More stories

  • in

    Global patterns of potential future plant diversity hidden in soil seed banks

    Our global database was derived from studies measuring soil seed bank diversity and density of natural plant communities across all continents, albeit with a strong data availability bias towards North America, Europe, eastern Asia and Oceania as compared to elsewhere (Fig. 1). The database contains 15,698 records for soil seed banks worldwide, including 6,480 for diversity (represented here by species richness) and 9,218 for density (number of seeds per soil surface area). The database represents more than a century of research with the oldest publication dating back to 191815. This most exhaustive and comprehensive set of research data on soil seed bank to date allowed us to identify the determinants and patterns of soil seed bank at the global scale.Fig. 1: Locations of the soil seed bank studies included in our database.a Diversity; b Density.Full size imageTo make data among studies comparable, we standardized them using a three-step process. First, we identified soil seed banks that showed seasonal patterns in both diversity and density, all of which peaked slightly in winter (Supplementary Fig. 1a, b). Thus, we standardized all data (from non-(sub-)tropical regions) for other seasons to winter. Second, sampling area for soil seed bank diversity varied among studies, with 0.01 m2 being the most commonly reported (Supplementary Fig. 2), to which we standardized all data using a species-area curve (Supplementary Table 1). Third, sampling depth also varied among studies, with 0–5 cm being the most frequently reported soil depth (Supplementary Fig. 3). Therefore, 0–5 cm was chosen as the soil depth for standardization of data in various soil depths. Such standardization is needed to find the relationships of seed bank data between different soil depths. We used the upper and lower limits of soil depths (e.g., for 0–5 cm, the upper limit was 0 cm and the lower 5 cm). The log-scale regressions showed that both soil seed bank diversity and density decreased significantly with lowering upper boundaries of soil depths but increased with lower ones (Supplementary Table 2), and thus we standardized all data to 0–5 cm depth using these relationships. To account for possible variation among biomes, the second and third standardization procedures were conducted for each biome separately. The analyses during standardization confirmed the need to standardize empirical findings when comparing seed bank patterns across studies, as previously stressed in a study on grassland soil seed banks10. Our standardization procedures made all data comparable in terms of season, sampling area and soil depth.Non-parametric Kruskal–Wallis tests showed that soil seed banks differed significantly among ecosystem types. Mangroves, tundra and tropical & subtropical dry broadleaf forests had a lower diversity of soil seed banks, whereas Mediterranean forests, woodlands & scrub, tropical & subtropical moist broadleaf forests and tropical & subtropical coniferous forests had a higher diversity (Supplementary Fig. 4a). For density, mangroves and flooded grasslands & savanna had the lowest value, while temperate broadleaf & mixed forests and temperate conifer forests had the highest value (Supplementary Fig. 4b).Prior to spatial analyses, we computed semivariograms to determine whether spatial autocorrelation could affect our models. We found that there was no obvious spatial autocorrelation in the data of soil seed bank diversity or density (Supplementary Fig. 5), indicating no spatial dependence in our data. We then used the random-forest algorithm (see Methods for details) to determine the importance (as increase in node purity) of the influence of 31 variables related to climate, soil, human disturbance and spatial coordinates (Supplementary Table 3) on diversity and density of soil seed banks. These variables previously were reported to affect plant performance at the global scale16,17,18, and thus they could affect soil seed banks via their effects on seed production. Moreover, we expected that potentially these variables could affect seed longevity in the soil. Full models using all 31 predictors showed that climate and soil were important in predicting soil seed banks (Fig. 2a and Supplementary Fig. 6). Moreover, spatial coordinates (absolute latitude) were the most important predictor for diversity, i.e., diversity of soil seed banks exhibit clear spatial patterns at the global scale. Net primary productivity (NPP) and soil characteristics were important in predicting the density of soil seed banks (Fig. 2b and Supplementary Fig. 6).Fig. 2: Variable importance (increase in node purity) of random forests run with all 31 predictors.a Soil seed bank diversity; b Density. abs.latit, absolute latitude; AMT, annual mean temperature; AP, annual precipitation; ATR, annual temperature range; AVWAC, available water capacity (%); BULK, bulk density; CEC, cation exchange capacity; CLAYC, clay (mass %); diversity, plant diversity; HFP, human footprint; Isoth, isothermality; npp, plant productivity (net primary production); ORGNC, organic carbon content; PCQ, precipitation of coldest quarter; PDM, precipitation of driest month; PDQ, precipitation of driest quarter; pH, pH measured in water; Pseason, precipitation seasonality (coefficient of variation); PWeQ, precipitation of wettest quarter; PWM, precipitation of wettest month; PWQ, precipitation of warmest quarter; SANDC, sand (mass %); SILTC, silt (mass %); TCM, min temperature of coldest month; TCQ, mean temperature of coldest quarter; TDQ, mean temperature of driest quarter; TDR, mean diurnal range (mean of monthly (max temp–min temp)); Tseason, temperature seasonality (standard deviation *100); TWeQ, mean temperature of wettest quarter; TWM, max temperature of warmest month; TWQ, mean temperature of warmest quarter.Full size imageWe then built final random-forest models using the most important predictors of seed banks selected from full models: nine variables for diversity and five for density (Supplementary Fig. 7). Final models explained more of the total variance than did full models (Supplementary Table 4), and they were robust to K-fold cross-validation (Supplementary Fig. 8), indicating that a small number of variables predicted soil seed bank diversity and density. Absolute latitude (abs.latit) was the most important predictor for diversity, which varied between 0–55° and then decreased beyond this range (Fig. 3a). Five climatic variables were important for diversity. Diversity peaked at intermediate annual temperature ranges (ATR), while it was the lowest at intermediate mean temperature of driest quarter of the year (TDQ), precipitation of the coldest quarter (PCQ) and precipitation of the driest quarter (PDQ). Diversity increased with increasing annual precipitation (AP). In addition, three soil variables were important for diversity. Diversity showed a humped relationship with soil pH, with pH 6–7 having the highest diversity. Diversity increased with soil cation exchange capacity (CEC) and soil silt content (SILT). These results indicate that diversity exhibits strong spatial patterns at the global scale. However, our spatial patterns differ from those found for a specific ecosystem worldwide (e.g., grasslands), where there were only weak latitudinal gradients in seed bank diversity10. In addition, climate emerged as an important predictor for seed bank diversity, which is consistent with the report that climate acts as environmental filters affecting soil seed bank of grasslands around the world13. Our results agree with a continental study in Europe, where ATR was more important than mean annual temperature for determining seed bank richness and warmer temperatures were associated with lower seed bank richness11. Possible mechanisms by which temperature affects soil seed banks are that it (1) influences seed bank inputs via its effects on seed production; (2) cues dormancy-breaking and germination1, thus determining germinable seed output from seed banks; and (3) affects seed metabolic activity and soil fungal activity19, thereby determining seed viability and persistence in the soil. Finally, our findings of a significant effect of soil pH are supported by some regional and local studies. For instance, seed bank composition is significantly associated with soil pH at high elevations on the Tibetan Plateau20. A negative effect of low pH also has been reported in a large-scale study of acidic and calcareous grasslands in England21. Two possible mechanisms for the effects of soil pH are that (1) low pH may cause loss of seed viability due to the toxicity from aluminum or other metals that become more readily available in soils with low pH22; and (2) high pH may accelerate decomposition and promote growth of pathogens that negatively affect seed persistence23. In our study, the two mechanism may operate synchronously, thereby resulting in the highest diversity of soil seed banks at intermediate pH at the global scale. Further, our results show that soil CEC and SILT affect seed bank diversity, which agrees with a study on the Tibetan Plateau20. The physical and chemical properties of soils can affect seed bank directly by affecting seed germination and aging via regulating soil water-holding capacity24, or indirectly by affecting seed viability via controlling the activity of soil pathogens21,22,25.Fig. 3: Partial feature contributions (the marginal effect of a variable on response) of the most important variables for soil seed banks.a diversity; b density. Variable importance (inc. node) is the decrease in the residual sum of squares that results from splitting regression trees using the variable. The percentage increase in mean squared error (% inc. MSE) is the increase in model error as a result of randomly shuffling the order of values in the vector. abs.latit, absolute latitude; AP, annual precipitation; ATR, annual temperature range; BULK, bulk density; CEC, cation exchange capacity; npp, plant productivity (net primary production); PCQ, precipitation of coldest quarter; PDM, precipitation of driest month; PDQ, precipitation of driest quarter; pH, pH measured in water; SILTC, silt (mass %); TDQ, mean temperature of driest quarter; TWM, max temperature of warmest month.Full size imageFor soil seed bank density, soil bulk density (BULK) was the most important predictor; density increased below 750 g/cm3 BULK but remained stable when BULK was higher than 800 g/cm3 (Fig. 3b). Density peaked when temperature of the warmest month (TWM) was 34 °C. Density showed similar variation with NPP, precipitation of the driest quarter of the year (PDQ) and of the driest month (PDM), i.e., it peaked at intermediate values of these variables. Precipitation influences the success of sexual reproduction of plants and the size of the seed bank through seed input26, and it also affects soil pathogenic fungi, which cause seed mortality27. Therefore, precipitation has a strong effect on seed bank density, as reported for 27 alpine meadows on the Tibetan Plateau28. Our results further illustrate that PDQ and PDM are the key factors determining seed bank density worldwide, suggesting that moisture fluctuation in soils triggered by precipitation of the driest time of the year can affect seed bank density. If soil moisture fluctuations are high, seed germination will be primed by increasing moisture24.At the global scale, we mapped soil seed bank diversity and density using the final random-forest models. Mapping soil seed bank values onto global maps revealed considerable geospatial variation, the pattern of which varied between diversity and density (Fig. 4). For diversity, western North America, central South America, central Africa, central Europe, southern and eastern Asia and eastern Oceania had high values. In contrast, eastern and central North America, northern Africa and central Asia had low values (Fig. 4a). For density, northern North America, northern Europe and northern Asia had higher values than elsewhere (Fig. 4a). Our results are consistent with the reports that larger seed banks are more common in cooler temperate climates19,29. The latitudinal pattern of higher density in colder regions in the Northern Hemisphere may be driven by lower seed mortality in colder soils6, resulting in stable seed bank densities of long-lived seeds that counteract low seed production in some years at cold northern latitudes, as shown in a study of temperate forests along a 1900 km latitudinal gradient in northwestern Europe29. The latitudinal pattern highlights that particularly species rich low-latitude biomes such as tropical rainforests generally have very low seed bank densities, while their seed bank diversity does not exceed that in higher latitudes biomes. However, our global assessment should be interpreted with caution since some studies in azonal vegetation or in rare habitats in our database did not fully reflect soil seed banks in that region, and thus these data shortcomings may have induced bias in our global predictions. Moreover, data gaps in our database are also likely to have had an effect on the global predictions, i.e., fewer data available from some continents (e.g., northern Asia and Africa) could lead to less confidence for prediction in these regions. For example, Russia has very few soil seed bank data, which may have led to an inaccurate prediction for this country. Nevertheless, based on our global patterns of soil seed bank diversity and density, the latitudinal pattern strongly suggests that the biodiversity of (sub-)tropical forests is particularly vulnerable to large-scale climatic or land-use disturbances. However, in-depth investigation is needed to quantify the extent to which temporal integration of seed bank effects for long-lived trees and seed masting events may buffer the effects of low seed bank diversity and density at any given time of sampling. In contrast, the higher-latitude plant diversity, while currently low compared to that in tropical rainforest, may rely on high soil seed bank densities to boost its resilience to large-scale climate- or land-use induced disturbances. Further, our analyses suggest that the least vulnerable ecosystems in terms of hidden diversity should be those that combine high seed-bank diversity with high density; and therefore the relationships between the two variables across the global map certainly would be an interesting topic worthy of further study.Fig. 4: Extrapolated global maps of soil seed banks.a diversity in terms of number of species per 0.01 m2; b density as number of seeds per m2. In b, values are log10-transformed to facilitate viewing. The spatial resolution of grid cells is 5 arcmin-by-5 arcmin.Full size imageOur global assessment reveals that both diversity and density exhibit clear spatial patterns of soil seed banks but differ in their environmental determinants. These findings alone do not necessarily mean that this biodiversity reservoir has strong buffering capacity under climate change, because both climate and soil conditions influence seed bank diversity and density. Based on a large number and long history of studies globally, we provide quantitative evidence of how environmental conditions shape soil seed bank distributions and spatially explicit maps of this biodiversity reservoir in plant communities worldwide. Our quantification of environmental determinants and global mapping can be readily applied to dynamic global vegetation and plant diversity models to enable a more complete and accurate prediction of the impact of ongoing environmental changes on plant diversity (both above- and belowground) at the global scale. The next research challenge will be to plot current (visible) aboveground plant diversity (ideally using the available data in the studies themselves) against soil seed bank diversity under global change scenarios in order to pinpoint even more accurately which plant communities, ecosystems and biomes (and their turn-over) are most at risk of losing their diversity due to global changes. More

