More stories

  • in

    Dynamic monitoring of urban built-up object expansion trajectories in Karachi, Pakistan with time series images and the LandTrendr algorithm

    1.Seto, K. C., Fragkias, M., Gueneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE https://doi.org/10.1371/journal.pone.0023777 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Huang, Q. X. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 14. https://doi.org/10.1088/1748-9326/ab858c (2020).ADS 
    Article 

    Google Scholar 
    3.Huang, X., Huang, J. Y., Wen, D. W. & Li, J. Y. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. Int. J. Appl. Earth Obs. Geoinf. 95, 15. https://doi.org/10.1016/j.jag.2020.102255 (2021).Article 

    Google Scholar 
    4.Seto, K. C., Fragkias, M., Guneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE 6, 9. https://doi.org/10.1371/journal.pone.0023777 (2011).CAS 
    Article 

    Google Scholar 
    5.Besthorn, F. H. Vertical farming: Social work and sustainable urban agriculture in an age of global food crises. Aust. Soc. Work. 66, 187–203. https://doi.org/10.1080/0312407x.2012.716448 (2013).Article 

    Google Scholar 
    6.FAO. 2018 The State of Food Security and Nutrition in the World. https://www.who.int/nutrition/publications/foodsecurity/state-food-security-nutrition-2018/en/. (2018).7.Mertes, C. M., Schneider, A., Sulla-Menashe, D., Tatem, A. J. & Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 158, 331–347. https://doi.org/10.1016/j.rse.2014.09.023 (2015).ADS 
    Article 

    Google Scholar 
    8.Xiao, P. F., Wang, X. H., Feng, X. Z., Zhang, X. L. & Yang, Y. K. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 4095–4106. https://doi.org/10.1109/jstars.2014.2302855 (2014).ADS 
    Article 

    Google Scholar 
    9.Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).Article 

    Google Scholar 
    10.Reba, M. & Seto, K. C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 242, 20. https://doi.org/10.1016/j.rse.2020.111739 (2020).Article 

    Google Scholar 
    11.He, T., Xiao, W., Zhao, Y., Deng, X. & Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2020.111742 (2020).Article 

    Google Scholar 
    12.Mugiraneza, T., Nascetti, A. & Ban, Y. Continuous monitoring of urban land cover change trajectories with Landsat time series and LandTrendr-Google Earth engine cloud computing. Remote Sens. https://doi.org/10.3390/rs12182883 (2020).Article 

    Google Scholar 
    13.U.S. Geological Survey. Landsat Surface Reflectance Data (Ver. 1.1, March 27, 2019): U.S. Geological Survey Fact Sheet 2015-3034. 1. https://doi.org/10.3133/fs20153034 (2019).14.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).ADS 
    Article 

    Google Scholar 
    15.Cai, S. & Liu, D. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 7, 8705–8727. https://doi.org/10.3390/rs70708705 (2015).ADS 
    Article 

    Google Scholar 
    16.Vogelmann, J. E., Xian, G., Homer, C. & Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 122, 92–105. https://doi.org/10.1016/j.rse.2011.06.027 (2012).ADS 
    Article 

    Google Scholar 
    17.Brooks, E. B., Wynne, R. H., Thomas, V. A., Blinn, C. E. & Coulston, J. W. On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data. IEEE Trans. Geosci. Remote Sens. 52, 3316–3332. https://doi.org/10.1109/tgrs.2013.2272545 (2014).ADS 
    Article 

    Google Scholar 
    18.Huang, C. et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 114, 183–198. https://doi.org/10.1016/j.rse.2009.08.017 (2010).ADS 
    Article 

    Google Scholar 
    19.Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115. https://doi.org/10.1016/j.rse.2009.08.014 (2010).ADS 
    Article 

    Google Scholar 
    20.Hughes, M. J., Kaylor, S. D. & Hayes, D. J. Patch-based forest change detection from landsat time series. Forests https://doi.org/10.3390/f8050166 (2017).Article 

    Google Scholar 
    21.Deng, C. B. & Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 238, 21. https://doi.org/10.1016/j.rse.2018.10.011 (2020).Article 

