    PubMed 

    Google Scholar 
    Ingley SJ, Johnson JB (2016) Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence. Evolution 70:600–616PubMed 

    Google Scholar 
    Ingley SJ, Billman EJ, Belk MC, Johnson JB (2014) Morphological divergence driven by predation environment within and between species of Brachyrhaphis fishes. PloS One 9:90274
    Google Scholar 
    James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, et al. (2021) Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution (In press). Online version of record https://doi.org/10.1111/evo.14387Jiang S, Zhu K, Han L, Chen C, Wang M, Wang X (2021) Genetic variation and phylogeographic structure of Laodelphax striatellus in China based on microsatellite markers. J Appl Entomol 145:336–347CAS 

    Google Scholar 
    Johnson JB, Burt DB, DeWitt TJ (2008) Form, function, fitness-pathways to survival. Evolution 62:1243–1251PubMed 

    Google Scholar 
    Kobza RM, Trexler JC, Loftus WF, Perry SA (2004) Community structure of fishes inhabiting aquatic refuges in a threatened Karst wetland and its implications for ecosystem management. Biol Conserv 116:153–165
    Google Scholar 
    Langerhans RB (2009) Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol Lett 5:488–491PubMed 

    Google Scholar 
    Langerhans RB, DeWitt TJ (2004) Shared and unique features of evolutionary diversification. Am Nat 164:335–349PubMed 

    Google Scholar 
    Langerhans RB, Makowicz AM (2009) Shared and unique features of morphological differentiation between predator regimes in Gambusia caymanensis. J Evol Biol 22:2231–2242CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Layman CA, DeWitt TJ (2005) Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proc Natl Acad Sci USA 102:7618–7623CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Gifford ME, Joseph EO (2007) Ecological speciation in Gambusia fishes. Evolution 61:2056–2074CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Layman CA, Shokrollahi AM, DeWitt TJ (2004) Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58:2305–2318PubMed 

    Google Scholar 
    Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103CAS 
    PubMed 

    Google Scholar 
    Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton, NJLoera-Pérez J, Hernández-Stefanoni JL, Chiappa-Carrara X (2020) How do spatial and environmental factors affect the fish community structure in seasonally flooded karst systems? Lat Am J Aquat Res 48:268–279
    Google Scholar 
    Losos JB, Jackman TR, Larson A, de Queiroz K, Rodrı́guez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CAS 
    PubMed 

    Google Scholar 
    Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley, CAMaglio VJ, Rosen DE (1969) Changing preference for substrate color by reproductively active mosquitofish, Gambusia affinis (Baird and Girard)(Poeciliidae, Atheriniformes). American Museum novitates; no. 2397Martin RG(1975) Sexual and aggressive behavior, density and social structure in a natural population of mosquitofish, Gambusia affinis holbrooki. Copeia 1975:445–454
    Google Scholar 
    Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689CAS 
    PubMed 

    Google Scholar 
    Matthews WJ, Marsh-Matthews E (2011) An invasive fish species within its native range: community effects and population dynamics of Gambusia affinis in the central United States. Freshw Biol 56:2609–2619
    Google Scholar 
    Mays JR, DeWitt TJ, Dharampal P, Andrus FT, Findlay RH (2019) Frequent habitat migration, phenotypic plasticity, and vestigial ecophenotypy revealed by isotope-based natal habitat inference in bluegill sunfish, Lepomis macrochirus. Evol Ecol Res 20. Available from https://evolutionary-ecology.com/abstracts/v20/3235.htmlMilano D, Ruzzante DE, Cussac VE, Macchi PJ, Ferriz RA, Barriga JP et al. (2006) Latitudinal and ecological correlates of morphological variation in Galaxias platei (Pisces, Galaxiidae) in Patagonia. Biol J Linn Soc 87:69–82
    Google Scholar 
    Moen DS, Morlon H, Wiens JJ (2016) Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst Biol 65:146–160PubMed 

