1.World Health Organization. Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (2020).2.Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).PubMed
Google Scholar
3.Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
4.Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).PubMed
PubMed Central
Google Scholar
5.Gubler, D. J. Dengue, urbanization and globalization: The unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).
Google Scholar
6.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).
Google Scholar
7.Zohdy, S., Schwartz, T. S. & Oaks, J. R. The coevolution effect as a driver of spillover. Trends Parasitol. 35, 399–408 (2019).PubMed
Google Scholar
8.Rochlin, I., Faraji, A., Ninivaggi, D. V., Barker, C. M. & Kilpatrick, A. M. Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 7, 13604 (2016).ADS
PubMed
PubMed Central
Google Scholar
9.Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS
PubMed
PubMed Central
Google Scholar
10.Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).PubMed
Google Scholar
11.Rochlin, I., Harding, K., Ginsberg, H. S. & Campbell, S. R. Comparative analysis of distribution and abundance of West Nile and eastern equine encephalomyelitis virus vectors in Suffolk County, New York, using human population density and land use/cover data. J. Med. Entomol. 45, 563–571 (2008).CAS
PubMed
Google Scholar
12.Monaghan, A. J. et al. Consensus and uncertainty in the geographic range of Aedes aegypti and Aedes albopictus in the contiguous United States: Multi-model assessment and synthesis. PLoS Comput. Biol. 15, 1–19 (2019).
Google Scholar
13.Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, e0007864 (2020).PubMed
PubMed Central
Google Scholar
14.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).PubMed
PubMed Central
Google Scholar
15.Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).ADS
CAS
PubMed
Google Scholar
16.Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).ADS
CAS
PubMed
Google Scholar
17.Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).ADS
CAS
PubMed
Google Scholar
18.Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS
CAS
PubMed
Google Scholar
19.Turner, W. R., Oppenheimer, M. & Wilcove, D. S. A force to fight global warming. Nature 462, 278–279 (2009).ADS
CAS
PubMed
Google Scholar
20.United Nations. World population prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).21.Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci. Rep. 10, 18018 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
22.Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).ADS
PubMed
PubMed Central
Google Scholar
23.Pernat, N., Kampen, H., Jeschke, J. M. & Werner, D. Buzzing homes: Using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects 12, 1–13 (2021).
Google Scholar
24.Blosser, E. M. & Burkett-cadena, N. D. Acta Tropica Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).PubMed
Google Scholar
25.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
26.Sun, K. et al. Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015–2016 ZIKV epidemic. BMC Med. 16, 195 (2018).PubMed
PubMed Central
Google Scholar
27.Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570-3579.e6 (2020).CAS
PubMed
PubMed Central
Google Scholar
28.Wilke, A. B. B. et al. Mosquito adaptation to the extreme habitats of urban construction sites. Trends Parasitol. 35, 607–614 (2019).PubMed
Google Scholar
29.Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).PubMed
PubMed Central
Google Scholar
30.Mutebi, J.-P. et al. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg. Infect. Dis. 24, 808–810 (2018).PubMed Central
Google Scholar
31.Little, E. et al. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J. Med. Entomol. 54, 1183–1192 (2017).CAS
PubMed
PubMed Central
Google Scholar
32.Burkett-Cadena, N. D., McClure, C. J. W., Estep, L. K. & Eubanks, M. D. What drives the spatial distribution of mosquitoes?. Ecosphere 4, 1–16 (2013).
Google Scholar
33.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).PubMed
PubMed Central
Google Scholar
34.Dowling, Z. et al. Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in Suburban Washington, DC. EcoHealth 10, 36–47 (2013).PubMed
Google Scholar
35.Scavo, N. A., Barrera, R., Reyes-Torres, L. J. & Yee, D. A. Lower socioeconomic status neighborhoods in Puerto Rico have more diverse mosquito communities and higher Aedes aegypti abundance. J. Urban Ecol. 7, 1–11 (2021).
Google Scholar
36.Trewin, B. J. et al. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 11, e0005848 (2017).PubMed
PubMed Central
Google Scholar
37.Multini, L. C., de Souza, A. L. & da S., Marrelli, M. T. & Wilke, A. B. B.,. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).CAS
PubMed
PubMed Central
Google Scholar
38.Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).PubMed
Google Scholar
39.Benelli, G., Wilke, A. B. B. & Beier, J. C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 36, 942–943 (2020).PubMed
Google Scholar
40.Benelli, G. & Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 115, 1747–1754 (2016).PubMed
Google Scholar
41.Danauskas, J. X., Ehrenkranz, N. J., Davies, J. E. & Pond, W. L. Arboviruses and human disease in South Florida. Am. J. Trop. Med. Hyg. 15, 205–210 (1966).PubMed
Google Scholar
42.Gill, J., Stark, L. M. & Clark, G. G. Dengue surveillance in Florida, 1997–98. Emerg. Infect. Dis. 6, 30–35 (2000).CAS
PubMed
PubMed Central
Google Scholar
43.Rey, J. Dengue in Florida (USA). Insects 5, 991–1000 (2014).PubMed
PubMed Central
Google Scholar
44.Vitek, C. J., Richards, S. L., Mores, C. N., Day, J. F. & Lord, C. C. Arbovirus transmission by Culex nigripalpus in Florida, 2005. J. Med. Entomol. 45, 483–493 (2008).CAS
PubMed
Google Scholar
45.Messenger, A. M. et al. Serological evidence of ongoing transmission of dengue virus in permanent residents of Key West, Florida. Vector Borne Zoonotic Dis. 14, 783–787 (2014).PubMed
Google Scholar
46.Patterson, K. D. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc. Sci. Med. 34, 855–865 (1992).CAS
PubMed
Google Scholar
47.Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
48.Likos, A. et al. Local mosquito-borne transmission of zika virus—Miami-Dade and Broward Counties, Florida, June–August 2016. Morb. Mortal. Wkly. Rep. 65, 1032–1038 (2016).