    Google Scholar 
    22.Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series, remote sensing of environment. Remote Sens. Environ. 238(11116), 2020. https://doi.org/10.1016/j.rse.2020.111824 (2020).Article 

    Google Scholar 
    23.Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. https://doi.org/10.3390/rs10050691 (2018).Article 

    Google Scholar 
    24.Hirayama, H., Sharma, R. C., Tomita, M. & Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 40, 2542–2557. https://doi.org/10.1080/01431161.2018.1528400 (2019).Article 

    Google Scholar 
    25.Carleer, A. P., Debeir, O. & Wolff, E. Assessment of very high spatial resolution satellite image segmentations. Photogramm. Eng. Remote. Sens. 71, 1285–1294. https://doi.org/10.14358/pers.71.11.1285 (2005).Article 

    Google Scholar 
    26.Su, T. C. A filter-based post-processing technique for improving homogeneity of pixel-wise classification data. Eur. J. Remote Sens. 49, 531–552. https://doi.org/10.5721/EuJRS20164928 (2016).Article 

    Google Scholar 
    27.Zhu, X. Land cover classification using moderate resolution satellite imagery and random forests with post-hoc smoothing. J. Spat. Sci. 58, 323–337. https://doi.org/10.1080/14498596.2013.819600 (2013).Article 

    Google Scholar 
    28.Xu, H. Z. Y., Wei, Y. C., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google Earth Engine. Remote Sens. 11, 27. https://doi.org/10.3390/rs11161891 (2019).Article 

    Google Scholar 
    29.Baqa, M. F. et al. Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land https://doi.org/10.3390/land10070700 (2021).Article 

    Google Scholar 
    30.Group, W. B. Transforming Karachi into a Livable and Competitive Megacity—A City Diagnostic and Transformation Strategy. (2018).31.Arif, H., Noman, A., Mansoor, R. & Asiya, S. Land Ownership, Control and Contestation in Karachi and Implications for Low-Income Housing. (Human Settlements Group, International Institute for Environment and Development (IIED), 2013).32.Karachi’s Population—Fiction and Reality. The Express Tribune. https://tribune.com.pk/story/1505657/karachis-population-fiction-reality. Accessed 1 May 2021.33.Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177. https://doi.org/10.1016/j.rse.2015.09.019 (2015).ADS 
    Article 

    Google Scholar 
    34.Mi, J. X. et al. Tracking the land use/land cover change in an area with underground mining and reforestation via continuous landsat classification. Remote Sens. https://doi.org/10.3390/rs11141719 (2019).Article 

    Google Scholar 
    35.de Jong, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2020.102293 (2021).Article 

    Google Scholar 
    36.Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.111510 (2020).Article 

    Google Scholar 
    37.Xu, H., Wei, Y., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google earth engine. Remote Sens. https://doi.org/10.3390/rs11161891 (2019).Article 

    Google Scholar 
    38.Li, X. C. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9be3 (2020).Article 

    Google Scholar 
    39.Global Human Settlement Layer. https://ghsl.jrc.ec.europa.eu/. Accessed 1 May 2021.40.Raza, D. et al. Satellite Based Surveillance of LULC with Deliberation on Urban Land Surface Temperature and Precipitation Pattern Changes of Karachi, Pakistan. (2019).41.Yu, L., Wang, J. & Gong, P. Improving 30m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 34, 5851–5867. https://doi.org/10.1080/01431161.2013.798055 (2013).Article 

    Google Scholar 
    42.Kennedy, R. E., Yang, Z. G. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008 (2010).ADS 
    Article 

    Google Scholar 
    43.Meigs, G. W., Kennedy, R. E. & Cohen, W. B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 115, 3707–3718. https://doi.org/10.1016/j.rse.2011.09.009 (2011).ADS 
    Article 

    Google Scholar 
    44.Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24. https://doi.org/10.1016/j.rse.2018.02.050 (2018).ADS 
    Article 

    Google Scholar 
    45.Yin, H., Pflugmacher, D., Li, A., Li, Z. & Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 204, 918–930. https://doi.org/10.1016/j.rse.2017.08.030 (2018).ADS 
    Article 