    Google Scholar 
    Moody EK, Lozano-Vilano ML (2018) Predation drives morphological convergence in the Gambusia panuco species group among lotic andlentic habitats. J Evol Biol 31:491–501CAS 
    PubMed 

    Google Scholar 
    Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590CAS 
    PubMed 

    Google Scholar 
    Nepokroeff M, Sytsma KJ (1996) Systematics and patterns of speciation and colonization in Hawaiian Psychotria and relatives based on phylogenetic analysis of ITS sequence data. Am J Bot 83:181–182
    Google Scholar 
    Nievergelt CM, Libiger O, Schork NJ (2007) Generalized analysis of molecular variance. PLoS Genet 3:e51PubMed 

    Google Scholar 
    Oke KB, Rolshausen G, LeBlond C, Hendry AP (2017) How parallel is parallel evolution? A comparative analysis in fishes. Am Nat 190:1–16PubMed 

    Google Scholar 
    Ord TJ, Summers TC (2015) Repeated evolution and the impact of evolutionary history on adaptation. BMC Evol Biol 15:1–12
    Google Scholar 
    Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723PubMed 

    Google Scholar 
    Pazmino SD, Kent MI, Ward AJ (2020) Locomotion and habituation to novel experimental environments in a social fish species. Behaviour 1:1–17
    Google Scholar 
    Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Google Scholar 
    Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503
    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 

    Google Scholar 
    Purcell KM, Lance SL, Jones KLStockwell CA (2011) Ten novel microsatellite markers for the western mosquitofish Gambusia affinis Conserv Genet Resour 3:361–363
    Google Scholar 
    Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428PubMed 

    Google Scholar 
    Pyke GH (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fish 15:339–365
    Google Scholar 
    Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103CAS 
    PubMed 

    Google Scholar 
    Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937CAS 
    PubMed 

    Google Scholar 
    Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D (2016) Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower Evolution 70:1993–2003PubMed 

    Google Scholar 
    Rivera G (2008) Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr Comp Biol 48:769–787PubMed 

    Google Scholar 
    Robinson BW, Wilson DS (1996) Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol Ecol 10:631–652
    Google Scholar 
    Ruehl CB, DeWitt TJ (2005) Trophic plasticity and fine-grained resource variation in populations of western mosquitofish, Gambusia affinis. Evol Ecol Res 7:801–819
    Google Scholar 
    Ruehl CB, Shervette V, DeWitt TJ (2011) Replicated shape variation between simple and complex habitats in two estuarine fishes. Biol J Linn Soc 103:147–158
    Google Scholar 
    Santi F, Petry AC, Plath M, Riesch R (2020) Phenotypic differentiation in a heterogeneous environment: morphological and life-history responses to ecological gradients in a livebearing fish. J Zool 310:10–23
    Google Scholar 
    Schluter D, Clifford EA, Nemethy M, McKinnon JS (2004) Parallel evolution and inheritance of quantitative traits. Am Nat 163:809–822PubMed 

    Google Scholar 
    Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford, UKSharpe DM, Langerhans RB, Low-Décarie E, Chapman LJ (2015) Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator. J Evol Biol 28:2054–2067CAS 
    PubMed 

    Google Scholar 
    Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462CAS 
    PubMed 

    Google Scholar 
    Spencer CC, Chlan CA, Neigel JE, Scribner KT, Wooten MC, Leberg PL (1999) Polymorphic microsatellite markers in the western mosquitofish, Gambusia affinis. Mol Ecol 8:157–168CAS 
    PubMed 

    Google Scholar 
    Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374CAS 
    PubMed 

    Google Scholar 
    Thibault RE, Schultz RJ (1978) Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution 32:320–333PubMed 

    Google Scholar 
    Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PG et al. (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2659PubMed 

    Google Scholar 
    Tobler M, Palacios M, Chapman LJ, Mitrofanov I, Bierbach D, Plath M et al. (2011) Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 65:2213–2228PubMed 

