Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management
1.Sibomana, M. S., Workneh, T. S. & Audain, K. A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Secur. 8, 389–404 (2016).
Google Scholar
2.Ochilo, W. N. et al. Characteristics and production constraints of smallholder tomato production in Kenya. Sci. Afr. 2, e00014 (2019).
Google Scholar
3.Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Sec. 14, 31–37 (2017).
Google Scholar
4.Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).PubMed
Google Scholar
5.Brévault, T., Sylla, S., Diatte, M., Bernadas, G. & Diarra, K. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A new threat to tomato production in sub-Saharan Africa. African Entomol. 22, 441–444 (2014).
Google Scholar
6.Guedes, R. N. C. & Picanço, M. C. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull. 42, 211–216 (2012).
Google Scholar
7.Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).
Google Scholar
8.Abbes, K., Harbi, A. & Chermiti, B. The tomato leafminer Tuta absoluta (Meyrick) in Tunisia: Current status and management strategies. EPPO Bull. 42, 226–233 (2012).
Google Scholar
9.Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).PubMed
CAS
Google Scholar
10.Niassy, S., Ekesi, S., Migiro, L. & Otieno, W. Sustainable management of invasive pests in Africa. (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-41083-4.11.Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–112 (2018).
Google Scholar
12.Lietti, M. M. M., Botto, E. & Alzogaray, R. A. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 34, 113–119 (2005).
Google Scholar
13.Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).
Google Scholar
14.APRD. Arthropod Pesticide Resistance Database, Michigan State University. https://www.pesticideresistance.org/display.php?pa.15.Lichtenberg, E. & Zimmerman, R. Adverse health experiences, environmental attitudes, and pesticide usage behavior of farm operators. Risk Anal. 19, 283–294 (1999).PubMed
CAS
Google Scholar
16.Soares, M. A. et al. Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta. J. Pest Sci. 92, 1433–1443 (2019).
Google Scholar
17.Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).
Google Scholar
18.Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. 1–11 (2020). https://doi.org/10.1111/jen.12812.19.Agbessenou, A. et al. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 10, 22195 (2020).ADS
PubMed
PubMed Central
CAS
Google Scholar
20.Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).PubMed
CAS
Google Scholar
21.Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 366, 1987–1998 (2011).22.Shang, Y., Feng, P. & Wang, C. Fungi that infect insects: Altering host behavior and beyond. PLoS Pathog. 11, 1–6 (2015).
Google Scholar
23.Bayissa, W. et al. Selection of fungal isolates for virulence against three aphid pest species of crucifers and okra. J. Pest Sci. 90, 355–368 (2017).
Google Scholar
24.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55, 129–145 (2010).
Google Scholar
25.Fang, W., Azimzadeh, P. & St. Leger, R. J. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr. Opin. Microbiol. 15, 232–238 (2012).26.Tumuhaise, V. et al. Temperature-dependent growth and virulence, and mass production potential of two candidate isolates of Metarhizium anisopliae (Metschnikoff) Sorokin for managing Maruca vitrata Fabricius (Lepidoptera: Crambidae) on cowpea. African Entomol. 26, 73–83 (2018).
Google Scholar
27.Onsongo, S. K., Gichimu, B. M., Akutse, K. S., Dubois, T. & Mohamed, S. A. Performance of three isolates of Metarhizium anisopliae and their virulence against Zeugodacus cucurbitae under different temperature regimes, with global extrapolation of their efficiency. Insects 10, 1–13 (2019).
Google Scholar
28.Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).
Google Scholar
29.Ekesi, S., Maniania, N. K. & Lux, S. A. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J. Invertebr. Pathol. 83, 157–167 (2003).PubMed
CAS
Google Scholar
30.Jaronski, S. T. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55, 159–185 (2010).
Google Scholar
31.Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).
Google Scholar
32.Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).
Google Scholar
33.Allen, C. & Mehler, D. M. A. Open science challenges, benefits and tips in early career and beyond. Plos Biol. 17, 1–14 (2019).
Google Scholar
34.McCammon, S. A. & Rath, A. C. Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycol. Res. 98, 1253–1257 (1994).
