More stories

  • in

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production

    1.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS 
    PubMed 

    Google Scholar 
    2.Riebesell U, Körtzinger A, Oschlies A. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA. 2009;106:20602–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:1–11.
    Google Scholar 
    4.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10:6225–45.
    Google Scholar 
    6.Oschlies A, Brandt P, Stramma L, Schmidtko S. Drivers and mechanisms of ocean deoxygenation. Nat Geosci. 2018;11:467–73.CAS 

    Google Scholar 
    7.Cazenave A, Llovel W. Contemporary sea level rise. Ann Rev Mar Sci. 2010;2:145–73.PubMed 

    Google Scholar 
    8.Frölicher TL, Ramseyer L, Raible CC, Rodgers KB, Dunne J. Potential predictability of marine ecosystem drivers. Biogeosciences. 2020;17:2061–83.
    Google Scholar 
    9.Taucher J, Oschlies A. Can we predict the direction of marine primary production change under global warming? Geophys Res Lett. 2011;38:L02603.10.Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences. 2015;12:6955–84.
    Google Scholar 
    11.Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983:257–63.12.Fenchel T. The microbial loop–25 years later. J Exp Mar Biol Ecol. 2008;366:99–103.
    Google Scholar 
    13.Kirchman DL, Morán XAG, Ducklow H. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol. 2009;7:451–9.CAS 
    PubMed 

    Google Scholar 
    14.Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev Discuss. 2015;8:2465–513.15.Vichi M, Masina S. Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences. 2009;6:2333–53.CAS 

    Google Scholar 
    16.Hasumi H, Nagata T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol Model. 2014;288:9–24.CAS 

    Google Scholar 
    17.Laufkötter C, Vogt M, Gruber N, Aumont O, Bopp L, Doney SC, et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences. 2016;13:4023–47.
    Google Scholar 
    18.Monroe JG, Markman DW, Beck WS, Felton AJ, Vahsen ML, Pressler Y. Ecoevolutionary dynamics of carbon cycling in the anthropocene. Trends Ecol Evol. 2018;33:213–25.PubMed 

    Google Scholar 
    19.Bennett AF, Dao KM, Lenski RE. Rapid evolution in response to high-temperature selection. Nature. 1990;346:79–81.CAS 
    PubMed 

    Google Scholar 
    20.Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019;17:e3000102.PubMed 
    PubMed Central 

    Google Scholar 
    21.Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25:656–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Pomeroy LR, Williams PJleB, Azam F, Hobbie JE. The microbial loop. J Oceanogr. 2007;20:28–33.
    Google Scholar 
    23.Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Malik AA, Martiny JB, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.CAS 
    PubMed 

    Google Scholar 
    25.Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.CAS 

    Google Scholar 
    26.Muscarella ME, Howey XM, Lennon JT. Trait‐based approach to bacterial growth efficiency. Environ Microbiol. 2020;22:3494–3504.CAS 
    PubMed 

    Google Scholar 
    27.Roller BR, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.
    Google Scholar 
    28.Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton University Press, 2006.29.Bendtsen J, Lundsgaard C, Middelboe M, Archer D. Influence of bacterial uptake on deep-ocean dissolved organic carbon. Glob Biogeocehm Cycles. 2002;16:74–1.
    Google Scholar 
    30.Chen B, Landry MR, Huang B, Liu H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol Oceanogr. 2012;57:519–26.CAS 

    Google Scholar 
    31.Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.PubMed 
    PubMed Central 

    Google Scholar 
    32.Kiørboe T, Visser A, Andersen KH. A trait-based approach to ocean ecology. ICES Int J Mar Sci. 2018;75:1849–63.
    Google Scholar 
    33.Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.
    Google Scholar 
    34.Polz MF, Cordero OX. Bacterial evolution: genomics of metabolic trade-offs. Nat Microbiol. 2016;1:1–2.
    Google Scholar 
    35.Carlson CA, Del Giorgio PA, Herndl GJ. Microbes and the dissipation of energy and respiration: from cells to ecosystems. J Oceanogr. 2007;20:89–100.
    Google Scholar 
    36.Arnosti C. Patterns of microbially driven carbon cycling in the ocean: links between extracellular enzymes and microbial communities. Adv Oceanogr. 2014;2014:706082.37.Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–7.CAS 
    PubMed 

    Google Scholar 
    38.Button D. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol. 1991;57:2033–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Metz JA, Nisbet RM, Geritz SA. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol. 1992;7:198–202.CAS 
    PubMed 

    Google Scholar 
    40.Geritz SA, Metz JA, Kisdi E, Meszéna G. Dynamics of adaptation and evolutionary´ branching. Phys Rev Lett. 1997;78:2024.CAS 

    Google Scholar 
    41.Abs E, Ferrière R. Modeling microbial dynamics and heterotrophic soil respiration: effect of climate change. Biogeochemical cycles: ecological drivers and environmental impact. 2020:103–29.42.Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.PubMed 
    PubMed Central 

    Google Scholar 
    43.Hansell DA, Carlson CA. Biogeochemistry of marine dissolved organic matter. Academic Press, 2014.44.Urban MC, De Meester L, Vellend M, Stoks R, Vanoverbeke J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol Appl. 2012;5:154–67.PubMed 

    Google Scholar 
    45.Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change. 2012;2:747–51.
    Google Scholar 
    46.Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc Long B Biol Sci. 2010;365:2137–49.
    Google Scholar 
    47.Walther S, Voigt M, Thum T, Gonsamo A, Zhang Y, Köhler P, et al. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Change Biol. 2016;22:2979–96.
    Google Scholar 
    48.Williams RG, Follows MJ. Ocean dynamics and the carbon cycle: Principles and mechanisms. Cambridge University Press, 2011.49.Lewis K, Van Dijken G, Arrigo KR. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science. 2020;369:198–202.CAS 
    PubMed 

    Google Scholar 
    50.Ward B, Collins S, Dutkiewicz S, Gibbs S, Bown P, Ridgwell A, et al. Considering the role of adaptive evolution in models of the ocean and climate system. J Adv Model Earth Syst. 2019;11:3343–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Vázquez-Domínguez E, Vaque D, Gasol JM. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob Change Biol. 2007;13:1327–34.
    Google Scholar 
    52.López-Urrutia A, Morán XAG. Resource limitation of bacterial production distorts´ the temperature dependence of oceanic carbon cycling. Ecology. 2007;88:817–22.PubMed 

    Google Scholar 
    53.Parker GA, Smith JM. Optimality theory in evolutionary biology. Nature. 1990;348:27–33.
    Google Scholar 
    54.Hammerstein P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J Math Biol. 1996;34:511–32.CAS 
    PubMed 

    Google Scholar 
    55.Eshel I, Feldman MW, Bergman A. Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol. 1998;191:391–6.
    Google Scholar 
    56.Hagerty SB, Allison SD, Schimel JP. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry. 2018;140:269–83.CAS 

    Google Scholar 
    57.Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002;99:15112–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Marx CJ. Can you sequence ecology? Metagenomics of adaptive diversification. PLoS Biol. 2013;11:e1001487.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.PubMed 

    Google Scholar 
    60.Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:1–8.
    Google Scholar 
    61.Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50.PubMed 

    Google Scholar 
    62.Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59–9.PubMed 
    PubMed Central 

    Google Scholar 
    63.Gregory AC, Gerhardt K, Zhong ZP, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro-and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020. https://doi.org/10.1101/2020.11.01.363960.64.Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–1154.CAS 
    PubMed 

    Google Scholar 
    65.Scheinin M, Riebesell U, Rynearson TA, Lohbeck KT, Collins S. Experimental evolution gone wild. J R Soc Interface. 2015;12:20150056.PubMed 
    PubMed Central 

    Google Scholar 
    66.Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.CAS 
    PubMed 

    Google Scholar 
    67.Grimaud GM, Le Guennec V, Ayata SD, Mairet F, Sciandra A, Bernard O. Modelling the effect of temperature on phytoplankton growth across the global ocean. IFACPapersOnLine. 2015;48:228–33.
    Google Scholar 
    68.Sauterey B, Ward B, Rault J, Bowler C, Claessen D. The implications of ecoevolutionary processes for the emergence of marine plankton community biogeography. Am Nat. 2017;190:116–30.PubMed 

    Google Scholar 
    69.Beckmann A, Schaum CE, Hense I. Phytoplankton adaptation in ecosystem models. J Theor Biol. 2019;468:60–71.PubMed 

    Google Scholar 
    70.Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.
    Google Scholar 
    71.Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35:993–1034.CAS 
    PubMed 

    Google Scholar 
    72.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    73.Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.PubMed 
    PubMed Central 

    Google Scholar 
    74.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell. 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Tropical bee species abundance differs within a narrow elevational gradient

    1.Galbraith, S. M., Griswold, T., Price, W. J. & Bosque-Pérez, N. A. Biodiversity and community composition of native bee populations vary among human-dominated land uses within the seasonally dry tropics. J. Insect Conserv. https://doi.org/10.1007/s10841-020-00274-8 (2020).Article 

    Google Scholar 
    2.Imbach, P. et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Change 141, 1–12 (2017).
    Google Scholar 
    3.HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts?. Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    4.Butt, N. et al. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 21, 3267–3277 (2015).ADS 
    PubMed 

