1.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401â406 (2014).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
2.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CASÂ
PubMedÂ
Google ScholarÂ
3.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388â6396 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
4.Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.). 39, 240â252 (2016).
Google ScholarÂ
5.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847â855 (2016).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
6.Bakker, E. S., PagĂšs, J. F., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography (Cop.). 39, 162â179 (2016).
Google ScholarÂ
7.Brault, M. O., Mysak, L. A., Matthews, H. D. & Simmons, C. T. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Clim 9, 1761â1771 (2013).ADSÂ
Google ScholarÂ
8.Doughty, C. E., Faurby, S. & Svenning, J. C. The impact of the megafauna extinctions on savanna woody cover in South America. Ecography (Cop.). 39, 213â222 (2016).
Google ScholarÂ
9.Doughty, C. E., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761â764 (2013).ADSÂ
CASÂ
Google ScholarÂ
10.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 1â6 (2015).
Google ScholarÂ
11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838â846 (2016).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
12.Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 201502547 (2015).
Google ScholarÂ
13.le Roux, E., Kerley, G. I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African Savanna Ecosystem. Curr. Biol. 28, 2493â2499.e3 (2018).PubMedÂ
Google ScholarÂ
14.Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35â46 (2013).ADSÂ
Google ScholarÂ
15.Rozas-DĂĄvila, A., Valencia, B. G. & Bush, M. B. The functional extinction of Andean megafauna. Ecology 97, 2533â2539 (2016).PubMedÂ
Google ScholarÂ
16.Guthrie, R. D. New Carbon Dates Link Climatic Change with Human Colonization and Pleistocene Extinctions. Nature 441, 207â209 (2006).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
17.Meltzer, D. J. Overkill, glacial history, and the extinction of North Americaâs Ice Age megafauna. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2015032117 (2020).18.Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. Lond. B Biol. Sci. 281, 20133254 (2014).
Google ScholarÂ
19.Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354â403 (University of Arizona Press, 1984).20.Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14â23 (2013).
Google ScholarÂ
21.Smith, F. A., Smith, R. E. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science. 360, 310â313 (2018).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
22.Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late pleistocene extinctions on the continents. Science 306, 70â75 (2004).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
23.Zimov, S. A. et al. Steppe-Tundra Transition: A Herbivore-Driven Biome Shift at the End of the Pleistocene. Am. Nat. 146, 765â794 (1995).
Google ScholarÂ
24.Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359â364 (2011).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
25.Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328â352 (2019).
Google ScholarÂ
26.Zazula, G. D. et al. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change. Proc. Natl Acad. Sci. USA 111, 18460â18465 (2014).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
27.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 414â433 (2015).
Google ScholarÂ
28.Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91â108 (2013).ADSÂ
Google ScholarÂ
29.Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301â14306 (2015).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
30.Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 1â5 (2017).
Google ScholarÂ
31.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, I. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26â45 (2012).ADSÂ
Google ScholarÂ
32.Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351â362 (1987).
Google ScholarÂ
33.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47â51 (2014).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
34.Jackson, S. T. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat. Sci. Rev. 49, 1â15 (2012).ADSÂ
Google ScholarÂ
35.Froese, D. G. et al. The Klondike goldfields and Pleistocene environments of Beringia. GSA Today 19, 4â10 (2009).
Google ScholarÂ
36.Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. 99, 305â328 (2021).CASÂ
Google ScholarÂ
37.Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352â22357 (2009).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
38.Clark, P. U. The last glacial maximum. Science 325, 710â714 (2009).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
39.Zazula, G. D. et al. A middle Holocene steppe bison and paleoenvironments from the versleuce meadows, Whitehorse, Yukon, Canada. Can. J. Earth Sci. 54, 1138â1152 (2017).ADSÂ
Google ScholarÂ
40.Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057â8063 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
41.Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310â9314 (2016).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
42.Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51â59 (2008).CASÂ
Google ScholarÂ
43.Faith, J. T. & Surovell, T. A. Synchronous extinction of North Americaâs Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641â20645 (2009).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
44.Signor, P. W. & Lipps, J. H. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. GSA Spec. Pap. 190, 291â296 (1982).
