More stories

  • in

    The UN must get on with appointing its new science board

    EDITORIAL
    08 December 2021

    The UN must get on with appointing its new science board

    The decision to appoint a board of advisors is welcome — and urgent, given the twin challenges of COVID and climate change.

    Twitter

    Facebook

    Email

    Download PDF

    UN secretary-general António Guterres announced plans for a new science board in September, but is yet to release further details.Credit: Juancho Torres/Anadolu Agency/Getty

    Scientists helped to create the United Nations system. Today, people look to UN agencies — such as the UN Environment Programme or the World Health Organization — for reliable data and evidence on, say, climate change or the pandemic. And yet, shockingly, the UN leader’s office has not had a department for science advice for most of its 76-year history. That is about to change.UN secretary-general António Guterres is planning to appoint a board of scientific advisers, reporting to his office. The decision was announced in September in Our Common Agenda (see go.nature.com/3y1g3hp), which lays out the organization’s vision for the next 25 years, but few other details have been released.Representatives of the scientific community are excited about the potential for science to have a position at the centre of the UN, but are rightly anxious for rapid action, given the twin challenges of COVID-19 and climate change, which should be urgent priorities for the board. The International Science Council (ISC), the Paris-based non-governmental body representing many of the world’s scientists, recommended such a board in its own report on science and the intergovernmental system, published last week (see go.nature.com/3rjdjos). Council president Peter Gluckman, former chief science adviser to New Zealand’s prime minister, has written to Guterres to say the ISC is ready to help.
    COP26 didn’t solve everything — but researchers must stay engaged
    But it’s been more than two months since the announcement, and the UN has not yet revealed the names of the board members. Nature spoke to a number of serving and former UN science advisers who said they know little about the UN chief’s plans. So far, there are no terms of reference and there is no timeline.Nature understands that the idea is still being developed, and that Guterres is leaning towards creating a board that would draw on UN agencies’ existing science networks. Guterres is also aware of the need to take into account that both the UN and the world have changed since the last such board was put in place. All the same, the UN chief needs to end the suspense and set out his plans. Time is of the essence.Guterres’s predecessor, Ban Ki-moon, had a science advisory board between 2014 and 2016. Its members were tasked with providing advice to the secretary-general on science, technology and innovation for sustainable development. But COVID-19 and climate change have pushed science much higher up the international agenda. Moreover, global challenges are worsening — the pandemic has put back progress towards the UN’s flagship Sustainable Development Goals (SDGs), a plan to end poverty and achieve sustainability by 2030. There is now widespread recognition that science has an important part to play in addressing these and other challenges.
    How science can put the Sustainable Development Goals back on track
    Research underpins almost everything we know about the nature of the virus SARS-CoV-2 and the disease it causes. All countries have access to similar sets of findings, but many are coming to different decisions on how to act on those data — for example, when to mandate mask-wearing or introduce travel restrictions. The UN’s central office needs advice that takes this socio-cultural-political dimension of science into account. It needs advice from experts who study how science is applied and perceived by different constituencies and in different regions.Science advice from the heart of the UN system could also help with another problem highlighted by the pandemic — how to reinvigorate the idea that it is essential for countries to cooperate on solving global problems.Climate change is one example. Advice given by the Intergovernmental Panel on Climate Change (IPCC) is being read and applied in most countries, albeit to varying degrees. But climate is also an area in which states are at odds. Despite Guterres’s calls for solidarity, there were times during last month’s climate conference in Glasgow when the atmosphere was combative. Science advisers could help the secretary-general’s office to find innovative ways to encourage cooperation between countries in efforts to meet the targets of the 2015 Paris climate agreement.
    Reset Sustainable Development Goals for a pandemic world
    The SDGs are also, to some extent, impeded by competition within the UN system. To tackle climate change, manage land and forests, and protect biodiversity, researchers and policymakers need to work collegially. But the UN’s scientific bodies, such as the IPCC, are set up along disciplinary lines with their own objectives, work programmes and rules, all guided by their own institutional histories. The IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), for example, have only begun to collaborate in the past few years .Independence will be key for an advisory role to be credible. Guterres needs to consider an organizational architecture through which UN agencies are represented, and funding could come from outside the UN. But all of those involved would have to accept that their contributions were for common goals — not to promote their own organization’s interests.Leadership matters, as do communication and support. Guterres should ensure that his scientific advisers are chosen carefully to represent individuals from diverse disciplines and across career stages, and to ensure good representation from low-income countries. The board needs to be well staffed and have a direct line to his office. And it will need a decent budget. Guterres should quickly publish the terms of reference so that the research community has time to provide input and critique.At its most ambitious, a scientific advisory board to the secretary-general could help to break the culture of individualism that beleaguers efforts to reach collective, global goals, and bring some coherence to the current marketplace of disciplines, ideas and outcomes. This will be a monumental task, requiring significant resources and the will to change. But if the advisers succeed, there will also be valuable lessons for the practice of science, which, as we know all too well, still largely rewards individual effort.

    Nature 600, 189-190 (2021)
    doi: https://doi.org/10.1038/d41586-021-03615-y

    Related Articles

    COP26 didn’t solve everything — but researchers must stay engaged

    Ending Hunger: Science must stop neglecting smallholder farmers

    Reset Sustainable Development Goals for a pandemic world

    How science can put the Sustainable Development Goals back on track

    Subjects

    Sustainability

    Biodiversity

    Climate change

    Government

    Latest on:

    Sustainability

    Battery-powered trains offer a cost-effective ride to a cleaner world
    Research Highlight 22 NOV 21

    All aboard the climate train! Scientists join activists for COP26 trip
    News 02 NOV 21

    Machine learning enables global solar-panel detection
    News & Views 27 OCT 21

    Biodiversity

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    The answer to the biodiversity crisis is not more debt
    Editorial 26 OCT 21

    Climate change

    An IPCC reviewer shares his thoughts on the climate debate
    Career Q&A 08 DEC 21

    Brazil is in water crisis — it needs a drought plan
    Comment 08 DEC 21

    Build solar-energy systems to last — save billions
    Comment 07 DEC 21

    Jobs

    Postdoc in Formulation Development for Gene Delivery Therapies

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    ​​​​​​​Postdoc in Molecular Biology for Gene Delivery Project

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    Post-doctoral Research Fellows

    Brigham and Women’s Hospital (BWH)
    Boston, MA, United States

    HPC/Research Computing Engineer

    Francis Crick Institute
    London, United Kingdom More

  • in

    Fish predators control outbreaks of Crown-of-Thorns Starfish

    Large-scale, long-term field data from the GBR Marine ParkThe field data for CoTS, hard coral cover (here referred to as coral cover) and coral reef fish were obtained from the Australian Institute of Marine Science’s (AIMS) Long-Term Monitoring Programme (LTMP), while fisheries retained catch data were supplied by the Queensland Department of Agriculture and Fisheries (QDAF). The LTMP has been surveying CoTS populations and coral cover at reefs across the length and breadth of the GBR Marine Park since 198350 and has quantified the status and trend of benthic and reef fish assemblages since 1995. Specific examination of the effectiveness of zoning within the GBR Marine Park has also been undertaken24. The surveyed reefs are located within zones open to fishing (i.e. General Use, Habitat Protection and Conservation Park) and zones closed to fishing (i.e. Marine National Park Zones, Preservation and Scientific Research Zones) (Supplementary Table 1). The QDAF fisheries data comprise annual retained catch data from the Coral Reef Fin Fish Fishery including commercial, recreational (including charters) and Indigenous fisheries, as well as the Marine Aquarium Fish Fishery (Supplementary Data 1–3). Monthly catch return logbooks became compulsory for all trawlers and line fisheries on 1 January 198830. Retained catch data from each of these fisheries is collected separately and differently by QDAF (please see details below). Use of these data is by courtesy of the State of Queensland, Australia, through the Department of Agriculture and Fisheries.For both the LTMP and QDAF data, the data sets are chronologically divided into report (LTMP) or financial (QDAF) years, respectively, from 01 July to 30 June. This means that, for instance, the second semester of 2017 belongs to the 2018 report or financial year. Hereafter we will refer to report or financial year as simply year. Below we explain each of these data sets in more detail.LTMP CoTS and coral cover dataLTMP CoTS and coral cover data are available from 1983 to 2020. Both observed CoTS and coral cover data are based on field observations that employ manta tow surveys around the perimeter of each reef following AIMS’ Standard Operational Procedure51. Within this period, manta tows were conducted once per year but not all reefs were sampled every year. Briefly, manta tow surveys are a broad-scale technique that covers large areas of reef quickly and provides an assessment of broad changes in the distribution and abundance of corals and CoTS. During surveys, two boats each tow an observer clockwise and anti-clockwise around reef perimeters in a series of 2-min tows until they meet at the other end of the reef. Each observer records categorical coral cover (Supplementary Table 8) and the number and size of any CoTS observed (Supplementary Table 9) at the end of each 2-min tow51. Manta tow surveys are a non-targeting, rapid assessment method, and therefore it under-samples CoTS individuals that are More