    Google Scholar 
    5.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Orr, M. C. et al. Global patterns and drivers of bee distribution. Curr. Biol. 31, 451-458.e4 (2021).CAS 
    PubMed 

    Google Scholar 
    7.Bezerra, E. S., Lopes, A. V. & Machado, I. C. Biologia reprodutiva de Byrsonima gardnerana A. Juss. (Malpighiaceae) e interações com abelhas Centris (Centridini) no Nordeste do Brasil. Rev. Bras. Bot. 32, 95–108 (2009).
    Google Scholar 
    8.Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2019.12.010 (2020).Article 
    PubMed 

    Google Scholar 
    9.Hoiss, B., Krauss, J. & Steffan-Dewenter, I. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob. Chang. Biol. 21, 4086–4097 (2015).ADS 
    PubMed 

    Google Scholar 
    10.Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).MathSciNet 

    Google Scholar 
    11.Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania?. Glob. Ecol. Biogeogr. 24, 642–652 (2015).
    Google Scholar 
    12.Ramos-Jiliberto, R. et al. Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    13.Dellinger, A. S. et al. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytol. https://doi.org/10.1111/nph.17390 (2021).Article 
    PubMed 

    Google Scholar 
    14.González-Vanegas, P. A., Rös, M., García-Franco, J. G. & Aguirre-Jaimes, A. Buzz-pollination in a tropical montane cloud forest: Compositional similarity and plant-pollinator interactions. Neotrop. Entomol. https://doi.org/10.1007/s13744-021-00867-1 (2021).Article 
    PubMed 

    Google Scholar 
    15.Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: A systematic review. PLoS ONE 8, 1–11 (2013).
    Google Scholar 
    16.García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. U. S. A. 113, 680–685 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Sheldon, K. S. Climate change in the tropics: Ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303–333 (2019).
    Google Scholar 
    18.McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).PubMed 

    Google Scholar 
    19.Aguilar, I., Herrera, E. & Zamora, G. Stingless bees of Costa Rica. Pot-Honey https://doi.org/10.1007/978-1-4614-4960-7 (2012).Article 

    Google Scholar 
    20.Köppler, K., Vorwohl, G. & Koeniger, N. Comparison of pollen spectra collected by four different subspecies of the honey bee Apis mellifera. Apidologie 38, 341–353 (2007).
    Google Scholar 
    21.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    22.Ortiz-Mora, R. A., Van Veen, J. W., Corrales, G. & Sommeijer, M. J. Influence of altitude on the distribution of stingless bees (Hymenoptera Apidae: Meliponinae). Apiacta 30, 101–105 (1995).
    Google Scholar 
    23.Michener, C. D. The Bees of the World (The Johns Hopkins University Press, 2007).
    Google Scholar 
    24.Rehan, S. M., Tierney, S. M. & Wcislo, W. T. Evidence for social nesting in Neotropical ceratinine bees. Insectes Soc. 62, 465–469 (2015).
    Google Scholar 
    25.Gonzalez, V. H. et al. Thermal tolerance varies with dim-light foraging and elevation in large carpenter bees (Hymenoptera: Apidae: Xylocopini). Ecol. Entomol. 45, 688–696 (2020).
    Google Scholar 
    26.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    27.Theobald, E. J., Gabrielyan, H. & HilleRisLambers, J. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range. Am. J. Bot. 103, 189–197 (2016).PubMed 

    Google Scholar 
    28.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Bode, R. F., Linhart, R. D. & Dufresne, C. Variation in the pollinator community visiting invasive Cytisus scoparius L. Link (Fabaceae) along an elevation gradient. Arthropod. Plant. Interact. https://doi.org/10.1007/s11829-020-09755-8 (2020).Article 

    Google Scholar 
    30.Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).PubMed 

    Google Scholar 
    31.Dymond, K. et al. The role of insect pollinators in avocado production: A global review. J. Appl. Entomol. https://doi.org/10.1111/jen.12869 (2021).Article 

    Google Scholar 
    32.Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013).
    Google Scholar 
    33.Ashworth, L., Quesada, M., Casas, A., Aguilar, R. & Oyama, K. Pollinator-dependent food production in Mexico. Biol. Conserv. 142, 1050–1057 (2009).
    Google Scholar 
    34.Tepedino, V. J. The Pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377 (1981).
    Google Scholar 
    35.Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
    Google Scholar 
    36.Barrantes, G. The role of historical and local factors in determining species composition of the highland avifauna of Costa Rica and western Panamá. Rev. Biol. Trop. 57, 333–346 (2009).
    Google Scholar 
    37.Macedo, M. V. et al. Insect elevational specialization in a tropical biodiversity hotspot. Insect Conserv. Divers. 11, 240–254 (2018).
    Google Scholar 
    38.Frankie, G. W. et al. Diversity and abundance of bees visiting a mass flowering tree species in disturbed seasonal dry forest, Costa Rica. Kansas Entomol. Soc. 70, 281–296 (1997).
    Google Scholar 
    39.Heard, T. A. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Abrol, D. P. Wild bees and crop pollination. In Pollination Biology: Biodiversity Conservation and Agricultural Production 111–184 (Springer, 2012).
    Google Scholar 
    41.Tucker, E. M. & Rehan, S. M. Farming for bees: Annual variation in pollinator populations across agricultural landscapes. Agric. For. Entomol. 20, 541–548 (2018).
    Google Scholar 
    42.Peters, V. E., Mordecai, R., Carroll, C. R., Cooper, R. J. & Greenberg, R. Bird community response to fruit energy. J. Anim. Ecol. 79, 824–835 (2010).PubMed 

    Google Scholar 
    43.Baker, C. P. Moon Costa Rica (Moon Travel, 2007).
    Google Scholar 
    44.Hinton, C. R. & Peters, V. E. Plant species with the trait of continuous flowering do not hold core roles in a Neotropical lowland plant-pollinating insect network. Ecol. Evol. 11, 2346–2359 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    45.Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).
    Google Scholar 
    46.Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Museum Nat. Hist. 3296, 1–11 (2000).
    Google Scholar 
    47.Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the Africanized honey bee invasion of the Americas. bioRxiv https://doi.org/10.1101/2020.03.17.994632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Davila, Y. C. & Wardle, G. M. Variation in native pollinators in the absence of honeybees: Implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156, 479–490 (2008).
    Google Scholar 
    49.Chen, H., Morrell, P. L., Ashworth, V. E. T. M., De La Cruz, M. & Clegg, M. T. Tracing the geographic origins of major avocado cultivars. J. Hered. 100, 56–65 (2009).PubMed 

    Google Scholar 
    50.Bender, G. S. Avocado flowering and pollination. Avocado Prod. Calif. 1, 39–49 (2002).ADS 

    Google Scholar 
    51.Bergh, B. O. The remarkable avocado flower. Calif. Avocado Soc. Yearb. 57, 40–41 (1973).
    Google Scholar 
    52.Wilson, H. D. Gene flow in squash species. Bioscience 40, 449–455 (1990).
    Google Scholar 
    53.Hurd, P. D., Linsley, E. G. & Whitaker, T. W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234 (1971).PubMed 

    Google Scholar 
    54.Willis, S. D. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Google Scholar 
    55.Gómez-Escobar, E., Liedo, P., Montoya, P., Vandame, R. & Sánchez, D. Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J. Econ. Entomol. 107, 1447–1449 (2014).PubMed 

    Google Scholar 
    56.Jarau, S. & Barth, F. G. Stingless bees of the Golfo Dulce region, Costa Rica (Hymenoptera, Apidae, Apinae, Meliponini). Stapfia 88, 267–276 (2008).
    Google Scholar 
    57.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    58.Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. (2018).59.Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    61.Salim, H. M. W. et al. Stingless bee (Hymenoptera: Apidae: Meliponini) diversity in dipterocarp forest reserves in Peninsular Malaysia. Raffles Bull. Zool. 60, 213–219 (2012).MathSciNet 

    Google Scholar 
    62.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    63.Baselga, A. et al. Partitioning Beta Diversity into Turnover and Nestedness Components (Wiley, 2021).
    Google Scholar 
    64.Oksanen, J. et al. Package ‘vegan’. Community Ecol. Packag. 2, 1–295 (2013).
    Google Scholar 
    65.Wang, Y. et al. Statistical Methods for Analysing Multivariate Abundance Data. (2021).66.Kindt, R. & Coe, R. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies (World Agroforestry Centre (ICRAF), 2005).
    Google Scholar  More

  • in

    Soundscape and ambient noise levels of the Arctic waters around Greenland

    1.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).2.Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).ADS 

    Google Scholar 
    3.Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).ADS 

    Google Scholar 
    4.Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science (80-). 371, eaba4658 (2021).CAS 
    PubMed 

    Google Scholar 
    5.Tyack, P., Frisk, G., Boyd, I., Urban, E. & Seeyave, S. (eds). An International Quiet Ocean Experiment Science Plan. Scientific Committee on Oceanic Research / Partnership for Observation of the Global Oceans (2015).6.Kaplan, M. B. & Solomon, S. A coming boom in commercial shipping? The potential for rapid growth of noise from commercial ships by 2030. Mar. Policy 73, 119–121 (2016).
    Google Scholar 
    7.McDonald, M. A., Hildebrand, J. A. & Wiggins, S. M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 120, 711 (2006).ADS 
    PubMed 