Google ScholarÂ
45.Fiedel, S. in American Megafaunal Extinctions at the End of the Pleistocene (ed. Haynes, G.) 21â37 (Springer Netherlands, 2009).46.Graf, K. E. Uncharted Territory: Late Pleistocene Hunter-Gatherer Dispersals in the Siberian Mammoth-Steppe (University of Nevada, 2008).47.Kuzmina, S. A. et al. The late Pleistocene environment of the Eastern West Beringia based on the principal section at the Main River, Chukotka. Quat. Sci. Rev. 30, 2091â2106 (2011).ADSÂ
Google ScholarÂ
48.Hoffecker, J. F., Elias, S. A. & Rourke, D. H. O. Out of Beringia? Science 343, 979â980 (2014).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
49.Zazula, G. D. et al. Ice-age steppe vegetation in East Beringia. Nature 423, 603 (2003).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
50.Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549â574 (2001).ADSÂ
Google ScholarÂ
51.PavelkovĂĄ ĆiÄĂĄnkovĂĄ, V., RobovskĂœ, J. & Riegert, J. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium. PLoS ONE 9, e85056 (2014).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
52.Bocherens, H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117, 42â71 (2015).ADSÂ
Google ScholarÂ
53.Ritchie, J. C. & Cwynar, L. C. in Paleoecology of Beringia (eds. Hopkins, D. M. et al.) 113â126 (Academic Press, 1982).54.Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0481-y (2018).55.Hopkins, D. M., Matthews, J. V., and Schweger, C. E. eds. Paleoecology of Beringia. (Academic Press, 1982).56.Stivrins, N. et al. Biotic turnover rates during the Pleistocene-Holocene transition. Quat. Sci. Rev. 151, 100â110 (2016).ADSÂ
Google ScholarÂ
57.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780â788 (2006).PubMedÂ
Google ScholarÂ
58.Bradshaw, R. H. W., Hannon, G. E. & Lister, A. M. A long-term perspective on ungulate-vegetation interactions. Ecol. Manag. 181, 267â280 (2003).
Google ScholarÂ
59.Gill, J. L. Ecological impacts of the late Quaternary megaherbivore extinctions. N. Phytologist 201, 1163â1169 (2014).
Google ScholarÂ
60.Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66â80 (2012).ADSÂ
Google ScholarÂ
61.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100â1103 (2009).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
62.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. Biol. Sci. 276, 2509â2519 (2009).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
63.Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1992).64.Wright, J. P. & Jones, C. G. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56, 203 (2006).
Google ScholarÂ
65.Gutierrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56, 227 (2006).
Google ScholarÂ
66.Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147â157 (2010).PubMedÂ
Google ScholarÂ
67.Ries, L., Fletcher, R. J. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol., Evolution, Syst. 35, 491â522 (2004).
Google ScholarÂ
68.Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, 1â16 (2006).
Google ScholarÂ
69.Swift, J. A. et al. Micro methods for Megafauna: novel approaches to late quaternary extinctions and their contributions to faunal conservation in the Anthropocene. Bioscience 69, 877â887 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
70.Andersen, K. et al. Meta-barcoding of âdirtâ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21, 1966â1979 (2012).CASÂ
PubMedÂ
Google ScholarÂ
71.Comandini, O. & Rinaldi, A. C. Tracing megafaunal extinctions with dung fungal spores. Mycologist 18, 140â142 (2004).
Google ScholarÂ
72.SĂ€terberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468â470 (2013).ADSÂ
PubMedÂ
Google ScholarÂ
73.Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation. Allee Effects in Ecology and Conservation (Oxford University Press, 2008).74.Allee, W. C. Animal aggregations. Q. Rev. Biol. 2, 367â398 (1927).
Google ScholarÂ
75.Allee, W. C. & Bowen, E. S. Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61, 185â207 (1932).CASÂ
Google ScholarÂ
76.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring. (Oxford University Press, 2018).77.Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006â2016 (2018).ADSÂ
Google ScholarÂ
78.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605â608 (2017).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
79.Anderson-Carpenter, L. L. et al. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11, 1â15 (2011).
Google ScholarÂ
80.Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176â1189 (2013).CASÂ
PubMedÂ
Google ScholarÂ
81.Ahmed, E. et al. Archaeal community changes in Lateglacial lake sediments: evidence from ancient DNA. Quat. Sci. Rev. 181, 19â29 (2018).ADSÂ
Google ScholarÂ
82.Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46âe62 (2017).CASÂ
PubMedÂ
Google ScholarÂ
83.Rawlence, N. J. et al. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J. Quat. Sci. 29, 610â626 (2014).