  • in

    A constraint on historic growth in global photosynthesis due to increasing CO2

    1.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    2.Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    3.Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 

    Google Scholar 
    4.Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    5.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    6.Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 7, 4765 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    7.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2383–2385 (2020).
    Google Scholar 
    8.Sun, Z. et al. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 668, 696–713 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).ADS 

    Google Scholar 
    10.Li, W. et al. Recent changes in global photosynthesis and terrestrial ecosystem respiration constrained from multiple observations. Geophys. Res. Lett. 45, 1058–1068 (2018).ADS 

    Google Scholar 
    11.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).PubMed 
    ADS 

    Google Scholar 
    12.Ehlers, I. et al Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proc. Natl Acad. Sci. USA 112, 15585–15590 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    13.Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).ADS 

    Google Scholar 
    15.Winkler, A. J., Myneni, R. B. & Brovkin, V. Investigating the applicability of emergent constraints. Earth Syst. Dyn. 10, 501–523 (2019).ADS 

    Google Scholar 
    16.Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).ADS 

    Google Scholar 
    17.Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).
    Google Scholar 
    18.Ryu, Y., Berry, J. A. & Baldocchi, D. D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 223, 95–114 (2019).ADS 

    Google Scholar 
    19.Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 95 (2019).ADS 

    Google Scholar 
    20.Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).PubMed 

    Google Scholar 
    21.De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. & Terrer, C. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat Clim. Change 6, 892–893 (2016).ADS 

    Google Scholar 
    22.Cernusak, L. A. et al Robust response of terrestrial plants to rising CO2. Trends Plant Sci. 24, 578–586 (2019).CAS 
    PubMed 

    Google Scholar 
    23.Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).ADS 

    Google Scholar 
    24.Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).ADS 

    Google Scholar 
    25.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 

    Google Scholar 
    26.Zhao, F. et al. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. Biogeosciences 13, 5121–5137 (2016).CAS 
    ADS 

    Google Scholar 
    27.Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).ADS 

    Google Scholar 
    28.Running, S. W. & Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm User’s Guide v. 3 (MODIS Land Team, 2015).29.Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, https://doi.org/10.1029/2010JG001566 (2011).30.Zeng, N. et al. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515, 394–397 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    31.Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).CAS 

    Google Scholar 
    32.Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).ADS 

    Google Scholar 
    33.Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    ADS 

    Google Scholar 
    34.Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).ADS 

    Google Scholar 
    35.Cernusak, L. A. et al. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Funct. Plant Biol. 40, 531–551 (2013).CAS 
    PubMed 

    Google Scholar 
    36.Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).CAS 
    PubMed 

    Google Scholar 
    37.Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).ADS 

    Google Scholar 
    38.Yang, J. et al. Low sensitivity of gross primary production to elevated CO2 in a mature eucalypt woodland. Biogeosciences 17, 265–279 (2020).CAS 
    ADS 

    Google Scholar 
    39.McMurtrie, R. E., Comins, H. N., Kirschbaum, M. U. F. & Wang, Y. P. Modifying existing forest growth models to take account of effects of elevated CO2. Aust. J. Bot. 40, 657–677 (1992).CAS 

    Google Scholar 
    40.Luo, Y., Sims, D. A., Thomas, R. B., Tissue, D. T. & Ball, J. T. Sensitivity of leaf photosynthesis to CO2 concentration is an invariant function for C3 plants: a test with experimental data and global applications. Global Biogeochem. Cycles 10, 209–222 (1996).CAS 
    ADS 

    Google Scholar 
    41.Li, Q. et al. Leaf area index identified as a major source of variability in modeled CO2 fertilization. Biogeosciences 15, 6909–6925 (2018).CAS 
    ADS 

    Google Scholar 
    42.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    43.Zaehle, S. et al. Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    45.Stocker, B. D. et al Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).CAS 
    ADS 

    Google Scholar 
    46.Williamson, M. S. et al Emergent constraints on climate sensitivities. Rev. Mod. Phys. 93, 025004 (2021).MathSciNet 
    CAS 
    ADS 

    Google Scholar 
    47.Sanderson, B. et al. On structural errors in emergent constraints. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2020-85 (2021).48.Fisher, J. B., Huntzinger, D. N., Schwalm, C. R. & Sitch, S. Modeling the terrestrial biosphere. Annu. Rev. Environ. Resour. 39, 91–123 (2014).
    Google Scholar 
    49.Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Clim. 26, 5289–5314 (2013).ADS 

    Google Scholar 
    50.Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).CAS 
    ADS 

    Google Scholar 
    51.Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    52.Friedlingstein, P. et al. On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochem. Cycles 9, 541–556 (1995).CAS 
    ADS 

    Google Scholar 
    53.Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 

    Google Scholar 
    54.Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 
    ADS 

    Google Scholar 
    55.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    ADS 

    Google Scholar 
    56.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    57.Ukkola, A. M., Keenan, T. F., Kelley, D. I. & Prentice, I. C. Vegetation plays an important role in mediating future water resources. Environ. Res. Lett. 11, 094022 (2016).ADS 

    Google Scholar 
    58.Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).CAS 
    ADS 

    Google Scholar 
    59.Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).ADS 

    Google Scholar 
    60.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).PubMed 

    Google Scholar 
    61.Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e0038345 (2012).ADS 

    Google Scholar 
    62.Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least-cost optimality theory. Glob. Change Biol. 26, 806–834 (2020).
    Google Scholar 
    63.Lloyd, J. & Farquhar, G. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct. Ecol. 10, 4–32 (1996).
    Google Scholar 
    64.Ehleringer, J. & Björkman, O. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiol. 59, 86–90 (1997).
    Google Scholar 
    65.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, SP. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).CAS 

    Google Scholar 
    66.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 

    Google Scholar 
    67.Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).CAS 
    PubMed 

    Google Scholar 
    68.Huber, M. L. et al. New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 38, 101–125 (2009).CAS 
    ADS 

    Google Scholar 
    69.Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles 17, 6-1–6-14 (2003).ADS 

    Google Scholar 
    70.Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2. Remote Sens. 5, 927–948 (2013).ADS 

    Google Scholar 
    71.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    ADS 

    Google Scholar 
    72.Gallego-Sala, A. et al. Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Clim. Res. 45, 151–162 (2010).
    Google Scholar 
    73.Veroustraete, F. On the use of a simple deciduous forest model for the interpretation of climate change effects at the level of carbon dynamics. Ecol. Modell. 75–76, 221–237 (1994).
    Google Scholar 
    74.Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 186, 528–547 (2016).ADS 

    Google Scholar 
    75.Zhang, S. et al. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe. Ecol. Modell. 368, 205–232 (2018).CAS 

    Google Scholar 
    76.Liu, Y., Hejazi, M., Li, H., Zhang, X. & Leng, G. A hydrological emulator for global applications-HE v1.0.0. Geosci. Model Dev. 11, 1077–1092 (2018).ADS 

    Google Scholar 
    77.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, aax1396 (2019).ADS 

    Google Scholar 
    78.Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).CAS 
    ADS 

    Google Scholar 
    79.Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).CAS 
    ADS 

    Google Scholar 
    80.Oleson, K. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).81.Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    82.Jain, A. K., Meiyappan, P., Song, Y. & House, J. I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Change Biol. 19, 2893–2906 (2013).ADS 

    Google Scholar 
    83.Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model Earth Syst. 5, 459–482 (2013).ADS 

    Google Scholar 
    84.Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).ADS 

    Google Scholar 
    85.Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).ADS 

    Google Scholar 
    86.Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).ADS 

    Google Scholar 
    87.Keller, K. M. et al. 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 14, 2641–2673 (2017).CAS 
    ADS 

    Google Scholar 
    88.Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 

    Google Scholar 
    89.Guimberteau, M. et al. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geosci. Model Dev. 11, 121–163 (2018).CAS 
    ADS 

    Google Scholar 
    90.Zeng, N., Mariotti, A. & Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002273 (2005).91.Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).
    Google Scholar 
    92.Fernández-Martínez, M. et al. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    93.Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).CAS 
    ADS 

    Google Scholar 
    94.Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    95.Ueyama, M. et al. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environ. Res. Lett. 15, 084009 (2020).CAS 
    ADS 