  • in

    An Italian dinosaur Lagerstätte reveals the tempo and mode of hadrosauriform body size evolution

    1.Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys. https://doi.org/10.3897/zookeys.469.8439 (2015).2.Benton, M. J. et al. Dinosaurs and the island rule: The dwarfed dinosaurs from Haţeg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438–454 (2010).
    Google Scholar 
    3.Scotese, C. R. An Atlas of phanerozoic Paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 49, 679–728 (2021).CAS 

    Google Scholar 
    4.Randazzo, V. et al. The migration path of Gondwanian dinosaurs toward Adria: New insights from the Cretaceous of NW Sicily (Italy). Cretac. Res. 126, 104919 (2021).5.Dal Sasso, C., Pierangelini, G., Famiani, F., Cau, A. & Nicosia, U. First sauropod bones from Italy offer new insights on the radiation of Titanosauria between Africa and Europe. Cretac. Res. 64, 88–109 (2016).
    Google Scholar 
    6.Vlahović, I., Tišljar, J., Velić, I. & Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 333–360 (2005).
    Google Scholar 
    7.Dalla Vecchia, F. M. Tethyshadros insularis, a new hadrosauroid dinosaur (Ornithischia) from the Upper Cretaceous of Italy. J. Vertebr. Paleontol. 29, 1100–1116 (2009).
    Google Scholar 
    8.Tarlao, A., Tentor, M., Tunis, G. & Venturini, S. Evidence of a tectonic phase in the Lower Senonian of the Villaggio del Pescatore area. Gortania Atti Museo Friulano Storia Naturale 135–142 (1993).9.Tarlao, A., Tentor, M., Tunis, G., Venturini, S. Stop 4: Villaggio del Pescatore. Atti Museo Geologico Paleontologico Monfalcone 135–142 (1995).10.Alessandro Palci. Ricostruzione Paleoambientale del Sito Fossilifero Senoniano del Villaggio del Pescatore (Trieste). (Università degli Studi di Trieste, 2003).11.Arbulla, D., Caffa, M., Cotza, F., Cucchi, F., Flora, O., Masetti, D., Pittau, P., Pugliese, N., Stenni, B., Tarlao, A., Tunisè, G. & Zini, L. The Santonina-Campanian succession of the Villaggio del Pescatore (Trieste karst) yielding the hadrosaur: palaeoecology, stratigraphy, sedimentology and geochemistry. in Sixth European workshop on vertebrate palaeontology abstracts (2001).12.Arbulla, D., Cotza, F., Cucchi, F., Dalla Vecchia, F. M., De Giusto, A., Flora, O., Masetti, D., Palci, A., Pittau, P., Pugliese, N., Stenni, B., Tarlao, A., Tunis, G. & Zini, L. La successione Santoniano–Campaniana del Villaggio del Pescatore (Carso Triestino) nel quale sono stati rinvenuti i resti di dinosauro. in Guida alle escursioni/excursions guide, Società Paleontologica Italiana 20–27 (EUT Edizioni Università di Trieste, 2006).13.Dal Sasso, C. Dinosaurs of Italy. Comptes Rendus Palevol. 2, 45–66 (2003).
    Google Scholar 
    14.Dal Sasso, C. & Brillante, G. Dinosaurs of Italy. (Indiana University Press, 2005).15.Dalla Vecchia, F., Tunis, G., Venturini, S. & Tarlao, A. Dinosaur track sites in the upper Cenomanian (Late Cretaceous) of Istrian Peninsula (Croatia). Boll. Della Soc. Paleontol. Ital. 40, 25–54 (2001).16.Dalla Vecchia, F. M. Observations on the presence of plant-eating dinosaurs in an oceanic carbonate platform. Nat. Nascosta 27 (2003).17.Nicosia, U., Avanzini, M., Barbera, C., Conti, M. A., Dalla Vecchia, F. M. e altri 15 coautori in ordine alfabetico. I vertebrati continentali del Paleozoico e Mesozoico. in Paleontologia dei Vertebrati in Italia vol. Memorie Museo Civico di Storia Naturale Verona 41–66 (Bonfiglio L., 2005).18.Dalla Vecchia, F. M. The impact of dinosaur palaeoichnology in palaeoenvironmental and palaeogeographic reconstructions: The case of the Periadriatic carbonate platforms. Oryctos 8, 19 (2008).
    Google Scholar 
    19.Delfino, M., Martin, J. E. & Buffetaut, E. A new species of Acynodon (Crocodylia) from the upper cretaceous (Santonian–Campanian) of Villaggio del Pescatore, Italy. Palaeontology 51, 1091–1106 (2008).
    Google Scholar 
    20.Dalla Vecchia, F. M. The unusual tail of Tethyshadros insularis (Dinosauria, Hadrosauroidea) from the Adriatic Island of the European Archipelago. Rivista Italiana di Paleontologia e Stratigrafia 126, 46 (2020).
    Google Scholar 
    21.Benson, R. B. J., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48 (2018).
    Google Scholar 
    22.Dalla Vecchia, F. Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An update. Nat. Nascosta 39, 1–18 (2009).
    Google Scholar 
    23.Soul, L. & Wright, D. Phylogenetic Comparative Methods: A User’s Guide for Paleontologists. (2020) https://doi.org/10.32942/osf.io/ytm5x.24.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Google Scholar 
    25.Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari, V. & Potetti, M. Biostratigrafia a foraminiferi, dasicladali e calpionelle delle successioni carbonatiche mesozoiche dell’Appennino centrale (Italia). in Biostratigrafia dell’Italia centrale. Studi Geologici Camerti vol. Biostratigrafia dell’Italia centrale 129 (Mancinelli, A, 1994).26.Chiocchini, M., Pampaloni, M. L., Pichezzi, R. M. Microfacies and microfossils of the Mesozoic carbonate successions of Latium and Abruzzi (Central Italy), Vol. 269 (Memorie per Servire alla Descrizione della Carta Geologica D’Italia, ISPRA, Dipartimento Difesa del Suolo, Roma, 2012).27.Frijia, G., Parente, M., Di Lucia, M. & Mutti, M. Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian-Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretac. Res. 53, 110–139 (2015).
    Google Scholar 
    28.Steuber, T., Korbar, T., Jelaska, V. & Gušić, I. Strontium-isotope stratigraphy of Upper Cretaceous platform carbonates of the island of Brač (Adriatic Sea, Croatia): Implications for global correlation of platform evolution and biostratigraphy. Cretac. Res. 26, 741–756 (2005).
    Google Scholar 
    29.Schlüter, M., Steuber, T. & Parente, M. Chronostratigraphy of Campanian-Maastrichtian platform carbonates and rudist associations of Salento (Apulia, Italy). Cretac. Res. 29, 100–114 (2008).
    Google Scholar 
    30.Consorti, L., Frijia, G. & Caus, E. Rotaloidean foraminifera from the Upper Cretaceous carbonates of Central and Southern Italy and their chronostratigraphic age. Cretac. Res. 70, 226–243 (2017).
    Google Scholar 
    31.Fourcade, E. Murciella cuvillieri n. gen. n. sp. nouveau foraminifère du Sénonien supérieur du sud-est de l’Espagne. Rev. Micropaléontol. 147–155 (1966).32.Fleury, J.-J. Rhapydioninidés du Campanien-Maastrichtien en région méditerranéenne : Les genres Murciella, Sigalveolina n. gen. et Cyclopseudedomia. Carnets Géologie Noteb. Geol. 18, 233–280 (2018).33.Dercourt et al. Atlas of Peri-Tethys Palaeogeographical Maps-digital-CCGM-CGMW. https://ccgm.org/en/atlases/189-atlas-of-peri-tethys-palaeogeographical-maps-.html (2000).34.Bosellini, A. Dinosaurs, “re-write” the geodynamics of the eastern Mediterranean and the paleogeography of the Apulia Platform. Earth-Sci. Rev. 59, 211–234 (2002).ADS 

