Winter diet of Japanese macaques from Chubu Sangaku National Park, Japan incorporates freshwater biota
1.Agetsuma, N. Foraging strategies of Yakushima Macaques (Macaca-fuscata Yakui). Int. J. Primatol. 16, 595–609. https://doi.org/10.1007/bf02735283 (1995).Article
Google Scholar
2.Hill, D. A. Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am. J. Primatol. 43, 305–322 (1997).CAS
Article
Google Scholar
3.Otani, Y. et al. Factors influencing riverine utilization patterns in two sympatric macaques. Sci. Rep. https://doi.org/10.1038/s41598-020-79259-1 (2020).Article
PubMed
PubMed Central
Google Scholar
4.Maruhashi, T. Feeding behavior and diet of the Japanese monkey Macaca-fuscata-yakui on Yakushima Island, Japan. Primates 21, 141–160. https://doi.org/10.1007/bf02374030 (1980).Article
Google Scholar
5.Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M. & Gilbert, C. C. Nutritional contributions of insects to primate diets: Implications for primate evolution. J. Hum. Evol. 71, 59–69. https://doi.org/10.1016/j.jhevol.2014.02.016 (2014).Article
PubMed
Google Scholar
6.Hanya, G. et al. Not only annual food abundance but also fallback food quality determines the Japanese macaque density: evidence from seasonal variations in home range size. Primates 47, 275–278. https://doi.org/10.1007/s10329-005-1076-2 (2006).ADS
Article
PubMed
Google Scholar
7.Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288. https://doi.org/10.1002/(sici)1098-2345(1997)41:4%3c267::aid-ajp1%3e3.0.co;2-v (1997).CAS
Article
PubMed
Google Scholar
8.Tsuji, Y., Ito, T. Y., Wada, K. & Watanabe, K. Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mammal Rev. 45, 227–238. https://doi.org/10.1111/mam.12045 (2015).Article
Google Scholar
9.Wada, K. & Tokida, E. Habitat utlization by wintering Japanese monkeys Macaca fuscata-fuscata in Shiga Heights Japan. Primates 22, 330–348. https://doi.org/10.1007/bf02381574 (1981).Article
Google Scholar
10.Suzuki, A. An ecological study of wild Japanese monkeys in snowy area focused on their food habits. Primates 6, 31–71 (1965).Article
Google Scholar
11.Izawa, K. & Nishida, T. Monkeys living in the northern limits of their distribution. Primates 4, 67–88 (1963).Article
Google Scholar
12.Enari, H. & Sakamaki-Enari, H. Influence of heavy snow on the feeding behavior of Japanese Macaques (Macaca Fuscata) in Northern Japan. Am. J. Primatol. 75, 534–544. https://doi.org/10.1002/ajp.22128 (2013).Article
PubMed
Google Scholar
13.Agetsuma, N. Dietary selection by Yakushima macaques (Macaca-fustcata Yakui): the influence of food availability and temperature. Int. J. Primatol. 16, 611–627. https://doi.org/10.1007/bf02735284 (1995).Article
Google Scholar
14.Agetsuma, N. & Nakagawa, N. Effects of habitat differences on feeding behaviors of Japanese monkeys: comparison between Yakushima and Kinkazan. Primates 39, 275–289. https://doi.org/10.1007/bf02573077 (1998).Article
Google Scholar
15.Izumiyama, S. In: High Altitude Primates, Developments in Primatology: Progress and Prospects Vol. 44 (ed N.B. Grow et al.) 153–181 (Springer, New York, 2014).16.Go, M. Seasonal changes in food resource distribution and feeding sites selected by Japanese macaques on Koshima Islet, Japan. Primates 51, 149–158. https://doi.org/10.1007/s10329-009-0179-5 (2010).Article
PubMed
Google Scholar
17.Hanya, G. Diet of a Japanese macaque troop in the coniferous forest of Yakushima. Int. J. Primatol. 25, 55–71. https://doi.org/10.1023/b:ijop.0000014645.78610.32 (2004).Article
Google Scholar
18.Sakamaki, H., Enari, H., Aoi, T. & Kunisaki, T. Winter food abundance for Japanese monkeys in differently aged Japanese cedar plantations in snowy regions. Mammal Study 36, 1–10. https://doi.org/10.3106/041.036.0101 (2011).Article
Google Scholar
19.Enari, H. In: High Altitude Primates. Developments in Primatology, Progress and Prospects (eds N Grow, S Gursky-Doyen, & Krzton A) (Springer, New York, 2014).20.Tsuji, Y. & Nakagawa, N. Monkeys of Japan: A Mammalogical Studies of Japanese Macaques (University of Tokyo Press, 2017).