    Google Scholar 
    96.Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa

    1.Stirton, C. H. Polhillia, a new genus of papilionoid legumes endemic to South Africa. South African J. Bot. 52, 167–180 (1986).
    Google Scholar 
    2.Boatwright, J. S., Tilney, P. M. & Van Wyk, B.-E. Taxonomy of Wiborgiella (Crotalarieae, Fabaceae), a genus endemic to the greater Cape Region of South Africa. Syst. Bot. 35, 325–340 (2010).
    Google Scholar 
    3.Moiloa, N. A., Chimphango, S. B. M. & Muasya, A. M. A phylogenetic study of the genus Wiborgia (Crotalarieae, Fabaceae). South African J. Bot. 115, 179–193 (2018).
    Google Scholar 
    4.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Goldblatt, P. & Manning, J. C. Plant diversity of the Cape region of southern Africa. Ann. Missouri Bot. Gard. 281–302 (2002).6.Forest, F., Colville, J. F. & Cowling, R. M. Evolutionary diversity patterns in the Cape flora of South Africa. in Phylogenetic Diversity 167–187 (Springer, 2018).7.Boatwright, J. S. & Cupido, C. N. Aspalathus crewiana sp. Nov. (Crotalarieae, Fabaceae) from the Western Cape Province, South Africa. Nord. J. Bot. 29, 513–517 (2011).
    Google Scholar 
    8.Mpai, T., Jaiswal, S. K. & Dakora, F. D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).9.Van Zwieten, L. et al. Enhanced biological N 2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: Dissection of causal mechanisms. Plant Soil 395, 7–20 (2015).
    Google Scholar 
    10.Jaiswal, S. K., Naamala, J. & Dakora, F. D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol. Fertil. Soils https://doi.org/10.1007/s00374-018-1262-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Araújo, S. S. et al. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. CRC. Crit. Rev. Plant Sci. 34, 237–280 (2015).
    Google Scholar 
    12.Etesami, H., Alikhani, H. & Akbari, A. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth. World Appl. Sci. J. 6, 1576–1584 (2009).CAS 

    Google Scholar 
    13.Ibny, F. Y. I., Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Symbiotic effectiveness and ecologically adaptive traits of native rhizobial symbionts of Bambara groundnut (Vigna subterranea L. Verdc.) in Africa and their relationship with phylogeny. Sci. Rep. 9, 1–17 (2019).CAS 

    Google Scholar 
    14.Kanu, S. A. & Dakora, F. D. Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape Fynbos, South Africa. Soil Biol. Biochem. 54, 68–76 (2012).CAS 

    Google Scholar 
    15.Lemaire, B. et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 91, 2–17 (2015).
    Google Scholar 
    16.Brink, C., Postma, A. & Jacobs, K. Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: A review. South African J. Bot. 110, 80–86 (2017).
    Google Scholar 
    17.Dludlu, M. N., Chimphango, S. B. M., Walker, G., Stirton, C. H. & Muasya, A. M. Horizontal gene transfer among rhizobia of the Core Cape Subregion of southern Africa. South African J. Bot. 118, 342–352 (2018).CAS 

    Google Scholar 
    18.Aliero, B. L. Effects of sulphuric acid, mechanical scarification and wet heat treatments on germination of seeds of African locust bean tree, Parkia biglobosa. African J. Biotechnol. 3, 179–181 (2004).CAS 

    Google Scholar 
    19.Hematifar, M., Tehranifar, A. & Abedi, B. Facilitating Seed Germination of Eight Species of Hawthorn (Crataegus spp.) Native of Iran, Using Chemical Scarification and Cold Stratification. Iran. J. Seed Res. 4, 13–22 (2018).
    Google Scholar 
    20.Vincent, J. M. A Manual for the Practical Study of Root-Nodule Bacteria: A Manual for the Practical Study of Root-Nodule Bacteria Vol. 15 (Blackwell Scientific, 1970).
    Google Scholar 
    21.Unkovich, M. & Baldock, J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol. Biochem. 40, 2915–2921 (2008).CAS 

    Google Scholar 
    22.Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer, 2012).
    Google Scholar 
    23.Sneath, P. H. A., Sokal, R. R. Numerical taxonomy. The principles and practice of numerical classification. (1973).24.Rohlf, F. J., Applied Biostatistics, I. & Exeter Software (Firm). NTSYS-pc : Numerical taxonomy and multivariate analysis system. (Applied Biostatistics, Inc., 2009).25.Hall, T. BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html. (2004).26.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford University Press, 2000).
    Google Scholar 
    29.Saitou, N. & Nei, M. The neighbor-joining method : A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 
    PubMed 

    Google Scholar 
    30.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 

    Google Scholar 
    31.Morón, B. et al. Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biol. 12, 1029–1040 (2005).PubMed 

    Google Scholar 
    32.Moroenyane, I., Chimphango, S. B. M., Wang, J., Kim, H. K. & Adams, J. M. Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa. Microb. Ecol. 72, 313–323 (2016).CAS 
    PubMed 

    Google Scholar 
    33.Dabo, M., Jaiswal, S. K. & Dakora, F. D. Phylogenetic evidence of allopatric speciation of bradyrhizobia nodulating cowpea ( Vigna unguiculata L. walp ) in South African and Mozambican soils Department of Crop Sciences, Tshwane University of Technology, Private Bag Chemistry Department. Tshw. FEMS Microbiol. Ecol. 19, 1–14 (2019).
    Google Scholar 
    34.Singh, S. K., Jaiswal, S. K., Vaishampayan, A. & Dhar, B. Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. African J. Microbiol. Res. 7, 2093–2102 (2013).
    Google Scholar 
    35.Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598 (2010).
    Google Scholar 
    36.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    37.Maseko, S. T. & Dakora, F. D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African J. Bot. 89, 289–295 (2013).CAS 

    Google Scholar 
    38.Dludlu, M. N., Chimphango, S., Stirton, C. H. & Muasya, A. M. Differential preference of burkholderia and mesorhizobium to pH and soil types in the core cape subregion, South Africa. Genes 9, 2 (2017).PubMed Central 

    Google Scholar 
    39.Graham, P. H. et al. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40, 198–207 (1994).CAS 

    Google Scholar 
    40.Fikri-Benbrahim, K., Chraibi, M., Lebrazi, S., Moumni, M. & Ismaili, M. Phenotypic and Genotypic Diversity and Symbiotic Effectiveness of Rhizobia Isolated from Acacia sp. Grown in Morocco. J. Agric. Sci. Technol. 19, (2017).41.Moumni, M., Fikri-Benbrahim, K., Ismaili, M., Lebrazi, S. & Chraibi, M. Phenotypic and G enotypic D iversity and S ymbiotic E ffectiveness of R hizobia I solated from Acacia sp. G rown in Morocco. JKUAT (2018). http://hdl.handle.net/123456789/373842.Farissi, M. et al. Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. (2014).43.Lebrazi, S. & Benbrahim, K. F. Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms. African J. Microbiol. Res. 8, 4053–4061 (2014).
    Google Scholar 
    44.Bhargava, Y., Murthy, J. S. R., Kumar, T. V. R. & Rao, M. N. Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv. Microbiol. 6, 1 (2016).CAS 

    Google Scholar 
    45.Sankhla, I. S. et al. Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410, 21–40 (2017).CAS 

    Google Scholar 
    46.Rathi, S. et al. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol. Ecol. 94, 1–17 (2018).
    Google Scholar 
    47.Choudhary, D., Rai, M. K., Shekhawat, N. S. & Kataria, V. In vitro propagation of Farsetia macrantha Blatt. & Hallb.: An endemic and threatened plant of Indian Thar Desert. Plant Cell, Tissue Organ Cult. 142, 519–526 (2020).CAS 

    Google Scholar 
    48.de Castro Pires, R. et al. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 423, 411–428 (2018).
    Google Scholar 
    49.Verma, J. P., Yadav, J., Tiwari, K. N. & Kumar, A. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol. Eng. 51, 282–286 (2013).
    Google Scholar 
    50.Datta, C. & Basu, P. S. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155, 123–127 (2000).CAS 
    PubMed 

    Google Scholar 
    51.Brink, C. J. Plant Growth-Promoting Properties of Fynbos Rhizobia and Their Diversity (Stellenbosch University, 2018).
    Google Scholar 
    52.Naamala, J., Jaiswal, S. K. & Dakora, F. D. Antibiotics resistance in Rhizobium: Type, process, mechanism and benefit for agriculture. Curr. Microbiol. 72, 804–816 (2016).CAS 
    PubMed 

    Google Scholar 
    53.Baba, T. & Schneewind, O. Instruments of microbial warfare: Bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6, 66–71 (1998).CAS 
    PubMed 

    Google Scholar 
    54.Menezes, K. A. S., Nunes, G. F. O. & Sampaio, A. A. Diversity of new root nodule bacteria from Erythrina velutina Willd., a native legume from the Caatinga dry forest (Northeastern Brazil). Rev Cienc Agrárias 39, 222–233 (2016).
    Google Scholar 
    55.Pagano, M. C. Rhizobia associated with neotropical tree Centrolobium tomentosum used in riparian restoration. Plant, Soil Environ. 54, 498–508 (2008).CAS 