    Google Scholar 
    Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256
    Google Scholar 
    Vázquez-Domínguez E, Hernández-Valdés A, Rojas-Santoyo A, Zambrano L (2009) Contrasting genetic structure in two codistributed freshwater fish species of highly seasonal systems. Rev Mex Biodivers 80:181–192
    Google Scholar 
    Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522PubMed 

    Google Scholar 
    Waddington CH (1957) The strategy of the genes. Allen & Unwin, London
    Google Scholar 
    Walker JA (1997) Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol J Linn Soc 61:3–50
    Google Scholar 
    Walker JA, Bell MA (2000) Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J Zool 252:293–302
    Google Scholar 
    Wang X, Zorraquino V, Kim M, Tsoukalas A, Tagkopoulos I (2018) Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 9:1–12
    Google Scholar 
    Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232
    Google Scholar 
    Waters JM, McCulloch GA (2021) Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 30:4162–4172PubMed 

    Google Scholar 
    Zambrano L, Vázquez-Domínguez E, García-Bedoya D, Loftus WF, Trexler JC (2006) Fish community structure in freshwater karstic water bodies of the Sian Ka’an Reserve in the Yucatan peninsula, Mexico. Ichthyol Explor Freshw 17:193–206Zane L, Nelson WS, Jones AG, Avise JC (1999) Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish, Gambusia holbrooki. J Evol Biol 12:61–69
    Google Scholar  More

  • in

    Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics

    1.Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703.CAS 
    PubMed 

    Google Scholar 
    2.Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.CAS 
    PubMed 

    Google Scholar 
    3.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.
    Google Scholar 
    4.Lu X, Seuradge BJ, Neufeld JD. Biogeography of soil Thaumarchaeota in relation to soil depth and land usage. FEMS Microbiol Ecol. 2017;93:fiw246.PubMed 

    Google Scholar 
    5.Cardarelli EL, Bargar JR, Francis CA. Diverse Thaumarchaeota dominate subsurface ammonia-oxidizing communities in semi-arid floodplains in the western United States. Micro Ecol. 2020;80:778–92.CAS 

    Google Scholar 
    6.Tolar BB, Boye K, Bobb C, Maher K, Bargar JR, Francis CA. Stability of floodplain subsurface microbial communities through seasonal hydrological and geochemical cycles. Front Earth Sci. 2020;8:338.
    Google Scholar 
    7.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P, Schleper C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol. 2005;7:1985–95.CAS 
    PubMed 

    Google Scholar 
    9.Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.CAS 
    PubMed 

    Google Scholar 
    10.Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, et al. Archaeal nitrification in the ocean. PNAS. 2006;103:12317–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.CAS 
    PubMed 

    Google Scholar 
    12.Mußmann M, Brito I, Pitcher A, Damste JSS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. PNAS. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    13.Weber EB, Lehtovirta-Morley LE, Prosser JI, Gubry-Rangin C, Laanbroek R. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota. FEMS Microbiol Ecol. 2015;91:fiv001.PubMed 
    PubMed Central 

    Google Scholar 
    14.Lin X, Handley KM, Gilbert JA, Kostka JE. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J. 2015;9:2740–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kato S, Itoh T, Yuki M, Nagamori M, Ohnishi M, Uematsu K, et al. Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring. ISME J. 2019;13:2465–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    19.Kerou M, Alves RJE, Schleper C. Nitrososphaerales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.cbm00055.20.Qin W, Martens-Habbena W, Kobelt JN, Stahl DA. Candidatus nitrosopumilales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.gbm01290.21.Prosser JI, Nicol GW. Candidatus Nitrosotaleales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.obm00123.22.Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, et al. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. PNAS. 2015;112:9370–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol. 2008;10:2966–78.CAS 
    PubMed 

    Google Scholar 
    24.Szukics U, Abell GCJ, Hödl V, Mitter B, Sessitsch A, Hackl E, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol. 2010;72:395–406.CAS 
    PubMed 