Google ScholarÂ
84.Blum, S. A. E., Lorenz, M. G. & Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol. 20, 513â521 (1997).CASÂ
Google ScholarÂ
85.Greaves, M. P. & Wilson, M. J. The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol. Biochem. 2, 257â268 (1970).CASÂ
Google ScholarÂ
86.Gardner, C. M. & Gunsch, C. K. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated. Chemosphere 175, 45â51 (2017).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
87.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948â2952 (1987).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
88.Ogram, A., Sayler, G., Gustin, D. & Lewis, R. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982â984 (1988).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
89.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948â2952 (1987).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
90.Morrissey, E. M. et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil. Soil Biol. Biochem. 86, 42â49 (2015).CASÂ
Google ScholarÂ
91.Arnold, L. J. et al. Paper II – Dirt, dates and DNA: OSL and radiocarbon chronologies of perennially frozen sediments in Siberia, and their implications for sedimentary ancient DNA studies. Boreas 40, 417â445 (2011).
Google ScholarÂ
92.Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1745 (2012).93.Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310â6320 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
94.Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 1â12 (2020).
Google ScholarÂ
95.Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647â3655 (2012).CASÂ
PubMedÂ
Google ScholarÂ
96.Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30â39 (2017).CASÂ
Google ScholarÂ
97.Burn, C. R., Michel, F. A. & Smith, M. W. Stratigraphic, isotopic, and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Can. J. Earth Sci. 23, 794â803 (1986).ADSÂ
CASÂ
Google ScholarÂ
98.Kotler, E. & Burn, C. R. Cryostratigraphy of the Klondike âmuckâ deposits, west-central Yukon Territory. Can. J. Earth Sci. 37, 849â861 (2000).ADSÂ
CASÂ
Google ScholarÂ
99.Fraser, T. A. & Burn, C. R. On the nature and origin of âmuckâ deposits in the Klondike area, Yukon Territory. Can. J. Earth Sci. 34, 1333â1344 (1997).ADSÂ
Google ScholarÂ
100.Mahony, M. E. 50,000 years of paleoenvironmental change recorded in meteoric waters and coeval paleoecological and cryostratigraphic indicators from the Klondike goldfields, Yukon, Canada. (University of Alberta, 2015). https://doi.org/10.7939/R34T6FF58.101.Lydolph, M. C. et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl. Environ. Microbiol. 71, 1012â1017 (2005).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
102.Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791â795 (2003).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
103.Haile, J. et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24, 982â989 (2007).CASÂ
PubMedÂ
Google ScholarÂ
104.Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141â147 (2004).PubMedÂ
Google ScholarÂ
105.Hansen, A. J. et al. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173, 1175â1179 (2006).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
106.DâCosta, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457â461 (2011).ADSÂ
PubMedÂ
Google ScholarÂ
107.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401â14405 (2007).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
108.Hebsgaard, M. B. et al. âThe Farm Beneath the Sandâ- an archaeological case study on ancient âdirtâ DNA. Antiquity 83, 430â444 (2009).
Google ScholarÂ
109.Sadoway, T. R. A Metagenomic Analysis of Ancient Sedimentary DNA Across the Pleistocene-Holocene Transition (McMaster University, 2014).110.Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42â60 (2008).ADSÂ
Google ScholarÂ
111.Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62, 725â757 (2020).CASÂ
Google ScholarÂ
112.Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927â939 (2018).CASÂ
Google ScholarÂ
113.Wei, N., Nakajima, F. & Tobino, T. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environ. Sci. Technol. 52, 12428â12435 (2018).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
114.Matesanz, S. et al. Estimating belowground plant abundance with DNA metabarcoding. Mol. Ecol. Resour. 19, 1265â1277 (2019).CASÂ
PubMedÂ
Google ScholarÂ
115.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, 3â10 (2012).
Google ScholarÂ
116.Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, 1â11 (2015).
Google ScholarÂ
117.Debruyne, R. et al. Out of America: ancient DNA evidence for a new world origin of late Quaternary Woolly Mammoths. Curr. Biol. 18, 1320â1326 (2008).CASÂ
PubMedÂ
Google ScholarÂ
118.Metcalfe, J. Z., Longstaffe, F. J. & Zazula, G. D. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 257â270 (2010).
Google ScholarÂ
119.Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561â1565 (2004).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
120.Sinclair, P. H., Nixon, W. A., Eckert C. D. & Hughes, N. L.Hughes, eds. Birds of the Yukon Territory. (UBC Press, 2003).121.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African Savanna. Bioscience 64, 487â495 (2014).
Google ScholarÂ
122.Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).PubMedÂ
Google ScholarÂ
123.Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).
Google ScholarÂ
124.Wang, X.-C. & Geurts, M.-A. Post-glacial vegetation history of the Ittlemit Lake basin, southwest Yukon Territory. Arctic 44, 23â30 (1991).
