More stories

  • in

    Patterns of livestock depredation and Human–wildlife conflict in Misgar valley of Hunza, Pakistan

    1.Amaja, L. G., Feyssa, D. H. & Gutema, T. M. Assessment of types of damage and causes of Human–wildlife conflict in Gera district, southwestern Ethiopia. J. Ecol. Nat. Environ. 8, 49–54 (2016).Article 

    Google Scholar 
    2.Decker, D. J., Laube, T. B. & Siemer, W. F. Human–Wildlife Conflict Management: A Practitioner’s Guide (Northeastern Wildlife Damage Management Research and Outreach Cooperative, 2002).
    Google Scholar 
    3.Habib, A., Nazir, I., Fazili, M. F. & Bhat, B. A. Human–wildlife conflict-causes, consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2015).
    Google Scholar 
    4.Eklund, A., Lopez-Bao, J. V., Tourani, M., Chapron, G. & Frank, J. Author Correction: Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 8, 5770 (2018).ADS 
    Article 

    Google Scholar 
    5.Hussain, S. The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 37, 26–33 (2003).Article 

    Google Scholar 
    6.Miller, J. R., Jhala, Y. V. & Schmitz, O. J. Human perceptions mirror realities of carnivore attack risk for livestock: Implications for mitigating human-carnivore conflict. PLoS ONE 11, e0162685 (2016).Article 

    Google Scholar 
    7.Aryal, P. et al. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).Article 

    Google Scholar 
    8.Khan, B. et al. Pastoralist experience and tolerance of snow leopard, wolf and lynx predation in Karakoram Pamir Mountains. J. Biol. Environ. Sci. 5, 214–229 (2014).
    Google Scholar 
    9.Jackson, R. M., Ahlborn, G., Gurung, M. & Ale, S. Reducing livestock depredation losses in the Nepalese Himalaya. In Proc. 17th Vertebrate Pest Conference (eds Timm, R. M. & Crabb, A. C.) 241–247 (University of California, 1996).
    Google Scholar 
    10.Qamar, Q. Z. et al. Human leopard conflict: An emerging issue of common leopard conservation in Machiara National Park, Azad Jammu, and Kashmir, Pakistan. Pak. J. Wildl. 1, 50–56 (2010).
    Google Scholar 
    11.Atickem, A., Williams, S., Bekele, A. & Thirgood, S. Livestock predation in the Bale Mountains, Ethiopia. Afr. J. Ecol. 48, 1076–1082 (2010).Article 

    Google Scholar 
    12.Gittleman, J. L., Funk, S. M., Macdonald, D. W. & Wayne, R. K. Carnivore conservation. Cambridge University Press, Cambridge consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2001).
    Google Scholar 
    13.Treves, A. K. & Karanth, K. U. Human–carnivore conflict—Local solutions with global applications (Special section): Introduction. Conserv. Biol. 17, 1489–1490 (2003).Article 

    Google Scholar 
    14.Li, J., Yin, H., Wang, D., Jiagong, Z. & Lu, Z. Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biol. Conserv. 166, 118–123 (2013).Article 

    Google Scholar 
    15.McCarthy, T. M. & Chapron, G. Snow Leopard Survival Strategy (IT and SLN, 2003).
    Google Scholar 
    16.Suryawanshi, K.R. Human carnivore conflicts: Understanding predation ecology and livestock damage by snow leopards. Ph.D. Thesis. Manipal University, India (2013).17.Bocci, A., Lovari, S., Khan, M. Z. & Mori, E. Sympatric snow leopards and Tibetan wolves: coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).Article 

    Google Scholar 
    18.Wang, S. W. & Macdonald, D. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    19.Khan, M. Z., Khan, B., Awan, M. S. & Begum, F. Livestock depredation by large predators and its implications for conservation and livelihoods in the Karakoram Mountains of Pakistan. Oryx 52, 519–525 (2018).Article 

    Google Scholar 
    20.Ali, H., Younus, M., Din, J. U., Bischof, R. & Nawaz, M. A. Do Marco Polo argali Ovis ammon polii persist in Pakistan?. Oryx 53, 329–333 (2019).Article 

    Google Scholar 
    21.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions, and causes of human-carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076 (2009).Article 

    Google Scholar 
    22.RC Team. R: A Language and Environment for Statistical Computing (2013).23.Din, J. U. et al. A Tran’s boundary study of spatiotemporal patterns of livestock predation and prey preferences by snow leopard and wolf in the Pamir. Glob. Ecol. Conserv. 20, e00719 (2019).Article 

    Google Scholar 
    24.Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management 418 (Lewis Publishers, 2002).
    Google Scholar 
    25.Graham, K., Beckerman, A. P. & Thirgood, S. Human–predator–prey conflicts: Ecological correlates, prey losses and patterns of management. Biol. Conserv. 122, 159–171 (2005).Article 

    Google Scholar 
    26.Li, X., Buzzard, P., Chen, Y. & Jiang, X. Patterns of livestock predation by carnivores: Human–wildlife conflict in Northwest Yunnan, China. Environ. Manage. 52, 1334–1340 (2013).ADS 
    Article 

    Google Scholar 
    27.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions and causes of human–carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076–2082 (2009).Article 

    Google Scholar 
    28.Mishra, C., Prins, H. H. T. & van Wieren, S. E. Overstocking in the trans-Himalayan rangelands of India. Environ. Conserv. 28, 279–283 (1997).Article 

    Google Scholar 
    29.Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera Leo). J. Zool. (Lond.) 267(267), 309–322 (2005).Article 

    Google Scholar 
    30.Mc Guinness, S. & Taylor, D. Farmers’ perceptions and actions to decrease crop raiding by forest-dwelling primates around a Rwandan Forest fragment. Hum. Dimens. Wildl. 19, 361–372 (2014).Article 

    Google Scholar 
    31.ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal (Gland, 2011).Book 

    Google Scholar 
    32.Distefano, E. Human–Wildlife Conflict Worldwide: Collection of Case Studies, Analysis of Management Strategies and Good Practices (Food and Agricultural Organization of the United Nations (FAO), 2005).
    Google Scholar 
    33.Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 1–14 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Butyrate producing microbiota are reduced in chronic kidney diseases