    Google Scholar 
    25.Höfferle Š, Nicol GW, Pal L, Hacin J, Prosser JI, Mandić-Mulec I. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiol Ecol. 2010;74:302–15.PubMed 

    Google Scholar 
    26.Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.CAS 
    PubMed 

    Google Scholar 
    27.He J-Z, Shen J-P, Zhang L-M, Zhu Y-G, Zheng Y-M, Xu M-G, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol. 2007;9:2364–74.CAS 
    PubMed 

    Google Scholar 
    28.Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process. 2013;2:9.
    Google Scholar 
    29.Opitz S, Küsel K, Spott O, Totsche KU, Herrmann M. Oxygen availability and distance to surface environments determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone aquifers in the Hainich region, Germany. FEMS Microbiol Ecol. 2014;90:39–53.CAS 
    PubMed 

    Google Scholar 
    30.Purkamo L, Kietäväinen R, Miettinen H, Sohlberg E, Kukkonen I, Itävaara M, et al. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol Ecol. 2018;94.31.Bushnell B BBTools software package. 2014. http://bbtools.jgi.doe.gov.32.Li H. BFC:correcting Illumina sequencing errors. Bioinformatics. 2015;31:2885–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 

    Google Scholar 
    34.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    35.Kang D, Li F, Kirton ES, Thomas A, Egan RS, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0:an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    38.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 

    Google Scholar 
    39.Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X, editors. Research in Computational Molecular Biology (RECOMB), Lecture Notes in Computer Science, Springer; Berlin, Heidelberg. 2013;7821:158–70.40.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk:a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    42.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 

    Google Scholar 
    43.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 

    Google Scholar 
    44.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    46.Seemann T. Prokka:rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    47.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 

    Google Scholar 
    48.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 

    Google Scholar 
    49.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering von C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.CAS 

    Google Scholar 
    51.Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2013;42:D206–14.PubMed 
    PubMed Central 

    Google Scholar 
    52.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2016;45:D320–4.PubMed 
    PubMed Central 

    Google Scholar 
    54.Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6.CAS 
    PubMed 

    Google Scholar 
    55.Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.
    Google Scholar 
    56.Sonnhammer EL, Heijne G, von, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998;6:175–82.CAS 
    PubMed 

    Google Scholar 
    57.Krogh A, Larsson B, Heijne G, von, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    59.Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Nucleic Acids Res. 2009;25:1972–3.
    Google Scholar 
    61.Nguyen L-T, Schmidt HA, Haeseler von A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Nucleic Acids Res. 2015;32:268–74.CAS 

    Google Scholar 
    62.Hoang DT, Chernomor O, Haeseler von A, Minh BQ. Le Sy Vinh. UFBoot2: improving the ultrafast bootstrap approximation. Nucleic Acids Res. 2017;35:518–22.
    Google Scholar 
    63.Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler von A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    65.Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539–9.PubMed 
    PubMed Central 

    Google Scholar 
    66.Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 2021;49:D751–63.CAS 
    PubMed 

    Google Scholar 
    67.Alves RJE, Minh BQ, Urich T, Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    68.Tolar BB, Mosier AC, Lund MB, Francis CA. Nitrosarchaeum. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2019:1–9. https://doi.org/10.1002/9781118960608.gbm01289.69.Park S-J, Kim J-G, Jung M-Y, Kim S-J, Cha I-T, Ghai R, et al. Draft genome sequence of an ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the Arctic Circle. J Bacteriol. 2012;194:6948–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kim BK, Jung M-Y, Yu DS, Park S-J, Oh TK, Rhee S-K, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol. 2003;5:787–97.CAS 
    PubMed 

    Google Scholar 
    72.Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Prosse, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. PNAS. 2011;108:15892–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, et al. Isolation of “Candidatus Nitrosocosmicus franklandus,” a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol. 2016;92:fiw057.PubMed 
    PubMed Central 

    Google Scholar 
    74.Könneke M, Bernhard AE, la Torre de JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.PubMed 