    Google Scholar 
    46.Zhu, L., Liu, X., Wu, L., Tang, Y. & Meng, Y. Long-term monitoring of cropland change near Dongting Lake, China, using the LandTrendr algorithm with Landsat imagery. Remote Sens. https://doi.org/10.3390/rs11101234 (2019).Article 

    Google Scholar 
    47.Kennedy, R. E. et al. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 166, 271–285. https://doi.org/10.1016/j.rse.2015.05.005 (2015).ADS 
    Article 

    Google Scholar 
    48.Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.03.009 (2020).Article 

    Google Scholar 
    49.Yan, J. et al. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 158, 249–262. https://doi.org/10.1016/j.isprsjprs.2019.10.003 (2019).ADS 
    Article 

    Google Scholar 
    50.Crist, E. P. & Kauth, R. J. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 52, 81–86 (1986).
    Google Scholar 
    51.Lin, L. et al. Monitoring land cover change on a rapidly urbanizing island using Google Earth Engine. Appl. Sci.-Basel. https://doi.org/10.3390/app10207336 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Chen, C. et al. Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery. Sci. Rep. https://doi.org/10.1038/s41598-020-69716-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhang, X. Y., Feng, X. Z. & Wang, K. Integration of classifiers for improvement of vegetation category identification accuracy based on image objects. N. Z. J. Agric. Res. 50, 1125–1133. https://doi.org/10.1080/00288230709510394 (2007).Article 

    Google Scholar  More

  • in

    Quantifying the effect of genetic, environmental and individual demographic stochastic variability for population dynamics in Plantago lanceolata

    1.Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).PubMed 

    Google Scholar 
    2.Lande, R., Engen, S. & Saether, B. Stochastic population dynamics in ecology and conservation. (Oxfor University Press, 2003).3.Roughgarden, J. A simple model for population dynamics in stochastic environments. Am. Nat. 109, 713–736 (1975).
    Google Scholar 
    4.May, R. M. Stability and complexity in model ecosystems (Princeton Univ, 2001).MATH 

    Google Scholar 
    5.Engen, S., Bakke, Ø. & Islam, A. Demographic and Environmental Stochasticity-Concepts and Definitions on JSTOR. Biometrics 54, 840–846 (1998).MATH 

    Google Scholar 
    6.Melbourne, B. a & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–3 (2008).7.Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106 (2009).PubMed 

    Google Scholar 
    8.Vindenes, Y. & Engen, S. Demographic stochasticity and temporal autocorrelation in the dynamics of structured populations. Oikos https://doi.org/10.1111/oik.03958 (2017).Article 

    Google Scholar 
    9.Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).
    Google Scholar 
    10.Steiner, U. K. & Tuljapurkar, S. Neutral theory for life histories and individual variability in fitness components. Proc. Natl. Acad. Sci. USA 109, 4684–4689 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Vindenes, Y. & Langangen, Ø. Individual heterogeneity in life histories and eco-evolutionary dynamics. Ecol. Lett. 18, 417–432 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    12.Snyder, R. E. & Ellner, S. P. Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?. Am. Nat. 191, E90–E107 (2018).PubMed 

    Google Scholar 
    13.Steiner, U. K., Tuljapurkar, S. & Orzack, S. H. Dynamic heterogeneity and life history variability in the kittiwake. J. Anim. Ecol. 79, 436–444 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Pennisi, E. The Great Guppy Experiment. Science (80-. ). 337, 904–908 (2012).15.Pajunen, V. I. & Pajunen, I. Long-term dynamics in rock pool Daphnia metapopulations. Ecography (Cop.) 26, 731–738 (2003).
    Google Scholar 
    16.Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda.. Science 325, 464–467 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Roach, D. A. & Gampe, J. Age-specific demography in Plantago: uncovering age-dependent mortality in a natural population. Am. Nat. 164, 60–69 (2004).PubMed 

    Google Scholar 
    18.Reid, J. M., Nietlisbach, P., Wolak, M. E., Keller, L. F. & Arcese, P. Individuals’ expected genetic contributions to future generations, reproductive value, and short-term metrics of fitness in free-living song sparrows ( Melospiza melodia ). Evol. Lett. 3, 271–285 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    19.Endler, J. A. Natural selection in the wild. Monographs in Population Biology vol. 21 (Princeton University Press, 1986).20.Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).PubMed 