    Google Scholar 
    8.Kyhn, L. A. et al. Basin-wide contributions to the underwater soundscape by multiple seismic surveys with implications for marine mammals in Baffin Bay, Greenland. Mar. Pollut. Bull. 138, 474–490 (2019).CAS 
    PubMed 

    Google Scholar 
    9.Bailey, H. et al. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar. Pollut. Bull. 60, 888–897 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P. & Fox, C. G. Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. J. Acoust. Soc. Am. 115, 1832–1843 (2004).ADS 
    PubMed 

    Google Scholar 
    11.Guerra, M., Thode, A. M., Blackwell, S. B. & Michael Macrander, A. Quantifying seismic survey reverberation off the Alaskan North Slope. J. Acoust. Soc. Am. 130, 3046–3058 (2011).ADS 
    PubMed 

    Google Scholar 
    12.OSPAR Commission. The North-East Atlantic Environment Strategy: Strategy of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic 2010–2020. OSPAR Secretariat, London (2010).13.UN. General Assembly (74th sess.: 2019–2020). Oceans and the law of the sea: Resolution/adopted by the General Assembly. A/RES/74/19 (2019).14.Arctic Council. Arctic Marine Shipping Assessment 2009 Report, second printing. Arctic Council, Tromsø, Norway (2009).15.International Maritime Organization. Guidelines from the International Maritime Organization for the reduction of underwater noise from commercial shipping, to address adverse impacts on marine life. MEPC. 1/Circ. 833. IMO, London (2014).16.European Commission. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). European Commission, Brussels (2008).17.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. https://doi.org/10.1139/er-2019-0033 (2020).Article 

    Google Scholar 
    18.PAME. Underwater Noise in the Arctic: A State of Knowledge Report, Roveniemi, May 2019. Protection of the Arctic Marine Environment (PAME) Secretariat, Akureyri (2019).19.Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).ADS 

    Google Scholar 
    20.Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).ADS 

    Google Scholar 
    21.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. PNAS 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ebinger, C. K. & Zambetakis, E. The geopolitics of Arctic melt. Int. Aff. 85, 1215–1232 (2009).
    Google Scholar 
    23.Huntington, H. P. A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    24.Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    25.Baumgartner, M. F., Stafford, K. M. & Latha, G. Near real-time underwater passive acoustic monitoring of natural and anthropogenic sounds. In Observing the Oceans in Real Time (eds Venkatesan, R. et al.) 203–226 (Springer Oceanography, 2018). https://doi.org/10.1007/978-3-319-66493-4_10.Chapter 

    Google Scholar 
    26.Mellinger, D. K. & Clark, C. W. Blue whale (Balaenoptera musculus) sounds from the North Atlantic. J. Acoust. Soc. Am. 114, 1108 (2003).ADS 
    PubMed 

    Google Scholar 
    27.Mustonen, M. et al. Spatial and temporal variability of ambient underwater sound in the Baltic Sea. Sci. Rep. 9, 1–13 (2019).CAS 

    Google Scholar 
    28.Pieretti, N. & Danovaro, R. Acoustic indexes for marine biodiversity trends and ecosystem health. Philos. Trans. R. Soc. B 375, 20190447 (2020).
    Google Scholar 
    29.Palmer, K. J., Brookes, K. L., Davies, I. M., Edwards, E. & Rendell, L. Habitat use of a coastal delphinid population investigated using passive acoustic monitoring. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 254–270 (2019).
    Google Scholar 
    30.Sigray, P. et al. BIAS: A regional management of underwater sound in the Baltic Sea. In The Effects of Noise on Aquatic Life II (eds. Popper A., Hawkins A.) 1015–1023. Advances in Experimental Medicine and Biology. 875. (Springer New York, 2016).31.Farcas, A., Powell, C. F., Brookes, K. L. & Merchant, N. D. Validated shipping noise maps of the Northeast Atlantic. Sci. Total Environ. 735, 139509 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Caruso, F. et al. Long-term monitoring of dolphin biosonar activity in deep pelagic waters of the Mediterranean Sea. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    34.Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Soc. Am. 142, EL512–EL517 (2017).PubMed 

    Google Scholar 
    35.Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.ANSI S1.11-2004. Specification for Octave, Half-Octave, and Third Octave Band Filters. American National Standards Institute Inc., New York (2004).37.Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci. Data 7, 1–14 (2020).
    Google Scholar 
    38.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. J. Acoust. Soc. Am. 30, 54–62 (2008).
    Google Scholar 
    39.Gillespie, D., Caillat, M., Gordon, J. & White, P. Automatic detection and classification of odontocete whistles. J. Acoust. Soc. Am. 134, 2427–2437 (2013).ADS 
    PubMed 

    Google Scholar 
    40.Mellinger, D. K. et al. Ishmael 3.0 User Manual ISHMAEL 3.O User Guide. (2018).41.Jensen, F. H., Johnson, M., Ladegaard, M., Wisniewska, D. M. & Madsen, P. T. Narrow acoustic field of view drives frequency scaling in toothed whale biosonar. Curr. Biol. 28, 3878-3885.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    42.Madsen, P. T., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behav. Ecol. Sociobiol. 53, 31–41 (2002).
    Google Scholar 
    43.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS ONE 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Source Arct. 70, 59–76 (2017).
    Google Scholar 
    45.Commission, E. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. Off. J. Eur. Union 125, 43–74 (2017).
    Google Scholar 
    46.Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110 (1998).ADS 

    Google Scholar 
    47.McGrath, J. R. Depth and Seasonal Dependence of Ambient Sea Noise Near the Marginal Ice Zone of the Greenland Sea. Naval Research Laboratory. Washington DC (1976).48.Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).CAS 
    PubMed 

    Google Scholar 
    49.Merchant, N. D. et al. Underwater noise levels in UK waters. Sci. Rep. 6, 36942, (2016).50.Urick, R. J. Ambient Noise in the Sea (Undersea Warfare Technology Office, Naval Sea Systems Command, Department of the Navy, 1984).
    Google Scholar 
    51.Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034 (2015).ADS 
    PubMed 

    Google Scholar 
    52.Urick, R. J. The noise of melting icebergs. J. Acoust. Soc. Am. 50, 337–341 (1971).ADS 

    Google Scholar 
    53.Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).ADS 
    PubMed 

    Google Scholar 
    54.Tervo, O. M., Parks, S. E. & Miller, L. A. Seasonal changes in the vocal behavior of bowhead whales (Balaena mysticetus) in Disko Bay, Western-Greenland. J. Acoust. Soc. Am. 126, 1570–1580 (2009).ADS 
    PubMed 

    Google Scholar 
    55.Boye, T. K., Simon, M. J., Laidre, K. L., Rigét, F. & Stafford, K. M. Seasonal detections of bearded seal (Erignathus barbatus) vocalizations in Baffin Bay and Davis Strait in relation to sea ice concentration. Polar Biol. 43, 1493–1502 (2020).
    Google Scholar 
    56.De Vreese, S. et al. Marine mammal acoustic detections in the Greenland and Barents Sea, 2013–2014 seasons. Sci. Rep. 8, 1–14 (2018).
    Google Scholar 
    57.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).ADS 
    PubMed 

    Google Scholar 
    58.Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Møhl, B. Masking effects of noise: their distribution in time and space. In The question of sound from icebreaker operations: The proceedings of a workshop (ed. Peterson, N. M.) 259–266. Arctic Pilot Project. Calgary, AB (1981).60.Erbe, C. & Farmer, D. M. Masked hearing thresholds of a beluga whale (Delphinapterus leucas) in icebreaker noise. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 1373–1388 (1998).ADS 

    Google Scholar 
    61.Gordon, J. C. D. et al. A review of the effects of seismic survey on marine mammals. Mar. Technol. Soc. J. 37, 14–32 (2004).
    Google Scholar 
    62.Nowacek, D. P., Thorne, L. H., Johnston, D. W. & Tyack, P. L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 37, 81–115 (2007).
    Google Scholar 
    63.Southall, B. L. et al. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 45, 125–232 (2019).
    Google Scholar 
    64.Frid, A. & Dill, L. Human-caused Disturbance Stimuli as a Form of Predation Risk. Conserv. Ecol. 6, 11 (2002). More