    PatientsStool samples from a total of 52 patients with varying stages of CKD were collected in this study: CKD3A (n = 12), CKD3B (n = 11), CKD4 (n = 15), CKD5 (n = 4) and ESRD (n = 10) (Table 1). Patients’ characteristics are summarized in Table 1. Among 52 patients, 31 were reported to have Type 2 diabetes mellitus and 7 patients were reported to have human immunodeficiency virus (HIV) infection. As expected, urine protein creatinine ratio, serum creatinine and blood urea nitrogen level increased with progressing stages of CKD (CKD 3A to ESRD). There was no significant difference in fat, protein, carbohydrates, dietary fiber and calorie intake between CKD patients with different stages (Supplementary Table S1).Table 1 Patients’ characteristics.Full size tableAlpha and beta-diversityRichness and Shannon index were not significantly different between different patient groups, meanwhile the CKD5 group showed a significant decrease in Simpson diversity compared with CKD 3A (FDR  More

  • in

    Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater

    1.Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247–60.CAS 
    PubMed 

    Google Scholar 
    2.Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5.CAS 
    PubMed 

    Google Scholar 
    3.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 

    Google Scholar 
    4.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.
    Google Scholar 
    5.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    6.Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB. The global volume and distribution of modern groundwater. Nat Geosci. 2016;9:161–7.CAS 

    Google Scholar 
    7.Akob DM, Küsel K. Where microorganisms meet rocks in the Earth’s Critical Zone. Biogeosciences. 2011;8:3531–43.CAS 

    Google Scholar 
    8.Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar 
    9.Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, Xiong WL, et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 2020;14:1260–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Einsiedl F, Mayer B. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, Southern Germany. Environ Sci Technol. 2006;40:6697–702.CAS 
    PubMed 

    Google Scholar 
    11.Schlesinger WH. On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA. 2009;106:203–8.CAS 
    PubMed 

    Google Scholar 
    12.McCollom TM, Seewald JS. Serpentinites, hydrogen, and life. Elements. 2013;9:129–34.CAS 

    Google Scholar 
    13.Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703.CAS 
    PubMed 

    Google Scholar 
    14.Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment- hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wegner CE, Gaspar M, Geesink P, Herrmann M, Marz M, Küsel K. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl Environ Microbiol. 2019;85:1–18.
    Google Scholar 
    17.Herrmann M, Rusznyak A, Akob DM, Schulze I, Opitz S, Totsche KU, et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol. 2015;81:2384–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.CAS 
    PubMed 

    Google Scholar 
    19.Jewell TNM, Karaoz U, Brodie EL, Williams KH, Beller HR. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 2016;10:2106–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Handley KM, Bartels D, O’Loughlin EJ, Williams KH, Trimble WL, Skinner K, et al. The complete genome sequence for putative H2- and S-oxidizer Candidatus Sulfuricurvum sp., assembled de novo from an aquifer-derived metagenome. Environ Microbiol. 2014;16:3443–62.CAS 
    PubMed 

    Google Scholar 
    21.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 

    Google Scholar 
    22.von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J. 2013;7:1877–85.
    Google Scholar 
    23.Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6:2291–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taubert M, Baumann S, von Bergen M, Seifert J. Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP). Anal Bioanal Chem. 2011;401:1975–82.CAS 
    PubMed 

    Google Scholar 
    25.Rimstidt JD, Vaughan DJ. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta. 2003;67:873–80.CAS 

    Google Scholar 
    26.Schippers A, Jozsa PG, Sand W. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol. 1996;62:3424–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Kohlhepp B, Lehmann R, Seeber P, Küsel K, Trumbore SE, Totsche KU. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany. Hydrol Earth Syst Sci. 2017;21:6091–116.CAS 

    Google Scholar 
    28.Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich CG, editors. Microbial Sulfur Metabolism. Berlin, Heidelberg: Springer; 2008. p. 101–16.29.Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse Bacteria and Archaea. FEMS Microbiol Rev. 2009;33:999–1043.CAS 
    PubMed 

    Google Scholar 
    30.Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol. 2018;94:fiy141.CAS 

    Google Scholar 
    31.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Core Team; 2019 [cited 2021]; Available from: https://www.R-project.org/.32.Ryabchykov O, Bocklitz T, Ramoji A, Neugebauer U, Foerster M, Kroegel C, et al. Automatization of spike correction in Raman spectra of biological samples. Chemom Intell Lab. 2016;155:1–6.CAS 

    Google Scholar 
    33.Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J. Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem. 2011;225:753–64.
    Google Scholar 
    34.Bocklitz TW, Dörfer T, Heinke R, Schmitt M, Popp J. Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochim Acta A. 2015;149:544–9.CAS 

    Google Scholar 
    35.Guo SX, Heinke R, Stöckel S, Rösch P, Bocklitz T, Popp J. Towards an improvement of model transferability for Raman spectroscopy in biological applications. Vib Spectrosc. 2017;91:111–8.CAS 

    Google Scholar 
    36.Liland KH, Almoy T, Mevik BH. Optimal choice of baseline correction for multivariate calibration of spectra. Appl Spectrosc. 2010;64:1007–16.CAS 
    PubMed 

    Google Scholar 
    37.Taubert M, Stöckel S, Geesink P, Girnus S, Jehmlich N, von Bergen M, et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol. 2018;20:369–84.CAS 
    PubMed 

    Google Scholar 
    38.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 

    Google Scholar 
    39.Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev. 2012;31:683–97.CAS 
    PubMed 

    Google Scholar 
    40.Taubert M. SIsCA. 2020 [updated 23.10.2020; cited 2021]; Available from: https://github.com/m-taubert/SIsCA.41.MacCoss MJ, Wu CC, Matthews DE, Yates JR. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal Chem. 2005;77:7646–53.CAS 
    PubMed 

    Google Scholar 
    42.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 
    43.Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol. 2001;67:2873–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek. 1997;71:95–107.CAS 
    PubMed 

    Google Scholar 
    45.Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol. 2006;188:7005–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. J Bacteriol. 2006;188:1473–88.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci USA. 2010;107:11669–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosyn Res. 1999;60:1–28.CAS 

    Google Scholar 
    49.Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Overholt WA, Trumbore S, Xu X, Bornemann TL, Probst AJ, Krüger M, et al. Rates of primary production in groundwater rival those in oligotrophic marine systems. bioRxiv 2021 [Preprint]. 2021. Available from: https://doi.org/10.1101/2021.10.13.464073.51.Alfreider A, Vogt C, Geiger-Kaiser M, Psenner R. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes. Syst Appl Microbiol. 2009;32:140–50.CAS 
    PubMed 

    Google Scholar 
    52.Herrmann M, Geesink P, Yan L, Lehmann R, Totsche KU, Küsel K. Complex food webs coincide with high genetic potential for chemolithoautotrophy in fractured bedrock groundwater. Water Res. 2020;170:115306.CAS 
    PubMed 