    Google Scholar 
    75.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. PNAS. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2015;10:1051–63.PubMed 
    PubMed Central 

    Google Scholar 
    78.Larentis M, Psenner R, Alfreider A. Prokaryotic community structure in deep bedrock aquifers of the Austrian Central Alps. Antonie van Leeuwenhoek. 2015;107:687–701.PubMed 

    Google Scholar 
    79.Lazar CS, Stoll W, Lehmann R, Herrmann M, Schwab VF, Akob DM, et al. Archaeal diversity and CO2 fixers in carbonate-/siliciclastic-rock groundwater ecosystems. Archaea. 2017;2136287.80.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Williams TA, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:1–12.
    Google Scholar 
    81.Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS. 2014;111:8239–44.PubMed 
    PubMed Central 

    Google Scholar 
    82.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-I, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. PNAS. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Spang A, Poehlein A, Offre P, Zumbr a gel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    84.Kamanda Ngugi D, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.CAS 
    PubMed 

    Google Scholar 
    85.Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, et al. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Front Microbiol. 2018;9:28.PubMed 
    PubMed Central 

    Google Scholar 
    86.Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS. 2011;108:8420–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Johnson WV, Anderson PM. Bicarbonate is a recycling substrate for cyanase. J Biol Chem. 1987;262:9021–5.CAS 
    PubMed 

    Google Scholar 
    88.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Bergen von M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    90.Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2001;2:REVIEWS0001. https://doi.org/10.1186/gb-2001-2-1-reviews0001.91.Ramteke PW, Maurice NG, Joseph B, Wadher BJ. Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem. 2013;60:459–81.CAS 
    PubMed 

    Google Scholar 
    92.Walker CB, la Torre de JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. PNAS. 2010;107:8818–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    94.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS ONE. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    95.Daebeler A, Herbold C, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in Graendalur valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 

    Google Scholar 
    96.Beam JP, Jay ZJ, Kozubal MA, Inskeep WP. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J. 2014;8:938–51.CAS 
    PubMed 

    Google Scholar 
    97.Kim J-G, Park S-J, Damste JSS, Schouten S, Rijpstra WIC, Jung M-Y, et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. PNAS. 2016;113:7888–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Zhalnina KV, Dias R, Leonard MT, de Quadros PD, Camargo FAO, Drew JC, et al. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS ONE. 2014;9:e101648.PubMed 
    PubMed Central 

    Google Scholar 
    100.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Tolar BB, Powers LC, Miller WL, Wallsgrove NJ, Popp BN, Hollibaugh JT. Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of hydrogen peroxide. Front Mar Sci. 2016;3:237.
    Google Scholar 
    102.Bayer B, Pelikan C, Bittner MJ, Reinthaler T, Könneke M, Herndl GJ, et al. Proteomic response of three marine ammonia-oxidizing archaea to hydrogen peroxide and their metabolic interactions with a heterotrophic alphaproteobacterium. mSystems. 2019;4:e00181–19.PubMed 
    PubMed Central 

    Google Scholar 
    103.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zhayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 

    Google Scholar 
    104.Yang Y, Herbold CW, Jung M-Y, Qin W, Cai M, Du H, et al. Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration. Water Res. 2021;191:116798.CAS 
    PubMed 

    Google Scholar 
    105.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 

    Google Scholar 
    106.Ma K, Schicho RN, Kelly RM, Adams MW. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase:evidence for a sulfur-reducing hydrogenase ancestor. PNAS. 1993;90:5341–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Finney AJ, Sargent F. Formate hydrogenlyase:A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase. Adv Micro Physiol. 2019;74:465–86.
    Google Scholar 
    108.Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs KU, Teske AP, et al. Genomic inference of the metabolism of cosmopolitan subsurface archaea, Hadesarchaea. Nat Microbiol. 2016;1:1–9.
    Google Scholar 
    109.He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol. 2016;1:1–9.
    Google Scholar 
    110.Lazar CS, Baker BJ, Seitz KW, Teske AP. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 2017;11:1118–29.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Farag IF, Biddle JF, Zhao R, Martino AJ, House CH, León-Zayas RI. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME J. 2020;14:1345–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Orsi WD, Vuillemin A, Rodriguez P, Coskun ÖK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.CAS 
    PubMed 