  • in

    Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins

    Porewater concentrations of dissolved oxygen and nutrientsThe sampling location and appearance of the microbial mats used in this study in cross section are shown in Fig. 1. Profound changes in dissolved oxygen concentration were observed over the diel cycle because of high rates of oxygenic photosynthesis in the daytime and oxygen-requiring respiration at night (Table 1). Briefly, Layer 1 was characterized by oxygen concentration fluctuations in the range of 200–800 µM. Layers 2 and 3 ranged from 0–1200 µM and 0–200 µM, respectively. Mat Layer 4 (3–4 mm below the surface) may contain some dissolved oxygen near noon on days when there is high solar irradiance but stays anoxic for most hours of most days. Layers 5–7 (4–7 mm from the surface) remain anoxic.Table 1 Oxygen concentrations throughout the first 4 mm of the mat measured at 100 µm resolution using microsensors, measured on 22 August, 2019.Full size tableConcentrations of ammonium (Table 1) reveal a pattern of increasing concentration with depth (34–124 µM) through the layers examined here. Nitrate concentrations ranged between 26–33 µM, with low variation across depths. The concentration of phosphate ranged between 3–6 µM, with the highest concentration detected in Layer 1 (0–1 mm from surface) at 5.5 µM.Analysis of genes and transcripts in mat layers by qPCR and RT-qPCRGene-copy number ranges for both DNA and cDNA across all layers for all genes examined are summarized as follows: Bacteria, 104−1010 per g mat and 101−105, per ng nucleic acid; Archaea, 106−108 and 102−104; nifH, 108−1011 and 104−107; archaeal-amoA, 104−105 and 2–3; bacterial-amoA, 104−107 and 3–335; Nitrospira-nxrB, 105−107 and 27–372; nosZ, 103−105 and 2–10; nirS, 105−107 and 33–1941; Planctomycetes-16S rRNA gene and cDNA of transcripts, 104−106 and 6–66 (Fig. 2, S1).Fig. 2: Vertical patterns in the abundance (DNA) and expression (cDNA) of Bacterial and Archaeal ribosomal and nitrogen cycling genes.Number of copies of DNA and cDNA genes recovered for Bacteria (A), Archaea (B), nifH (C), Archaeal-amoA (D), Bacterial-amoA (E), Nitrospira-nxrB (F), nosZ (G), nirS (H) and Planctomycetes-16S rRNA gene marker (anammox proxy) (I), per g of microbial mat, quantified by qPCR and RT-qPCR in hypersaline microbial mat profiles from different depths. P-values from Kruskal–Wallis test are overlain on each, and different letters indicate significantly different values for the given gene based on a Conover-Iman test p-value of  0.8, Table 2).Fig. 4: Non-metric multidimensional scaling (NMDS) plots of quantification of all nitrogen genes across all layers examined in this study.Genes associated with the following nitrogen transformations were examined: nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy). The biotic data was standardized, and a sample resemblance matrix was generated using Bray-Curtis coefficient of similarity. In order to analyze the influence of abiotic variables (porewater nutrient and oxygen concentration) on the patterns of the biotic data, monotonic correlations of the abiotic variables were performed. In the plots, the distance between the samples’ points reflects their relative similarity, according to Bray-Curtis similarity matrices based on cDNA/DNA ratios of nitrogen genes examined. The vectors in panel A represent the cDNA/DNA ratios of nitrogen gene examined. In panel B, the vectors represent the environmental variables.Full size imageTable 2 (A) Spearman correlations coefficient (r) between the ratios of cDNA/DNA of nitrogen fixation (nifH), nitrification (Bacterial-amoA, Archaeal-amoA, Nitrospira-nxrB), denitrification (nosZ, nirS) and Planctomycetes-16S rRNA gene marker (anammox proxy) and oxygen, ammonium, nitrate and phosphate concentrations. (B) Spearman correlation p-value.Full size tablenifH, Bacterial-amoA and Archaeal-amoA were positively correlated with oxygen concentration (r ≥ 0.22, Table 2), while Nitrospira-nxrB was negatively correlated with oxygen (r = −0.68, Table 2). Denitrification genes (nosZ, nirS) and Planctomycetes-16S rRNA genes were all positively correlated with ammonium (r ≥ 0.5) and orthophosphate (r ≥ 0.13) and negatively correlated with oxygen (r  > −0.70).Metagenome analysis of nitrogen cyclingA total number of 922 324 genes were identified; 1305 of these genes were annotated with KOs that are part of KEGG’s Nitrogen Metabolism pathway (Table S2, S3). A dendrogram based on Bray-Curtis similarities of normalized coverages of all recovered nitrogen metabolism genes is shown in Fig. 5A. Overall, the similarity between the layers was >75%. According to SIMPROF analysis, there was a significant difference in the N-related gene coverages (based on an alpha value of 0.05) between Layers 1-Layer 2, Layer 3, and Layer 4 (p = 0.001) and Layer 2-Layer 3, and Layer 4 (p = 0.001), but not between Layers 3 and Layer 4 (p = 1), where the similarity was >90%.Fig. 5: Functional nitrogen gene distribution based on metagenome analysis.A Cluster analysis illustrating the similarity of normalized coverages of all recovered nitrogen metabolism genes across the uppers 4 layers examined [(Layer 1 (0–1 mm from surface), Layer 2 (1–2 mm from surface), Layer 3 (2–3 mm from surface), Layer 4 (3–4 mm from surface)]. Red lines show non-significant differences, according to SIMPROF analysis (p  > 0.05). B The bar plots show the genes of the metabolic pathways in the nitrogen cycle identified in the mat, according metagenome analysis, with relative coverage of each nitrogen cycling gene across depths examined (Fraction of Depth Integrated Coverage, FDIC). 355 unique genes were recovered from KEGG’s Nitrogen Metabolism pathway: 60 annotated as involved in nitrogen fixation, 15 in assimilatory nitrate reduction, 38 in dissimilatory nitrate reduction to ammonia (DNRA), 52 in hydroxylamine dehydrogenase EC 1.7.2.6, 121 in hydroxylamine reductase, 69 in denitrification pathway. C Values of Nitrogen-focused Coverage per Million (N-CPM). The following enzymes perform nitrogen transformation in the mat: nitrogenase molybdenum-iron protein alpha chain (nifD), nitrogenase iron protein NifH, nitrogenase molybdenum-iron protein beta chain (nifK), hydroxylamine dehydrogenase EC 1.7.2.6 (hao), hydroxylamine reductase (hcp), nitrate reductase/nitrite oxidoreductase, alpha subunit (narG, narZ, nxrA), nitrate reductase/nitrite oxidoreductase, beta subunit (narH, narY, nxrB), nitrate reductase (cytochrome) (napA), nitrate reductase (cytochrome), electron transfer subunit (napB), nitrite reductase (NO-forming) / hydroxylamine reductase (nirS), nitrogenase molybdenum-iron protein beta chain (nirK), nitric oxide reductase subunit B (norB), nitric oxide reductase subunit C (norC), nitrous-oxide reductase (nosZ), nitrate reductase gamma subunit (narI, narV), cytochrome c nitrite reductase small subunit (nrfH), nitrite reductase (cytochrome c-552) (nrfA), ferredoxin-nitrite reductase (nirA), ferredoxin-nitrate reductase (narB), MFS transporter, NNP family, nitrate/nitrite transporter (NRT, nark, nrtP, nasA). D Nitrogen cycling genes recovered in this study and the transformation that they catalyze.Full size imageThe nitrogen fixation pathway was identified with nifD, nifH, and nifK genes (Fig. 5B, C, Table S4). Of the 60 genes detected in this metabolic pathway 17 genes were annotated as nifD, 22 genes as nifH, and 21 genes as nifK. The normalized coverage of these genes showed a decreasing trend with depth. Layer 1 was characterized by the highest values of Nitrogen-focused coverage per million (N-CPM, see Supplementary Text 1) of nifD, nifH, and nifK genes: 56264.7, 54934.2 and 60059.2, respectively. On average, the three genes involved in nitrogen fixation, nifD, nifH, and nifK, decreased with depth, (2.7-fold from Layer 1 to Layer 4, with a nearly 2-fold difference solely between Layer 1 and Layer 2).Genes involved in nitrate assimilation, annotated as nirA and narB which code for ferredoxin nitrate reductase, were 3 times as abundant in Layer 1 than Layer 2, but decreased less markedly from Layer 2 to Layers 3 and 4.Genes for dissimilatory nitrite reduction (nrfA, and nrfH) were 4 and 16 times more abundant in Layer 4 than Layer 1. Similarly, the nitrate/nitrite regulator protein genes narl and narV displayed a nearly inverse pattern, with Layer 1 having the least proportion of genes, a large increase from Layer 1 to Layer 2, and additional increases from Layer 2 to Layers 3 and Layer 4 (Fig. 5B, C, Table S4).Genes associated with nitrification were very poorly represented in the metagenome. No genes associated with ammonia oxidation (amoA) were detected. Genes associated with nitrite oxidation (nrxA, nrxB) that were detected are so closely related to denitrifier genes (narG, narZ, narH, narY) as to be annotated with the same KEGG KO models (K00370 representing narG, narZ, nxrA; and K00371 representing narH, narY, nxrB).The following genes involved in denitrification were detected: napA, napB, narG, narZ, narH, narY, narI, narV, nirK, nirS, norB, norC, and nosZ (Fig. 5B, C). The nitrate reduction metabolic pathway was represented by 4 genes encoding the nitrate reductase-nitrite oxidoreductase-alpha subunit (narG, narZ, nxrA genes), 6 genes encoding the nitrate reductase-nitrite oxidoreductase-beta subunit (narH, narY, nxrB genes), 31 genes encoding the nitrate reductase gamma subunit (narI, narV), 5 genes encoding the nitrate reductase -cytochrome electron transfer subunit (napB) and 7 genes encoding the nitrate reductase -cytochrome (napA) (Table S4). The N-CPM of nitrate reductase increased with depth, but with a similar proportion of those genes in Layers 3 and 4. With respect to nitrite reductase (nirk and nirS genes, 2 and 1 genes, respectively), no nirK genes were detected in Layer 1, where the highest N-CPM of nirS was recovered (Fig. 5B). In contrast, Layer 3 had no detected nirS and the highest N-CPM of nirK. Regarding nitric oxide reductase (norB and norC genes, 6 and 1 genes, respectively), the highest normalized coverage of norB was detected in Layer 3, while highest for norC was in Layer 1. Finally, nosZ (6 genes) was detected in all the layers, steadily decreasing in normalized coverage from the top layer to the deepest (Fig. 5B, C; Table S4).DNRA metabolism was represented by nrfA (26 genes) and nrfH (12 genes), and by narI, narV (31). Layer 1 was characterized by the lowest normalized coverage of narI, narV, nrfA, and nrfH genes (6880.2, 3724.6, and 284.6 N-CPM, respectively), while Layer 3 was characterized by the greatest coverage of narI, narV, nrfA, and nrfH genes (32760.5, 14417.9 and 4504.1, respectively; Fig. 5B, C; Table S4).Genes for hydroxylamine dehydrogenase EC 1.7.2.6 and hydroxylamine reductase (hao and hcp, respectively) were the most abundant nitrogen metabolism genes in the mat: hao having a cumulative N-CPM of ~150000 and hcp having a cumulative N-CPM of nearly 350,000 across the 4 depths (Fig. 5C). Both genes increased in abundance with depth; hcp increased two-fold between Layer 1 and Layer 2, and more gradually in Layer 3 and Layer 4. Hao exhibited a three-fold increase in relative abundance from Layer 1 to Layer 2 and remained relatively constant through Layer 3 and Layer 4 (Fig. 5B, C; Table S4). More