    Google Scholar 
    53.Yan LJ, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 2020;170:115341.CAS 
    PubMed 

    Google Scholar 
    54.Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, et al. The genome of Polaromonas sp. strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol. 2008;74:6405–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics. 2009;10:1–23.
    Google Scholar 
    56.Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol. 2005;55:341–4.PubMed 

    Google Scholar 
    57.Jin CZ, Zhuo Y, Wu XW, Ko SR, Li TH, Jin FJ, et al. Genomic and metabolic insights into denitrification, sulfur oxidation, and multidrug efflux pump mechanisms in the bacterium Rhodoferax sediminis sp. nov. Microorganisms. 2020;8:262.CAS 
    PubMed Central 

    Google Scholar 
    58.Geisel N. Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS ONE. 2011;6:e27033.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS 
    PubMed 

    Google Scholar 
    60.Katayama-Fujimura Y, Tsuzaki N, Hirata A, Kuraishi H. Polyhedral inclusion-bodies (Carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol. 1984;30:211–22.CAS 

    Google Scholar 
    61.Küsel K, Totsche KU, Trumbore SE, Lehmann R, Steinhäuser C, Herrmann M. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a Central German Muschelkalk landscape. Front Earth Sci. 2016;4:32.
    Google Scholar 
    62.Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci. 2019;12:755–61.CAS 

    Google Scholar 
    63.Herrmann M, Wegner CE, Taubert M, Geesink P, Lehmann K, Yan LJ, et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front Microbiol. 2019;10:1407.PubMed 
    PubMed Central 

    Google Scholar 
    64.Gray CM, Monson RK, Fierer N. Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res Biogeosci. 2010;115:G03015.
    Google Scholar 
    65.Benk SA, Yan LJ, Lehmann R, Roth VN, Schwab VF, Totsche KU, et al. Fueling diversity in the subsurface: composition and age of dissolved organic matter in the Critical Zone. Front Earth Sci. 2019;7:296.
    Google Scholar 
    66.Schwab VF, Nowak ME, Elder CD, Trumbore SE, Xu XM, Gleixner G, et al. 14C-free carbon is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour Res. 2019;55:2104–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: Implications and consequences. Appl Environ Microbiol. 2006;72:7431–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hansson TH, Grossart HP, del Giorgio PA, St-Gelais NF, Beisner BE. Environmental drivers of mixotrophs in boreal lakes. Limnol Oceanogr. 2019;64:1688–705.CAS 

    Google Scholar 
    69.Perez-Riverol Y, Csordas A, Bai JW, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D50.CAS 
    PubMed 

    Google Scholar  More

  • in

    Glacier retreat creating new Pacific salmon habitat in western North America

    Sub-regionsThe study region focuses on 18 sub-regions within the Pacific mountain ranges of North American overlapping with the range of Pacific Salmon with >1.5% glacier cover (Figs. 1 and 2). The term “sub-region” here refers to either a single major salmon watershed or aggregates of small coastal watersheds, which range in area from ~13,000 to ~68,000 km2. For sub-regions within Alaska, USA, we accessed boundary data from the Watershed Boundary Database at the USGS (https://www.usgs.gov/). For sub-regions within British Columbia, Canada, we accessed boundary data from the Freshwater Atlas of British Columbia (https://catalogue.data.gov.bc.ca/). Pacific salmon range data were from the National Center for Ecological Analysis and Synthesis (Fig. 1). The study region covers ~623,000 km2 across British Columbia, Canada and Alaska, USA and ~20% of the total North American range of Pacific salmon.Glacier outlinesOutlines for the 45,963 glaciers within the study region were obtained from the Randolph Glacier Inventory v6.0 (https://www.glims.org/RGI/; RGI v6.0), which provides a globally complete data set of glacier outlines outside of Greenland and Antarctic ice sheets17. These glaciers cover a total area of ~81,000 km2, which corresponds to 80% of the total glacier area in the Pacific mountain ranges within North America. The glacier outlines refer roughly to the years 2009 ± 2 for Alaska, and 2004 ± 5 for Western Canada17,53. Glacierization for each of 18 sub-regions ranges from 1.5 to 52%.Present-day streamsSynthetic stream networks were constructed from Digital Elevation Models (DEMs) for each of the 18 sub-regions using Geographic Information Systems (GIS; ArcGIS 10.6 and QGIS 2.18) hydrology tools to represent present-day streams throughout the study region. Specifically, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEMs v2.0 with a spatial resolution of ~30 m54. Open access synthetic stream network datasets such as the National Hydrography Dataset (NHD) from the USGS and the Freshwater Atlas from the British Columbia government are available but were not used due to inconsistencies in spatial resolution across the study region. From our synthetic stream networks, we eliminated all stream segments that overlapped with the RGI glacier outlines because the ASTER global DEMs used to create the synthetic stream networks represent glacier surface elevation rather than estimated deglaciated terrain. All present-day streams within our study region are void of any major dams that inhibit salmon movement based on existing databases of dams55. To summarize present-day stream kms, and all subsequent analyses, we used rstudio: 1.4.1103-4, R: ‘Mirrors’.Identifying and verifying stream gradient thresholds for migrating salmon and for determining accessible glaciersWe used stream gradient-based thresholds the determine constraints in salmon migration and the number of glaciers that would be accessible and create future streams for migrating adult salmon. Based on the large body of literature suggesting stream gradients (e.g., ranging from More

  • in

    Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil

    1.Swift MJ, Anderson JM, Heal OW. Decomposition in terrestrial ecosystems. Oxford: Blackwell Publishing; 1979.2.Scholes MC, Powlson D, Tian G. Input control of organic matter dynamics. Geoderma. 1997;79:25–47.CAS 

    Google Scholar 
    3.Sokol NW, Kuebbing SE, Ayala EK, Bradford MA. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist. 2019;221:233–46.CAS 

    Google Scholar 
    4.Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Ann Rev Ecol Evol Syst. 2017;48:419–45.
    Google Scholar 
    5.Greyston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol. 1996;5:29–56.
    Google Scholar 
    6.Schimel DS. Terrestrial biogeochemical cycles: global estimates with remote sensing. Remote Sens Environ. 1995;51:49–56.
    Google Scholar 
    7.Angst G, Mueller KE, Nierop KGJ, Simpson MJ. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol Biochem. 2021;156:108189.CAS 

    Google Scholar 
    8.Bardgett RD. The biology of soil: a community ecosystem approach. Oxford: Oxford University Press; 2005.9.Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 
    10.Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem. 2017;111:94–103.CAS 