    Google Scholar 
    56.Hong, W., Zeng, J. & Xie, J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm. Sin. B 4, 258–265 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Elliott, G. N. et al. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100, 1403–1411 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Hassen, A. I., Bopape, F. L., Habig, J. & Lamprecht, S. C. Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-proteobacteria and β-proteobacteria. Biol. Fertil. Soils 48, 295–303 (2012).CAS 

    Google Scholar 
    59.Gerding, M., O’Hara, G. W., Bräu, L., Nandasena, K. & Howieson, J. G. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil 358, 385–401 (2012).CAS 

    Google Scholar 
    60.Lemaire, B. et al. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha-and Beta-proteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol. Ecol. 91, (2015).61.Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).CAS 
    PubMed 

    Google Scholar 
    62.Andrews, M. et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: Occurrence and importance. Genes 9, 321 (2018).PubMed Central 

    Google Scholar 
    63.Turner, S. L. & Young, J. P. W. The glutamine synthetases of rhizobia : Phylogenetics and evolutionary implications. 17, 309–319 (2000).64.Gevers, D. et al. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3, 733 (2005).CAS 
    PubMed 

    Google Scholar 
    65.Ormeño-Orrillo, E. et al. Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol. Phylogenet. Evol. 67, 626–630 (2013).PubMed 

    Google Scholar 
    66.Parker, M. A., Lafay, B., Burdon, J. J. & Van Berkum, P. Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobiumaa. Microbiology 148, 2557–2565 (2002).CAS 
    PubMed 

    Google Scholar 
    67.Duran, D. et al. Bradyrhizobium paxllaeri sp. Nov. and Bradyrhizobium icense sp. Nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 64, 2072–2078 (2014).PubMed 

    Google Scholar 
    68.Grönemeyer, J. L., Kulkarni, A., Berkelmann, D., Hurek, T. & Reinhold-Hurek, B. Identification and characterization of rhizobia indigenous to the Okavango region in Sub-Saharan Africa. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02417-14 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Rogel, M. A., Ormeno-Orrillo, E. & Romero, E. M. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34, 96–104 (2011).PubMed 

    Google Scholar 
    70.Lindstrom, K., Murwira, M., Willems, A. & Altier, N. The biodiversity of beneficial microbe-host mutualism : The case of rhizobia. Res. Microbiol. 161, 453–463 (2010).PubMed 

    Google Scholar 
    71.Barcellos, F. G., Menna, P., da Silva Batista, J. S. & Hungria, M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl. Environ. Microbiol. 73, 2635–2643 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Jourand, P., Mateille, T., Fargette, M. & Rapior, S. Nematostatic activity of aqueous extracts of West African Crotalaria species. Nematology 6, 765–771 (2004).
    Google Scholar 
    73.Chen, W.-M. et al. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Aoki, S., Ito, M. & Iwasaki, W. From β-to α-proteobacteria: The origin and evolution of rhizobial nodulation genes nodIJ. Mol. Biol. Evol. 30, 2494–2508 (2013).CAS 
    PubMed 

    Google Scholar 
    75.Moulin, L., Béna, G., Boivin-Masson, C. & Stkepkowski, T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol. Phylogenet. Evol. 30, 720–732 (2004).CAS 
    PubMed 

    Google Scholar 
    76.Lu, Y. L. et al. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32, 351–361 (2009).CAS 
    PubMed 

    Google Scholar 
    77.Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Quantitative mismatch between empirical temperature-size rule slopes and predictions based on oxygen limitation

    ModelAt a given temperature i there should be a maximum body mass, Mmaxi, for which the maximum temperature-dependent surface-specific flux of oxygen, fmaxi (with unit mass O2 area−1 time−1) allows for oxygen uptake to match consumption, and where a further increase in size would lead to an oxygen deficit. This can be expressed as:$$fma{x}_{i}cdot Ama{x}_{i}={k}_{i}Mma{{x}_{i}}^{beta },$$
    (1)
    where the left side of the equation gives oxygen uptake and the right side represents oxygen demand. Amaxi is the maximum surface area used for oxygen uptake. Thus, the exact area of the organism that should be considered here will depend on the type of organism (i.e. gill surface area [e.g. fish] or other specific areas of the body surface where oxygen uptake occurs [e.g. ventral body region of Daphnia]). β is the allometric scaling exponent describing the relationship between body mass and oxygen consumption, and ki is the parameter describing temperature-dependent oxygen consumption (with unit mass O2 body mass−1 time−1). The relationship between A and M can be expressed as A = α∙Mc, where the constant α gives the mass specific surface area used for oxygen uptake (with units area mass−1) when M = 1. The constant c is the allometric scaling exponent describing the relationship between body mass and area over which oxygen can diffuse. Thus, since maximum body size will only be limited by oxygen availability when oxygen demand increases faster than supply with increasing body size, the model is only valid for c  More

  • in

    Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish

    Araújo MS, Perez SI, Magazoni MJC, Petry AC (2014) Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation. BMC Evol Biol 14:251PubMed 

    Google Scholar 
    Arendt JD (2010) Morphological correlates of sprint swimming speed in five species of spadefoot toad tadpoles: comparison of morphometric methods. J Morphol 271:1044–1052PubMed 

    Google Scholar 
    Arendt JD, Reznick DN (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32PubMed 

    Google Scholar 
    Arnett HA, Kinnison MT (2017) Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr Zool 63:369–378PubMed 

    Google Scholar 
    Arnett HA (2016) Sources of ecologically important trait variation in mosquitofish (Gambusia affinis and Gambusia holbrooki). Thesis, University of MaineArnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361
    Google Scholar 
    Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208PubMed 

    Google Scholar 
    Baldwin BG (1997) Adaptive radiation of the Hawaiian silversword alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations. In: Givnish TJ, Sytsma KJ (eds.) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, UK, p 103–128Belk MC, Tuckfield RC (2010) Changing costs of reproduction: age‐based differences in reproductive allocation and escape performance in a livebearing fish. Oikos 119:163–169
    Google Scholar 
    Blount ZD, Lenski RE, Losos JB (2018) Contingency and determinism in evolution: replaying life’s tape. Science 362:eaam5979.PubMed 

    Google Scholar 
    Bryant EH, Meffert LM (1993) The effect of serial founder-flush cycles on quantitative genetic variation in the housefly. Heredity 70:122–129
    Google Scholar 
    Calsbeek R, Kuchta S (2011) Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica). BMC Evol Biol 11:353PubMed 

    Google Scholar 
    Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CAS 
    PubMed 

    Google Scholar 
    Chenoweth SF, Blows MW (2008) QST meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evolution 62:1437–1449PubMed 

    Google Scholar 
    Constantz GD (1989) Reproductive biology of poeciliid fishes. In: Meffe GK Jr, Snelson FF (eds.) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, NJ, p 33–50Cunha RL, Tenorio MJ, Afonso C, Castilho R, Zardoya R (2008) Replaying the tape: recurring biogeographical patterns in Cape Verde Conus after 12 million years. Mol Ecol 17:885–901PubMed 

    Google Scholar 
    Dale MR, Fortin M-J (2014) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge, UKDarwin CE (1859) The origin of species and the descent of man. The Modern Library, New York, NYDay T, Pritchard J, Schluter D (1994) A comparison of two sticklebacks. Evolution 48:1723–1734PubMed 

    Google Scholar 
    Dayton GH, Saenz D, Baum KA, Langerhans RB, DeWitt TJ (2005) Body shape, burst speed and escape behavior of larval anurans. Oikos 111:582–591
    Google Scholar 
    DeWitt TJ, Fuentes JI, Ioerger TR, Bishop MP (2021) Rectifying I: three point and continuous fit of the spatial autocorrelation metric, Moran’s I, to ideal form. Landsc Ecol 36:2897–2918
    Google Scholar 
    DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes: a primer. In: DeWitt TJ, Scheiner SM (eds.) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, NY, p 1–9DeWoody J, Avise J (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CAS 

    Google Scholar 
    Dobzhansky T (1955) A review of some fundamental concepts and problems of population genetics. Cold Spring Harb Symp Quant Biol 20:1–15CAS 
    PubMed 

    Google Scholar 
    Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJEroukhmanoff F, Hargeby A, Arnberg NN, Hellgren O, Bensch S, Svensson EI (2009) Parallelism and historical contingency during rapid ecotype divergence in an isopod. J Evol Biol 22:1098–1110CAS 
    PubMed 

    Google Scholar 
    Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford, UKFranssen NR (2011) Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evol Appl 4:791–804PubMed 