    Google Scholar 
    21.Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    22.Roach, D. A., Ridley, C. E. & Dudycha, J. L. Longitudinal analysis of Plantago : Age-by-environment interactions reveal aging. Ecology 90, 1427–1433 (2009).PubMed 

    Google Scholar 
    23.Roach, D. A. Age, growth and size interact with stress to determine life span and mortality. Exp. Gerontol. 47, 782–786 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    24.Shefferson, R. P. & Roach, D. A. The triple helix of Plantago lanceolata: Genetics and the environment interact to determine population dynamics. Ecology 93, 793–802 (2012).PubMed 

    Google Scholar 
    25.Coulson, T., Tuljapurkar, S. & Step, T. The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am. Nat. 172, 599–612 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    26.Coulson, T., Tuljapurkar, S. & Childs, D. Z. Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J. Anim. Ecol. 79, 1226–1240 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    27.Lacey, E. P. et al. Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84, 2462–2475 (2003).
    Google Scholar 
    28.Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed 

    Google Scholar 
    29.Fisher, R. The genetical theory of natural selection. (Clarendon, 1930).30.Wright, S. Evolution in Mendelian populations. Genetics 16, 0097–0159 (1931).CAS 

    Google Scholar 
    31.Crow, J. F. & Kimura, M. An introduction to population genetics theory. (1970).32.Merilä, J. & Sheldon, B. Lifetime Reproductive Success and Heritability in Nature. Am. Nat. 155, 301–310 (2000).PubMed 

    Google Scholar 
    33.Kruuk, L. E. et al. Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. U. S. A. 97, 698–703 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Teplitsky, C., Mills, J. a, Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–26 (2009).35.Kruuk, L. E., Merilä, J. & Sheldon, B. C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 158, 557–571 (2001).CAS 
    PubMed 

    Google Scholar 
    36.Sheldon, B. C., Kruuk, L. E. B. & Merilä, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003).CAS 
    PubMed 

    Google Scholar 
    37.Merilä, J. & Sheldon, B. C. Short Review Genetic architecture of fitness and non fitness traits : empirical patterns and development of ideas. Heredity (Edinb). 83, (1999).38.Hartl, D. J. & Clark, A. G. Principles of population genetics. (Sinauer, 2007).39.Charlesworth, B. Evolution in age-structured populations. (Cambridge University Press, 1994).40.Kirkwood, T. B. L. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment?. Mech. Ageing Dev. 126, 439–443 (2005).PubMed 

    Google Scholar 
    41.Finch, C. & Kirkwood, T. B. Chance, Development, and Aging. (Oxford University Press, 2000).42.Schiemer, F. Food Dependence and Energetics of Freeliving Nematodes. II. Life History Parameters of Caenorhabditis briggsae (Nematoda) at Different Levels of Food Supply. Oecologia 54, 122–128 (1982).43.Kennedy, B. K. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985–1993 (1994).CAS 
    PubMed 

    Google Scholar 
    44.Steiner, U. K. et al. Two stochastic processes shape diverse senescence patterns in a single-cell organism. Evolution (N. Y). 73, 847–857 (2019).45.Jouvet, L., Rodríguez-Rojas, A. & Steiner, U. K. Demographic variability and heterogeneity among individuals within and among clonal bacteria strains. Oikos 127, 728–737 (2018).
    Google Scholar 
    46.Curtsinger, J., Fukui, H., Townsend, D. & Vaupel, J. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science (80-. ). 258, 461–463 (1992).47.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).
    Google Scholar 
    48.Edelfeldt, S., Bengtsson, K. & Dahlgren, J. P. Demographic senescence and effects on population dynamics of a perennial plant. Ecology 100, e02742 (2019).49.van Daalen, S. F. & Caswell, H. Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity. Ecol. Modell. 417, (2020).50.Caswell, H. & Vindenes, Y. Demographic variance in heterogeneous populations: matrix models and sensitivity analysis. Oikos 127, 648–663 (2018).
    Google Scholar 
    51.Jenouvrier, S., Aubry, L. M., Barbraud, C., Weimerskirch, H. & Caswell, H. Interacting effects of unobserved heterogeneity and individual stochasticity in the life history of the southern fulmar. J. Anim. Ecol. 87, 212–222 (2018).PubMed 

