Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean
1.Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).
Google Scholar
2.Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).
Google Scholar
3.Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).
Google Scholar
4.The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019); https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf5.Souter, D. et al. (eds) Status of Coral Reefs of the World: 2020 Report (International Coral Reef Initiative, 2021).6.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS
Google Scholar
7.Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 109, e12587 (2018).
Google Scholar
8.Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).
Google Scholar
9.Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).
Google Scholar
10.Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Mar. Sci. 6, 580 (2019).
Google Scholar
11.Mumby, P. J., Steneck, R. S. & Hastings, A. Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122, 481–491 (2013).
Google Scholar
12.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).
Google Scholar
13.Obura, D. et al. (eds) Coral Reef Status Report for the Western Indian Ocean (International Coral Reef Initiative, 2017).14.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).
Google Scholar
15.Jackson, J., Donovan, M. K., Cramer, K. & Lam, V. (eds) Status and Trends of Caribbean Coral Reefs: 1970–2012 (International Coral Reef Initiative, 2014).16.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).CAS
Google Scholar
17.McClanahan, T. R., Ateweberhan, M., Darling, E. S., Graham, N. A. J. & Muthiga, N. A. Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9, e93385 (2014).
Google Scholar
18.Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).
Google Scholar
19.Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).CAS
Google Scholar
20.Rodriguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).21.Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 12, e12665 (2019).
Google Scholar
22.van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. https://doi.org/10.1038/srep39666 (2016).23.Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS
Google Scholar
24.Gudka, M. et al. Participatory reporting of the 2016 bleaching event in the Western Indian Ocean. Coral Reefs 39, 1–11 (2020).
Google Scholar
25.Diaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
Google Scholar
26.Steneck, R. S., Mumby, P. J., MacDonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).
Google Scholar
27.Arnold, S., Steneck, R. & Mumby, P. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).
Google Scholar
28.Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs 33, 289–302 (2014).
Google Scholar
29.Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: over-fishing and under-management continue to threaten groupers so what now? Mar. Policy 116, 103909 (2020).
Google Scholar
30.Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).
Google Scholar
31.Samoilys, M., Roche, R., Koldewey, H. & Turner, J. Patterns in reef fish assemblages: insights from the Chagos Archipelago. PLoS ONE 13, e0191448 (2018).
Google Scholar
32.Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS
Google Scholar
33.Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).
Google Scholar
34.Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).
Google Scholar
35.Uribe, E. S., Luna-Acosta, A. & Etter, A. Red List of Ecosystems: risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manag. 199, 105416 (2021).
Google Scholar
36.Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).
Google Scholar
37.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).
Google Scholar
38.Boitani, L., Mace, G. M. & Rondinini, C. Challenging the scientific foundations for an IUCN Red List of Ecosystems. Conserv. Lett. 8, 125–131 (2015).
Google Scholar
39.Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2019).
Google Scholar
40.Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).
Google Scholar
41.Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 16, 157–174 (2015).
Google Scholar
42.Keith, D. A. et al. The IUCN Global Ecosystem Typology v1.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups (Royal Botanic Gardens Kew, 2020).43.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).
Google Scholar
44.Pendleton, L. et al. Coral reefs and people in a high-CO2 world: where can science make a difference to people? PLoS ONE 11, e0164699 (2016).
Google Scholar
45.Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeosci. 124, 2446–2459 (2019).
Google Scholar
46.Portner, H. O. et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change (IPBES, 2021); https://zenodo.org/record/510112547.Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020); https://www.cbd.int/gbo548.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).49.Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
Google Scholar
50.ICRI, Coral Reefs and the UN (International Coral Reef Initiative, 2021); https://www.icriforum.org/icri-coral-reefs-and-the-un/51.Mahon, R. & Fanning, L. Regional ocean governance: polycentric arrangements and their role in global ocean governance. Mar. Policy 107, 103590 (2019).
Google Scholar
52.Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria (IUCN, 2015); https://doi.org/10.2305/IUCN.CH.2016.RLE.1.en53.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
Google Scholar
54.Veron, J., Stafford-Smith, M. G., Devantier, L. M. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1, 81 (2015).55.Obura, D. O. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).CAS
Google Scholar
56.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).CAS
Google Scholar
57.Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).
Google Scholar
58.Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).
Google Scholar
59.Jouffray, J. B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2014).60.Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406–417 (2001).
Google Scholar
61.Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).
Google Scholar
62.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283, 20151985 (2016).
Google Scholar
63.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS
Google Scholar
64.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).CAS
Google Scholar
65.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).
Google Scholar
66.Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS
Google Scholar
67.Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).CAS
Google Scholar
68.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).
Google Scholar
69.Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS
Google Scholar
70.Huang, W., Mukherjee, D. & Chen, S. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250m remote sensing. Mar. Pollut. Bull. 62, 490–498 (2011).CAS
Google Scholar
71.Chen, S. Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
Google Scholar
72.Porter, S. N., Branch, G. M. & Sink, K. J. Changes in shallow-reef community composition along environmental gradients on the East African coast. Mar. Biol. 164, 101 (2017).
Google Scholar
73.Perry, C. T. & Alvarez-Filip, L. Changing geo‐ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2018).
Google Scholar
74.Andrefouet, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In Proc. 10th International Coral Reef Symposium 1732–1745 (ICRS, 2006).75.Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Model. 212, 180–199 (2008).
Google Scholar
76.Maina, J., McClanahan, T. R., Venus, V., Ateweberhan, M. & Madin, J. Global gradients of coral exposure to environmental stresses and implications for local management. PLoS ONE 6, e23064 (2011).CAS
Google Scholar
77.Liu, G. et al. NOAA coral reef watch’s decision support system for coral reef management. In Proc. 12th International Coral Reef Symposium (2012); https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_5A_6.pdf78.Hill, J. & Wilkinson, C. Methods for Ecological Monitoring of Coral Reefs: Version 1 (Australian Institute of Marine Science, 2004).79.Wilkinson, C. Status of Coral Reefs of the World: 2008 (International Coral Reef Initiative, 2008).80.Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 15 (2018).
Google Scholar
81.Bax, N. J. et al. Linking capacity development to GOOS monitoring networks to achieve sustained ocean observation. Front. Mar. Sci. 5, 206 (2018).
Google Scholar
82.Reuchlin-Hugenholtz, E., Shackell, N. L. & Hutchings, J. A. The potential for spatial distribution indices to signal thresholds in marine fish biomass. PLoS ONE 10, e0120500 (2015).
Google Scholar
83.Kuempel, C. D., Adams, V. M., possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2017).
Google Scholar
84.Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).
Google Scholar
85.Harford, W. J., Sagarese, S. R. & Karnauskas, M. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper–snapper fisheries. Fish Fish. 20, 303–321 (2019).
Google Scholar More