Google Scholar
21.Suzuki, S., Hill, D. A., Maruhashi, T. & Tsukuhara, T. Frog and Lizard-eating behaviour of wild Japanese Macaques in Yakushima, Japan. Primates 31, 421–426 (1990).Article
Google Scholar
22.Watanabe, K. Fish: a new addition to the diet of Japanese macaques on Koshima Island. Folia Primatol. 52, 124–131. https://doi.org/10.1159/000156391 (1989).CAS
Article
Google Scholar
23.Leca, J. B., Gunst, N., Watanabe, K. & Huffman, M. A. A new case of fish-eating in Japanese macaques: Implications for social constraints on the diffusion of feeding innovation. Am. J. Primatol. 69, 821–828. https://doi.org/10.1002/ajp.20401 (2007).Article
PubMed
Google Scholar
24.Stewart, A. M. E., Gordon, C. H., Wich, S. A., Schroor, P. & Meijaard, E. Fishing in Macaca fascicularis: a rarely observed innovative behavior. Int. J. Primatol. 29, 543–548. https://doi.org/10.1007/s10764-007-9176-y (2008).Article
Google Scholar
25.Hamilton, W. J. & Tilson, R. L. Fishing Baboons at desert waterholes. Am. J. Primatol. 8, 255–257. https://doi.org/10.1002/ajp.1350080308 (1985).Article
PubMed
Google Scholar
26.Tamura, M. Extractive foraging on hard-shelled walnuts and variation of feeding techniques in wild Japanese macaques (Macada fuscata). Am. J. Primatol. 82, e23130 (2020).Article
Google Scholar
27.Iwamoto, T. A bioeconomic study on a provisioned troop at a Japanese monkeys Macada fuscata-fuscata at Koshima Islet Miyazaki. Primates 15, 241–262. https://doi.org/10.1007/bf01742286 (1974).Article
Google Scholar
28.Tsuji, Y. & Takatsuki, S. Effects of a typhoon on foraging behavior and foraging success of Macaca fuscata on Kinkazan Island, Northern Japan. Int. J. Primatol. 29, 1203–1217. https://doi.org/10.1007/s10764-008-9293-2 (2008).Article
Google Scholar
29.Gumert, M. D. & Malaivijitnond, S. Marine prey processed with stone tools by burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. Am. J. Phys. Anthropol. 149, 447–457. https://doi.org/10.1002/ajpa.22143 (2012).Article
PubMed
Google Scholar
30.Tan, A., Tan, S. H., Vyas, D., Malaivijitnond, S. & Gumert, M. D. There is more than one way to crack an oyster: identifying variation in burmese long-tailed Macaque (Macaca fascicularis aurea) stone-tool use. PLoS ONE https://doi.org/10.1371/journal.pone.0124733 (2015).Article
PubMed
PubMed Central
Google Scholar
31.Urabe, M. The present distribution and issues regarding the control of the exotic snail Potamopyrgus antipodarum in Japan. Jpn. J. Limnol. 68, 491–496 (2007).Article
Google Scholar
32.Hamada, K. T. Y. & Urabe, M. Survey of mitochondrial DNA haplotypes of Potamopyrgus antipodarum (Caenogastropoda: Hydrobiidae) introduced into Japan. Limnology 14, 223–228 (2013).Article
Google Scholar
33.Izumiyama, S., Mochizuki, T. & Shiraishi, T. Troop size, home range area and seasonal range use of the Japanese macaque in the Northern Japan Alps. Ecol. Res. 18, 465–474. https://doi.org/10.1046/j.1440-1703.2003.00570.x (2003).Article
Google Scholar
34.Milner, A. M., Docherty, C., Windsor, F. M. & Tojo, K. Macroinvertebrate communities in streams with contrasting water sources in the Japanese Alps. Ecol. Evol. 10, 7812–7825. https://doi.org/10.1002/ece3.6507 (2020).Article
PubMed
PubMed Central
Google Scholar
35.Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. https://doi.org/10.1186/1742-9994-5-12 (2008).Article
PubMed
PubMed Central
Google Scholar
36.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. https://doi.org/10.1186/1742-9994-10-34 (2013).Article
PubMed
PubMed Central
Google Scholar
37.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3. doi:https://doi.org/10.14806/ej.17.1.200 (2011).38.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
39.Ratnasingham, S. & Hebert, P. D. N. BOLD: the barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364. doi:https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).40.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/aem.00062-07 (2007).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article
PubMed
PubMed Central
Google Scholar
42.Wickham, H. ggplot2: elegant graphics for data analysis 2nd edn. (Springer, 2016).Book
Google Scholar More