    Google Scholar 
    52.Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    53.Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science (80-. ). 297, 1183–1186 (2002).54.Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).PubMed 

    Google Scholar 
    55.Vera, M., Biswas, J., Senecal, A., Singer, R. H. & Park, H. Y. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu. Rev. Genet. 50, 267–291 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Stochastic Switching of Cell Fate in Microbes. Annu. Rev. Microbiol. 69, 381–403 (2015).CAS 
    PubMed 

    Google Scholar 
    57.Ballouz, S., Pena, M., Knight, F., Adams, L. & Gillis, J. The transcriptional legacy of developmental stochasticity. bioRxiv 2019.12.11.873265 (2019) https://doi.org/10.1101/2019.12.11.873265.58.Vogt, G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J. Biosci. 40, 159–204 (2015).PubMed 

    Google Scholar 
    59.Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).CAS 
    PubMed 

    Google Scholar 
    60.Engen, S., Lande, R. & Saether, B.-E. Effective Size of a Fluctuating Age-Structured Population. Genetics 170, 941–954 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    61.Vindenes, Y., Engen, S. & Saether, B.-E. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).PubMed 

    Google Scholar 
    62.Engen, S., Lande, R., aether, B.-E. & Weimerskirch, H. Extinction in relation to demographic and environmental stochasticity in age-structured models. Math. Biosci. 195, 210–27 (2005).63.Stearns, S. C. The evolution of life-histories. (Oxford University Press, 1992).64.Kendall, B. E. & Fox, G. a. Variation among Individuals and Reduced Demographic Stochasticity. Conserv. Biol. 16, 109–116 (2002).65.Fox, G. A. & Kendall, B. E. Demographic stochasticity and the variance reduction effect. Ecology 83, 1928–1934 (2002).
    Google Scholar 
    66.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    67.Hartemink, N. & Caswell, H. Variance in animal longevity: contributions of heterogeneity and stochasticity. Popul. Ecol. 60, 89–99 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    68.Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).PubMed 

    Google Scholar 
    69.Ohta, T. & Gillespie, J. Development of Neutral and Nearly Neutral Theories. Theor. Popul. Biol. 49, 128–142 (1996).CAS 
    PubMed 
    MATH 

    Google Scholar 
    70.Hughes, A. L. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Comstock, R. E. & Robinson, H. F. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 254–266 (1948).72.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed 

    Google Scholar 
    73.Steiner, U. K., Tuljapurkar, S., Coulson, T. & Horvitz, C. Trading stages: life expectancies in structured populations. Exp. Gerontol. 47, 773–781 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    74.R Core Team, R. A. language and environment for statistical computing. R: A language and environment for statistical computing. R Foundation for Statistical Computing vol. 1 409 (2016).75.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    76.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar  More

  • in

    Shift in demographic structure and increased reproductive activity of loggerhead turtles in the French Mediterranean Sea revealed by long-term monitoring

    1.Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, 1–6 (2008).
    Google Scholar 
    2.Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).ADS 

    Google Scholar 
    3.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 

    Google Scholar 
    4.Ford, K. R., Harrington, C. A., Bansal, S., Gould, P. J. & StClair, J. B. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob. Chang. Biol. 22, 3712–3723 (2016).ADS 
    PubMed 

    Google Scholar 
    5.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279, 3843–3852 (2012).
    Google Scholar 
    6.Gérard, M. et al. Shift in size of bumblebee queens over the last century. Glob. Chang. Biol. 26, 1185–1195 (2020).ADS 
    PubMed 

    Google Scholar 
    7.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Walther, G. R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 365, 2019–2024 (2010).
    Google Scholar 
    10.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 
    11.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 

    Google Scholar 
    12.Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).ADS 