    Google Scholar 
    113.Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS. 2018;115:E1166–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. PNAS. 2010;107:13087–92.PubMed 
    PubMed Central 

    Google Scholar 
    115.Lazar CS, Baker BJ, Seitz KW, Hyde AS, Dick GJ, Hinrichs KU, et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Nucleic Acids Res. 2015;18:1200–11.
    Google Scholar 
    116.Debnar-Daumler C, Seubert A, Schmitt G, Heider J. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. J Bacteriol. 2014;196:483–92.PubMed 
    PubMed Central 

    Google Scholar 
    117.Kletzin A, Mukund S, Kelley-Crouse TL, Chan MK, Rees DC, Adams MW. Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol. 1995;177:4817–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Arndt F, Schmitt G, Winiarska A, Saft M, Seubert A, Kahnt J, et al. Characterization of an aldehyde oxidoreductase from the mesophilic bacterium Aromatoleum aromaticum ebn1, a member of a new subfamily of tungsten-containing enzymes. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00071.119.Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature. 2013;496:215–8.CAS 
    PubMed 

    Google Scholar 
    120.Dimapilis JRR. Tungsten is essential for long-term maintenance of members of candidate archaeal genus Aigarchaeota Group 4. [dissertation on the Internet]. San Bernardino, California State University; 2019. https://scholarworks.lib.csusb.edu/etd/927/.121.Anthony C. The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys. 2004;428:2–9.CAS 
    PubMed 

    Google Scholar 
    122.Jaffe AL, Castelle CJ, Dupont CL, Banfield JF. Lateral gene transfer shapes the distribution of rubisco among candidate phyla radiation bacteria and DPANN archaea. Nucleic Acids Res. 2019;36:435–46.CAS 

    Google Scholar 
    123.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Aono R, Sato T, Imanaka T, Atomi H. A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat Chem Biol. 2015;11:355–60.CAS 
    PubMed 

    Google Scholar 
    125.Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 2018;12:2668–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    126.Cai C, Leu AO, Xie G-J, Guo J, Feng Y, Zhao J-X, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;12:1929–39.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Leu AO, McIlroy SJ, Ye J, Parks DH, Orphan VJ, Tyson GW. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio. 2020;11:e01325–20.PubMed 
    PubMed Central 

    Google Scholar 
    128.Zhou Z, L Y, Xu W, Pan J, Luo Z-H, Li M. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems. 2020;5:e00795–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:170203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Differences in PItotal of Quercus liaotungensis seedlings between provenance

    1.Wang, W., Li, Q. K. & Ma, K. P. Establishment and spatial distribution of Quercus liaotungensis Koidz. seedlings in Dongling Mountain. Acta Phytoecol. Sin. 24, 595 (2000).2.Han, H. R., He, S. Q. & Zhang, X. P. The effect of light intensity on the growth and development of Quercus liaotungensis seedlings. J. Beijing For. Univ. 22, 97–100 (2000).
    Google Scholar 
    3.Chen, Z. P., Wang, H. & Yuan, H. B. Studies on soil seed bank and seed fate of Quercus liaotungensis forest in the Ziwu Mountains. J. Gansu Agric. Univ. 40, 7–12 (2005).
    Google Scholar 
    4.Li, Y. Resource investigation and superior germplasm resources selection of woody energy plants Quercus mongolica Fisch and Quercus liaotungensis Koidz, Dissertation, Chinese Academy of Forestry, (2011).5.Yin, X., Zhou, G., Sui, X., He, Q. & Li, R. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds. Acta Ecol. Sin 33, 103–109 (2013).Article 

    Google Scholar 
    6.Takai, T. et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3, 1–11 (2013).Article 