    Google Scholar 
    Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233
    Google Scholar 
    Futuyma DJ (2021) How does phenotypic plasticity fit into evolutionary theory? In: Pfennig DW (ed) Phenotypic plasticity & evolution. CRC Press, Boca Raton, FL, p 349–366Ghalambor CK, Reznick DN, Walker JA (2004) Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). Am Nat 164:38–50PubMed 

    Google Scholar 
    Givnish TJ, Knox E, Patterson TB, Hapeman JR, Palmer JB, Sytsma KJ (1996) The Hawaiian lobelioids are monophyletic and underwent a rapid initial radiation roughly 15 million years ago. Am J Bot 83:159
    Google Scholar 
    Gomes JL, Montiero L (2008) Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm Biol J Linn Soc 93:799–812
    Google Scholar 
    Gompel N, Prud’homme B (2009) The causes of repeated genetic evolution. Dev Biol 332:36–47CAS 
    PubMed 

    Google Scholar 
    Grant PR, Grant BR (2014) 40 years of evolution: Darwin’s finches on Daphne Major Island. Princeton University Press, Princeton, NJGreenway R, Barts N, Henpita C, Brown AP, Rodriguez LA, Peña CMR et al. (2020) Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proc Natl Acad Sci USA 117:16424–16430CAS 
    PubMed 

    Google Scholar 
    Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer, Sunderland, MA
    Google Scholar 
    Haynes JL (1993) Annual reestablishment of mosquitofish populations in Nebraska. Copeia 1993:232–235
    Google Scholar 
    Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650CAS 
    PubMed 

    Google Scholar 
    Ingley SJ, Johnson JB (2016) Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence. Evolution 70:600–616PubMed 

    Google Scholar 
    Ingley SJ, Billman EJ, Belk MC, Johnson JB (2014) Morphological divergence driven by predation environment within and between species of Brachyrhaphis fishes. PloS One 9:90274
    Google Scholar 
    James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, et al. (2021) Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution (In press). Online version of record https://doi.org/10.1111/evo.14387Jiang S, Zhu K, Han L, Chen C, Wang M, Wang X (2021) Genetic variation and phylogeographic structure of Laodelphax striatellus in China based on microsatellite markers. J Appl Entomol 145:336–347CAS 

    Google Scholar 
    Johnson JB, Burt DB, DeWitt TJ (2008) Form, function, fitness-pathways to survival. Evolution 62:1243–1251PubMed 

    Google Scholar 
    Kobza RM, Trexler JC, Loftus WF, Perry SA (2004) Community structure of fishes inhabiting aquatic refuges in a threatened Karst wetland and its implications for ecosystem management. Biol Conserv 116:153–165
    Google Scholar 
    Langerhans RB (2009) Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biol Lett 5:488–491PubMed 

    Google Scholar 
    Langerhans RB, DeWitt TJ (2004) Shared and unique features of evolutionary diversification. Am Nat 164:335–349PubMed 

    Google Scholar 
    Langerhans RB, Makowicz AM (2009) Shared and unique features of morphological differentiation between predator regimes in Gambusia caymanensis. J Evol Biol 22:2231–2242CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Layman CA, DeWitt TJ (2005) Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proc Natl Acad Sci USA 102:7618–7623CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Gifford ME, Joseph EO (2007) Ecological speciation in Gambusia fishes. Evolution 61:2056–2074CAS 
    PubMed 

    Google Scholar 
    Langerhans RB, Layman CA, Shokrollahi AM, DeWitt TJ (2004) Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58:2305–2318PubMed 

    Google Scholar 
    Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103CAS 
    PubMed 

    Google Scholar 
    Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton, NJLoera-Pérez J, Hernández-Stefanoni JL, Chiappa-Carrara X (2020) How do spatial and environmental factors affect the fish community structure in seasonally flooded karst systems? Lat Am J Aquat Res 48:268–279
    Google Scholar 
    Losos JB, Jackman TR, Larson A, de Queiroz K, Rodrı́guez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CAS 
    PubMed 

    Google Scholar 
    Losos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of anoles. University of California Press, Berkeley, CAMaglio VJ, Rosen DE (1969) Changing preference for substrate color by reproductively active mosquitofish, Gambusia affinis (Baird and Girard)(Poeciliidae, Atheriniformes). American Museum novitates; no. 2397Martin RG(1975) Sexual and aggressive behavior, density and social structure in a natural population of mosquitofish, Gambusia affinis holbrooki. Copeia 1975:445–454
    Google Scholar 
    Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689CAS 
    PubMed 

    Google Scholar 
    Matthews WJ, Marsh-Matthews E (2011) An invasive fish species within its native range: community effects and population dynamics of Gambusia affinis in the central United States. Freshw Biol 56:2609–2619
    Google Scholar 
    Mays JR, DeWitt TJ, Dharampal P, Andrus FT, Findlay RH (2019) Frequent habitat migration, phenotypic plasticity, and vestigial ecophenotypy revealed by isotope-based natal habitat inference in bluegill sunfish, Lepomis macrochirus. Evol Ecol Res 20. Available from https://evolutionary-ecology.com/abstracts/v20/3235.htmlMilano D, Ruzzante DE, Cussac VE, Macchi PJ, Ferriz RA, Barriga JP et al. (2006) Latitudinal and ecological correlates of morphological variation in Galaxias platei (Pisces, Galaxiidae) in Patagonia. Biol J Linn Soc 87:69–82
    Google Scholar 
    Moen DS, Morlon H, Wiens JJ (2016) Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst Biol 65:146–160PubMed 

    Google Scholar 
    Moody EK, Lozano-Vilano ML (2018) Predation drives morphological convergence in the Gambusia panuco species group among lotic andlentic habitats. J Evol Biol 31:491–501CAS 
    PubMed 

    Google Scholar 
    Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590CAS 
    PubMed 

    Google Scholar 
    Nepokroeff M, Sytsma KJ (1996) Systematics and patterns of speciation and colonization in Hawaiian Psychotria and relatives based on phylogenetic analysis of ITS sequence data. Am J Bot 83:181–182
    Google Scholar 
    Nievergelt CM, Libiger O, Schork NJ (2007) Generalized analysis of molecular variance. PLoS Genet 3:e51PubMed 

    Google Scholar 
    Oke KB, Rolshausen G, LeBlond C, Hendry AP (2017) How parallel is parallel evolution? A comparative analysis in fishes. Am Nat 190:1–16PubMed 

    Google Scholar 
    Ord TJ, Summers TC (2015) Repeated evolution and the impact of evolutionary history on adaptation. BMC Evol Biol 15:1–12
    Google Scholar 
    Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723PubMed 

    Google Scholar 
    Pazmino SD, Kent MI, Ward AJ (2020) Locomotion and habituation to novel experimental environments in a social fish species. Behaviour 1:1–17
    Google Scholar 
    Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Google Scholar 
    Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503
    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 

    Google Scholar 
    Purcell KM, Lance SL, Jones KLStockwell CA (2011) Ten novel microsatellite markers for the western mosquitofish Gambusia affinis Conserv Genet Resour 3:361–363
    Google Scholar 
    Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428PubMed 

    Google Scholar 
    Pyke GH (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fish 15:339–365
    Google Scholar 
    Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103CAS 
    PubMed 

    Google Scholar 
    Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937CAS 
    PubMed 

    Google Scholar 
    Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D (2016) Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower Evolution 70:1993–2003PubMed 

    Google Scholar 
    Rivera G (2008) Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integr Comp Biol 48:769–787PubMed 

    Google Scholar 
    Robinson BW, Wilson DS (1996) Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evol Ecol 10:631–652
    Google Scholar 
    Ruehl CB, DeWitt TJ (2005) Trophic plasticity and fine-grained resource variation in populations of western mosquitofish, Gambusia affinis. Evol Ecol Res 7:801–819
    Google Scholar 
    Ruehl CB, Shervette V, DeWitt TJ (2011) Replicated shape variation between simple and complex habitats in two estuarine fishes. Biol J Linn Soc 103:147–158
    Google Scholar 
    Santi F, Petry AC, Plath M, Riesch R (2020) Phenotypic differentiation in a heterogeneous environment: morphological and life-history responses to ecological gradients in a livebearing fish. J Zool 310:10–23
    Google Scholar 
    Schluter D, Clifford EA, Nemethy M, McKinnon JS (2004) Parallel evolution and inheritance of quantitative traits. Am Nat 163:809–822PubMed 

    Google Scholar 
    Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford, UKSharpe DM, Langerhans RB, Low-Décarie E, Chapman LJ (2015) Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator. J Evol Biol 28:2054–2067CAS 
    PubMed 

    Google Scholar 
    Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462CAS 
    PubMed 

    Google Scholar 
    Spencer CC, Chlan CA, Neigel JE, Scribner KT, Wooten MC, Leberg PL (1999) Polymorphic microsatellite markers in the western mosquitofish, Gambusia affinis. Mol Ecol 8:157–168CAS 
    PubMed 