    Google Scholar 
    11.Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol. 2016;25:4059–74.CAS 
    PubMed 

    Google Scholar 
    12.Osono T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res. 2007;22:955–74.
    Google Scholar 
    13.Hattenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Evol Syst. 2005;36:191–218.
    Google Scholar 
    14.Pugh G. Terrestrial fungi. In: Dickenson C, Pugh G, editors. Biology of plant litter decomposition. 2. London: Academic Press Inc.; 1974. p. 303–36.15.Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem. 1994;26:1305–11.
    Google Scholar 
    16.Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–8.CAS 

    Google Scholar 
    17.Chakraborty S, Old K. Ultrastructure and description of a fungus-feeding amoeba, Trichamoeba mycophaga n. sp. (Amoebidae, Amoebea), from Australia. J Eukaryot Microbiol. 1986;33:564–9.
    Google Scholar 
    18.Bjørnlund L, Rønn R. ‘David and Goliath’of the soil food web–Flagellates that kill nematodes. Soil Biol Biochem. 2008;40:2032–9.
    Google Scholar 
    19.Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634–8.PubMed 

    Google Scholar 
    20.Neher DA, Weicht TR, Barbercheck ME. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Appl Soil Ecol. 2012;54:14–23.
    Google Scholar 
    21.Bokhorst S, Wardle DA. Microclimate within litter bags of different mesh size: Implications for the ‘arthropod effect’ on litter decomposition. Soil Biol Biochem. 2013;58:147–52.CAS 

    Google Scholar 
    22.Carrillo Y, Ball BA, Bradford MA, Jordan CF, Molina M. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biol Biochem. 2011;43:1440–9.CAS 

    Google Scholar 
    23.Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem. 2012;49:124–31.CAS 

    Google Scholar 
    24.Meyer WM, Ostertag R, Cowie RH. Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biol Biochem. 2011;43:206–11.CAS 

    Google Scholar 
    25.Stout JD. The Relationship between protozoan populations and biological activity in soils. Integr Comp Biol. 1973;13:193–201.
    Google Scholar 
    26.Bonkowski M, Griffiths B, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol. 2000;14:37–53.
    Google Scholar 
    27.Hünninghaus M, Dibbern D, Kramer S, Koller R, Pausch J, Schloter-Hai B, et al. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biol Biochem. 2019;134:122–30.
    Google Scholar 
    28.Tedersoo L, Anslan S. Towards PacBio‐based pan‐eukaryote metabarcoding using full‐length ITS sequences. Environ Microbiol Rep. 2019;11:659–68.CAS 
    PubMed 

    Google Scholar 
    29.Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Mycokeys. 2015;10:1–43.
    Google Scholar 
    30.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 

    Google Scholar 
    31.Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–58.CAS 
    PubMed 

    Google Scholar 
    32.Poisot T, Péquin B, Gravel D. High‐throughput sequencing: a roadmap toward community ecology. Ecol Evol. 2013;3:1125–39.PubMed 
    PubMed Central 

    Google Scholar 
    33.Nguyen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 2015;205:1389–93.CAS 
    PubMed 

    Google Scholar 
    34.Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 2010;4:642–7.CAS 
    PubMed 

    Google Scholar 
    35.Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996;62:625–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Soergel D, Dey N, Knight R, Brenner S. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012;6:1440–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117.CAS 
    PubMed 

    Google Scholar 
    38.Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE. 2008;3:e2527.PubMed 
    PubMed Central 

    Google Scholar 
    39.Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comp Biol. 2012;8:e1002743.CAS 

    Google Scholar 
    40.Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.
    Google Scholar 
    41.Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 2011;12:R44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Xue Y, Lanzén A, Jonassen I. Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data. Bioinformatics. 2020;36:3365–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, et al. Total RNA-sequencing reveals multi-level microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol. 2020;96:fiaa016.PubMed 
    PubMed Central 

    Google Scholar 
    44.Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, et al. Metatranscriptomic census of active protists in soils. ISME J. 2015;9:2178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Adl SM, Habura A, Eglit Y. Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem. 2014;69:328–42.CAS 

    Google Scholar 
    46.Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol. 2006;17:83–91.CAS 
    PubMed 

    Google Scholar 
    47.Neufeld J, Wagner M, Murrell J. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 2007;1:103–10.CAS 
    PubMed 

    Google Scholar 
    48.Radajewski S, Ineson P, Parekh NR, Murrell J. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.CAS 
    PubMed 

    Google Scholar 
    49.Radajewski S, Murrell JC. Stable isotope probing for detection of methanotrophs after enrichment with 13CH4. In: de Muro MA, Rapley R, editors. Gene probes: principles and protocols. Totowa, NJ: Humana Press; 2002. p. 149–57.50.Manefield M, Whiteley AS, Griffiths R, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Mayali X, Weber PK, Nuccio E, Lietard J, Somoza M, Blazewicz SJ, et al. Stable isotope probing, methods and protocols. Methods Mol Biol. 2019;2046:71–87.PubMed 

    Google Scholar 
    52.Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich PD, Pett-Ridge J. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J. 2012;6:1210–21.CAS 
    PubMed 

    Google Scholar 
    53.Waldrop MP, Firestone MK. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol. 2006;52:470–9.CAS 
    PubMed 

    Google Scholar 
    54.Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio. 2015;6:e00746.PubMed 
    PubMed Central 

    Google Scholar 
    55.DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat. ISME J. 2009;3:168–78.CAS 
    PubMed 

    Google Scholar 
    56.Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol. 1999;65:2685–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nuccio EE, Starr E, Karaoz U, Brodie EL, Zhou J, Tringe SG, et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 2020;269:1–16.
    Google Scholar 
    58.Griffiths RI, Whiteley AS, O’Donnell AG, Bailey M. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Andrews S. FastQC: a quality control tool for high throughput sequence data (Version 0.10.1) 2012; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/60.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed 
    PubMed Central 

    Google Scholar 
    64.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE. 2013;8:e56018.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Choi J, Kim S-H. A genome tree of life for the Fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018;47:D259–64.PubMed Central 

    Google Scholar 
    72.Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52:399–451.
    Google Scholar 
    73.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 

    Google Scholar 
    75.Pausch J, Kramer S, Scharroba A, Scheunemann N, Butenschoen O, Kandeler E, et al. Small but active—pool size does not matter for carbon incorporation in below‐ground food webs. Funct Ecol. 2016;30:479–89.
    Google Scholar 
    76.el Zahar Haichar F, Achouak W, Christen R. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol. 2007;9:625–34.CAS 