  • in

    Evidence of unidirectional gene flow in a fragmented population of Salmo trutta L.

    1.Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecol. Freshw. Fish. 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x (2003).Article 

    Google Scholar 
    2.Elliott, J. M. Quantitative Ecology and the Brown Trout (Oxford University Press, 1994).
    Google Scholar 
    3.ICES. Baltic Salmon and Trout Assessment Working Group (WGBAST). ICES Sci. Rep. 2(22), 261. https://doi.org/10.17895/ices.pub.5974 (2020).Article 

    Google Scholar 
    4.Berrebi, P., Horvath, Á., Splendiani, A., Palm, S. & Bernaś, R. Genetic diversity of domestic brown trout stocks in Europe. Aquaculture 544, 737043. https://doi.org/10.1016/j.aquaculture.2021.737043 (2021).CAS 
    Article 

    Google Scholar 
    5.Jonsson, B. & Jonsson, N. Partial migration: Niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3, 348–365. https://doi.org/10.1007/BF00043384 (1993).Article 

    Google Scholar 
    6.Jonsson, B. Diadromous and resident Trout Salmo Trutta: Is their difference due to genetics?. Oikos 38, 297–300. https://doi.org/10.2307/3544668 (1982).Article 

    Google Scholar 
    7.Olsson, I. C., Greenberg, L. A., Bergman, E. & Wysujack, K. Environmentally induced migration: The importance of food. Ecol. Lett. 9, 45–51. https://doi.org/10.1111/j.1461-0248.2006.00909.x (2006).Article 

    Google Scholar 
    8.Wysujack, K., Greenberg, L. A., Bergman, E. & Olsson, I. C. The role of the environment in partial migration: Food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol. Freshw. Fish. 18, 52–59. https://doi.org/10.1111/j.1600-0633.2008.00322.x (2009).Article 

    Google Scholar 
    9.Charles, K., Roussel, J. M. & Cunjak, R. A. Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production. Mar. Freshw. Res. 55, 185–191. https://doi.org/10.1071/MF03173 (2004).CAS 
    Article 

    Google Scholar 
    10.Youngson, A. F., Mitchell, A. I., Noack, P. T. & Laird, L. M. Carotenoid pigment profiles distinguish anadromous and nonanadromous brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 54, 1064–1066. https://doi.org/10.1139/f97-023 (1997).CAS 
    Article 

    Google Scholar 
    11.Eek, D. & Bohlin, T. Strontium in scales verifies that sympatric sea-run and stream-resident brown trout can be distinguished by coloration. J. Fish Biol. 51, 659–661. https://doi.org/10.1111/j.1095-8649.1997.tb01522.x (1997).Article 

    Google Scholar 
    12.Veinott, G., Northcote, T., Rosenau, M. & Evans, R. D. Concentrations of strontium in the pectoral fin rays of the white sturgeon (Acipenser transmontanus) by laser ablation sampling—inductively coupled plasma—mass spectrometry as an indicator of marine migrations. Can. J. Fish. Aquat. Sci. 56, 1981–1990. https://doi.org/10.1139/f99-120 (1999).CAS 
    Article 

    Google Scholar 
    13.Jardine, T. D., Cartwright, D. F., Dietrich, J. P. & Cunjak, R. A. Resource use by salmonids in riverine, lacustrine and marine environments: Evidence from stable isotope analysis. Environ. Biol. Fishes. 73, 309–319. https://doi.org/10.1007/s10641-005-2259-8 (2005).Article 

    Google Scholar 
    14.Jones, A. G. & Ardren, W. R. Methods of parentage analysis in natural populations. Mol. Ecol. 12, 2511–2523. https://doi.org/10.1046/j.1365-294X.2003.01928.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Goodwin, J. C. A., King, R. A., Jones, J. I., Ibbotson, A. & Stevens, J. R. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream. Freshw. Biol. 61, 1075–1089. https://doi.org/10.1111/fwb.12768 (2016).Article 

    Google Scholar 
    16.Charles, K., Guyomard, R., Hoyheim, B., Ombredane, D. & Baglinière, J.-L. Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in a Normandy population. Aquat. Living Resour. 18, 65–69. https://doi.org/10.1051/alr:2005006 (2005).CAS 
    Article 

    Google Scholar 
    17.Charles, K., Roussel, J.-M., Lebel, J.-M., Bagliniere, J.-L. & Ombredane, D. Genetic differentiation between anadromous and freshwater resident brown trout (Salmo trutta L.): Insights obtained from stable isotope analysis. Ecol. Freshw. Fish. 15, 255–263. https://doi.org/10.1111/j.1600-0633.2006.00149.x (2006).Article 

    Google Scholar 
    18.Jarry, M. et al. Sea trout (Salmo trutta L.) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biol. 41, 925–934. https://doi.org/10.1007/s00300-018-2253-1 (2018).Article 

    Google Scholar 
    19.Brauer, C. J. & Beheregaray, L. B. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol. Appl. 13, 2857–2869. https://doi.org/10.1111/eva.13128 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Griffiths, A. M., Koizumi, I., Bright, D. & Stevens, J. R. A case of isolation by distance and shortterm temporal stability of population structure in brown trout (Salmo trutta) within the River Dart, southwest England. Evol. Appl. 2, 537–554. https://doi.org/10.1111/j.1752-4571.2009.00092.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.HELCOM. Sea Trout and Salmon Populations and Rivers in Poland—HELCOM Assessment of Salmon (Salmo salar) and Sea Trout (Salmo trutta) Populations and Habitats in Rivers Flowing to the Baltic Sea. Balt. Sea Environ. Proc. No. 126B. 2011.22.Dębowski, P. Fish assemblages in the Parsęta River drainage basin. Pol. Arch. Hydrobiol. 46, 161–172 (1999).
    Google Scholar 
    23.Kuligowski, D. R., Ford, M. J. & Berejikian, B. A. Breeding structure of steelhead inferred from patterns of genetic relatedness among nests. Trans. Am. Fish. Soc. 134, 1202–2121. https://doi.org/10.1577/T04-187.1 (2005).Article 

    Google Scholar 
    24.Dauphin, G., Prévost, E., Adams, C. E. & Boylan, P. Using redd counts to estimate salmonids spawner abundances: A Bayesian modelling approach. Fish. Res. 106, 32–40. https://doi.org/10.1016/j.fishres.2010.06.014 (2010).Article 

    Google Scholar 
    25.Cairney, M., Taggart, J. B. & Hoyheim, B. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol. Ecol. 9, 2175–2178. https://doi.org/10.1046/j.1365-294X.2000.105312.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Estoup, A., Presa, P., Krieg, F., Vaiman, D. & Guyomard, R. (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L. brown trout. Heredity 71, 488–496. https://doi.org/10.1038/hdy.1993.167 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.O’Reilly, P. T., Hamilton, L. C., McConnell, S. K. & Wright, J. M. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53, 2292–2298. https://doi.org/10.1139/f96-192 (1996).Article 

    Google Scholar 
    28.Poteaux, C., Bonhomme, F. & Berrebi, P. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82, 645–653. https://doi.org/10.1046/j.1365-2540.1999.00519.x (1999).Article 
    PubMed 

    Google Scholar 
    29.Presa, P. & Guyomard, R. Conservation of microsatellites in three species of salmonids. J. Fish Biol. 49, 1326–1329. https://doi.org/10.1111/j.1095-8649.1996.tb01800.x (1996).Article 

    Google Scholar 
    30.Scribner, K. T., Gust, J. R. & Fields, R. L. Isolation and characterization of novel salmon microsatellite loci: Cross species amplification and population genetics applications. Can. J. Fish. Aquat. Sci. 53, 833–841. https://doi.org/10.1139/cjfas-53-4-833 (1996).CAS 
    Article 

    Google Scholar 
    31.Slettan, A., Olsaker, I. & Lie, O. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim. Genet. 26, 281–282. https://doi.org/10.1111/j.1365-2052.1995.tb03262.x (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Slettan, A., Olsaker, I. & Lie, O. Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL429 and SSOSL444 loci. Anim. Genet. 27, 57–58 (1996).CAS 
    Article 