    Google Scholar 
    35.Zarcone, G. et al. A possible bridge between Adria and Africa: New palaeobiogeographic and stratigraphic constraints on the Mesozoic palaeogeography of the Central Mediterranean area. Earth-Sci. Rev. 103, 154–162 (2010).ADS 

    Google Scholar 
    36.Ustaszewski, K. et al. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos 108, 106–125 (2009).ADS 
    CAS 

    Google Scholar 
    37.Dragičević, I. & Velić, I. The Northeastern Margin of the Adriatic Carbonate Platform. Geol. Croat. 55, 185–232 (2002).
    Google Scholar 
    38.Petti, F. et al. Cretaceous tetrapod tracks from Italy: A treasure trove of exceptional biodiversity. J. Mediterr. Earth Sci. 12, 167–191 (2020).
    Google Scholar 
    39.Blatnik, M. et al. Late Cretaceous and Paleogene Paleokarsts of the Northern Sector of the Adriatic Carbonate Platform. in Karstology in the classical Karst (eds. Knez, M., Otoničar, B., Petrič, M., Pipan, T. & Slabe, T.) 11–31 (Springer, 2020). https://doi.org/10.1007/978-3-030-26827-5_2.40.Boscarolli, D. & Dalla Vecchia, F. The Upper Hauterivian-Lower Barremian dinosaur site of Bale/valle (SW Istria, Croatia). (1999).41.Dalla Vecchia, F. M. Theropod footprints in the Cretaceous Adriatic-Dinaric Carbonate Platform (Italy and Croatia). Gaia 15, 355–367 (1998).
    Google Scholar 
    42.Dalla Vecchia, F. Cretaceous dinosaurs in the Adriatic-Dinaric Carbonate Platform (Italy and Croatia): Paleoenvironmental implications and paleogeographical hypotheses. Mem. Della Soc. Geol. Ital. 57, 89–100 (2002).
    Google Scholar 
    43.Dalla Vecchia, F., Vlahović, I., Posocco, L., Tarlao, A. & Tentor, M. Late Barremian and late Albian (Early Cretaceous) dinosaur tracksites in the main Brioni/Brijun island (SW Istria, Croatia). Nat. Nascosta 25, 1–36 (2002).44.Dalla Vecchia, F. M. et al. New dinosaur track sites in the Albian (Early Cretaceous) of the Istrian peninsula (Croatia) part I—Stratigraphy and sedimentology part II—paleontology. 69 (2000).45.Debeljak, I., Košir, A. & Otoničar, B. A preliminary note on dinosaurs and non-dinosaurian reptiles from the Upper Cretaceous carbonate platform succession at Kozina (SW Slovenia). Razpr. Slov. Akad. Znan. Umet. Razred Za Naravosl. Vede Diss. Acad. Sci. Artium Slov. Cl. IV Hist. Nat. 3–25 (1999).46.Debeljak, I., Košir, A., Buffetaut, E. & Otoničar, B. The Late Cretaceous dinosaurs and crocodiles of Kozina (SW Slovenia): A preliminary study. Mem. Della Soc. Geol. Ital. 57, 193–201 (2002).
    Google Scholar 
    47.Mezga, A. et al. A new dinosaur tracksite in the Cenomanian of Istria, Croatia. Riv. Ital. Paleontol. E Stratigr. 112, 435–445 (2006).
    Google Scholar 
    48.Mezga, A., Meyer, C. A., Tešović, B. C., Bajraktarević, Z. & Gušić, I. The first record of dinosaurs in the Dalmatian part (Croatia) of the Adriatic-Dinaric carbonate platform (ADCP). Cretac. Res. 27, 735–742 (2006).
    Google Scholar 
    49.Weishampel, D., Norman, D. & Grigorescu, D. Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur. Palaeontology 36, 361–385 (1993).
    Google Scholar 
    50.Richard Owen. Report on British fossil reptiles, Part 2. in vol. 11 60–204 (1842).51.Seeley, H. G. On the classification of the fossil animals commonly named Dinosauria. Proc. R. Soc. Lond. 43, 165–171 (1887).
    Google Scholar 
    52.Marsh, O. C. Principal characters of American Jurassic dinosaurs, IV. Am. J. Sci. s3–21, 167–170 (1881).53.Sereno, P. C. The Origin and Evolution of Dinosaurs. Annu. Rev. Earth Planet. Sci. 25, 435–489 (1997).ADS 
    CAS 

    Google Scholar 
    54.Cope, E. D. Synopsis of the extinct Batrachia, Reptilia, and Aves of North America. Trans. Am. Philos. Soc. 1–252 (1870).55.Madzia, D., Jagt, J. W. M. & Mulder, E. W. A. Osteology, phylogenetic affinities and taxonomic status of the enigmatic late Maastrichtian ornithopod taxon Orthomerus dolloi (Dinosauria, Ornithischia). Cretac. Res. 108, 104334 (2020).56.Norman, D. On the history, osteology, and systematic position of the Wealden (Hastings Group) dinosaur Hypselospinus fittoni (Iguanodontia: Styracosterna). Zool. J. Linn. Soc. 173, 92 (2014).57.Xing, H., Mallon, J. C. & Currie, M. L. Supplementary cranial description of the types of Edmontosaurus regalis (Ornithischia: Hadrosauridae), with comments on the phylogenetics and biogeography of Hadrosaurinae. PLOS ONE 12, e0175253 (2017).58.Sues, H.-D. & Averianov, A. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs. Proc. R. Soc. B Biol. Sci. 276, 2549–2555 (2009).
    Google Scholar 
    59.Shibata, M., Jintasakul, P., Azuma, Y. & You, H.-L. A New Basal Hadrosauroid Dinosaur from the Lower Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand. PLOS ONE 10, e0145904 (2015).60.McDonald, A. T., Bird, J., Kirkland, J. I. & Dodson, P. Osteology of the Basal Hadrosauroid Eolambia caroljonesa (Dinosauria: Ornithopoda) from the Cedar Mountain Formation of Utah. PLoS ONE 7, e45712 (2012).61.Gates, T., Horner, J., Hanna, R. & Nelson, R. New Unadorned Hadrosaurine Hadrosaurid (Dinosauria, Ornithopoda) from the Campanian of North America. J. Vertebr. Paleontol. 31, 798–811 (2011).
    Google Scholar 
    62.Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156 (2005).
    Google Scholar 
    63.Gates, T. A. & Lamb, J. Redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Late Cretaceous of Alabama based on new material. Can. J. Earth Sci. https://doi.org/10.1139/cjes-2020-0173 (2021).Article 

    Google Scholar 
    64.Prieto-Márquez, A., Erickson, G. M. & Ebersole, J. A. Anatomy and osteohistology of the basal hadrosaurid dinosaur Eotrachodon from the uppermost Santonian (Cretaceous) of southern Appalachia. PeerJ 4, e1872 (2016).65.You, H.-L. & Li, D.-Q. A new basal hadrosauriform dinosaur (Ornithischia: Iguanodontia) from the Early Cretaceous of northwestern China. Can. J. Earth Sci. 46, 949–957 (2009).ADS 

    Google Scholar 
    66.Fowler, E. A. F. & Horner, J. R. A New Brachylophosaurin Hadrosaur (Dinosauria: Ornithischia) with an Intermediate Nasal Crest from the Campanian Judith River Formation of Northcentral Montana. PLOS ONE 10, e0141304 (2015).67.Gates, T. A., Hall, B. & Lamb, J. P. A redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Cretaceous of Alabama based on new material. Can. J. Earth Sci. 58, 918–935 (2021).
    Google Scholar 
    68.Gates, T. A., Evans, D. C. & Sertich, J. J. W. Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains. PeerJ 9, e10669 (2021).69.Griffin, C. T. et al. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470–525. https://doi.org/10.1111/brv.12666?af=R (2021).
    Google Scholar 
    70.Bailleul, A. M., Scannella, J. B., Horner, J. R. & Evans, D. C. Fusion patterns in the skulls of modern archosaurs reveal that sutures are ambiguous maturity indicators for the Dinosauria. PLOS ONE 11, e0147687 (2016).71.Francillon-Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. in Skeletal biomineralization: Patterns, processes and evolutionary trends 175–234 (American Geophysical Union (AGU), 1989). https://doi.org/10.1029/SC005p0175.72.Woodward Ballard, H., Horner, J. & Farlow, J. Osteohistological evidence for determinate growth in the American Alligator. J. Herpetol. 45, 339–342 (2011).73.Horner, J. R., Ricqlès, A. D. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).
    Google Scholar 
    74.Erickson, G. M. Assessing dinosaur growth patterns: A microscopic revolution. Trends Ecol. Evol. 20, 677–684 (2005).PubMed 

    Google Scholar 
    75.Hone, D. W. E., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: What, if anything, is an adult dinosaur?. Biol. Lett. 12, 20150947 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    76.Sharma, P. P., Clouse, R. M. & Wheeler, W. C. Hennig’s semaphoront concept and the use of ontogenetic stages in phylogenetic reconstruction. Cladistics 33, 93–108 (2017).PubMed 