    Google Scholar 
    Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374CAS 
    PubMed 

    Google Scholar 
    Thibault RE, Schultz RJ (1978) Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution 32:320–333PubMed 

    Google Scholar 
    Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PG et al. (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 62:2643–2659PubMed 

    Google Scholar 
    Tobler M, Palacios M, Chapman LJ, Mitrofanov I, Bierbach D, Plath M et al. (2011) Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 65:2213–2228PubMed 

    Google Scholar 
    Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256
    Google Scholar 
    Vázquez-Domínguez E, Hernández-Valdés A, Rojas-Santoyo A, Zambrano L (2009) Contrasting genetic structure in two codistributed freshwater fish species of highly seasonal systems. Rev Mex Biodivers 80:181–192
    Google Scholar 
    Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522PubMed 

    Google Scholar 
    Waddington CH (1957) The strategy of the genes. Allen & Unwin, London
    Google Scholar 
    Walker JA (1997) Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol J Linn Soc 61:3–50
    Google Scholar 
    Walker JA, Bell MA (2000) Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J Zool 252:293–302
    Google Scholar 
    Wang X, Zorraquino V, Kim M, Tsoukalas A, Tagkopoulos I (2018) Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 9:1–12
    Google Scholar 
    Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232
    Google Scholar 
    Waters JM, McCulloch GA (2021) Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 30:4162–4172PubMed 

    Google Scholar 
    Zambrano L, Vázquez-Domínguez E, García-Bedoya D, Loftus WF, Trexler JC (2006) Fish community structure in freshwater karstic water bodies of the Sian Ka’an Reserve in the Yucatan peninsula, Mexico. Ichthyol Explor Freshw 17:193–206Zane L, Nelson WS, Jones AG, Avise JC (1999) Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish, Gambusia holbrooki. J Evol Biol 12:61–69
    Google Scholar  More

  • in

    A fungus infected environment does not alter the behaviour of foraging ants

    1.Jarau, S. & Hrncir, M. Food Exploitation by Social Insects: Ecological, Behavioral, and Theoretical Approaches. (CRC Press, 2009).2.Detrain, C. & Deneubourg, J.-L. Collective decision-making and foraging patterns in ants and honeybees. Adv. Insect Physiol. 35, 123–173 (2008) (Elsevier).
    Google Scholar 
    3.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).
    Google Scholar 
    4.Beckers, R., Deneubourg, J.-L. & Goss, S. Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect Behav. 6, 751–759 (1993).
    Google Scholar 
    5.Detrain, C. & Prieur, J. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. J. Insect Physiol. 64, 74–80 (2014).CAS 
    PubMed 

    Google Scholar 
    6.Jackson, D. E. & Châline, N. Modulation of pheromone trail strength with food quality in Pharaoh’s ant, Monomorium pharaonic. Animal Behav. 74, 463–470 (2007).
    Google Scholar 
    7.Sumpter, D. J. T. & Beekman, M. From nonlinearity to optimality: Pheromone trail foraging by ants. Anim. Behav. 66, 273–280 (2003).
    Google Scholar 
    8.Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).
    Google Scholar 
    9.Detrain, C. & Deneubourg, J.-L. Scavenging by Pheidole pallidula key for understanding decision-making systems in ants. Anim. Behav. 53, 537–547 (1997).
    Google Scholar 
    10.Mailleux, A.-C., Deneubourg, J. L. & Detrain, C. How do ants assess food volume?. Anim. Behav. 59, 1061–1069 (2000).CAS 
    PubMed 

    Google Scholar 
    11.Breed, M. D., Fewell, J. H., Moore, A. J. & Williams, K. R. Graded recruitment in a ponerine ant. Behav. Ecol. Sociobiol. 20, 407–411 (1987).
    Google Scholar 
    12.Cammaerts, M.-C. & Cammaerts, R. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav. Proc. 5, 251–270 (1980).CAS 

    Google Scholar 
    13.Portha, S., Deneubourg, J.-L. & Detrain, C. Self-organized asymmetries in ant foraging: A functional response to food type and colony needs. Behav. Ecol. 13, 776–781 (2002).
    Google Scholar 
    14.Devigne, C. & Detrain, C. How does food distance influence foraging in the ant Lasius niger: The importance of home-range marking. Insect. Soc. 53, 46–55 (2006).
    Google Scholar 
    15.Fewell, J. H. Directional fidelity as a foraging constraint in the western harvester ant, Pogonomyrmex occidentalis. Oecologia 82, 45–51 (1990).ADS 
    PubMed 

    Google Scholar 
    16.Howard, D. F. & Tschinkel, W. R. The effect of colony size and starvation on food flow in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 7, 293–300 (1980).
    Google Scholar 
    17.Mailleux, A.-C., Devigne, C., Deneubourg, J.-L. & Detrain, C. Impact of starvation on Lasius niger’ exploration. Ethology 116, 248–256 (2010).
    Google Scholar 
    18.Portha, S., Deneubourg, J.-L. & Detrain, C. How food type and brood influence foraging decisions of Lasius niger scouts. Anim. Behav. 68, 115–122 (2004).
    Google Scholar 
    19.Deneubourg, J.-L., Goss, S., Pasteels, J. M. & Beckers, R. Collective decision making through food recruitment. Insectes Soc. 37, 258–267 (1990).
    Google Scholar 
    20.Czaczkes, T. J., Salmane, A. K., Klampfleuthner, F. A. M. & Heinze, J. Private information alone can trigger trapping of ant colonies in local feeding optima. J. Exp. Biol. 219, 744–751 (2016).PubMed 

    Google Scholar 
    21.Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552 (2002).CAS 
    PubMed 
    MATH 

    Google Scholar 
    22.Azevedo, D. L. O., Medeiros, J. C. & Araújo, A. Adjustments in the time, distance and direction of foraging in Dinoponera quadriceps Workers. J. Insect. Behav. 27, 177–191 (2014).
    Google Scholar 
    23.Beverly, B. D., McLendon, H., Nacu, S., Holmes, S. & Gordon, D. M. How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav. Ecol. 20, 633–638 (2009).
    Google Scholar 
    24.Fourcassié, V. & Traniello, J. F. A. Food searching behaviour in the ant Formica schaufussi (Hymenoptera, Formicidae): Response of naive foragers to protein and carbohydrate food. Anim. Behav. 48, 69–79 (1994).
    Google Scholar 
    25.Aron, S., Beckers, R., Deneubourg, J. L. & Pasteels, J. M. Memory and chemical communication in the orientation of two mass-recruiting ant species. Ins. Soc. 40, 369–380 (1993).
    Google Scholar 
    26.Lehue, M., Detrain, C. & Collignon, B. Nest entrances, spatial fidelity, and foraging patterns in the red ant Myrmica rubra: A field and theoretical study. Insects 11, 317 (2020).PubMed Central 

    Google Scholar 
    27.Bolek, S., Wittlinger, M. & Wolf, H. What counts for ants? How return behaviour and food search of Cataglyphis ants are modified by variations in food quantity and experience. J. Exp. Biol. 215, 3218–3222 (2012).PubMed 

    Google Scholar 
    28.Detrain, C., Natan, C. & Deneubourg, J. L. The influence of the physical environment on the self-organised foraging patterns of ants. Naturwissenschaften 88, 171–174 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Traniello, J. F. A., Fujita, M. S. & Bowen, R. V. Ant foraging behavior: Ambient temperature influences prey selection. Behav. Ecol. Sociobiol. 15, 65–68 (1984).
    Google Scholar 
    30.Nonacs, P. & Dill, L. M. Mortality risk versus food quality trade-offs in ants: Patch use over time. Ecol. Entomol. 16, 73–80 (1991).
    Google Scholar 
    31.Tanner, C. J. Individual experience-based foraging can generate community territorial structure for competing ant species. Behav. Ecol. Sociobiol. 63, 591–603 (2009).
    Google Scholar 
    32.Brown, M. J. F. & Gordon, D. M. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behav. Ecol. Sociobiol. 47, 195–203 (2000).
    Google Scholar 
    33.Fourcassié, V., Schmitt, T. & Detrain, C. Impact of interference competition on exploration and food exploitation in the ant Lasius niger. Psyche J. Entomol. 2012, 1–8 (2012).
    Google Scholar 
    34.Mehdiabadi, N. & Gilbert, L. Colony-level impacts of parasitoid flies on fire ants. Proceedings of the Royal Society of London. Series B: Biological Sciences. 269, 1695–1699 (2002).35.Feener, D. H. Competition between ant species: Outcome controlled by parasitic flies. Science 214, 815–817 (1981).ADS 
    PubMed 