Google Scholar
35.Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).
Google Scholar
36.De Croos, J. N. A. & Bidochka, M. J. Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Can. J. Microbiol. 45, 1055–1061 (1999).
Google Scholar
37.Dahlberg, K. R. & Etten, J. L. V. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20, 281–301 (1982).CAS
Google Scholar
38.Hywel-Jones, N. L. & Gillespie, A. T. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycol. Res. 94, 389–392 (1990).
Google Scholar
39.Acheampong, M. A., Coombes, C. A., Moore, S. D. & Hill, M. P. Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes. J. Invertebr. Pathol. 174, 107436 (2020).40.Allen, P. J. Metabolic aspects of spores germination in fungi. Annu. Rev. Phytopathol. 3, 313–342 (1965).CAS
Google Scholar
41.de Campos, M. R. et al. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. J. Pest Sci. (2004). (2020) doi:https://doi.org/10.1007/s10340-020-01286-8.42.Vidal, C., Fargues, J. & Lacey, L. A. Intraspecific variability of Paecilomyces fumosoroseus: Effect of temperature on vegetative growth. J. Invertebr. Pathol. 70, 18–26 (1997).
Google Scholar
43.Smits, N., Brière, J.-F. & Fargues, J. Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycol. Res. 107, 1476–1484 (2003).PubMed
Google Scholar
44.Cabanillas, H. E. & Jones, W. A. Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia 167, 263–271 (2009).45.Guimapi, R. A. et al. Decision support system for fitting and mapping nonlinear functions with application to insect pest management in the biological control context. Algorithms 13, 1–21 (2020).
Google Scholar
46.Smith, J. D. et al. Host range of the invasive tomato pest Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) on solanaceous crops and Weeds in Tanzania. Florida Entomol. 101, 573–579 (2018).
Google Scholar
47.Tumuhaise, V., Khamis, F. M., Agona, A., Sseruwu, G. & Mohamed, S. A. First record of Tuta absoluta (Lepidoptera: Gelechiidae) in Uganda. Int. J. Trop. Insect Sci. 36, 135–139 (2016).
Google Scholar
48.Kassa, A., Brownbridge, M., Parker, B. L. & Skinner, M. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycol. Res. 112, 583–591 (2008).PubMed
Google Scholar
49.Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J. & Lomer, C. J. Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf. 19, 21–32 (1998).
Google Scholar
50.Barra, P., Barros, G., Etcheverry, M. & Nesci, A. Mass production studies in solid substrates with the entomopathogenic fungus, Purpureocillium lilacinum. Int. J. Adv. Agric. Res. 6, 78–84 (2018).
Google Scholar
51.Jackson, M. A. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J. Ind. Microbiol. Biotechnol. 19, 180–187 (1997).CAS
Google Scholar
52.Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology https://doi.org/10.1016/B978-012432555-5/50013-0 (1997).Article
Google Scholar
53.Fargues, J., Maniania, N., Delmas, J. & Smits, N. Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie 12, 557–564 (1992).
Google Scholar
54.Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2018).
Google Scholar
55.Migiro, L. N., Maniania, N. K., Chabi-Olaye, A. & Vandenberg, J. Pathogenicity of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) isolates to the adult pea leafminer (Diptera: Agromyzidae) and prospects of an autoinoculation device for infection in the field. Environ. Entomol. 39, 468–475 (2010).PubMed
CAS
Google Scholar
56.Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438 (1974).
Google Scholar
57.Brière, J.-F., Pracros, P., Le Roux, A.-Y. & Pierre, J.-S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).
Google Scholar
58.Archontoulis, S. V. & Miguez, F. E. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786–798 (2015).
Google Scholar
59.Logan, J. A., Wollkind, D. J., Hoyt, S. C. & Tanigoshi, L. K. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133–1140 (1976).
Google Scholar
60.Steiniger, S. & Hunter, A. J. S. Free and open source GIS software for building a spatial data infrastructure. in Geospatial Free and Open Source Software in the 21st Century 247–261 (2012).61.Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS
Google Scholar
62.R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/. (2019). More