    Google Scholar 
    33.Linløkken, A. N., Haugen, T. O., Kent, M. P. & Lien, S. Genetic differences between wild and hatchery-bred brown trout (Salmo trutta L.) in single nucleotide polymorphisms linked to selective traits. Ecol. Evol. 7, 4963–4972. https://doi.org/10.1002/ece3.3070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bernaś, R. et al. Genetic differentiation in hatchery and stocked populations of sea trout in the Southern Baltic: Selection evidence at SNP loci. Genes 11, 184. https://doi.org/10.3390/genes11020184 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    35.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    36.Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).CAS 
    Article 

    Google Scholar 
    38.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    39.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x (1989).Article 
    PubMed 

    Google Scholar 
    42.Bernaś, R., Burzyński, A., Dębowski, P., Poćwierz-Kotus, A. & Wenne, R. Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fish. Manage. Ecol. 21, 398–409. https://doi.org/10.1111/fme.12090 (2014).Article 

    Google Scholar 
    43.Bernaś, R. & Wąs-Barcz, A. Genetic structure of important resident brown trout breeding lines in Poland. J. Appl. Genet. 61, 239–247. https://doi.org/10.1007/s13353-020-00548-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ostergren, J. & Nilsson, J. Importance of life-history and landscape characteristics for genetic structure and genetic diversity of brown trout (Salmo trutta L.). Ecol. Freshw. Fish. 21, 119–133 (2012).Article 

    Google Scholar 
    45.Lehtonen, P. K., Tonteri, A., Sendek, D., Titov, S. & Primmer, C. R. Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conserv. Genet. 10, 281–289. https://doi.org/10.1007/s10592-008-9577-2 (2009).Article 

    Google Scholar 
    46.Cross, T. F., Mills, C. P. R. & de CourcyWilliams, M. An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. J. Fish Biol. 40, 25–32. https://doi.org/10.1111/j.1095-8649.1992.tb02550.x (1992).CAS 
    Article 

    Google Scholar 
    47.Stelkens, R., Jaffuel, G., Escher, M. & Wedekind, C. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol. Ecol. 21, 2896–2915. https://doi.org/10.1111/j.1365-294X.2012.05581.x (2012).Article 
    PubMed 

    Google Scholar 
    48.Hansen, M. M., Limborg, M. T., Ferchaud, A.-L. & Pujolar, J.-M. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol. Biol. 14, 122. https://doi.org/10.1186/1471-2148-14-122 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kohlmann, K. & Wüstemann, O. Tracing the genetic origin of brown trout (Salmo trutta) re-colonizing the Ecker reservoir in the Harz National Park, Germany. Environ. Biotechnol. 8, 39–44 (2012).
    Google Scholar 
    50.Dellefors, C. & Faremo, U. Early sexual maturation in males of wild sea trout, Salmo trutta L. inhibits smoltification. J. Fish Biol. 33, 741–749. https://doi.org/10.1111/j.1095-8649.1988.tb05519.x (1988).Article 

    Google Scholar 
    51.Jonsson, B. & Jonsson, N. Differences in growth between offspring of anadromous and freshwater brown trout Salmo trutta. J. Fish Biol. 20, 1–7. https://doi.org/10.1111/jfb.14693 (2021).Article 

    Google Scholar  More

  • in

    Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient

    1.Schimel J, Schaeffer S. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 
    2.Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.CAS 
    PubMed 

    Google Scholar 
    3.Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.CAS 
    PubMed 

    Google Scholar 
    4.Xu X, Schimel JP, Janssens IA, Song X, Song C, Yu G, et al. Global pattern and controls of soil microbial metabolic quotient. Ecol Monogr. 2017;87:429–41.
    Google Scholar 
    5.Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nat commun. 2018;9:3951.PubMed 
    PubMed Central 

    Google Scholar 
    6.Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biol. 2021;27:2039–48.
    Google Scholar 
    7.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change. 2013;3:909–12.CAS 

    Google Scholar 
    8.Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett. 2013;16:930–9.PubMed 

    Google Scholar 
    9.Xu M, Li X, Cai X, Gai J, Li X, Christie P, et al. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. Eur J Soil Biol. 2014;64:6–14.
    Google Scholar 
    10.Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.PubMed 
    PubMed Central 

    Google Scholar 
    11.Malik AA, Swenson T, Weihe C, Morrison EW, Martiny JBH, Brodie EL, et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 2020;14:2236–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 

    Google Scholar 
    13.Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Global Change Biol. 2019;25:827–38.
    Google Scholar 
    14.Feng J, Wei K, Chen Z, Lü X, Tian J, Wang C, et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry. Global Biogeochem Cycles. 2019;33:559–69.CAS 

    Google Scholar 
    15.Allison S, Weintraub M, Gartner T, & Waldrop M. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In: Shukla G, Varma A., editors Soil enzymology. Soil Biology, vol 22. Berlin, Germany: Springer Berlin Heidelberg; 2011, pp 229–43.16.Tribelli PM, López NI. Reporting key features in cold-adapted bacteria. Life. 2018;8:8.PubMed Central 

    Google Scholar 
    17.Allison SD. A trait-based approach for modelling microbial litter decomposition. Ecol Lett. 2012;15:1058–70.CAS 
    PubMed 

    Google Scholar 
    18.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    PubMed Central 

    Google Scholar 
    19.Li H, Yang S, Semenov MV, Yao F, Ye J, Bu R, et al. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biol. 2021;27:2763–79.
    Google Scholar 
    20.Arce E, Archaimbault V, Mondy CP, Usseglio-Polatera P. Recovery dynamics in invertebrate communities following water-quality improvement: taxonomy- vs trait-based assessment. Freshw Sci. 2014;33:1060–73. 1014
    Google Scholar 
    21.Bench SR, Ilikchyan IN, Tripp HJ, Zehr JP. Two strains of crocosphaera watsonii with highly conserved genomes are distinguished by strain-specific features. Front Microbiol. 2011;2:261–261.PubMed 
    PubMed Central 

    Google Scholar 
    22.Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du B, Kang H, Pumpanen J, Zhu P, Yin S, Zou Q, et al. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China. Ecol Res. 2014;29:433–9.CAS 

    Google Scholar 
    24.Yao T, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change. 2012;2:663–7.
    Google Scholar 
    25.Zhuo G, Ciren B, Wang J, Lan X. Analysis of regional climate characteristics of Tibetan herbal products growing on Mt. Seqilha. Resour Sci. 2010;32:1452–61.
    Google Scholar 
    26.Chen L, Flynn DFB, Zhang X, Gao X, Lin L, Luo J, et al. Divergent patterns of foliar δ13C and δ15N in Quercus aquifolioides with an altitudinal transect on the Tibetan Plateau: an integrated study based on multiple key leaf functional traits. J Plant Ecol. 2014;8:303–12.
    Google Scholar 
    27.Xu M, Wang G, Li X, Cai X, Li X, Christie P, et al. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. Front Plant Sci. 2015;3:961.
    Google Scholar 
    28.Du J, Gao R, Ma PF, Liu YM, Zhou KS. Analysis of stereoscopic climate features on Mt. Seqiha, Tibet. Plateau Mt Meteorol Res. 2009;19:14–18.
    Google Scholar 
    29.Hu Q-W, Wu Q, Cao G-M, Li D, Long R-J, Wang Y-S. Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. J Integr Plant Biol. 2008;50:271–9.CAS 
    PubMed 

    Google Scholar 
    30.IUSS Working Group. World reference base for soil resources 2006, first update 2007. World soil resources reports no.103. in World soil resources reports no. 103. Rome, Italy: FAO; 2007.31.Walkley A. A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947;63:251–64.CAS 

    Google Scholar 
    32.Bray RH, Kurtz L. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945;59:39–46.CAS 

    Google Scholar 
    33.Olsen SR, Cole CV, Watanabe FS. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: United States Department of Agriculture; 1954.34.Liu YR, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41.CAS 

    Google Scholar 
    35.Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem. 2017;110:56–67.CAS 

    Google Scholar 
    36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 

    Google Scholar 
    37.Marx M-C, Wood M, Jarvis S. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem. 2001;33:1633–40.CAS 

    Google Scholar 
    38.Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol Biochem. 2016;93:1–7.CAS 

    Google Scholar 
    39.Wardle DA, Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem. 1995;27:1601–10.CAS 

    Google Scholar 
    40.Wang Q, Liu S, Tian P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob Change Biol. 2018;24:2841–9.
    Google Scholar 
    41.Xu M, Li X, Kuyper TW, Xu M, Zhang J. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biol. 2021;27:2061–75.
    Google Scholar 
    42.Li Y, Lv W, Jiang L, Zhang L, Wang S, Wang Q, et al. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming. Global Change Biol. 2019;25:3438–49.
    Google Scholar 
    43.Vance E, Brookes P, Jenkinson D. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    44.Sinsabaugh RL, Shah JJF. Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol S. 2012;43:313–43.
    Google Scholar 
    45.Cui Y, Wang X, Zhang X, Ju W, Duan C, Guo X, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol Biochem. 2020;147:107814.CAS 

    Google Scholar 
    46.Breiman L. Random forests. Mach Learn. 2001;45:5–32.
    Google Scholar 
    47.Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
    Google Scholar 
    48.Delgado-Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology. 2018;99:583–96.PubMed 