    Google Scholar 
    36.Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, 1998).
    Google Scholar 
    37.Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).
    Google Scholar 
    38.Zhukovskaya, M., Yanagawa, A. & Forschler, B. Grooming behavior as a mechanism of insect disease defense. Insects 4, 609–630 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    39.Ortius-Lechner, D., Maile, R., Morgan, E. D. & Boomsma, J. J. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: New compounds and their functional significance. J. Chem. Ecol. 26, 1667–1683 (2000).CAS 

    Google Scholar 
    40.Ballari, S., Farji-Brener, A. G. & Tadey, M. Waste management in the leaf-cutting ant Acromyrmex lobicornis: Division of labour, aggressive behaviour, and location of external refuse dumps. J. Insect Behav. 20, 87–98 (2007).
    Google Scholar 
    41.Leclerc, J.-B. & Detrain, C. Impact of colony size on survival and sanitary strategies in fungus-infected ant colonies. Behav. Ecol. Sociobiol. 72, 1–10 (2018).42.Pereira, H., Jossart, M. & Detrain, C. Waste management by ants: The enhancing role of larvae. Anim. Behav. 168, 187–198 (2020).
    Google Scholar 
    43.Diez, L., Urbain, L., Lejeune, P. & Detrain, C. Emergency measures: Adaptive response to pathogen intrusion in the ant nest. Behav. Proc. 116, 80–86 (2015).
    Google Scholar 
    44.López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).45.Heinze, J. & Walter, B. Moribund ants leave their nests to die in social isolation. Curr. Biol. 20, 249–252 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Leclerc, J.-B. & Detrain, C. Loss of attraction for social cues leads to fungal-infected Myrmica rubra ants withdrawing from the nest. Anim. Behav. 129, 133–141 (2017).
    Google Scholar 
    47.Fouks, B. & Lattorff, H. M. G. Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS ONE 6, e26328 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Pereira, H. & Detrain, C. Pathogen avoidance and prey discrimination in ants. R. Soc. Open Sci. 7, 191705 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Pereira, H. & Detrain, C. Prophylactic avoidance of hazardous prey by the ant host Myrmica rubra. Insects 11, 444 (2020).PubMed Central 

    Google Scholar 
    50.Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: Contextual recognition and response to parasites by ants. ISBE 26, 396–405 (2015).
    Google Scholar 
    51.Marikovsky, P. I. On some features of behavior of the ants Formica rufa L. infected with fungous disease. Insectes Soc. 9, 173–179 (1962).
    Google Scholar 
    52.Lehue, M., Detrain, C. & Collignon, B. Nest entrances, spatial fidelity, and foraging patterns in the red ant Myrmica rubra: A field and theoretical study. Insects 11, 317 (2020).PubMed Central 

    Google Scholar 
    53.Diez, L., Deneubourg, J.-L., Hoebeke, L. & Detrain, C. Orientation in corpse-carrying ants: Memory or chemical cues?. Anim. Behav. 81, 1171–1176 (2011).
    Google Scholar 
    54.Brütsch, T., Felden, A., Reber, A. & Chapuisat, M. Ant queens (Hymenoptera: Formicidae) are attracted to fungal pathogens during the initial stage of colony founding. Myrmecol. News 20, 71–76 (2014).
    Google Scholar 
    55.Pontieri, L., Vojvodic, S., Graham, R., Pedersen, J. S. & Linksvayer, T. A. Ant colonies prefer infected over uninfected nest sites. PLoS ONE 9, e111961 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Leclerc, J.-B., Silva, J. P. & Detrain, C. Impact of soil contamination on the growth and shape of ant nests. R. Soc. Open Sci. 5, 180267 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Loreto, R. G. & Hughes, D. P. Disease dynamics in ants. Adv. Genet. 94, 287–306 (2016) (Elsevier).CAS 
    PubMed 

    Google Scholar 
    58.Angelone, S. & Bidochka, M. J. Diversity and abundance of entomopathogenic fungi at ant colonies. J. Invertebr. Pathol. 156, 73–76 (2018).PubMed 

    Google Scholar 
    59.Evans, H. C., Groden, E. & Bischoff, J. F. New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. J. Funbiol. 114, 451–466 (2010).CAS 

    Google Scholar 
    60.Bos, N., Kankaanpää-Kukkonen, V., Freitak, D., Stucki, D. & Sundström, L. Comparison of twelve ant species and their susceptibility to fungal infection. Insects 10, 271 (2019).PubMed Central 

    Google Scholar 
    61.Theis, F. J., Ugelvig, L. V., Marr, C. & Cremer, S. Opposing effects of allogrooming on disease transmission in ant societies. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140108–20140108 (2015).
    Google Scholar 
    62.Okuno, M., Tsuji, K., Sato, H. & Fujisaki, K. Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J. Ethol. 30, 23–27 (2012).
    Google Scholar 
    63.Pereira, R. M. & Stimac, J. L. Transmission of Beauveria bassiana within nests of Solenopsis invicta (Hymenoptera: Formicidae) in the laboratory. Environ. Entomol. 21, 1427–1432 (1992).
    Google Scholar 
    64.Hughes, W. O. H., Thomsen, L., Eilenberg, J. & Boomsma, J. J. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a Neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85, 46–53 (2004).CAS 
    PubMed 

    Google Scholar 
    65.Novak, S. & Cremer, S. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. J. Theor. Biol. 372, 54–64 (2015).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    66.Qiu, H., Lu, L., Shi, Q. & He, Y. Fungus exposed Solenopsis invicta ants benefit from grooming. J. Insect. Behav. 27, 678–691 (2014).
    Google Scholar 
    67.Reber, A., Purcell, J., Buechel, S. D., Buri, P. & Chapuisat, M. The expression and impact of antifungal grooming in ants. J. Evol. Biol. 24, 954–964 (2011).CAS 
    PubMed 

    Google Scholar 
    68.Sadd, B. M. & Schmid-Hempel, P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol. 16, 1206–1210 (2006).CAS 
    PubMed 

    Google Scholar 
    69.Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. 99, 6838–6842 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Konrad, M. et al. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol. 10, e1001300 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ugelvig, L. V. & Cremer, S. Social prophylaxis: Group interaction promotes collective immunity in ant colonies. Curr. Biol. 17, 1967–1971 (2007).CAS 
    PubMed 

    Google Scholar 
    72.Bordoni, A. et al. No evidence of queen immunisation despite transgenerational immunisation in Crematogaster scutellaris ants. J. Insect Physiol. 120, 103998 (2020).CAS 
    PubMed 

    Google Scholar 
    73.Reber, A. & Chapuisat, M. No evidence for immune priming in ants exposed to a fungal pathogen. PLoS ONE 7, e35372 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Groden, E., Drummond, F. A., Garnas, J. & Franceour, A. Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), Maine. J. Econ. Entomol. 98, 1774–1784 (2005).PubMed 

    Google Scholar 
    75.Radchenko, A. & Elmes, G. W. Myrmica Ants (Hymenoptera: Formicidae) of the Old World (Natura optima dux Foundation, 2010).
    Google Scholar 
    76.Hänel, H. The life cycle of the insect pathogenic fungus Metarhizium anisopliae in the termite Nasutitermes exitiosus. Mycopathologia 80, 137–145 (1982).
    Google Scholar 
    77.Leclerc, J.-B. & Detrain, C. Ants detect but do not discriminate diseased workers within their nest. Sci. Nat. 103, 1–12 (2016).78.Lacey, L. A. Manual of Techniques in Invertebrate Pathology (Academic Press imprint of Elsevier Science, 2012).
    Google Scholar 
    79.R Core Team. R: A Language and Environment for Statistical Computing. (2020).80.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 

    Google Scholar 
    81.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).MATH 

    Google Scholar 
    82.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    83.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 82, 1–26. https://doi.org/10.18637/JSS.V082.I13 (2017).84.Lenth, R. Emmeans: Estimated marginal means, aka least-squares means. R-package version 1.4.8. https://CRAN.R-project.org/package=emmeans (2020).85.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    86.Therneau, T. A Package for Survival Analysis in R. R-package version 3.2-3. https://CRAN.R-project.org/package=survival (2020) More

  • in

    Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion

    1.Melbourne, B. A. & Hastings, A. Highly variable spread rates in replicated biological invasions: Fundamental limits to predictability. Science 325, 1536–1539 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The Mathematics Behind Biological Invasions (Springer, 2016).MATH 

    Google Scholar 
    3.Phillips, B. L. Evolutionary processes make invasion speed difficult to predict. Biol. Invasions 17, 1949–1960 (2015).
    Google Scholar 
    4.Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and the evolutionary dynamics of a species range. Am. Nat. 185, E81–E93 (2015).PubMed 

    Google Scholar 
    5.Burton, O. J., Travis, J. M. J. & Phillips, B. L. Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett. 13, 1210–1220 (2010).PubMed 