    Google Scholar 
    77.Ha YE, Kang CI, Joo EJ, Park SY, Kang SJ, Wi YM, et al. Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: analysis by a DNA-SIP approach. Soil Biol Biochem. 2011;43:814–22.
    Google Scholar 
    78.Eichorst SA, Kuske CR. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol. 2012;78:2316–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol. 2016;7:626.
    Google Scholar 
    80.Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. mBio. 2021;12:e03099-20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, et al. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol. 2016;92:fiw057.PubMed 
    PubMed Central 

    Google Scholar 
    82.Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, De Valpine P, Brodie EL, et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology. 2016;97:1307–18.PubMed 

    Google Scholar 
    83.Ceja-Navarro JA, Wang Y, Arellano A, Ramanculova L, Yuan M, Byer A, et al. Protist diversity and network complexity in the rhizosphere are dynamic and changing as the plant develops. Microbiome. 2021;9. https://doi.org/10.1186/s40168-021-01042-9.
    Google Scholar 
    84.Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS 
    PubMed 

    Google Scholar 
    85.Zhang L, Lueders T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol Ecol. 2017;93:fix103.
    Google Scholar 
    86.Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    87.Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–84.CAS 
    PubMed 

    Google Scholar 
    88.Zaragoza SR, Mayzlish E, Steinberger Y. Seasonal changes in free-living Amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol. 2005;49:134–41.
    Google Scholar 
    89.Baldock BM, Baker JH, Sleigh MA. Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia. 1980;47:156–9.CAS 
    PubMed 

    Google Scholar 
    90.Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 

    Google Scholar 
    91.Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol. 2013;19:988–95.
    Google Scholar 
    92.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.CAS 
    PubMed 

    Google Scholar 
    93.Allison SD, Martiny JB. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition. Ecol Lett. 2012;15:1180–8.PubMed 

    Google Scholar 
    95.Hungate BA, Marks JC, Power ME, Schwartz E, van Groenigen KJ, Blazewicz SJ, et al. The functional significance of bacterial predators. mBio. 2021;12:e00466–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.de Ruiter PC, Neutel AM, Moore JC. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science. 1995;269:1257–60.PubMed 

    Google Scholar 
    97.Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    98.Yeates GW, Bongers T, De Goede R, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol. 1993;25:315–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Okada H, Harada H, Kadota I. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol Biochem. 2005;37:1113–20.CAS 

    Google Scholar 
    100.Rotem O, Pasternak Z, Jurkevitch E. Bdellovibrio and Like Organisms. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes, deltaproteobacteria and epsilonproteobacteria. Berlin: Springer-Verlag; 2014. p. 3–17.101.Griffiths BS. Microbial-feeding nematodes and protozoa in soil: their effectson microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant Soil. 1994;164:25–33.CAS 

    Google Scholar 
    102.Bonkowski M, Clarholm M. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 2012;51:237–47.
    Google Scholar 
    103.Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 1985;17:181–7.CAS 

    Google Scholar 
    104.Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gilard F, et al. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J. 2012;6:1391–402.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Yuan C, Lei J, Cole J, Sun Y. Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics. 2015;31:i35–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Zeng F, Wang Z, Wang Y, Zhou J, Chen T. Large-scale 16S gene assembly using metagenomics shotgun sequences. Bioinformatics. 2017;33:1447–56.CAS 
    PubMed 

    Google Scholar 
    107.Pericard P, Dufresne Y, Couderc L, Blanquart S, Touzet H. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics. 2017;34:585–91.
    Google Scholar 
    108.Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103-e.
    Google Scholar  More

  • in

    Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean

    1.Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).
    Google Scholar 
    2.Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).
    Google Scholar 
    3.Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).
    Google Scholar 
    4.The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019); https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf5.Souter, D. et al. (eds) Status of Coral Reefs of the World: 2020 Report (International Coral Reef Initiative, 2021).6.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 

    Google Scholar 
    7.Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 109, e12587 (2018).
    Google Scholar 
    8.Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).
    Google Scholar 
    9.Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).
    Google Scholar 
    10.Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Mar. Sci. 6, 580 (2019).
    Google Scholar 
    11.Mumby, P. J., Steneck, R. S. & Hastings, A. Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122, 481–491 (2013).
    Google Scholar 
    12.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).
    Google Scholar 
    13.Obura, D. et al. (eds) Coral Reef Status Report for the Western Indian Ocean (International Coral Reef Initiative, 2017).14.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).
    Google Scholar 
    15.Jackson, J., Donovan, M. K., Cramer, K. & Lam, V. (eds) Status and Trends of Caribbean Coral Reefs: 1970–2012 (International Coral Reef Initiative, 2014).16.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).CAS 

    Google Scholar 
    17.McClanahan, T. R., Ateweberhan, M., Darling, E. S., Graham, N. A. J. & Muthiga, N. A. Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9, e93385 (2014).
    Google Scholar 
    18.Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).
    Google Scholar 
    19.Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).CAS 

    Google Scholar 
    20.Rodriguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).21.Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 12, e12665 (2019).
    Google Scholar 
    22.van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. https://doi.org/10.1038/srep39666 (2016).23.Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 

    Google Scholar 
    24.Gudka, M. et al. Participatory reporting of the 2016 bleaching event in the Western Indian Ocean. Coral Reefs 39, 1–11 (2020).
    Google Scholar 
    25.Diaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
    Google Scholar 
    26.Steneck, R. S., Mumby, P. J., MacDonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).
    Google Scholar 
    27.Arnold, S., Steneck, R. & Mumby, P. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).
    Google Scholar 
    28.Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs 33, 289–302 (2014).
    Google Scholar 
    29.Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: over-fishing and under-management continue to threaten groupers so what now? Mar. Policy 116, 103909 (2020).
    Google Scholar 
    30.Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).
    Google Scholar 
    31.Samoilys, M., Roche, R., Koldewey, H. & Turner, J. Patterns in reef fish assemblages: insights from the Chagos Archipelago. PLoS ONE 13, e0191448 (2018).
    Google Scholar 
    32.Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 