    Google Scholar 
    7.Yang, Y. J., Tong, Y. G., Yu, G. Y., Zhang, S. B. & Huang, W. Photosynthetic characteristics explain the high growth rate for Eucalyptus camaldulensis: Implications for breeding strategy. Ind. Crop. Prod. 124, 186–191 (2018).CAS 
    Article 

    Google Scholar 
    8.Spyridaki, A., Psylinakis, E. & Ghanotakis, D. F. Photosystem II. In Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices (ed. Giardi, M.T. & Piletska, E. V.) 11–13 (Springer, Boston, 2006).9.Dąbrowski, P. et al. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J. Photochem. Photobiol. B 157, 22–31 (2016).10.Van Rooijen, R. et al. Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nat. Commun. 8, 1–9 (2017).Article 

    Google Scholar 
    11.Zushi, K., Kajiwara, S. & Matsuzoe, N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Sci. Hortic. 148, 39–46 (2012).CAS 
    Article 

    Google Scholar 
    12.Fan, J. et al. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Front. Plant Sci. 6, 925 (2015).Article 

    Google Scholar 
    13.Van Heerden, P., Swanepoel, J. & Krüger, G. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ. Exp. Bot. 61, 124–136 (2007).Article 

    Google Scholar 
    14.Živčák, M., Brestič, M., Olšovská, K. & Slamka, P. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54, 133–139 (2008).Article 

    Google Scholar 
    15.Kalaji, H. M., Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 73, 64–72 (2011).CAS 
    Article 

    Google Scholar 
    16.Singh, D. P. & Sarkar, R. K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Funct. Plant Biol. 41, 727–736 (2014).CAS 
    Article 

    Google Scholar 
    17.Song, X. L. et al. NaCl stress aggravates photoinhibition of photosystem II and photosystem I in Capsicum annuum leaves under high irradiance stress. Acta Phytoecol. Sin. 35, 681 (2011).18.Sun, Y. J., Du, Y. P. & Zhai, H. Effects of different light intensity on PSII activity and recovery of Vitis vinifera cv. cabernet sauvignon leaves under high temperature stress. Plant Physiol. J. 50, 1209–1215 (2014).
    Google Scholar 
    19.Chen, S., Strasser, R. J. & Qiang, S. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 84, 10–21 (2014).Article 

    Google Scholar 
    20.Zorić, A. S. et al. Resource allocation in response to herbivory and gall formation in Linaria vulgaris. Plant Physiol. Biochem. 135, 224–232 (2019).Article 

    Google Scholar 
    21.Butler, W. & Kitajima, M. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta. 376, 116–125 (1975).CAS 
    Article 

    Google Scholar 
    22.Baker, N. R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).CAS 
    Article 

    Google Scholar 
    23.Strasser, R. J., Srivastava, A. & Tsimilli-Michael, M. Screening the vitality and photosynthetic activity of plants by fluorescence transient. In Crop Improvement for Food Security (ed. Behl, R. K., Punia, M. S. & Lather, B. P. S.) 72–115 (SSARM, Hisar, 1999).24.Appenroth, K. J., Stöckel, J., Srivastava, A. & Strasser, R. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 115, 49–64 (2001).CAS 
    Article 

    Google Scholar 
    25.Stirbet, A., Lazár, D., Kromdijk, J. & Govindjee, G. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica 56, 86–104. https://doi.org/10.1007/s11099-018-0770-3 (2018).CAS 
    Article 

    Google Scholar 
    26.Tsimilli-Michael, M., Strasser, R. J. In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics (ed. Varma, A.) 679–703 (Springer, Dordrecht, 2008).27.Albert, K. R., Mikkelsen, T. N., Michelsen, A., Ro-Poulsen, H. & van der Linden, L. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J. Plant Physiol. 168, 1550–1561 (2011).CAS 
    Article 