    Google Scholar 
    6.Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).
    Google Scholar 
    7.Deforet, M., Carmona-Fontaine, C., Korolev, K. S. & Xavier, J. B. Evolution at the edge of expanding populations. Am. Nat. 194, 291–305 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    8.Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evol. Ecol. Res. 4, 1119–1129 (2002).
    Google Scholar 
    9.Bouin, E. et al. Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration. C. R. Math. 350, 761–766 (2012).MathSciNet 
    MATH 

    Google Scholar 
    10.Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl. Acad. Sci. USA 108, 5708–5711 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Williams, J. L., Kendall, B. E. & Levine, J. M. Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science 353, 482–485 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    12.Weiss-Lehman, C., Hufbauer, R. A. & Melbourne, B. A. Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat. Commun. 8, 14303 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ochocki, B. M. & Miller, T. E. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc. R. Soc. B 274, 1413–1419 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    15.Phillips, B. L., Brown, G. P. & Shine, R. Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. J. Evol. Biol. 23, 2595–2601 (2010).CAS 
    PubMed 

    Google Scholar 
    16.Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).ADS 

    Google Scholar 
    17.Phillips, B. L., Brown, G. P., Travis, J. M. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).PubMed 

    Google Scholar 
    18.Alford, R. A., Brown, G. P., Schwarzkopf, L., Phillips, B. L. & Shine, R. Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl. Res. 36, 23–28 (2009).
    Google Scholar 
    19.Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl. Acad. Sci. USA 110, 13452–13456 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: The evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    21.DeVore, J., Ducatez, S. & Shine, R. Spatial ecology of cane toads (Rhinella marina) in their native range: A study from French Guiana. Sci. Rep. 11, 11817 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Brattstrom, B. H. Homing in the giant toad, Bufo marinus. Herpetologica 18, 176–180 (1962).
    Google Scholar 
    23.Zug, G. R. & Zug, P. B. The marine toad Bufo marinus: A natural history resumé of native populations. Smithson. Contrib. Zool. 284, 1–58 (1979).
    Google Scholar 
    24.Bayliss, P. The ecology of post-metamorphic Bufo marinus in central Amazonian savanna, Brazil. Unpublished Ph.D. thesis (The University of Queensland, 1995).25.Turvey, N. Cane Toads: A Tale of Sugar, Politics and Flawed Science (Sydney University Press, 2013).
    Google Scholar 
    26.Carpenter, C. C. & Gillingham, J. C. Water hole fidelity in the marine toad, Bufo marinus. J. Herpetol. 21, 158–161 (1987).
    Google Scholar 
    27.Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: Spatial ecology and habitat use of invasive cane toads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    28.Hastings, A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251 (1983).MATH 

    Google Scholar 
    29.Möbius, W., et al. The collective effect of finite-sized inhomogeneities on the spatial spread of populations in two dimensions. Preprint at http://arxiv.org/abs/1910.05332 (2019).30.Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).PubMed 

    Google Scholar 
    31.Macgregor, L. F., Greenlees, M., de Bruyn, M. & Shine, R. An invasion in slow motion: The spread of invasive cane toads (Rhinella marina) into cooler climates in southern Australia. Biol. Invasions 23(11), 3565–3581 (2021).
    Google Scholar 
    32.Perkins, A. T., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).PubMed 

    Google Scholar 
    33.Seabrook, W. Range expansion of the introduced cane toad Bufo marinus in New South Wales. Aust. Zool. 27, 58–62 (1991).
    Google Scholar 
    34.Kearney, M. R. et al. Modelling species distributions without using species distributions: The cane toad in Australia under current and future climates. Ecography 31, 423–434 (2008).
    Google Scholar 
    35.McCann, S. M., Kosmala, G. K., Greenlees, M. J. & Shine, R. Physiological plasticity in a successful invader: Rapid acclimation to cold occurs only in cool-climate populations of cane toads (Rhinella marina). Conserv. Physiol. 6, cox072 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    36.Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).
    Google Scholar 
    37.Seebacher, F. & Alford, R. A. Movement and microhabitat use of a terrestrial amphibian (Bufo marinus) on a tropical island: Seasonal variation and environmental correlates. J. Herpetol. 33, 208–214 (1999).
    Google Scholar 
    38.Phillips, B. L., Brown, G. P., Greenlees, M., Webb, J. K. & Shine, R. Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecol. 32, 169–176 (2007).
    Google Scholar 
    39.Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the Australian semi-desert. PLoS ONE 6, e25979 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).
    Google Scholar 
    41.Pettit, L. J., Greenlees, M. J. & Shine, R. Is the enhanced dispersal rate seen at invasion fronts a behaviourally plastic response to encountering novel ecological conditions? Biol. Lett. 12, 20160539 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Jessop, T. S. et al. Exploring mechanisms and origins of reduced dispersal in island Komodo Dragons. Proc. R. Soc. B 285, 20181829 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    43.Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).
    Google Scholar 
    44.Duckworth, R. A. The role of behavior in evolution: A search for mechanism. Evol. Ecol. 23, 513–531 (2009).
    Google Scholar 
    45.Muñoz, M. M. & Losos, J. B. Thermoregulatory behavior simultaneously promotes and forestalls evolution in a tropical lizard. Am. Nat. 191, E15–E26 (2017).PubMed 

    Google Scholar 
    46.Carroll, S. P. et al. And the beak shall inherit–evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).PubMed 

    Google Scholar 
    47.Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    48.Acevedo, A. A., Lampo, M. & Cipriani, R. The cane or marine toad, Rhinella marina (Anura, Bufonidae): Two genetically and morphologically distinct species. Zootaxa 4103, 574–586 (2016).PubMed 

    Google Scholar 
    49.Reilly, S. M. et al. Conquering the world in leaps and bounds: Hopping locomotion in toads is actually bounding. Funct. Ecol. 29, 1308–1316 (2015).
    Google Scholar 
    50.Griffis-Kyle, K. L., Kyle, S. & Jungels, J. Use of breeding sites by arid-land toads in rangelands: Landscape-level factors. Southwest. Nat. 56, 251–255 (2011).
    Google Scholar 
    51.Sinsch, U. Movement ecology of amphibians: From individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Can. J. Zool. 92, 491–502 (2014).
    Google Scholar 
    52.Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 1–36 (2020).
    Google Scholar 
    53.Child, T., Phillips, B. L., Brown, G. P. & Shine, R. The spatial ecology of cane toads (Bufo marinus) in tropical Australia: Why do metamorph toads stay near the water? Austral Ecol. 33, 630–640 (2008).
    Google Scholar 
    54.Pettit, L., Ducatez, S., DeVore, J. L., Ward-Fear, G. & Shine, R. Diurnal activity in cane toads (Rhinella marina) is geographically widespread. Sci. Rep. 10, 5723 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Shine, R., Ward-Fear, G. & Brown, G. P. A famous failure: Why were cane toads an ineffective biocontrol in Australia? Conserv. Sci. Pract. 2, e296 (2020).
    Google Scholar 
    56.Shine, R., Everitt, C., Woods, D. & Pearson, D. J. An evaluation of methods used to cull invasive cane toads in tropical Australia. J. Pest Sci. 91, 1081–1091 (2018).
    Google Scholar 
    57.Silvester, R., Greenlees, M., Shine, R. & Oldroyd, B. Behavioural tactics used by invasive cane toads (Rhinella marina) to exploit apiaries in Australia. Austral Ecol. 44, 237–244 (2019).
    Google Scholar 
    58.Finnerty, P. B., Shine, R. & Brown, G. P. The costs of parasite infection: Effects of removing lungworms on performance, growth and survival of free-ranging cane toads. Funct. Ecol. 32, 402–415 (2018).
    Google Scholar 
    59.Pettit, L., Greenlees, M. & Shine, R. The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 184, 411–422 (2017).ADS 
    PubMed 

    Google Scholar 
    60.Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis (Springer, 2008).
    Google Scholar 
    61.McCann, S., Greenlees, M. J. & Shine, R. On the fringe of the invasion: The ecological impact of cane toads in marginally suitable habitats. Biol. Invasions 19, 2729–2737 (2017).
    Google Scholar 
    62.S. Kaiser et al., unpubl. Data.63.Finnerty, P., Shine, R. & Brown, G. P. Survival of the faeces: Does a nematode lungworm adaptively manipulate the behaviour of its cane toad host? Ecol. Evol. 8, 4606–4618 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    64.Brown, G. P., Kelehear, C., Pizzatto, L. & Shine, R. The impact of lungworm parasites on rates of dispersal of their anuran host, the invasive cane toad. Biol. Invasions 18, 103–114 (2016).
    Google Scholar 
    65.G. Ward-Fear et al., unpubl. Data. More