    Google Scholar 
    33.Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).
    Google Scholar 
    34.Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).
    Google Scholar 
    35.Uribe, E. S., Luna-Acosta, A. & Etter, A. Red List of Ecosystems: risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manag. 199, 105416 (2021).
    Google Scholar 
    36.Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).
    Google Scholar 
    37.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).
    Google Scholar 
    38.Boitani, L., Mace, G. M. & Rondinini, C. Challenging the scientific foundations for an IUCN Red List of Ecosystems. Conserv. Lett. 8, 125–131 (2015).
    Google Scholar 
    39.Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2019).
    Google Scholar 
    40.Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).
    Google Scholar 
    41.Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 16, 157–174 (2015).
    Google Scholar 
    42.Keith, D. A. et al. The IUCN Global Ecosystem Typology v1.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups (Royal Botanic Gardens Kew, 2020).43.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).
    Google Scholar 
    44.Pendleton, L. et al. Coral reefs and people in a high-CO2 world: where can science make a difference to people? PLoS ONE 11, e0164699 (2016).
    Google Scholar 
    45.Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeosci. 124, 2446–2459 (2019).
    Google Scholar 
    46.Portner, H. O. et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change (IPBES, 2021); https://zenodo.org/record/510112547.Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020); https://www.cbd.int/gbo548.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).49.Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
    Google Scholar 
    50.ICRI, Coral Reefs and the UN (International Coral Reef Initiative, 2021); https://www.icriforum.org/icri-coral-reefs-and-the-un/51.Mahon, R. & Fanning, L. Regional ocean governance: polycentric arrangements and their role in global ocean governance. Mar. Policy 107, 103590 (2019).
    Google Scholar 
    52.Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria (IUCN, 2015); https://doi.org/10.2305/IUCN.CH.2016.RLE.1.en53.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    54.Veron, J., Stafford-Smith, M. G., Devantier, L. M. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1, 81 (2015).55.Obura, D. O. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).CAS 

    Google Scholar 
    56.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).CAS 

    Google Scholar 
    57.Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).
    Google Scholar 
    58.Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).
    Google Scholar 
    59.Jouffray, J. B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2014).60.Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406–417 (2001).
    Google Scholar 
    61.Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).
    Google Scholar 
    62.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283, 20151985 (2016).
    Google Scholar 
    63.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 

    Google Scholar 
    64.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).CAS 

    Google Scholar 
    65.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).
    Google Scholar 
    66.Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS 

    Google Scholar 
    67.Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).CAS 

    Google Scholar 
    68.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).
    Google Scholar 
    69.Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS 

    Google Scholar 
    70.Huang, W., Mukherjee, D. & Chen, S. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250m remote sensing. Mar. Pollut. Bull. 62, 490–498 (2011).CAS 

    Google Scholar 
    71.Chen, S. Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
    Google Scholar 
    72.Porter, S. N., Branch, G. M. & Sink, K. J. Changes in shallow-reef community composition along environmental gradients on the East African coast. Mar. Biol. 164, 101 (2017).
    Google Scholar 
    73.Perry, C. T. & Alvarez-Filip, L. Changing geo‐ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2018).
    Google Scholar 
    74.Andrefouet, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In Proc. 10th International Coral Reef Symposium 1732–1745 (ICRS, 2006).75.Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Model. 212, 180–199 (2008).
    Google Scholar 
    76.Maina, J., McClanahan, T. R., Venus, V., Ateweberhan, M. & Madin, J. Global gradients of coral exposure to environmental stresses and implications for local management. PLoS ONE 6, e23064 (2011).CAS 

    Google Scholar 
    77.Liu, G. et al. NOAA coral reef watch’s decision support system for coral reef management. In Proc. 12th International Coral Reef Symposium (2012); https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_5A_6.pdf78.Hill, J. & Wilkinson, C. Methods for Ecological Monitoring of Coral Reefs: Version 1 (Australian Institute of Marine Science, 2004).79.Wilkinson, C. Status of Coral Reefs of the World: 2008 (International Coral Reef Initiative, 2008).80.Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 15 (2018).
    Google Scholar 
    81.Bax, N. J. et al. Linking capacity development to GOOS monitoring networks to achieve sustained ocean observation. Front. Mar. Sci. 5, 206 (2018).
    Google Scholar 
    82.Reuchlin-Hugenholtz, E., Shackell, N. L. & Hutchings, J. A. The potential for spatial distribution indices to signal thresholds in marine fish biomass. PLoS ONE 10, e0120500 (2015).
    Google Scholar 
    83.Kuempel, C. D., Adams, V. M., possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2017).
    Google Scholar 
    84.Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).
    Google Scholar 
    85.Harford, W. J., Sagarese, S. R. & Karnauskas, M. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper–snapper fisheries. Fish Fish. 20, 303–321 (2019).
    Google Scholar  More

  • in

    Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities

    Synthetic microbial communities (SynComs) constitute an emerging and powerful tool in biological, biomedical, and biotechnological research. Despite recent advances in algorithms for the analysis of culture-independent amplicon sequencing data from microbial communities, there is a lack of tools specifically designed for analyzing SynCom data, where reference sequences for each strain are available. Here we present Rbec, a tool designed for the analysis of SynCom data that accurately corrects PCR and sequencing errors in amplicon sequences and identifies intra-strain polymorphic variation. Extensive evaluation using mock bacterial and fungal communities show that our tool outperforms current methods for samples of varying complexity, diversity, and sequencing depth. Furthermore, Rbec also allows accurate detection of contaminants in SynCom experiments. More

  • in

    Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics

    1.Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703.CAS 
    PubMed 

    Google Scholar 
    2.Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.CAS 
    PubMed 

    Google Scholar 
    3.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.
    Google Scholar 
    4.Lu X, Seuradge BJ, Neufeld JD. Biogeography of soil Thaumarchaeota in relation to soil depth and land usage. FEMS Microbiol Ecol. 2017;93:fiw246.PubMed 

    Google Scholar 
    5.Cardarelli EL, Bargar JR, Francis CA. Diverse Thaumarchaeota dominate subsurface ammonia-oxidizing communities in semi-arid floodplains in the western United States. Micro Ecol. 2020;80:778–92.CAS 

    Google Scholar 
    6.Tolar BB, Boye K, Bobb C, Maher K, Bargar JR, Francis CA. Stability of floodplain subsurface microbial communities through seasonal hydrological and geochemical cycles. Front Earth Sci. 2020;8:338.
    Google Scholar 
    7.Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS. 2005;102:14683–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P, Schleper C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol. 2005;7:1985–95.CAS 
    PubMed 

    Google Scholar 
    9.Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.CAS 
    PubMed 

    Google Scholar 
    10.Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, et al. Archaeal nitrification in the ocean. PNAS. 2006;103:12317–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil:the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.CAS 
    PubMed 

    Google Scholar 
    12.Mußmann M, Brito I, Pitcher A, Damste JSS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. PNAS. 2011;108:16771–6.PubMed 
    PubMed Central 