    Google Scholar 
    77.Campione, N. E., Brink, K. S., Freedman, E. A., McGarrity, C. T. & Evans, D. C. ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the Two Medicine Formation of Montana: implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America. Palaeobiodivers. Palaeoenviron. 93, 65–75 (2013).
    Google Scholar 
    78.Kobayashi, Y., Takasaki, R., Kubota, K. & Fiorillo, A. R. A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids. Sci. Rep. 11(1), 1–15. https://www.nature.com/articles/s41598-021-87719-5 (2021).79.A new brachylophosaurin (Dinosauria: Hadrosauridae) from the Upper Cretaceous Menefee Formation of New Mexico [PeerJ]. https://peerj.com/articles/11084/.80.Prieto-Marquez, A. & Carrera Farias, M. The late-surviving early diverging Ibero-Armorican ‘duck-billed’ dinosaur Fylax and the role of the Late Cretaceous European Archipelago in hadrosauroid biogeography. Acta Palaeontol. Pol. 66, 425–435 (2021).81.Prieto-Márquez, A., Dalla Vecchia, F. M., Gaete, R. & Galobart, À. Diversity, Relationships, and biogeography of the Lambeosaurine Dinosaurs from the European Archipelago, with Description of the New Aralosaurin Canardia garonnensis. PLoS ONE 8, e69835 (2013).82.Longrich, N. R., Suberbiola, X. P., Pyron, R. A. & Jalil, N.-E. The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretac. Res. 120, 104678 (2021).83.Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372, 108–122 (2013).
    Google Scholar 
    84.Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. BMC Ecol. 13, 14 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    85.Mallon, J. C. Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Sci. Rep. 9, 15447 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Campione, N. E. & Evans, D. C. The accuracy and precision of body mass estimation in non-avian dinosaurs. Biol. Rev. 95, 1759–1797 (2020).PubMed 

    Google Scholar 
    87.Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).PubMed 

    Google Scholar 
    88.Fabbri M. et al. A shift in ontogenetic timing produced the unique sauropod skull. Evolution 75, 819–831 (2021).PubMed 

    Google Scholar 
    89.Chinsamy, A. & Raath, M. A. Preparation of fossil bone for histological examination. (1992).90.Fabbri, M., Wiemann, J., Manucci, F. & Briggs, D. E. G. Three-dimensional soft tissue preservation revealed in the skin of a non-avian dinosaur. Palaeontology 63, 185–193 (2020).
    Google Scholar 
    91.Takasaki R., et al. Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status. https://doi.org/10.1371/journal.pone.0232410 (2020).92.Raven, T. J. & Maidment, S. C. R. The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis. PeerJ 6, e4529 (2018).93.Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).PubMed 

    Google Scholar 
    94.Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).
    Google Scholar 
    95.Herne, M. C., Nair, J. P., Evans, A. R. & Tait, A. M. New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999. J. Paleontol. 93, 543–584 (2019).
    Google Scholar 
    96.Madzia, D. & Cau, A. Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature. PeerJ 5, e3782 (2017).97.Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).98.Nicholl, C. S. C., Rio, J. P., Mannion, P. D. & Delfino, M. A re-examination of the anatomy and systematics of the tomistomine crocodylians from the Miocene of Italy and Malta. J. Syst. Palaeontol. 18, 1853–1889 (2020).
    Google Scholar 
    99.Rio, J. P., Mannion, P. D., Tschopp, E., Martin, J. E. & Delfino, M. Reappraisal of the morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon hantoniensis from the late Eocene of the United Kingdom. Zool. J. Linn. Soc. 188, 579–629 (2020).
    Google Scholar 
    100.Groh, S. S., Upchurch, P., Barrett, P. M. & Day, J. J. The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition. Zool. J. Linn. Soc. 188, 473–506 (2020).
    Google Scholar 
    101.Bell, M. A. & Lloyd, G. T. Strap: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2015).
    Google Scholar 
    102.Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).PubMed 

    Google Scholar 
    103.Butler, M. A. & King, A. A. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004).PubMed 

    Google Scholar 
    104.Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66, 2369–2383 (2012).PubMed 

    Google Scholar 
    105.Hunt, G. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38, 351–373 (2012).
    Google Scholar 
    106.Grosheny, D. et al. The Cenomanian-Turonian Boundary Event (CTBE) in northern Lebanon as compared to regional data—Another set of evidences supporting a short-lived tectonic pulse coincidental with the event?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 447–461 (2017).
    Google Scholar 
    107.Prieto-Márquez, A. Global historical biogeography of hadrosaurid dinosaurs. Zool. J. Linn. Soc. 159, 503–525 (2010).
    Google Scholar 
    108.Nariaki Sugiura. Further analysts of the data by akaike’ s information criterion and the finite corrections: Further analysts of the data by Akaike’s: Communications in Statistics—Theory and Methods: Vol 7, No 1. https://doi.org/10.1080/03610927808827599 (1978).109.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.110.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    111.Gates, T. A., Organ, C. & Zanno, L. E. Bony cranial ornamentation linked to rapid evolution of gigantic theropod dinosaurs. Nat. Commun. 7, 12931 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).
    Google Scholar 
    113.Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014). More

  • in

    Recapitulating whole genome based population genetic structure for Indian wild tigers through an ancestry informative marker panel

    Alcala N, Goldberg A, Ramakrishnan U, Rosenberg NA (2019) Coalescent theory of migration network motifs. Mol Biol Evol 36:2358–2374CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anjana S, Sammeta SP, Das R (2020) Developing ancestry informative marker panel for Nigeria-Cameroonian chimpanzees. J Genet 99:1–7
    Google Scholar 
    Armstrong E, Khan A, Taylor RW, Gouy A, Greenbaum G, Thiéry A et al. (2021) Recent evolutionary history of tigers highlights contrasting roles of genetic drift and selection. Mol Biol Evol 38:2366–2379CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballou JD (1992) Genetic and demographic considerations in endangered species captive breeding and reintroduction programs. In: Wildlife 2001: populations, Springer: Dordrecht, pp. 262–275Balloux F, Lugon‐Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165PubMed 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandies P, Peel E, Hogg CJ, Belov K (2019) The value of reference genomes in the conservation of threatened species. Genes (Basel) 10:846CAS 

    Google Scholar 
    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140PubMed 
    PubMed Central 

    Google Scholar 
    Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity–fitness correlations in animal populations. Mol Ecol 18:2746–2765CAS 
    PubMed 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Das R, Roy R, Venkatesh N (2019) Using ancestry informative markers (AIMs) to detect fine structure within gorilla populations. Front Genet 10:43CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Das R, Upadhyai P (2018) An ancestry informative marker set which recapitulates the known fine structure of populations in South Asia. Genome Biol Evol 10:2408–2416PubMed 
    PubMed Central 

    Google Scholar 
    Das R, Upadhyai P (2019) Application of the geographic population genetic structure (GPS) algorithm for biogeographical analyses of wild and captive gorillas. BMC Bioinforma 20:35
    Google Scholar 
    Dudash MR, Fenster CB (2000) Inbreeding and outbreeding depression in fragmented populations. Conserv Biol Ser 35–54Esposito U, Das R, Syed S, Pirooznia M, Elhaik E (2018) Ancient ancestry informative markers for identifying fine-scale ancient population genetic structure in Eurasians. Genes (Basel) 9:625
    Google Scholar 
    Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH et al. (2020) Dense sampling of bird diversity increases power of comparative genomics. Nature 587:252–257CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frantz AC, Pourtois JT, Heuertz M, Schley L, Flamand MC, Krier A et al. (2006) Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203CAS 
    PubMed 

    Google Scholar 
    Friar EA, Boose DL, LaDoux T, Roalson EH, Robichaux RH (2001) Population genetic structure in the endangered Mauna Loa silversword, Argyroxiphium kauense (Asteraceae), and its bearing on reintroduction. Mol Ecol 10:1657–1663CAS 
    PubMed 

    Google Scholar 
    Fuentes‐Pardo AP, Ruzzante DE (2017) Whole‐genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Mol Ecol 26:5369–5406PubMed 

    Google Scholar 
    Goodrich J, Lynam A, Miquelle D, Wibisono H, Kawanishi K, Pattanavibool A et al. (2015) Panthera tigris. In: The IUCN Red List of Threatened Species 2015, p. 15955 50659951Ivy JA, Lacy RC (2010) Using molecular methods to improve the genetic management of captive breeding programs for threatened species. In: Molecular approaches in natural resource conservation and management, pp. 267–295Jangtarwan K, Koomgun T, Prasongmaneerut T, Thongchum R, Singchat W, Tawichasri P et al. (2019) Take one step backward to move forward: Assessment of genetic diversity and population structure of captive Asian woolly-necked storks (Ciconia episcopus). PLoS One 14:e0223726CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiménez‐Mena B, Schad K, Hanna N, Lacy RC (2016) Pedigree analysis for the genetic management of group‐living species. Ecol Evol 6:3067–3078PubMed 
    PubMed Central 

    Google Scholar 
    Kanthaswamy S, Johnson Z, Trask JS, Smith DG, Ramakrishnan R, Bahk J et al. (2014) Development and validation of a SNP‐based assay for inferring the genetic ancestry of rhesus macaques (Macaca mulatta). Am J Primatol 76:1105–1113CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan A, Patel K, Bhattacharjee S, Sharma S, Chugani AN, Sivaraman K et al. (2020) Are shed hair genomes the most effective noninvasive resource for estimating relationships in the wild? Ecol Evol 10:4583–4594PubMed 
    PubMed Central 

    Google Scholar 
    Khan A, Patel K, Shukla H, Viswanathan A, van der Valk T, Borthakur U, et al. (2021). Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. bioRxivKhan A, Tyagi A (2021) Considerations for initiating a wildlife genomics research project in South and South-East Asia. J Indian Inst Sci 101:243–256. https://doi.org/10.1007/s41745-021-00243-3Article 

    Google Scholar 
    Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988PubMed 
    PubMed Central 

