Artefactual depiction of predator–prey trophic linkages in global soils
1.Wall, D. H., Bardgett, R. D. & Kelly, E. Biodiversity in the dark. Nat. Geosci. 3(5), 297–298 (2010).ADS
CAS
Google Scholar
2.Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10(1), 1–3 (2019).
Google Scholar
3.Koch, A. et al. Soil security: Solving the global soil crisis. Global Pol. 4(4), 434–441 (2013).
Google Scholar
4.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528(7580), 69–76 (2015).ADS
CAS
PubMed
Google Scholar
5.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11(1), 1–13 (2020).
Google Scholar
6.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
7.Zou, K., Thébault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30(8), 1454–1465 (2016).
Google Scholar
8.Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).
Google Scholar
9.de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110(35), 14296–14301 (2013).ADS
PubMed
PubMed Central
Google Scholar
10.Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).ADS
CAS
Google Scholar
11.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33(5), 1187–1192 (2019).PubMed
Google Scholar
12.Phillips, H. R., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29(4), 655–657 (2020).PubMed
PubMed Central
Google Scholar
13.El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Sec. 20, 132–144 (2019).
Google Scholar
14.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9(1), 2989 (2018).ADS
PubMed
PubMed Central
Google Scholar
15.Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).PubMed
PubMed Central
Google Scholar
16.Brose, U. & Scheu, S. Into darkness: Unravelling the structure of soil food webs. Oikos 123(10), 1153–1156 (2014).
Google Scholar
17.Phillips, H. R. et al. Red list of a black box. Nat. Ecol. Evol. 1(4), 1–1 (2017).
Google Scholar
18.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960).
Google Scholar
19.Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21(1), 138–150 (2018).PubMed
Google Scholar
20.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111(14), 5266–5270 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
21.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456–459 (2016).ADS
CAS
PubMed
Google Scholar
22.Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).
Google Scholar
23.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483(7388), 205–208 (2012).ADS
CAS
PubMed
Google Scholar
24.Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. 112(22), 7033–7038 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
25.Maran, A. M. & Pelini, S. L. Predator contributions to belowground responses to warming. Ecosphere 7(9), e01457 (2016).
Google Scholar
26.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29(19), R1036–R1044 (2019).CAS
PubMed
Google Scholar
27.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442(7100), 265–269 (2006).ADS
CAS
PubMed
Google Scholar
28.Murphy, S. M., Lewis, D. & Wimp, G. M. Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192(3), 791–799 (2020).ADS
PubMed
Google Scholar
29.Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).
Google Scholar
30.Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304(5677), 1629–1633 (2004).ADS
CAS
PubMed
Google Scholar
31.de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105(4), 913–920 (2017).
Google Scholar
32.Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. 108(43), 17720–17725 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
33.Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47(1), 561–594 (2002).CAS
PubMed
Google Scholar
34.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADS
PubMed
PubMed Central
Google Scholar
35.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115(33), E7863–E7870 (2018).CAS
PubMed
PubMed Central
Google Scholar
36.Johnson, S. N. et al. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil. Ecol. 108, 96–107 (2016).
Google Scholar
37.Veen, C. et al. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter. Front. Ecol. Evol. 7, 300 (2019).
Google Scholar
38.Birkhofer, K., Wise, D. H. & Scheu, S. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117(4), 494–500 (2008).
Google Scholar
39.Birkhofer, K. et al. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 31(3), 567–579 (2016).
Google Scholar
40.van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161(1), 1–14 (2009).ADS
PubMed
PubMed Central
Google Scholar
41.Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).PubMed
Google Scholar
42.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31(6), 440–452 (2016).PubMed
Google Scholar
43.Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20(11), 1427–1436 (2017).PubMed
Google Scholar
44.Briones, M. J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 6, 149 (2018).
Google Scholar
45.Kaya, H. K. & Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1), 181–206 (1993).
Google Scholar
46.Ferris, H. & Tuomisto, H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 85, 101–109 (2015).CAS
Google Scholar
47.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).ADS
Google Scholar
48.Bender, S. F. & van der Heijden, M. G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52(1), 228–239 (2015).CAS
Google Scholar
49.De Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS
Google Scholar
50.Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29(4), 752–761 (2020).PubMed
Google Scholar
51.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Google Scholar
52.Polis, G. A. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138(1), 123–155 (1991).
Google Scholar
53.Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147(5), 813–846 (1996).