    Google Scholar 
    28.Chen, L. et al. Melatonin is involved in regulation of bermudagrass growth and development and response to low K+ stress. Front. Plant Sci. 8, 2038 (2017).Article 

    Google Scholar 
    29.Zhang, L. et al. The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue. Front. Plant Sci. 8, 1747 (2017).Article 

    Google Scholar 
    30.Yao, X. et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416 (2017).CAS 
    Article 

    Google Scholar 
    31.Samborska, I. A. et al. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Funct. Plant Biol. 45, 668–679 (2018).CAS 
    Article 

    Google Scholar 
    32.dos Santos, V. A. H. F. & Ferreira, M. J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 460, 7900 (2020).
    Google Scholar 
    33.Pavlović, I. et al. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10, 450 (2019).Article 

    Google Scholar 
    34.Xin, J., Ma, S., Li, Y., Zhao, C. & Tian, R. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands. Ecotox. Environ. Safe. 203, 111024 (2020).CAS 
    Article 

    Google Scholar 
    35.Wang, M. X. Forest genetics and breeding (ed. Wang, M. X.) 130–137 (China Forestry Publishing House, Beijing, 2001).36.Kurjak, D. et al. Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. Eur. J. For. Res. 138, 79–92 (2019).CAS 
    Article 

    Google Scholar 
    37.Navarro-Cerrillo, R. M. et al. Growth and physiological sapling responses of eleven Quercus ilex ecotypes under identical environmental conditions. For. Ecol. Manage. 415, 58–69 (2018).Article 

    Google Scholar 
    38.Guo, H., Wang, X. A., Zhu, Z. H., Wang, S. X. & Guo, J. C. Seed and microsite limitation for seedling recruitment of Quercus wutaishanica on Mt. Ziwuling, Loess Plateau, China. New For. 41, 127–137 (2011).39.Li, Z. S. et al. Tree-ring growth responses of Liaodong Oak (Quercus wutaishanica) to climate in the Beijing Dongling Mountain of China. Acta Phytoecol. Sin. 41, 11 (2021).
    Google Scholar 
    40.Holland, V., Koller, S. & Bruggemann, W. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis. Plant Biol. 16, 801–808. https://doi.org/10.1111/plb.12105 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Ahammed, G. J., Xu, W., Liu, A. & Chen, S. COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 9, 998 (2018).Article 

    Google Scholar 
    42.Kalaji, H. M. et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38, 102 (2016).Article 

    Google Scholar 
    43.Liu, J., Lu, Y., Hua, W. & Last, R. L. A new light on photosystem II maintenance in oxygenic photosynthesis. Front. Plant Sci. 10, 975 (2019).Article 

    Google Scholar 
    44.Shucun, S. & Lingzhi, C. Leaf growth and photosynthesis of Quercus liaotungensis in Dongling Mountain region. Acta Phytoecol. Sin. 20, 212–217 (2000).
    Google Scholar 
    45.Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S. & Farquhar, G. D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 5, 380–388 (2019).Article 

    Google Scholar 
    46.Pšidová, E. et al. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environ. Exp. Bot. 152, 97–106 (2018).Article 

    Google Scholar 
    47.Liang, D. et al. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 246, 34–43 (2019).CAS 
    Article 

    Google Scholar 
    48.Panda, D., Ray, A. & Sarkar, R. K. Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding. Photosynthetica 57, 1084–1093 (2019).CAS 
    Article 

    Google Scholar 
    49.Zhang, H. H. et al. Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. J. For. Res. 29, 1049–1059. https://doi.org/10.1007/s11676-017-0496-2 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Lu, W. J. Plant physiology (ed. Lu, W. J.) 88–89 (China Forestry Publishing House, Beijing, 2017).51.Xiao, C. W. & Zhou, G. S. Effect of simulated precipitation change on growth, gas exchange and chlorophyll fluorescence of Caragana intermedia in Manwusu sandland. Chin. J. Appl. Ecol. 5, 692–696 (2001).ADS 

    Google Scholar  More