    Google Scholar 
    Kolipakam V, Singh S, Pant B, Qureshi Q, Jhala YV (2019) Genetic structure of tigers (Panthera tigris tigris) in India and its implications for conservation. Glob. Ecol Conserv 20:710
    Google Scholar 
    Kunde MN, Martins RF, Premier J, Fickel J, Förster DW (2020) Population and landscape genetic analysis of the Malayan sun bear Helarctos malayanus. Conserv Genet 21:123–135CAS 

    Google Scholar 
    Laikre L, Palm S, Ryman N (2005) Genetic population genetic structure of fishes: implications for coastal zone management. AMBIO A J Hum Environ 34:111–119
    Google Scholar 
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang Z, Bu L, Qin Y, Peng Y, Yang R, Zhao Y (2019) Selection of optimal ancestry informative markersfor classification and ancestry proportion estimation in pigs. Front genet 10:183PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMed 
    PubMed Central 

    Google Scholar 
    Lott MJ, Wright BR, Kemp LF, Johnson RN, Hogg CJ (2020) Genetic Management of Captive and Reintroduced Bilby Populations. J Wildl Manag 84:20–32
    Google Scholar 
    Luo SJ, Johnson WE, Martenson J, Antunes A, Martelli P, Uphyrkina O et al. (2008) Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations. Curr Biol 18:592–596CAS 
    PubMed 

    Google Scholar 
    Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J et al. (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil) Proc Natl Acad Sci 108:12348–12353CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mondol S, Bruford MW, Ramakrishnan U (2013) Demographic loss, genetic structure and the conservation implications for Indian tigers. Proc R Soc B Biol Sci 280:20130496
    Google Scholar 
    Muñoz I, Henriques D, Johnston JS, Chávez-Galarza J, Kryger P, Pinto MA (2015) Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera) PLOS One 10:e0124365PubMed 
    PubMed Central 

    Google Scholar 
    Nassir R, Kosoy R, Tian C, White PA, Butler LM, Silva G et al. (2009) An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels. BMC Genet 10:39PubMed 
    PubMed Central 

    Google Scholar 
    Natesh M, Atla G, Nigam P, Jhala YV, Zachariah A, Borthakur U et al. (2017) Conservation priorities for endangered Indian tigers through a genomic lens. Sci Rep. 7:1–11
    Google Scholar 
    Natesh M, Taylor RW, Truelove NK, Hadly EA, Palumbi SR, Petrov DA et al. (2019) Empowering conservation practice with efficient and economical genotyping from poor quality samples. Methods Ecol evolution 10:853–859
    Google Scholar 
    Patterson N, Price AL, Reich D (2006) Population genetic structure and eigenanalysis. PLoS Genet 2:190
    Google Scholar 
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CAS 
    PubMed 

    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population genetic structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Putnam AS, Ivy JA (2014) Kinship-based management strategies for captive breeding programs when pedigrees are unknown or uncertain. J Hered 105:303–311PubMed 

    Google Scholar 
    Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73:1402–1422CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sagar V, Kaelin CB, Natesh M, Reddy PA, Mohapatra RK, Chhattani H et al. (2021) High frequency of an otherwise rare phenotype in a small and isolatedtiger population. Proc Natl Acad Sci p. 118Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK (2012) Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28:1811–1817CAS 
    PubMed 

    Google Scholar 
    Schlaepfer DR, Braschler B, Rusterholz HP, Baur B (2018) Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta‐analysis. Ecosphere 9:2488
    Google Scholar 
    Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C et al. (2003) Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 112:387–399PubMed 

    Google Scholar 
    Somenzi E, Ajmone-Marsan P, Barbato M (2020) Identification of ancestry informative marker (AIM) panels to assess hybridisation between feral and domestic sheep. Animals 10:582PubMed Central 

    Google Scholar 
    Supple MA, Shapiro B (2018) Conservation of biodiversity in the genomics era. Genome Biol 19:1–12
    Google Scholar 
    Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y, Schmitt CA et al. (2017) Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat genet 49:1705–1713CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vongpaisarnsin K, Listman JB, Malison RT, Gelernter J (2015) Ancestry informative markers for distinguishing between Thai populations based on genome-wide association datasets. Leg Med 17:245–250CAS 

    Google Scholar 
    Wasser SK, Brown L, Mailand C, Mondol S, Clark W, Laurie C et al. (2015) Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science (80-) 349:84–87CAS 

    Google Scholar 
    Wilkinson S, Wiener P, Archibald AL, Law A, Schnabel RD, McKay SD et al. (2011) Evaluation of approaches for identifying population informative markers from high density SNP chips. BMC genetics 12:1–14Wright S (1969) Evolution and the genetics of populationsWultsch C, Caragiulo A, Dias-Freedman I, Quigley H, Rabinowitz S, Amato G (2016) Genetic diversity and population genetic structure of Mesoamerican jaguars (Panthera onca): implications for conservation and management. PLoS One 11:162377
    Google Scholar  More

  • in

    Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling

    1.Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2014;4:176.PubMed 

    Google Scholar 
    2.Pogoreutz C, Voolstra CR, Rädecker N, Weis V, Cardenas A, Raina J-B. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular dialogues in the holobiont. CRC Press; 2020. p. 91–118.3.Stanley GD, van de Schootbrugge B. The evolution of the coral–algal symbiosis. In: van Oppen MJH, Lough JM, editors. Coral bleaching: patterns, processes, causes and consequences. Berlin, Heidelberg: Springer; 2009. p. 7–19.4.LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    5.Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    6.Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol. 2011;11:316.PubMed 
    PubMed Central 

    Google Scholar 
    7.Frankowiak K, Wang XT, Sigman DM, Gothmann AM, Kitahara MV, Mazur M, et al. Photosymbiosis and the expansion of shallow-water corals. Sci Adv. 2016;2:e1601122.PubMed 
    PubMed Central 

    Google Scholar 
    8.Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, et al. Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res. 2011;62:205–15.CAS 

    Google Scholar 
    9.Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC. et al. Coral reefs in the Anthropocene. Nature. 2017;546:82–90.CAS 
    PubMed 

    Google Scholar 
    10.Kleypas J, Allemand D, Anthony K, Baker AC, Beck MW, Hale LZ, et al. Designing a blueprint for coral reef survival. Biol Conserv. 2021;257:109107.
    Google Scholar 
    11.Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R. Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol. 2009;23:539–50.
    Google Scholar 
    12.Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–83.CAS 
    PubMed 

    Google Scholar 
    13.Voolstra CR, Suggett DJ, Peixoto RS, John E, Parkinson KM, Quigley CB, Silveira M, et al. Extending the natural adaptive capacity of coral holobionts. Nat Rev Earth Environ. 2021;2:747–62; https://doi.org/10.1038/s43017-021-00214-3.Article 

    Google Scholar 
    14.Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob Chang Biol. 2020;26:68–79.PubMed 

    Google Scholar 
    15.Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    16.Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 2019;27:678–89.CAS 
    PubMed 

    Google Scholar 
    17.Muscatine L, Porter JW. Reef Corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    18.Falkowski PG, Dubinsky Z, Muscatine L, Porter JW. Light and the bioenergetics of a symbiotic coral. Bioscience. 1984;34:705–9.CAS 

    Google Scholar 
    19.Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    20.Peng S-E, Chen C-S, Song Y-F, Huang H-T, Jiang P-L, Chen W-NU, et al. Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol Lett. 2012;8:434–7.PubMed 

    Google Scholar 
    21.Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Fine M, et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc R Soc B. 2020;287:20200049.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Roberty S, Béraud E, Grover R, Ferrier-Pagès C. Coral croductivity is co-limited by bicarbonate and ammonium availability. Microorganisms. 2020;8:640CAS 
    PubMed Central 

    Google Scholar 
    23.Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Cunning R, Muller EB, Gates RD, Nisbet RM. A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state. J Theor Biol. 2017;431:49–62.CAS 
    PubMed 

    Google Scholar 
    25.Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    26.Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang. 2012;3:160–4.
    Google Scholar 
    27.Houlbrèque F, Ferrier-Pagès C. Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc. 2009;84:1–17.PubMed 

    Google Scholar 
    28.Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS 
    PubMed 

    Google Scholar 
    29.Grover R, Maguer J-F, Allemand D, Ferrier-Pagès C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol. 2008;211:860–5.CAS 
    PubMed 

    Google Scholar 
    30.Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    32.Olson ND, Lesser MP. Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch Microbiol. 2013;195:853–9.CAS 
    PubMed 

    Google Scholar 
    33.Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    34.Moynihan MA, Goodkin NF, Morgan KM, Kho PYY, dos Santos AL, Lauro FM, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J. 2021; https://doi.org/10.1038/s41396-021-01054-1.35.Tilstra A, Pogoreutz C, Rädecker N, Ziegler M, Wild C, Voolstra CR. Relative diazotroph abundance in symbiotic Red Sea corals decreases with water depth. Front Mar Sci. 2019;6:372.
    Google Scholar 
    36.Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat MMD, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.
    Google Scholar 
    37.Rädecker N, Meyer FW, Bednarz VN, Cardini U, Wild C. Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Mar Ecol Prog Ser. 2014;511:297–302.
    Google Scholar 
    38.Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    39.Bednarz VN, van de Water JAJM, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C. Unravelling the importance of diazotrophy in corals – combined assessment of nitrogen assimilation, diazotrophic community and natural stable isotope signatures. Front Microbiol. 2021;12:1638.
    Google Scholar 
    40.Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    41.Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.CAS 
    PubMed 

    Google Scholar 
    42.Bednarz VN, van de Water JAJM, Rabouille S, Maguer J-F, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    43.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    44.Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio. 2017;8:e02058–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Petrou K, Nunn BL, Padula MP, Miller DJ, Nielsen DA. Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora. Sci Rep. 2021;11:19061.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Roth F, Rädecker N, Carvalho S, Duarte CM, Saderne V, Anton A, et al. High summer temperatures amplify functional differences between coral‐ and algae‐dominated reef communities. Ecology. 2021;102:e03226.PubMed 

    Google Scholar 
    47.Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836.PubMed 
    PubMed Central 