Google ScholarÂ
125.Wang, X.-C. & Geurts, M.-A. Late Quaternary pollen records and vegetation history of the southwest Yukon Territory: a review. Geogr. Phys. Quat. 45, 175â193 (1991).
Google ScholarÂ
126.Rainville, R. A. & Gajewski, K. Holocene environmental history of the Aishihik region, Yukon, Canada. Can. J. Earth Sci. 50, 397â405 (2013).ADSÂ
CASÂ
Google ScholarÂ
127.Lacourse, T. & Gajewski, K. Late Quaternary vegetation history of Sulphur Lake, southwest Yukon Territory, Canada. Arctic 53, 27â35 (2000).
Google ScholarÂ
128.Bunbury, J. & Gajewski, K. Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quat. Sci. Rev. 28, 354â369 (2009).ADSÂ
Google ScholarÂ
129.Gajewski, K., Bunbury, J., Vetter, M., Kroeker, N. & Khan, A. H. Paleoenvironmental studies in Southwestern Yukon. Arctic 67, 58â70 (2014).
Google ScholarÂ
130.Schofield, E. J., Edwards, K. J. & McMullen, A. J. Modern Pollen-Vegetation Relationships in Subarctic Southern Greenland and the Interpretation of Fossil Pollen Data from the Norse landnĂĄm. J. Biogeogr. 34, 473â488 (2007).
Google ScholarÂ
131.Pennington, W. & Tutin, T. G. Modern pollen samples from west greenland and the interpretation of pollen data from the british late-glacial (late Devesian). N. Phytol. 84, 171â201 (1980).
Google ScholarÂ
132.Bradshaw, R. H. W. Modern pollen-representation factors for Woods in South-East England. J. Ecol. 69, 45 (1981).
Google ScholarÂ
133.Roy, I. et al. Over-representation of some taxa in surface pollen analysis misleads the interpretation of fossil pollen spectra in terms of extant vegetation. Trop. Ecol. 59, 339â350 (2018).
Google ScholarÂ
134.Bryant, J. P. et al. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134, 20â34 (1979).
Google ScholarÂ
135.Christie, K. S. et al. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. Bioscience 65, 1123 (2015).
Google ScholarÂ
136.Bryant, J. P. et al. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra? Ecography (Cop.). 37, 204â211 (2014).137.Bryant, J. P. & Kuropat, P. J. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu. Rev. Ecol. Syst. 11, 261â285 (1980).CASÂ
Google ScholarÂ
138.Fox-Dobbs, K., Leonard, J. A. & Koch, P. L. Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261, 30â46 (2008).
Google ScholarÂ
139.Gardner, C., Berger, M. & Taras, M. Habitat assessment of potential wood bison relocation sites in Alaska. Arctic 1â30 (2007).140.JimĂ©nez-Hidalgo, E. et al. Species diversity and paleoecology of late pleistocene horses from Southern Mexico. Front. Ecol. Evol. 7, 1â18 (2019).
Google ScholarÂ
141.van Geel, B. et al. The ecological implications of a Yakutian mammothâs last meal. Quat. Res. 69, 361â376 (2008).
Google ScholarÂ
142.van Geel, B. et al. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quat. Sci. Rev. 30, 3935â3946 (2011).ADSÂ
Google ScholarÂ
143.Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169â171 (2003).ADSÂ
PubMedÂ
Google ScholarÂ
144.Bourgeon, L. Bluefish Cave II (Yukon Territory, Canada): Taphonomic Study of a Bone Assemblage. PaleoAmerica 1, 105â108 (2015).
Google ScholarÂ
145.Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the last glacial maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
146.Bourgeon, L. Revisiting the mammoth bone modifications from Bluefish Caves (YT, Canada). J. Archaeol. Sci. Rep. 37, 102969 (2021).147.Bourgeon, L. & Burke, A. Horse exploitation by Beringian hunters during the Last Glacial Maximum. Quat. Sci. Rev. 261, (2021).148.Vachula, R. S., Sae-Lim, J. & Russell, J. M. Sedimentary charcoal proxy records of fire in Alaskan tundra ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109564 (2020).149.Vachula, R. S. Alaskan lake sediment records and their implications for the Beringian standstill hypothesis. PaleoAmerica 6, 303â307 (2020).
Google ScholarÂ
150.Vachula, R. S. et al. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America. Quat. Sci. Rev. 205, 35â44 (2019).ADSÂ
Google ScholarÂ
151.Vachula, R. S. et al. Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. Boreas 49, 514â525 (2020).