    Google Scholar 
    49.Cui Y, Moorhead DL, Guo X, Peng S, Wang Y, Zhang X, et al. Stoichiometric models of microbial metabolic limitation in soil systems. Glob Ecol Biogeogr. 2021;30:2297–311.
    Google Scholar 
    50.Nedwell DB. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. Fems Microbiol Ecol. 1999;30:101–11.CAS 
    PubMed 

    Google Scholar 
    51.Weinstein RN, Montiel PO, Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia. 2000;92:222–9.CAS 

    Google Scholar 
    52.Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from antarctica and the high arctic. Appl Environ Microb. 2012;78:549–59.
    Google Scholar 
    53.Nichols CM, Bowman JP, Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol. 2005;71:3519–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ren C, Zhang W, Zhong Z, Han X, Yang G, Feng Y, et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci Total Environ. 2018;610-1:750–8.
    Google Scholar 
    55.Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS ONE. 2019;14:e0213844.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Ruuskanen MO, Colby G, St Pierre KA, St Louis VL, Aris-Brosou S, Poulain AJ. Microbial genomes retrieved from high arctic lake sediments encode for adaptation to cold and oligotrophic environments. Limnol Oceanogr. 2020;65:S233–S247.CAS 

    Google Scholar 
    57.Feng L-j, Jia R, Sun J-y, Wang J, Lv Z-h, Mu J, et al. Response of performance and bacterial community to oligotrophic stress in biofilm systems for raw water pretreatment. Biodegradation. 2017;28:231–44.CAS 
    PubMed 

    Google Scholar 
    58.Robinson CH. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001;151:341–53.CAS 

    Google Scholar 
    59.Shahryari Z, Fazaelipoor M, Ghasemi Y, Lennartsson P, Taherzadeh M. Amylase and xylanase from edible fungus neurospora intermedia: production and characterization. Molecules. 2019;24:721.CAS 
    PubMed Central 

    Google Scholar 
    60.Turner BC, Perkins DD, Fairfield A. Neurospora from natural populations: a global study. Fungal Genet Biol. 2001;32:67–92.CAS 
    PubMed 

    Google Scholar 
    61.Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun. 2018;9:3591.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Water sources aggregate parasites with increasing effects in more arid conditions

    1.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).ADS 

    Google Scholar 
    2.Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Vicente, J., Fernández De Mera, I. G. & Gortazar, C. Epidemiology and risk factors analysis of elaphostrongylosis in red deer (Cervus elaphus) from Spain. Parasitol. Res. 98, 77–85 (2006).PubMed 

    Google Scholar 
    5.Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).PubMed 

    Google Scholar 
    6.Leach, C. B., Webb, C. T. & Cross P. C. When environmentally persistent pathogens transform good habitat into ecological traps. R. Soc. Open Sci. 3, 160051 (2016).7.Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).PubMed 

    Google Scholar 
    8.Valeix, M., Fritz, H., Chamaillé-Jammes, S., Bourgarel, M. & Murindagomo, F. Fluctuations in abundance of large herbivore populations: insights into the influence of dry season rainfall and elephant numbers from long-term data. Anim. Conserv. 11, 391–400 (2008).
    Google Scholar 
    9.Western, D. Water availability and its influence on the structure and dynamics of a savannah large mammal community. Afr. J. Ecol. 13, 265–286 (1975).
    Google Scholar 
    10.Sutherland, K., Ndlovu, M. & Pérez-Rodríguez, A. Use of artificial waterholes by animals in the Southern Region of the Kruger National Park, South Africa. Afr. J. Wildl. Res. 48, 023003 (2018).
    Google Scholar 
    11.Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).PubMed 

    Google Scholar 
    12.Vanderwaal, K., Gilbertson, M., Okanga, S., Allan, B. F. & Craft, M. E. Seasonality and pathogen transmission in pastoral cattle contact networks. R. Soc. Open Sci. 4, 170808 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hayward, M. W. & Hayward, M. D. Waterhole use by African fauna. South Afr. J. Wildl. Res. 42, 117–127 (2012).
    Google Scholar 
    14.Valeix, M., Fritz, H., Matsika, R., Matsvimbo, F. & Madzikanda, H. The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivores. Afr. J. Ecol. 46, 402–410 (2008).
    Google Scholar 
    15.Crosmary, W.-G., Valeix, M., Fritz, H., Madzikanda, H. & Côté, S. D. African ungulates and their drinking problems: hunting and predation risks constrain access to water. Anim. Behav. 83, 145–153 (2012).
    Google Scholar 
    16.Payne, A., Philipon, S., Hars, J., Dufour, B. & Gilot-Fromont, E. Wildlife interactions on baited places and waterholes in a French area infected by bovine tuberculosis. Front. Vet. Sci. 3, 16 (2017).
    Google Scholar 
    17.Wright, A. N. & Gompper, M. E. Altered parasite assemblages in raccoons in response to manipulated resource availability. Oecologia 144, 148–156 (2005).PubMed 
    ADS 

    Google Scholar 
    18.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed 

    Google Scholar 
    19.Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).
    Google Scholar 
    20.Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).PubMed 

    Google Scholar 
    21.Charlier, J., van der Voort, M., Kenyon, F., Skuce, P. & Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 30, 361–367 (2014).PubMed 

    Google Scholar 
    22.Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).PubMed 

    Google Scholar 
    23.WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Heal. Organ Tech. Rep. Ser. 912, 1–57 (2002).
    Google Scholar 
    24.Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).PubMed 

    Google Scholar 
    25.Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    26.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. 88, 427–442 (2013).PubMed 

    Google Scholar 
    27.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 

    Google Scholar 
    28.Mignatti, A., Boag, B. & Cattadori, I. M. Host immunity shapes the impact of climate changes on the dynamics of parasite infections. Proc. Natl Acad. Sci. USA 113, 2970–2975 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    29.Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission, Second Edi (CABI Publishing, 2000).30.Stromberg, B. E. Environmental Factors Influencing Transmission in Veterinary Parasitology 247–264 (Elsevier, 1997).31.Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K., von Samson-Himmelstjerna, G. & Demeler, J. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment. Parasitol. Res. 113, 4123–4131 (2014).PubMed 

    Google Scholar 
    32.Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).
    Google Scholar 
    33.Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    34.Round, M. C. Check List of the Helminth Parasites of African Mammals of the Orders Carnivora, Tubulidentata, Proboscidea, Hyra-coidea, Artiodactyla and Perissodactyla (Farnham Royal, Commonwealth Agricultural Bureaux, 1968).35.Wells, K. et al. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob. Chang. Biol. 24, 3254–3265 (2018).PubMed 
    ADS 

    Google Scholar 
    36.VanderWaal, K., Omondi, G. P. & Obanda, V. Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system. Vet. Parasitol. 205, 224–232 (2014).PubMed 

    Google Scholar 
    37.Walker, J. G., Plein, M., Morgan, E. R. & Vesk, P. A. Uncertain links in host-parasite networks: lessons for parasite transmission in a multi-host system. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160095 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Bull, J. J. Virulence. Evolution 48, 1423–1437 (1994).CAS 
    PubMed 

    Google Scholar 
    39.R. W. Ashford, W. Crewe, Parasites of Homo sapiens: An Annotated Checklist of the Protozoa, Helminths, and Arthropods for which We Are Home, 2nd edn (Taylor & Francis, 2003).40.Loarie, S. R., Van Aarde, R. J. & Pimm, S. L. Fences and artificial water affect African savannah elephant movement patterns. Biol. Conserv. 142, 3086–3098 (2009).
    Google Scholar 
    41.Kay, R. N. B. Responses of African livestock and wild herbivores to drought. J. Arid Environ. 37, 683–694 (1997).ADS 

    Google Scholar 
    42.Chamaillé-Jammes, S., Mtare, G., Makuwe, E. & Fritz, H. African elephants adjust speed in response to surface-water constraint on foraging during the dry-season. PLoS ONE 8, e59164 (2013).43.Redfern, J. V., Grant, R., Biggs, H. & Getz, W. M. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107 (2003).
    Google Scholar 
    44.Titcomb, G. C., Amooni, G., Mantas, J. N. & Young, H. S. The effects of herbivore aggregations at water sources on savanna plants differ across soil and climate gradients. Ecol. Appl. 31, e02422 (2021).PubMed 

    Google Scholar 
    45.Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).
    Google Scholar 
    46.Estes, R. D. The Behavior Guide to African Mammals 1st edn (University of California Press, 2012).47.Ezenwa, V. O. Selective defecation and selective foraging: antiparasite behavior in wild ungulates? Ethology 110, 851–862 (2004).
    Google Scholar 
    48.Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: Waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landsc. Ecol. 25, 337–351 (2010).
    Google Scholar 
    49.Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    51.Thrash, I. & Derry, J. F. Review of literature on the nature and modelling of piospheres. Koedoe 42, 73–94 (1999).
    Google Scholar 
    52.Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ogutu, J. O. et al. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: what are the causes? PLoS ONE 11, e0163249 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Adhikari, U., Nejadhashemi, A. & Matthew, R. A review of climate change impacts on water resources in east. Afr. Trans. Am. Soc. Agric. Biol. Eng. 58, 1493–1507 (2015).
    Google Scholar 
    55.Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl Acad. Sci. USA 105, 11081–11086 (2008).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R., Meyer, L.) (IPCC, 2014).57.de Wit, M. & Stankiewicz, J. Changes in surface water supply across africa with predicted climate change. Science 311, 1917–1921 (2006).PubMed 
    ADS 