    Google Scholar 
    48.Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol. 2013;79:4759–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE. 2012;7:e42149.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.R Core Team. R: a language and environment for statistical computing computer program. Vienna, Austria: R Foundation for Statistical Computing; 2021.52.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    53.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:631–7.
    Google Scholar 
    55.Roesch LFW, Dobbler PT, Pylro VS, Kolaczkowski B, Drew JC, Triplett EW. pime: A package for discovery of novel differences among microbial communities. Mol Ecol Resour. 2020;20:415–28.CAS 
    PubMed 

    Google Scholar 
    56.Guo K. microbial: do 16s data analysis and generate figures. R package version 1.14.4. 2021.57.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    Google Scholar 
    58.Wang Q, Quensen JF, 3rd, Fish JA, Lee TK, Sun Y, Tiedje JM. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio. 2013;4:e00592–13.PubMed 
    PubMed Central 

    Google Scholar 
    59.Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO2 environment. Mol Ecol. 2021;30:5888–99 .60.Angel R, Nepel M, Panhölzl C, Schmidt H, Herbold CW, Eichorst SA, et al. Evaluation of primers targeting the diazotroph functional gene and development of NifMAP – a bioinformatics pipeline for analyzing nifH amplicon data. Front Microbiol. 2018;9:703.PubMed 
    PubMed Central 

    Google Scholar 
    61.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Frank IE, Turk-Kubo KA, Zehr JP. Rapid annotation of nifH gene sequences using classification and regression trees facilitates environmental functional gene analysis. Environ Microbiol Rep. 2016;8:905–16.PubMed 

    Google Scholar 
    63.Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.PubMed 
    PubMed Central 

    Google Scholar 
    64.Hardy RW, Holsten RD, Jackson EK, Burns RC. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968;43:1185–207.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Breitbarth E, Mills MM, Friedrichs G, LaRoche J. The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays: Bunsen coefficient and N2fixation. Limnol Oceanogr Methods 2004;2:282–8.
    Google Scholar 
    66.Zehr JP, Montoya JP. Measuring N2 fixation in the field. In: Bothe H, Ferguson SJ, Newton WE, editors. Biology of the nitrogen cycle. Elsevier; 2007. p. 193–205.67.Soper FM, Simon C, Jauss V. Measuring nitrogen fixation by the acetylene reduction assay (ARA): is 3 the magic ratio?. Biogeochemistry. 2021;152:345–51.CAS 

    Google Scholar 
    68.Lavy A, Eyal G, Neal B, Keren R, Loya Y, Ilan M. A quick, easy and non‐intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol Evol. 2015;6:521–31.
    Google Scholar 
    69.Wilson ST, Böttjer D, Church MJ, Karl DM. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol. 2012;78:6516–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Hoppe P, Cohen S, Meibom A. NanoSIMS: Technical aspects and applications in cosmochemistry and biological geochemistry. Geostand Geoanal Res. 2013;37:111–54.CAS 

    Google Scholar 
    71.Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2017;11:186–200.PubMed 

    Google Scholar 
    72.Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, Banc-Prandi G, et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat tolerant coral holobionts from the northern Red Sea. Proc Natl Acad Sci USA. 2021;118:e2023298118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science. 2004;305:997–1000.CAS 
    PubMed 

    Google Scholar 
    74.Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser. 2007;346:143–52.CAS 

    Google Scholar 
    75.Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:19460.PubMed 
    PubMed Central 

    Google Scholar 
    76.Rädecker N, Pogoreutz C, Ziegler M, Ashok A, Barreto MM, Chaidez V, et al. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa. Ecol Evol. 2017;7:6614–21.PubMed 
    PubMed Central 

    Google Scholar 
    77.Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol. 2006;72:3016–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH. The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol. 2015;24:3390–404.PubMed 

    Google Scholar 
    79.Wada N, Ishimochi M, Matsui T, Pollock FJ, Tang S-L, Ainsworth TD, et al. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci Rep. 2019;9:14662.PubMed 
    PubMed Central 

    Google Scholar 
    80.Udvardi M, Poole PS. Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol. 2013;64:781–805.CAS 
    PubMed 

    Google Scholar 
    81.Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 2012;6:1314–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.CAS 

    Google Scholar 
    83.Inomura K, Bragg J, Riemann L, Follows MJ. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE. 2018;13:e0208282.PubMed 
    PubMed Central 

    Google Scholar 
    84.Agawin NSR, Rabouille S, Veldhuis MJW, Servatius L, Hol S, van Overzee HMJ, et al. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr. 2007;52:2233–48.CAS 

    Google Scholar 
    85.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    86.Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–10.PubMed 
    PubMed Central 

    Google Scholar 
    87.Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci. 2017;4:171201.PubMed 
    PubMed Central 

    Google Scholar 
    88.Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O. Phototrophic microendoliths bloom during coral “white syndrome. Coral Reefs. 2006;25:577–81.
    Google Scholar 
    89.Fine M, Steindler L, Loya Y. Endolithic algae photoacclimate to increased irradiance during coral bleaching. Mar Freshw Res. 2004;55:115–21.CAS 

    Google Scholar 
    90.Meunier V, Bonnet S, Benavides M, Ravache A, Grosso O, Lambert C, et al. Diazotroph-derived nitrogen assimilation strategies differ by scleractinian coral species. Front Mar Sci. 2021;8:1018.
    Google Scholar  More

  • in

    In vitro interaction network of a synthetic gut bacterial community

    Probing directional interactions of OMM12 strains using spent culture mediaTo characterize directional interactions of the OMM12 consortium members, we chose an in vitro approach to explore how the bacterial strains alter their chemical environment by growth to late stationary phase.Growth of the individual monocultures in a rich culture medium that supports growth of all members (AF medium, Methods, Table S1) was monitored over time (Fig. S1; SI data table 1) and growth rates (Table S2) were determined. Strains were grouped by growth rate (GR) into fast growing strains (GR  > 1.5 h–1, E. faecalis KB1, B. animalis YL2, C. innocuum I46 and B. coccoides YL58), strains with intermediate growth rate (GR  > 1 h–1, M. intestinale YL27, F. plautii YL31, E. clostridioformis YL32, B. caecimuris I48 and L.reuteri I49) and slow growing strains (GR  More

  • in

    Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis

    1.Food and Agriculture Organization & World Health Organization. Health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO food and nutrition paper, 85, 2001).2.Barba-Vidal, E., Martín-Orúe, S. M. & Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets?. Animal 12, 2489–2498 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Bernardeau, M., Lehtinen, M. J., Forssten, S. D. & Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 54, 2570–2584 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Hong, H. A., Duc, L. H. & Cutting, S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813–835 (2005).CAS 
    PubMed 

    Google Scholar 
    5.Duc, L. H., Hong, H. A. & Cutting, S. M. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21, 4215–4224 (2003).CAS 

    Google Scholar 
    6.Leser, T. D., Knarreborg, A. & Worm, J. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J. Appl. Microbiol. 104, 1025–1033 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214–220 (2011).PubMed 

    Google Scholar 
    8.Prieto, M. L. et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs 10, 2280–2299 (2012).CAS 
    PubMed 

    Google Scholar 
    9.Prieto, M. L. et al. In vitro assessment of marine Bacillus for use as livestock probiotics. Mar. Drugs 12, 2422–2445 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    10.Prieto, M. L. et al. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs. PLoS ONE 9, e88599 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.National Research Council. Nutrient Requirements of Swine (The National Academies Press, 2012).
    12.Berends, B. R., Urlings, H. A. P., Snijders, J. M. A. & Van Knapen, F. Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs. Int. J. Food Microbiol. 30, 37–53. https://doi.org/10.1016/0168-1605(96)00990-7 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Miller, M. F., Carr, M. A., Bawcom, D. B., Ramsey, C. B. & Thompson, L. D. Microbiology of pork carcasses from pigs with differing origins and feed withdrawal times†. J. Food Prot. 60, 242–245. https://doi.org/10.4315/0362-028x-60.3.242 (1997).Article 
    PubMed 

    Google Scholar 
    14.Adewole, D. I., Kim, I. H. & Nyachoti, C. M. Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—A review. Asian-Austr. J. Anim. Sci. 29, 909–924 (2016).CAS 

    Google Scholar 
    15.Department of Agriculture and Food and Rural Development. European communities (pig carcase (grading)) (amendment) regulations. (S.I. No. 413/2001, 2001).16.Gardiner, G. E. et al. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70, 1895–1906 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.McCormack, U. M. et al. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83, e00380-e417 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Buzoianu, S. G. et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol. 78, 4217–4224 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).20.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).24.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar 
    25.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    26.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Jadamus, A., Vahjen, W. & Simon, O. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch. Tierernahr. 54, 1–17 (2001).CAS 
    PubMed 

    Google Scholar 
    28.Duc, L. H., Hong, H. A., Barbosa, T. M., Henriques, A. O. & Cutting, S. M. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70, 2161–2171 (2004).ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Tam, N. K. M. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Casula, G. & Cutting, S. M. Bacillus Probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68, 2344–2352 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kidder, D. E. & Manners, M. J. Digestion in the pig. (Scientechnica, 1978).32.Crespo-Piazuelo, D. et al. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. https://doi.org/10.1017/S0007114521001203 (2021).Article 
    PubMed 

    Google Scholar 
    33.Zhou, H., Wang, C., Ye, J., Chen, H. & Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86, 790–799 (2015).CAS 
    PubMed 

    Google Scholar 
    34.Kim, S. J., Kwon, C. H., Park, B. C., Lee, C. Y. & Han, J. H. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J. Anim. Sci. Technol. 57, 4 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pérez, V. G. et al. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89, 414–425 (2011).PubMed 

    Google Scholar 
    36.Ventrella, D. et al. The biomedical piglet: establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 13, 23 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thorn, C. E. Hematology of the pig. in Schalm’s Veterinary Hematology, 6th edition (eds. Weiss, D. J. & Wardrop, K. J.) 843–851 (2010). https://doi.org/10.1111/j.1939-165X.2011.00324.x38.Morrow-Tesch, J. L., McGlone, J. J. & Salak-Johnson, J. L. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72, 2599–2609 (1994).CAS 
    PubMed 