Google ScholarÂ
152.Abramova, Z. A. in Paleolit Kavkaza i Severnoi Azii (ed. Boriskovskii, P. I.) 145â243 (Nauka, 1989).153.Abramova, Z. A., Astakhov, S. N., Vasilâev, S. A., Ermolva, N. M. & Lisitsyn, N. F. Paleolit Eniseya. (Nauka, 1991).154.Goebel, T. in Encyclopedia of prehistory. Vol 2: Arctic and Subarctic (eds. Peregrine, P. N. & Ember, M.) 192â196 (Kluwer Academic Publishers, 2002).155.Ermolova, N. M. Teriofauna doliny Angary v pozdem antropogene. (Nauka, 1978).156.Hoffecker, J. F. & Elias, S. A. Human Ecology of Beringia. (Columbia University Press, 2007).157.Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary âmegafaunaâ extinctions: life history and ecology, but not body size. Proc. Biol. Sci. 269, 2221â2227 (2002).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
158.Laland, K. N. & OâBrien, M. J. Niche Construction Theory and Archaeology. J. Archaeol. Method Theory 17, 303â322 (2010).
Google ScholarÂ
159.Riede, F. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos. Trans. R. Soc. Lond. 366, 793â808 (2011).
Google ScholarÂ
160.Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1805259115 (2018).161.Pinter, N., Fiedel, S. & Keeley, J. E. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quat. Sci. Rev. 30, 269â272 (2011).ADSÂ
Google ScholarÂ
162.Haynes, G. Extinctions in North Americaâs Late Glacial landscapes. Quat. Int. 285, 89â98 (2013).
Google ScholarÂ
163.Graf, K. E. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M. R.) 65â80 (Texas A&M University Press, 2014).164.PeÄnerovĂĄ, P. et al. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size. Evol. Lett. 1, 292â303 (2017).165.Conroy, K. J. et al. Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores. Quat. Res. https://doi.org/10.1017/qua.2020.19 (2020).166.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847â855 (2016).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
167.Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758â15763 (2013).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
168.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 5, pdb.prot5448 (2010).169.Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, 1â8 (2012).
Google ScholarÂ
170.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403â410 (1990).CASÂ
PubMedÂ
Google ScholarÂ
171.Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7âD19 (2016).CASÂ
Google ScholarÂ
172.Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36âD42 (2013).173.Huson, D. H. et al. MEGAN Community Edition – Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12, e1004957 (2016).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
174.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377â386 (2007).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
175.JĂłnsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682â1684 (2013).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
176.Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720â730 (2013).
Google ScholarÂ
177.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023â1045 (2009).
Google ScholarÂ
178.Davies, L. J., Jensen, B. J. L., Froese, D. G. & Wallace, K. L. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat. Sci. Rev. 146, 28â53 (2016).ADSÂ
Google ScholarÂ
179.Westgate, J. A., Preece, S. J., Kotler, E. & Hall, S. Dawson tephra: a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Can. J. Earth Sci. 37, 621â627 (2000).ADSÂ
CASÂ
Google ScholarÂ
180.Froese, D., Westgate, J., Preece, S. & Storer, J. Age and significance of the Late Pleistocene Dawson tephra in eastern Beringia. Quat. Sci. Rev. 21, 2137â2142 (2002).ADSÂ
Google ScholarÂ
181.Zazula, G. D. et al. Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 253â286 (2006).
Google ScholarÂ
182.Froese, D. G., Zazula, G. D. & Reyes, A. V. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quat. Sci. Rev. 25, 1542â1551 (2006).ADSÂ
Google ScholarÂ
183.Klunk, J. et al. Genetic resiliency and the Black Death: no apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. Am. J. Phys. Anthropol. 169, 240â252 (2019).PubMedÂ
Google ScholarÂ
184.Renaud, G., Stenzel, U. & Kelso, J. LeeHom: Adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42, e141 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
185.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754â1760 (2009).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
186.Adobe Inc. Adobe Illustrator. (2020). https://adobe.com/products/illustrator.187.Lebart, L., Morineau, A. & Tabard, N. Techniques De La Description Statistique MĂ©thodes Et Logiciels Pour Lâanalyse Des Grands Tableaux. (Dunod, 1977).188.Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, 1â9 (2018).
Google ScholarÂ
189.Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J. Geophys. Res. Ocean. 102, 26455â26470 (1997).ADSÂ
CASÂ
Google ScholarÂ
190.Wolbach, W. S. et al. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact âŒ12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments. J. Geol. 126, 185â205 (2018).ADSÂ
CASÂ
Google Scholar More