Google Scholar
49.Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/week52arbovirusreport-12-31-16.pdf (2016).50.Florida Department of Health. Available at: http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)51.Wilke, A. B. B. et al. Local conditions favor dengue transmission in the contiguous United States. Entomol. Gen. 41, 523–529 (2021).
Google Scholar
52.Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).PubMed
PubMed Central
Google Scholar
53.Honório, N. A., Wiggins, K., Câmara, D. C. P., Eastmond, B. & Alto, B. W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 12, 1–16 (2018).
Google Scholar
54.Richards, S. L., Anderson, S. L. & Lord, C. C. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida. Trop. Med. Int. Heal. 19, 610–617 (2014).
Google Scholar
55.Hribar, L. J., Smith, J. M., Vlach, J. J. & Verna, T. N. Survey of container-breeding mosquitoes from the Florida Keys, Monroe County, Florida. J. Am. Mosq. Control Assoc. 17, 245–248 (2001).CAS
PubMed
Google Scholar
56.United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. Available at: http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).57.Miami-Dade County Building Permits. Available at, http://www.miamidade.gov/permits/.58.Wilke, A. B. B., Carvajal, A., Vasquez, C., Petrie, W. D. & Beier, J. C. Urban farms in Miami-Dade County, Florida have favorable environments for vector mosquitoes. PLoS ONE 15, e0230825 (2020).CAS
PubMed
PubMed Central
Google Scholar
59.Reba, M., Reitsma, F. & Seto, K. C. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci. Data 3, 1–16 (2016).
Google Scholar
60.Ceretti-Júnior, W. et al. Mosquito faunal survey in a central park of the city of São Paulo, Brazil. J. Am. Mosq. Control Assoc. 31, 172–176 (2015).PubMed
Google Scholar
61.Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
62.Zahouli, J. B. Z. et al. Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d’Ivoire. PLoS ONE 12, e0189082 (2017).PubMed
PubMed Central
Google Scholar
63.Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).PubMed
PubMed Central
Google Scholar
64.Estallo, E. L. et al. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med. Vet. Entomol. 32, 451–461 (2018).CAS
PubMed
Google Scholar
65.Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).PubMed
PubMed Central
Google Scholar
66.Cunha, M. S. et al. Epizootics due to yellow fever virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 5474 (2019).ADS
PubMed
PubMed Central
Google Scholar
67.Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).PubMed
PubMed Central
Google Scholar
68.Poletti, P. et al. Transmission potential of chikungunya virus and control measures: The case of Italy. PLoS ONE 6, e18860 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
69.Wilk-da-Silva, R. & de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B.,. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).PubMed
PubMed Central
Google Scholar
70.Wilke, A. B. B. et al. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE 15, e0230748 (2020).CAS
PubMed
PubMed Central
Google Scholar
71.Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: Mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).CAS
PubMed
PubMed Central
Google Scholar
72.Wilke, A. B. B., Vasquez, C., Petrie, W. & Beier, J. C. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE 14, 2 (2019).
Google Scholar
73.Kothera, L., Godsey, M., Mutebi, J. P. & Savage, H. M. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J. Med. Entomol. 47, 805–813 (2010).PubMed
Google Scholar
74.World Health Organization. Handbook for Integrated Vector Management (World Health Organization, 2012).
Google Scholar
75.Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding Integrated Vector Management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).PubMed
PubMed Central
Google Scholar
76.Souza, R. L. et al. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil. Parasit. Vectors 10, 1–6 (2017).
Google Scholar
77.Wilke, A. B. B., Beier, J. C. & Benelli, G. Transgenic mosquitoes—Fact or fiction?. Trends Parasitol. 34, 456–465 (2018).PubMed
Google Scholar
78.Beier, J. C., Wilke, A. B. B. & Benelli, G. Newer approaches for malaria vector control and challenges of outdoor transmission. Towards Malaria Elimination – A Leap Forward https://doi.org/10.5772/intechopen.75513 (2018).Article
Google Scholar
79.World Health Organization. Tenth Meeting of the WHO Vector Control Advisory Group. (2019).80.Wilke, A. B. B. et al. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE 16, e0246046 (2021).CAS
PubMed
PubMed Central
Google Scholar
81.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).ADS
CAS
PubMed
Google Scholar
82.Rifat, S. A. & Al & Liu, W.,. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 11, 2493 (2019).ADS
Google Scholar
83.Fuller, D. O. & Wang, Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the southeastern saline Everglades wetlands. Wetlands 34, 67–77 (2014).
Google Scholar
84.Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County. Florida. PLoS One 14, e0212688 (2019).CAS
PubMed
Google Scholar
85.Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).86.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 1–15 (2017) DOI:https://doi.org/10.1002/9781118445112.stat07841.87.Alencar, J. et al. Culicidae community composition and temporal dynamics in Guapiaçu ecological reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS ONE 10, 1–16 (2015).
Google Scholar
88.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
Google Scholar
89.Hammer, Ø., Harper, D. A. T. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Google Scholar
90.Ryan, P. A., Lyons, S. A., Alsemgeest, D., Thomas, P. & Kay, B. H. Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: An example using light trap data, in Redland Shire, southeastern Queensland, Australia. J. Med. Entomol. 41, 1143–1156 (2004).PubMed
Google Scholar
91.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
Google Scholar
92.Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).PubMed
Google Scholar
93.Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 33, 107–112 (1973).
Google Scholar More