Google Scholar
54.Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 181(3/4), 91–109 (2016).ADS
CAS
Google Scholar
55.Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PLoS ONE 5(7), e11567 (2010).ADS
PubMed
PubMed Central
Google Scholar
56.Heinen, R., van der Sluijs, M., Biere, A., Harvey, J. A. & Bezemer, T. M. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. 106(3), 1217–1229 (2018).
Google Scholar
57.Ramirez, K. S., Geisen, S., Morriën, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23(9), 759–768 (2018).CAS
PubMed
Google Scholar
58.Boyer, S., Snyder, W. E. & Wratten, S. D. Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9, 1–3 (2016).
Google Scholar
59.Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10(8), 1157–1170 (2019).
Google Scholar
60.Choate, B. A. & Lundgren, J. G. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot. 77, 110–118 (2015).
Google Scholar
61.Furlong, M. J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 22(1), 6–19 (2015).PubMed
Google Scholar
62.Eitzinger, B., Rall, B. C., Traugott, M. & Scheu, S. Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127(7), 915–926 (2018).
Google Scholar
63.Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343–351 (2012).PubMed
Google Scholar
64.Morriën, E. Understanding soil food web dynamics, how close do we get?. Soil Biol. Biochem. 102, 10–13 (2016).
Google Scholar
65.Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10), 1157–1172 (2014).
Google Scholar
66.Toscano, B. J., Hin, V. & Rudolf, V. H. Cannibalism and intraguild predation community dynamics: Coexistence, competitive exclusion, and the loss of alternative stable states. Am. Nat. 190(5), 617–630 (2017).PubMed
Google Scholar
67.Coleman, D. C. & Wall, D. H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 4, 111–149 (2015).
Google Scholar
68.Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
Google Scholar
69.Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).CAS
Google Scholar
70.Oelbermann, K. & Scheu, S. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull. Entomol. Res. 100(5), 511 (2010).CAS
PubMed
Google Scholar
71.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
Google Scholar
72.Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
Google Scholar
73.Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6(1), 1–10 (2015).
Google Scholar
74.Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9(1–3), 447–452 (1998).
Google Scholar
75.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84(8), 2042–2050 (2003).
Google Scholar
76.Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169(4), 587–596 (2017).CAS
PubMed
Google Scholar
77.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33(3), 186–197 (2018).PubMed
PubMed Central
Google Scholar
78.Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).
Google Scholar
79.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886–890 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
80.Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. & Nilsson, M. C. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3), 645–656 (2011).PubMed
Google Scholar
81.Preisser, E. L. & Strong, D. R. Climate affects predator control of an herbivore outbreak. Am. Nat. 163(5), 754–762 (2004).PubMed
Google Scholar
82.Hamilton, J. et al. Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol. 43, 80–85 (2012).ADS
Google Scholar
83.Zaller, J. G. et al. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2, 44 (2014).
Google Scholar
84.Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl. Acad. Sci. 115(32), E7541–E7549 (2018).CAS
PubMed
PubMed Central
Google Scholar
85.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105(3), 801–815 (2017).
Google Scholar
86.Garratt, M. P. et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21(7), 1404–1415 (2018).CAS
Google Scholar
87.Smith-Ramesh, L. M. Predators in the plant–soil feedback loop: Aboveground plant-associated predators may alter the outcome of plant–soil interactions. Ecol. Lett. 21(5), 646–654 (2018).PubMed
Google Scholar
88.Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 62, 91–109 (2017).CAS
PubMed
Google Scholar
89.Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
Google Scholar
90.Von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163(4), 1033–1042 (2010).ADS
Google Scholar
91.Rowen, E., Tooker, J. F. & Blubaugh, C. K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134, 130–140 (2019).
Google Scholar
92.Perović, D. J. et al. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales. Biol. Rev. 93(1), 306–321 (2018).PubMed
Google Scholar
93.Roger-Estrade, J., Anger, C., Bertrand, M. & Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soil Tillage Res. 111(1), 33–40 (2010).
Google Scholar
94.Dias, T., Dukes, A. & Antunes, P. M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–454 (2015).CAS
PubMed
Google Scholar
95.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53(1), 233–241 (2016).
Google Scholar
96.Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1(8), 441–446 (2018).
Google Scholar
97.Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. M. Decomposition in Terrestrial Ecosystems Vol. 5 (University of California Press, 1979).
Google Scholar
98.van Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., Zaitsev, A. S. & Verhoef, S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45(5), 451–466 (2001).
Google Scholar
99.Birkhofer, K. et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 7(6), 1942–1953 (2017).PubMed
PubMed Central
Google Scholar
100.Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94(1), 37–59 (2019).
Google Scholar More