    Google Scholar 
    58.Obanda, V., Iwaki, T., Mutinda, N. M. & Gakuya, F. Gastrointestinal parasites and associated pathological lesions in starving free-ranging african elephants. South Afr. J. Wildl. Res. 41, 167–172 (2011).
    Google Scholar 
    59.Hawkins, J. A. Economic benefits of parasite control in cattle. Vet. Parasitol. 46, 159–173 (1993).CAS 
    PubMed 

    Google Scholar 
    60.Weinstein, S. B., Buck, J. C. & Young, H. S. A landscape of disgust. Science 359, 1213–1214 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    61.Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Ndlovu, M. et al. Water for African elephants (Loxodonta africana): faecal microbial loads affect use of artificial waterholes. Biol. Lett. 14, 20180360 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Fecal contamination, parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav. Ecol. Sociobiol. 73, 1–11 (2019).
    Google Scholar 
    64.Thurber, M. I. et al. Effects of rainfall, host demography, and musth on strongyle fecal egg counts in African elephants (Loxodonta Africana) in Namibia. J. Wildl. Dis. 47, 172–181 (2011).CAS 
    PubMed 

    Google Scholar 
    65.Cizauskas, C. A., Turner, W. C., Pitts, N. & Getz, W. M. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS ONE 10, e0120800 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000-2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    67.Shorrocks, B. The Biology of African Savannahs (Oxford University Press Inc., 2007).68.Barda, B. D. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis. 7, e2344 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    69.Azian, M. Y. et al. Detection of helminth infections in dogs and soil contamination in rural and urban areas. Southeast Asian J. Trop. Med. Public Health 39, 205–212 (2008).PubMed 

    Google Scholar 
    70.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).71.Anderson, R. M. & May, R. M. Infectious Disease of Humans: Dynamics and Control (Oxford University Press, 1991).72.Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I. & Celia, M. A. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Resour. 33, 215–230 (2010).ADS 

    Google Scholar 
    73.K. K. Caylor, J. Gitonga, D. J. Martins, Mpala Research Centre Meterorological and Hydrological Dataset (2017).74.R Core Team. R: A Language and Environment for Statistical Computing (2016).75.Titcomb, G. Herbivore dung and parasite counts, Ol Pejeta Conservancy and Mpala Research Centre, Kenya (2015–2018). Environ. Data Initiat. https://doi.org/10.6073/pasta/2728d61f10b767814b5d95fbd69137fa (2021). More

  • in

    Diet-driven mercury contamination is associated with polar bear gut microbiota

    1.Evariste, L. et al. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ. Pollut. 248, 989–999 (2019).CAS 
    PubMed 

    Google Scholar 
    2.Guo, G., Yumvihoze, E., Poulain, A. J. & Chan, H. M. Monomethylmercury degradation by the human gut microbiota is stimulated by protein amendments. J. Toxicol. Sci. 43, 717–725 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Dempsey, J. L., Little, M. & Cui, J. Y. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 75, 41–69 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    4.Breton, J. Ô. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013).CAS 
    PubMed 

    Google Scholar 
    5.Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Nakamura, I., Hosokawa, K., Tamura, H. & Miura, T. Reduced mercury excretion with feces in germfree mice after oral administration of methyl mercury chloride. Bull. Environ. Contam. Toxicol. 17, 528–533 (1977).CAS 
    PubMed 

    Google Scholar 
    7.Rowland, I. R., Davies, M. J. & Evans, J. G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch. Environ. Health 35, 155–160 (1980).CAS 
    PubMed 

    Google Scholar 
    8.Seko, Y., Miura, T., Takahashi, M. & Koyama, T. Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol. Toxicol. (Copenh) 49, 259–265 (1981).CAS 

    Google Scholar 
    9.Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).CAS 
    PubMed 

    Google Scholar 
    10.Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).CAS 
    PubMed 

    Google Scholar 
    11.Desforges, J.-P.W. et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 86, 126–139 (2016).CAS 
    PubMed 

    Google Scholar 
    12.Dietz, R. et al. What are the toxicological effects of mercury in Arctic biota?. Sci. Total Environ. 443, 775–790 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Amstrup, S. C., Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. The polar bear-Ursus maritimus biology, management, and conservation. Wild Mammals North Am. Biol. Manag. Conserv. 2, 587–610 (2003).
    Google Scholar 
    14.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633 (2017).
    Google Scholar 
    15.Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    16.Routti, H. et al. Contaminants in Polar Bears from the Circumpolar Arctic State of Knowledge and Further Recommendations for Monitoring and Research-Action #42 of the Circumpolar Action Plan for polar Bear Conservation (2019).17.Letcher, R. J. et al. Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci. Total Environ. 408, 2995–3043 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Dietz, R. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001. Environ. Sci. Technol. 40, 1120–1125 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Borgå, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367 (2004).PubMed 

    Google Scholar 
    20.Hoekstra, P. F. et al. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas. Environ. Pollut. 124, 509–522 (2003).CAS 
    PubMed 

    Google Scholar 
    21.Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (80–) 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    24.Ferguson, S. H., Stirling, I. & McLoughlin, P. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mammal Sci. 21, 121–135 (2005).
    Google Scholar 
    25.Thiemann, G., Iverson, S. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).
    Google Scholar 
    26.Muir, D. C., Norstrom, R. J. & Simon, M. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ. Sci. Technol. 22, 1071–1079 (1988).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Young, B. G., Loseto, L. L. & Ferguson, S. H. Diet differences among age classes of Arctic seals: Evidence from stable isotope and mercury biomarkers. Polar Biol. 33, 153–162 (2010).
    Google Scholar 
    28.Correa, L., Castellini, J. M., Quakenbush, L. T. & O’Hara, T. M. Mercury and selenium concentrations in skeletal muscle, liver, and regions of the heart and kidney in bearded seals from Alaska, USA. Environ. Toxicol. Chem. 34, 2403–2408 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Brown, T. M. et al. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet. Sci. Total Environ. 545–546, 503–511 (2016).ADS 
    PubMed 

    Google Scholar 
    30.McKinney, M. A., Atwood, T. C., Pedro, S. & Peacock, E. Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environ. Sci. Technol. 51, 7814–7822 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 20, 1–1 (2019).
    Google Scholar 
    32.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    33.Cattet, M. R., Caulkett, N. A., Obbard, M. E. & Stenhouse, G. B. A body-condition index for ursids. Can. J. Zool. 80, 1156–1161 (2002).
    Google Scholar 
    34.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    35.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Golzadeh, N. et al. Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta Canada. Chemosphere 250, 20 (2020).
    Google Scholar 
    40.Iverson, S. J., Field, C., DonBowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).
    Google Scholar 
    41.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    42.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
    Google Scholar 
    43.Grandjean, P. & Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 50, 712–719 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Dietz, R. et al. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ. Sci. Technol. 45, 1458–1465 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    45.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 209, 1–8 (2018).CAS 

    Google Scholar 
    48.Rothenberg, S. E. et al. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol. Lett. 242, 60–67 (2016).CAS 
    PubMed 

    Google Scholar 
    49.Wu, J. et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol. Sci. 151, 324–333 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    51.Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    52.Li, H. et al. Intestinal methylation and demethylation of mercury. Bull. Environ. Contam. Toxicol. 1025(102), 597–604 (2018).
    Google Scholar 
    53.Guo, X. et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112, 1–8 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Rowland, I., Davies, M. & Grasso, P. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health Int. J. 32, 24–28 (1977).CAS 

    Google Scholar 
    58.Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85–94 (2011).CAS 
    PubMed 

    Google Scholar 
    59.Setlow, P., Wang, S. & Li, Y. Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 71, 459–477 (2017).CAS 
    PubMed 

    Google Scholar 
    60.Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of intestinal bacilli: A natural guard against pathologies. Front. Microbiol. 8, 25 (2017).
    Google Scholar 
    61.Hiller-Bittrolff, K., Foreman, K., Bulseco-McKim, A. N., Benoit, J. & Bowen, J. L. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. Environ. Pollut. 242, 797–806 (2018).CAS 
    PubMed 

    Google Scholar 
    62.Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).CAS 
    PubMed 

    Google Scholar 
    63.Wei, Z. S. et al. Effect of gaseous mercury on nitric oxide removal performance and microbial community of a hybrid catalytic membrane biofilm reactor. Chem. Eng. J. 316, 584–591 (2017).CAS 

    Google Scholar 
    64.Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science (80–) 359, 568–572 (2018).ADS 
    CAS 

    Google Scholar 
    65.Van Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).
    Google Scholar 
    66.Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).CAS 
    PubMed 

    Google Scholar 
    67.Cowan, T. E. et al. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 25, 489–495 (2014).CAS 
    PubMed 

    Google Scholar 
    68.Bishara, J. et al. Obesity as a risk factor for Clostridium difficile infection. Clin. Infect. Dis. 57, 489–493 (2013).PubMed 

    Google Scholar 
    69.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. 10, 659 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    71.Castonguay-Paradis, S. et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 10, 1–11 (2020).
    Google Scholar  More