    Google Scholar 
    39.Schmid, L., Heit, W. & Flury, R. Agranulocytosis associated with semisynthetic penicillins and cephalosporins. Report of 7 cases. Blut 48, 11–18 (1984).CAS 
    PubMed 

    Google Scholar 
    40.Kloubert, V. et al. Influence of zinc supplementation on immune parameters in weaned pigs. J. Trace Elem. Med. Biol. 49, 231–240 (2018).CAS 
    PubMed 

    Google Scholar 
    41.The European Agency for the Evaluation of Medicinal Products (EMEA). Commitee for veterinary medicinal products: Apramycin. (1999).42.Frese, S. A., Parker, K., Calvert, C. C. & Mills, D. A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3, 28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    43.Slifierz, M. J., Friendship, R. M. & Weese, J. S. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15, 184 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    44.Ivarsson, E., Roos, S., Liu, H. Y. & Lindberg, J. E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal 8, 1777–1787 (2014).CAS 
    PubMed 

    Google Scholar 
    45.Pajarillo, E. A. B., Chae, J.-P., Balolong, M. P., Bum Kim, H. & Kang, D.-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60, 140–146 (2014).CAS 

    Google Scholar 
    46.Yu, T. et al. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Front. Microbiol. 8, 1–9 (2017).
    Google Scholar 
    47.Shen, J. et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 111, 2123–2134 (2014).CAS 
    PubMed 

    Google Scholar 
    48.Rattigan, R., Sweeney, T., Vigors, S., Rajauria, G. & O’Doherty, J. V. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 104, 1471–1483 (2020).CAS 

    Google Scholar 
    49.López-Colom, P., Estellé, J., Bonet, J., Coma, J. & Martín-Orúe, S. M. Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota. Animals 10, 242 (2020).PubMed Central 

    Google Scholar 
    50.Wei, X. et al. ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail. Microorganisms 8, 146 (2020).CAS 
    PubMed Central 

    Google Scholar 
    51.Vahjen, W., Pieper, R. & Zentek, J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89, 2430–2439 (2011).CAS 
    PubMed 

    Google Scholar 
    52.Pieper, R., Vahjen, W., Neumann, K., Van Kessel, A. G. & Zentek, J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl) 96, 825–833 (2012).CAS 

    Google Scholar 
    53.Yu, T. et al. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    54.Xia, T. et al. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 8, 64878–64891 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Poulsen, A.-S.R. et al. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE 13, e0207382 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    56.Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE 15, e0229204 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    58.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Ryden, R. & Moore, B. J. The in vitro activity of apramycin, a new aminocyditol antibiotic. J. Antimicrob. Chemother. 3, 609–613 (1977).CAS 
    PubMed 

    Google Scholar 
    60.Jones, N., Ray, B., Ranjit, K. T. & Manna, A. C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008).CAS 
    PubMed 

    Google Scholar 
    61.Gardiner, G. E., Metzler-Zebeli, B. U. & Lawlor, P. G. Impact of intestinal microbiota on growth and feed efficiency in pigs: A review. Microorganisms 8, 1886 (2020).CAS 
    PubMed Central 

    Google Scholar 
    62.Ghanbari, M., Klose, V., Crispie, F. & Cotter, P. D. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci. Rep. 9, 4062 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Zeineldin, M., Aldridge, B. & Lowe, J. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10, 1035 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    64.On, S. L. W. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9, 405–422 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Bergström, S., Garon, C. F., Barbour, A. G. & MacDougall, J. Extrachromosomal elements of spirochetes. Res. Microbiol. 143, 623–628 (1992).PubMed 

    Google Scholar 
    66.Oh, J. K. et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Anim. Sci. J. 91, e13418 (2020).CAS 
    PubMed 

    Google Scholar 
    67.Ruiz, V. L. A. et al. Case–control study of pathogens involved in piglet diarrhea. BMC Res. Notes 9, 22 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    68.Yang, Q. et al. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. Microbiologyopen 8, e923 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    69.Wang, S. et al. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 15, 239 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    70.Looft, T. et al. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Quan, J. et al. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci. Rep. 8, 4536 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Ramayo-Caldas, Y. et al. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. 10, 2973–2977 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    73.Che, L. et al. Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model. J. Nutr. Biochem. 74, 108246 (2019).CAS 
    PubMed 

    Google Scholar 
    74.Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).CAS 
    PubMed 

    Google Scholar 
    75.Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 47, 397–403 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Roediger, W. E. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet (London, England) 2, 712–715 (1980).CAS 

    Google Scholar 
    77.Jewell, K. A., Scott, J. J., Adams, S. M. & Suen, G. A phylogenetic analysis of the phylum Fibrobacteres. Syst. Appl. Microbiol. 36, 376–382. https://doi.org/10.1016/j.syapm.2013.04.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Abdul Rahman, N. et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front. Microbiol. 6, 1469–1469. https://doi.org/10.3389/fmicb.2015.01469 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling

    1.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Google Scholar 
    2.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).CAS 

    Google Scholar 
    3.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
    Google Scholar 
    4.Verma, M. et al. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences 11, 2185–2200 (2014).
    Google Scholar 
    5.MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021).CAS 

    Google Scholar 
    6.Wang, L., Manzoni, S., Ravi, S., Riveros-Iregui, D. & Caylor, K. Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere 6, 1–27 (2015).
    Google Scholar 
    7.Oleson, K. W. et al. Technical Description of the Community Land Model (CLM). Technical Note NCAR/TN-461+ STR (NCAR, 2004).8.Bonan, G. B. & Levis, S. Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J. Clim. 19, 2290–2301 (2006).
    Google Scholar 
    9.Brovkin, V., Ganopolski, A. & Svirezhev, Y. A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol. Modell. 101, 251–261 (1997).
    Google Scholar 
    10.Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628 (1996).CAS 

    Google Scholar 
    11.Haxeltine, A. & Prentice, I. C. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10, 693–709 (1996).CAS 

    Google Scholar 
    12.Sitch, S. The Role of Vegetation Dynamics in the Control of Atmospheric CO2 Content. Dissertation, Lund Univ. (2000).13.Levis, S., Bonan, G. B., Vertenstein, M. & Oleson, K. W. The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide. NCAR Technical Note TN-459+ IA 50 (NCAR, 2004).14.Woodward, F. I., Lomas, M. R. & Betts, R. A. Vegetation-climate feedbacks in a greenhouse world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 29–39 (1998).
    Google Scholar 
    15.Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).
    Google Scholar 
    16.Turner, D. P. et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102, 282–292 (2006).
    Google Scholar 
    17.Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281 (2004).
    Google Scholar 
    18.Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
    Google Scholar 
    19.Biederman, J. A. et al. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob. Change Biol. 22, 1867–1879 (2016).
    Google Scholar 
    20.Wilcox, B. P., Sorice, M. G. & Young, M. H. Dryland ecohydrology in the Anthropocene: taking stock of human–ecological interactions. Geogr. Compass 5, 112–127 (2011).21.Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Change Biol. 23, 4204–4221 (2017).
    Google Scholar 
    22.Lauenroth, W. K. & Bradford, J. B. Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology 2, 173–181 (2009).
    Google Scholar 
    23.Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).
    Google Scholar 
    24.Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 

    Google Scholar 
    25.Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
    Google Scholar 
    26.Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K. & Palmquist, K. A. Robust ecological drought projections for drylands in the 21st century. Glob. Change Biol. 26, 3906–3919 (2020).
    Google Scholar 
    27.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
    Google Scholar 
    28.Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).
    Google Scholar 
    29.Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).CAS 

    Google Scholar 
    30.Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).
    Google Scholar 
    31.Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).CAS 

    Google Scholar 
    32.Joiner, J. & Yoshida, Y. Satellite-based reflectances capture large fraction of variability in global gross primary production (GPP) at weekly time scales. Agric. For. Meteorol. 291, 108092 (2020).
    Google Scholar 
    33.Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).CAS 

    Google Scholar 
    34.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. Biogeosci. 124, 3281–3306 (2019).
    Google Scholar 
    35.MacBean, N. et al. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Sci. Rep. 8, 1973 (2018).
    Google Scholar 
    36.Xiao, J. et al. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agric. For. Meteorol. 151, 60–69 (2011).
    Google Scholar 
    37.Ropelewski, C. F. & Halpert, M. S. Global and REGIONAL SCALE PRECIPITATION PATTERNS ASSociated with the El Niño/Southern Oscillation. Mon. Wea. Rev. 115, 1606–1626 (1987).
    Google Scholar 
    38.Trenberth, K. E. The definition of El Niño. Bull. Amer. Meteor. Soc. 78, 2771–2778 (1997).
    Google Scholar 
    39.Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: so strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).40.Kogan, F. & Guo, W. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int. J. Remote Sens. 38, 161–178 (2017).
    Google Scholar 
    41.Berntson, G. G., Lozano, D. L. & Chen, Y. J. Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology 42, 246–252 (2005).
    Google Scholar 
    42.von Neumann, J., Kent, R. H., Bellinson, H. R. & Hart, B. I. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).
    Google Scholar 
    43.Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J. & Villegas, J. C. Organization of complexity in water limited ecohydrology. Ecohydrology 5, 184–199 (2012).
    Google Scholar 
    44.IPCC 2013. Climate Change 2013 – The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).45.Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).46.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, nclimate3114 (2016).
    Google Scholar 
    47.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, art129 (2015).
    Google Scholar 
    48.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 

    Google Scholar 
    49.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
    Google Scholar 
    50.Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
    Google Scholar 
    51.Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS 

    Google Scholar 
    52.MacDonald, G. M. Water, climate change, and sustainability in the Southwest. Proc. Natl Acad. Sci. USA 107, 21256–21262 (2010).CAS 