    Google Scholar 
    13.Weber EB, Lehtovirta-Morley LE, Prosser JI, Gubry-Rangin C, Laanbroek R. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota. FEMS Microbiol Ecol. 2015;91:fiv001.PubMed 
    PubMed Central 

    Google Scholar 
    14.Lin X, Handley KM, Gilbert JA, Kostka JE. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J. 2015;9:2740–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kato S, Itoh T, Yuki M, Nagamori M, Ohnishi M, Uematsu K, et al. Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring. ISME J. 2019;13:2465–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.PubMed 
    PubMed Central 

    Google Scholar 
    19.Kerou M, Alves RJE, Schleper C. Nitrososphaerales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.cbm00055.20.Qin W, Martens-Habbena W, Kobelt JN, Stahl DA. Candidatus nitrosopumilales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.gbm01290.21.Prosser JI, Nicol GW. Candidatus Nitrosotaleales. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2016. https://doi.org/10.1002/9781118960608.obm00123.22.Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, et al. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. PNAS. 2015;112:9370–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol. 2008;10:2966–78.CAS 
    PubMed 

    Google Scholar 
    24.Szukics U, Abell GCJ, Hödl V, Mitter B, Sessitsch A, Hackl E, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol. 2010;72:395–406.CAS 
    PubMed 

    Google Scholar 
    25.Höfferle Š, Nicol GW, Pal L, Hacin J, Prosser JI, Mandić-Mulec I. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiol Ecol. 2010;74:302–15.PubMed 

    Google Scholar 
    26.Tourna M, Freitag TE, Nicol GW, Prosser JI. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol. 2008;10:1357–64.CAS 
    PubMed 

    Google Scholar 
    27.He J-Z, Shen J-P, Zhang L-M, Zhu Y-G, Zheng Y-M, Xu M-G, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol. 2007;9:2364–74.CAS 
    PubMed 

    Google Scholar 
    28.Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process. 2013;2:9.
    Google Scholar 
    29.Opitz S, Küsel K, Spott O, Totsche KU, Herrmann M. Oxygen availability and distance to surface environments determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone aquifers in the Hainich region, Germany. FEMS Microbiol Ecol. 2014;90:39–53.CAS 
    PubMed 

    Google Scholar 
    30.Purkamo L, Kietäväinen R, Miettinen H, Sohlberg E, Kukkonen I, Itävaara M, et al. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol Ecol. 2018;94.31.Bushnell B BBTools software package. 2014. http://bbtools.jgi.doe.gov.32.Li H. BFC:correcting Illumina sequencing errors. Bioinformatics. 2015;31:2885–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 

    Google Scholar 
    34.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    35.Kang D, Li F, Kirton ES, Thomas A, Egan RS, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0:an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    38.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 

    Google Scholar 
    39.Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Deng M, Jiang R, Sun F, Zhang X, editors. Research in Computational Molecular Biology (RECOMB), Lecture Notes in Computer Science, Springer; Berlin, Heidelberg. 2013;7821:158–70.40.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk:a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    42.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 

    Google Scholar 
    43.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 

    Google Scholar 
    44.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Google Scholar 
    46.Seemann T. Prokka:rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    47.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 

    Google Scholar 
    48.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 

    Google Scholar 
    49.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering von C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.CAS 

    Google Scholar 
    51.Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2013;42:D206–14.PubMed 
    PubMed Central 

    Google Scholar 
    52.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2016;45:D320–4.PubMed 
    PubMed Central 

    Google Scholar 
    54.Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997;10:1–6.CAS 
    PubMed 

    Google Scholar 
    55.Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.
    Google Scholar 
    56.Sonnhammer EL, Heijne G, von, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998;6:175–82.CAS 
    PubMed 

    Google Scholar 
    57.Krogh A, Larsson B, Heijne G, von, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    59.Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Nucleic Acids Res. 2009;25:1972–3.
    Google Scholar 
    61.Nguyen L-T, Schmidt HA, Haeseler von A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Nucleic Acids Res. 2015;32:268–74.CAS 

    Google Scholar 
    62.Hoang DT, Chernomor O, Haeseler von A, Minh BQ. Le Sy Vinh. UFBoot2: improving the ultrafast bootstrap approximation. Nucleic Acids Res. 2017;35:518–22.
    Google Scholar 
    63.Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler von A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    65.Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539–9.PubMed 
    PubMed Central 

    Google Scholar 
    66.Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntemann M, et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 2021;49:D751–63.CAS 
    PubMed 

    Google Scholar 
    67.Alves RJE, Minh BQ, Urich T, Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1517.PubMed 
    PubMed Central 

    Google Scholar 
    68.Tolar BB, Mosier AC, Lund MB, Francis CA. Nitrosarchaeum. In: Bergeys manual of systematics of archaea and bacteria ed. Bergey’s Manual Trust (Hoboken, NJ: John Wiley & Sons). 2019:1–9. https://doi.org/10.1002/9781118960608.gbm01289.69.Park S-J, Kim J-G, Jung M-Y, Kim S-J, Cha I-T, Ghai R, et al. Draft genome sequence of an ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus sediminis” AR2, from Svalbard in the Arctic Circle. J Bacteriol. 2012;194:6948–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kim BK, Jung M-Y, Yu DS, Park S-J, Oh TK, Rhee S-K, et al. Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol. 2011;193:5539–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol. 2003;5:787–97.CAS 
    PubMed 

    Google Scholar 
    72.Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Prosse, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. PNAS. 2011;108:15892–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, et al. Isolation of “Candidatus Nitrosocosmicus franklandus,” a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol. 2016;92:fiw057.PubMed 
    PubMed Central 

    Google Scholar 
    74.Könneke M, Bernhard AE, la Torre de JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.PubMed 

    Google Scholar 
    75.Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS. 2014;111:12504–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. PNAS. 2015;112:1173–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JA, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2015;10:1051–63.PubMed 
    PubMed Central 

    Google Scholar 
    78.Larentis M, Psenner R, Alfreider A. Prokaryotic community structure in deep bedrock aquifers of the Austrian Central Alps. Antonie van Leeuwenhoek. 2015;107:687–701.PubMed 

    Google Scholar 
    79.Lazar CS, Stoll W, Lehmann R, Herrmann M, Schwab VF, Akob DM, et al. Archaeal diversity and CO2 fixers in carbonate-/siliciclastic-rock groundwater ecosystems. Archaea. 2017;2136287.80.Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L, Williams TA, et al. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat Commun. 2020;11:1–12.
    Google Scholar 
    81.Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS. 2014;111:8239–44.PubMed 
    PubMed Central 

    Google Scholar 
    82.Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-I, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. PNAS. 2006;103:18296–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Spang A, Poehlein A, Offre P, Zumbr a gel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 

    Google Scholar 
    84.Kamanda Ngugi D, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.CAS 
    PubMed 

    Google Scholar 
    85.Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, et al. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Front Microbiol. 2018;9:28.PubMed 
    PubMed Central 

    Google Scholar 
    86.Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS. 2011;108:8420–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Johnson WV, Anderson PM. Bicarbonate is a recycling substrate for cyanase. J Biol Chem. 1987;262:9021–5.CAS 
    PubMed 

    Google Scholar 
    88.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Bergen von M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 

    Google Scholar 
    90.Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2001;2:REVIEWS0001. https://doi.org/10.1186/gb-2001-2-1-reviews0001.91.Ramteke PW, Maurice NG, Joseph B, Wadher BJ. Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem. 2013;60:459–81.CAS 
    PubMed 

    Google Scholar 
    92.Walker CB, la Torre de JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. PNAS. 2010;107:8818–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Micro Ecol. 2012;64:955–63.CAS 

    Google Scholar 
    94.Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group i.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS ONE. 2013;8:e80835.PubMed 
    PubMed Central 

    Google Scholar 
    95.Daebeler A, Herbold C, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, et al. Cultivation and genomic analysis of “Candidatus Nitrosocaldus islandicus,” an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in Graendalur valley, Iceland. Front Microbiol. 2018;9:193.PubMed 
    PubMed Central 

    Google Scholar 
    96.Beam JP, Jay ZJ, Kozubal MA, Inskeep WP. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME J. 2014;8:938–51.CAS 
    PubMed 

    Google Scholar 
    97.Kim J-G, Park S-J, Damste JSS, Schouten S, Rijpstra WIC, Jung M-Y, et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. PNAS. 2016;113:7888–93.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008;77:755–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Zhalnina KV, Dias R, Leonard MT, de Quadros PD, Camargo FAO, Drew JC, et al. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS ONE. 2014;9:e101648.PubMed 
    PubMed Central 

    Google Scholar 
    100.Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J. 2017;11:1142–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Tolar BB, Powers LC, Miller WL, Wallsgrove NJ, Popp BN, Hollibaugh JT. Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of hydrogen peroxide. Front Mar Sci. 2016;3:237.
    Google Scholar 
    102.Bayer B, Pelikan C, Bittner MJ, Reinthaler T, Könneke M, Herndl GJ, et al. Proteomic response of three marine ammonia-oxidizing archaea to hydrogen peroxide and their metabolic interactions with a heterotrophic alphaproteobacterium. mSystems. 2019;4:e00181–19.PubMed 
    PubMed Central 

    Google Scholar 
    103.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zhayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 

    Google Scholar 
    104.Yang Y, Herbold CW, Jung M-Y, Qin W, Cai M, Du H, et al. Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration. Water Res. 2021;191:116798.CAS 
    PubMed 

    Google Scholar 
    105.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 

    Google Scholar 
    106.Ma K, Schicho RN, Kelly RM, Adams MW. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase:evidence for a sulfur-reducing hydrogenase ancestor. PNAS. 1993;90:5341–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Finney AJ, Sargent F. Formate hydrogenlyase:A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase. Adv Micro Physiol. 2019;74:465–86.
    Google Scholar 
    108.Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs KU, Teske AP, et al. Genomic inference of the metabolism of cosmopolitan subsurface archaea, Hadesarchaea. Nat Microbiol. 2016;1:1–9.
    Google Scholar 
    109.He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol. 2016;1:1–9.
    Google Scholar 
    110.Lazar CS, Baker BJ, Seitz KW, Teske AP. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 2017;11:1118–29.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Farag IF, Biddle JF, Zhao R, Martino AJ, House CH, León-Zayas RI. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME J. 2020;14:1345–58.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Orsi WD, Vuillemin A, Rodriguez P, Coskun ÖK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.CAS 
    PubMed 

    Google Scholar 
    113.Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS. 2018;115:E1166–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. PNAS. 2010;107:13087–92.PubMed 
    PubMed Central 

    Google Scholar 
    115.Lazar CS, Baker BJ, Seitz KW, Hyde AS, Dick GJ, Hinrichs KU, et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Nucleic Acids Res. 2015;18:1200–11.
    Google Scholar 
    116.Debnar-Daumler C, Seubert A, Schmitt G, Heider J. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. J Bacteriol. 2014;196:483–92.PubMed 
    PubMed Central 

    Google Scholar 
    117.Kletzin A, Mukund S, Kelley-Crouse TL, Chan MK, Rees DC, Adams MW. Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol. 1995;177:4817–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Arndt F, Schmitt G, Winiarska A, Saft M, Seubert A, Kahnt J, et al. Characterization of an aldehyde oxidoreductase from the mesophilic bacterium Aromatoleum aromaticum ebn1, a member of a new subfamily of tungsten-containing enzymes. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00071.119.Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature. 2013;496:215–8.CAS 
    PubMed 

    Google Scholar 
    120.Dimapilis JRR. Tungsten is essential for long-term maintenance of members of candidate archaeal genus Aigarchaeota Group 4. [dissertation on the Internet]. San Bernardino, California State University; 2019. https://scholarworks.lib.csusb.edu/etd/927/.121.Anthony C. The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys. 2004;428:2–9.CAS 
    PubMed 

    Google Scholar 
    122.Jaffe AL, Castelle CJ, Dupont CL, Banfield JF. Lateral gene transfer shapes the distribution of rubisco among candidate phyla radiation bacteria and DPANN archaea. Nucleic Acids Res. 2019;36:435–46.CAS 

    Google Scholar 
    123.Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, et al. Ammonia-oxidising archaea living at low pH: insights from comparative genomics. Environ Microbiol. 2017;19:4939–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Aono R, Sato T, Imanaka T, Atomi H. A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nat Chem Biol. 2015;11:355–60.CAS 
    PubMed 

    Google Scholar 
    125.Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 2018;12:2668–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    126.Cai C, Leu AO, Xie G-J, Guo J, Feng Y, Zhao J-X, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018;12:1929–39.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    127.Leu AO, McIlroy SJ, Ye J, Parks DH, Orphan VJ, Tyson GW. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio. 2020;11:e01325–20.PubMed 
    PubMed Central 

    Google Scholar 
    128.Zhou Z, L Y, Xu W, Pan J, Luo Z-H, Li M. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems. 2020;5:e00795–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:170203.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More