    Google Scholar 
    53.van Dijk, A. I. J. M. et al. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).
    Google Scholar 
    54.Collier, N. et al. The International Land Model Benchmarking (ILAMB) System: design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).
    Google Scholar 
    55.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).57.Kuhn, M. caret: Classification and regression training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021).58.Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13C1.006 (NASA EOSDIS Land Processes DAAC, 2015).59.Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster (2021).60.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    61.Climatic Research Unit (University of East Anglia) & Met Office. CRU TS Version 4.04. http://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/ (CRU, 2020).62.Hijmans, R. J. geosphere: Spherical trigonometry. Package version 1.5-10. https://CRAN.R-project.org/package=geosphere (2019).63.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    64.Barnes, M. L. et al. Vegetation productivity responds to sub-annual climate conditions across semiarid biomes. Ecosphere 7, n/a–n/a (2016).
    Google Scholar 
    65.Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27 (2012).
    Google Scholar 
    66.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696–1718 (2010).
    Google Scholar 
    67.Beguería, S. & Vicente-Serrano, S. M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. https://CRAN.R-project.org/package=SPEI (2017).68.Beguería, S., Vicente-Serrano, S. M. & Angulo-Martínez, M. A Multiscalar Global Drought Dataset: the SPEI base: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 91, 1351–1356 (2010).
    Google Scholar 
    69.Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11, 1033–1043 (2010).
    Google Scholar 
    70.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
    Google Scholar 
    71.Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
    Google Scholar 
    72.Sörensen, L. A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands. Dataset based on spatial analysis between WWF terrestrial ecoregions (WWF-US, 2004) and aridity zones https://www.unep-wcmc.org/resources-and-data/a-spatial-analysis-approach-to-the-global-delineation-of-dryland-areas-of-relevance-to-the-cbd-programme-of-work-on-dry-and-subhumid-lands (CRU/UEA; UNE, 2007). Data accessed: 6/27/2021.73.Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).
    Google Scholar 
    74.Freitag, D. Information Extraction from HTML: Application of a General Machine Learning Approach, 517–523 (AAAI/IAAI, 1998).75.Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. & Van Der Laan, M. J. Survival ensembles. Biostatistics 7, 355–373 (2006).
    Google Scholar 
    76.Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307 (2008).
    Google Scholar 
    77.Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).
    Google Scholar 
    78.Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD17A2H.006 (NASA EOSDIS Land Processes DAAC, 2015).79.Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).CAS 

    Google Scholar 
    80.Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).
    Google Scholar 
    81.Von Neumann, J., Kent, R., Bellinson, H. & Hart, B. The mean square successive difference. Ann. Math. Stat. 12, 153–162 (1941).82.Revelle, W. R. psych: Procedures for personality and psychological research. R package version 2.1.6. https://CRAN.R-project.org/package=psych (2021).83.Farella, M. Code and data for ‘Improved dryland carbon flux predictions with explicit consideration of water–carbon coupling’. zenodo https://doi.org/10.5281/ZENODO.5540015 (2021). More

  • in

    Ecological changes have driven biotic exchanges across the Indian Ocean

    1.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267 (2013).ADS 

    Google Scholar 
    2.Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).ADS 
    PubMed 

    Google Scholar 
    3.Ashwal, L. D., Wiedenbeck, M. & Torsvik, T. H. Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius. Nat. Commun. 8, 14086 (2017).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    4.Agnarsson, I. & Kuntner, M. The Generation of a biodiversity hotspot: Biogeography and phylogeography of the Western Indian Ocean islands. In Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems (ed. Anamthawat-Jónsson, K.) 33–82 (InTech, 2012).
    Google Scholar 
    5.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012).ADS 

    Google Scholar 
    6.Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33 (2013).ADS 

    Google Scholar 
    7.Aitchison, J. C., Ali, J. R. & Davis, A. M. When and where did India and Asia collide?. JGR https://doi.org/10.1029/2006JB004706 (2007).Article 

    Google Scholar 
    8.Chatterjee, S. & Scotese, C. R. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. In New Aspects of Mesozoic Biodiversity (ed. Bandyopadhyay, S.) (Springer-Verlag, 2010).
    Google Scholar 
    9.Gourlan, A. T., Meynadier, L. & Allègre, C. J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence. Earth Planet. Sci. Lett. 267, 353–364 (2008).ADS 
    CAS 

    Google Scholar 
    10.Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).ADS 

    Google Scholar 
    11.Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).ADS 
    CAS 

    Google Scholar 
    12.Plummer, Ph. S. & Belle, E. R. Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment. Geol. 96, 73–91 (1995).ADS 

    Google Scholar 
    13.Ashalatha, B., Subrahmanyam, C. & Singh, R. N. Origin and compensation of Chagos-Laccadive ridge, Indian ocean, from admittance analysis of gravity and bathymetry data. Earth Planet. Sci. Lett. 105, 47–54 (1991).ADS 

    Google Scholar 
    14.de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).PubMed 

    Google Scholar 
    15.Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed 

    Google Scholar 
    16.Verma, O., Khosla, A., Goin, F. J. & Kaur, J. Historical biogeography of the late cretaceous vertebrates of India: Comparison of geophysical and paleontological data. New Mex. Mus. Nat. Hist. Sci. Bull. 71, 317–330 (2016).
    Google Scholar 
    17.Krause, D. W. Washed up in Madagascar. Nature 463, 613 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    18.Reeves, C. & De Wit, M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12, 272–280 (2000).ADS 

    Google Scholar 
    19.Pillon, Y. & Buerki, S. How old are island endemics?. Biol. J. Linn. Soc. 121, 469–474 (2017).
    Google Scholar 
    20.Thornton, I. W. B. et al. How important were stepping stones in the colonization of Krakatau?. Biol. J. Linn. Soc. 77, 275–317 (2002).
    Google Scholar 
    21.Crisp, M. D., Trewick, S. A. & Cook, L. G. Hypothesis testing in biogeography. Trends Ecol. Evol. 26, 66–72 (2011).PubMed 

    Google Scholar 
    22.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    23.Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).PubMed 
    CAS 

    Google Scholar 
    24.Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R. R. Evolutionary rates and HBV: Issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).PubMed 

    Google Scholar 
    25.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772–772 (2012).CAS 

    Google Scholar 
    26.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    27.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).
    Google Scholar 
    28.Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    29.Raftery, A. et al. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian Stat. 8, 1–45 (2007).
    Google Scholar 
    30.Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).CAS 

    Google Scholar 
    31.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780 (2013).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Erpenbeck, D. et al. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches: Case studies with diploblast LSU. J. Mol. Evol. 64, 543–557 (2007).ADS 
    PubMed 
    CAS 

    Google Scholar 
    33.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 2010 1–8 (2010).34.Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).PubMed 

    Google Scholar 
    35.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 19694 (2013).
    Google Scholar 
    36.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed 

    Google Scholar 
    37.Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    38.Warren, B. H., Strasberg, D., Bruggemann, J. H., Prys-Jones, R. P. & Thébaud, C. Why does the biota of the Madagascar region have such a strong Asiatic flavour?. Cladistics 26, 526–538 (2010).
    Google Scholar 
    39.Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bull. 107, 1164–1191 (1995).
    Google Scholar 
    40.Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 37, 405–431 (2006).
    Google Scholar 
    41.Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. PNAS 109, 5358–5363 (2012).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    42.Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: Refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).
    Google Scholar 
    43.Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).
    Google Scholar 
    44.Hay, W. W. Cretaceous oceans and ocean modeling. In Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance (eds Hu, X. et al.) 244–271 (Sepm Society for Sedimentary, 2009).
    Google Scholar 
    45.Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc. R. Soc. Lond. B 271, 1325–1330 (2004).
    Google Scholar 
    46.Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234 (2018).
    Google Scholar 
    47.Speijer, R. P. & Morsi, A.-M.M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum. Geology 30, 23–26 (2002).ADS 

    Google Scholar 
    48.McInerney, F. A. & Wing, S. L. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).ADS 
    CAS 

    Google Scholar 
    49.Henehan, M. J. et al. Revisiting the middle eocene climatic optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes. Palaeogeogr. Palaeoclimatol. 35, e2019PA003713 (2020).
    Google Scholar 
    50.Legendre, S. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: Structures, milieux et évolution. Münchner Geowiss. Abh. 16, 1–110 (1989).
    Google Scholar 
    51.Hartenberger, J.-L. Palaeontology: An Asian Grande Coupure. Nature 394, 321 (1998).ADS 
    CAS 

    Google Scholar 
    52.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    PubMed 
    CAS 

    Google Scholar 
    53.Lohman, D. J. et al. Biogeography of the Indo-Australian Archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).
    Google Scholar 
    54.Fernández, D. A., Palazzesi, L., González Estebenet, M. S., Tellería, M. C. & Barreda, V. D. Impact of mid Eocene greenhouse warming on America’s southernmost floras. Commun. Biol. 4, 1–9 (2021).
    Google Scholar 
    55.Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000).ADS 
    PubMed 
    CAS 

    Google Scholar 
    56.Masters, J. C. et al. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 48, 492–510 (2021).
    Google Scholar 
    57.Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    58.Ohba, M., Samonds, K. E., LaFleur, M., Ali, J. R. & Godfrey, L. R. Madagascar’s climate at the K/P boundary and its impact on the island’s biotic suite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 688–695 (2016).
    Google Scholar 
    59.Godfrey, L. R. et al. Mid-Cenozoic climate change, extinction, and faunal turnover in Madagascar, and their bearing on the evolution of lemurs. BMC Evol. Biol. 20, 97 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    60.Behrensmeyer, A. K. et al. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (University of Chicago Press, 1992).
    Google Scholar 
    61.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166 (2008).ADS 

    Google Scholar 
    62.Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P. & Li, J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    63.Le Houedec, S., Meynadier, L., Cogné, J.-P., Allègre, C. J. & Gourlan, A. T. Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 Ma. Geochem. Geophys. 13, 6. https://doi.org/10.1029/2011GC003963 (2012).Article 
    CAS 

    Google Scholar 
    64.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697 (2009).PubMed 

    Google Scholar 
    65.Kayaalp, P., Stevens, M. I. & Schwarz, M. P. ‘Back to Africa’: Increased taxon sampling confirms a problematic Australia-to-Africa bee dispersal event in the Eocene. Syst. Entomol. 42, 724–733 (2017).
    Google Scholar 
    66.Gillespie, R. G. et al. Long-distance dispersal: A framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).PubMed 

    Google Scholar  More