    Google Scholar 
    13.Lohmann, K. J., Lohmann, C. M. F., Brothers, J. R. & Putman, N. F. Natal homing and imprinting in sea turtles. in The biology of sea turtles, volume III (eds. Wyneken, J., Lohmann, K. J. & Musick, J. A.) 59–78 (2013).14.Hays, G. C. & Scott, R. Global patterns for upper ceilings on migration distance in sea turtles and comparisons with fish, birds and mammals. Funct. Ecol. 27, 748–756 (2013).
    Google Scholar 
    15.Poloczanska, E. S., Limpus, C. J. & Hays, G. C. Vulnerability of marine turtles to climate change. Adv. Mar. Biol. 56, 151–211 (2009).PubMed 

    Google Scholar 
    16.Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. Climate change and marine turtles. Endanger. Species Res. 7, 137–154 (2009).
    Google Scholar 
    17.Fuentes, M. M. P. B., Limpus, C. J. & Hamann, M. Vulnerability of sea turtle nesting grounds to climate change. Glob. Chang. Biol. 17, 140–153 (2011).ADS 

    Google Scholar 
    18.Patrício, A., Hawkes, L., Monsinjon, J., Godley, B. & Fuentes, M. Climate change and marine turtles: Recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).
    Google Scholar 
    19.Mazaris, A. D., Kallimanis, A. S., Sgardelis, S. P. & Pantis, J. D. Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. J. Exp. Mar. Biol. Ecol. 367, 219–226 (2008).
    Google Scholar 
    20.Almpanidou, V., Katragkou, E. & Mazaris, A. D. The efficiency of phenological shifts as an adaptive response against climate change: a case study of loggerhead sea turtles (Caretta caretta) in the Mediterranean. Mitig. Adapt. Strateg. Glob. Chang. 23, 1143–1158 (2018).
    Google Scholar 
    21.Monsinjon, J. R. et al. The climatic debt of loggerhead sea turtle populations in a warming world. Ecol. Indic. 107, 105657 (2019).
    Google Scholar 
    22.Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213, 901–911 (2010).CAS 
    PubMed 

    Google Scholar 
    23.Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. Investigating the potential impacts of climate change on a marine turtle population. Glob. Chang. Biol. 13, 923–932 (2007).ADS 

    Google Scholar 
    24.Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider mediterranean region. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    25.Revelles, M. et al. Mesoscale eddies, surface circulation and the scale of habitat selection by immature loggerhead sea turtles. J. Exp. Mar. Bio. Ecol. 347, 41–57 (2007).
    Google Scholar 
    26.Witt, M. J. et al. Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic. Mar. Ecol. Prog. Ser. 337, 231–243 (2007).ADS 

    Google Scholar 
    27.Hamann, M. et al. Global research priorities for sea turtles: Informing management and conservation in the 21st century. Endanger. Species Res. 11, 245–269 (2010).
    Google Scholar 
    28.Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e1235 (2010).
    Google Scholar 
    29.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    30.Parry, M. L. Assessment of Potential Effects and Adaptations for Climate Change in Europe: the Europe ACACIA Project (University of East Anglia, 2000).
    Google Scholar 
    31.Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).PubMed 

    Google Scholar 
    32.Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
    Google Scholar 
    33.Kim, G.-U., Seo, K.-H. & Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 9, 18813 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Casale, P. et al. Mediterranean sea turtles: Current knowledge and priorities for conservation and research. Endanger. Species Res. 36, 229–267 (2018).
    Google Scholar 
    35.Margaritoulis, D. et al. Loggerhead turtles in the mediterranean: present knowledge and conservation perspectives. In Biology and Conservation of Loggerhead Sea Turtles (eds Bolten, A. & Witherington, B.) 175–198 (Smithsonian Institution Press, 2003).
    Google Scholar 
    36.Wallace, B. P. et al. Regional management units for marine turtles: A novel framework for prioritizing conservation and research across multiple scales. PLoS ONE 5, 1–11 (2010).
    Google Scholar 
    37.Casale, P., Freggi, D., Basso, R., Vallini, C. & Argano, R. A model of area fidelity, nomadism, and distribution patterns of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea. Mar. Biol. 152, 1039–1049 (2007).
    Google Scholar 
    38.Carreras, C., Pont, S., Maffucci, F., Sanfe, M. & Aguilar, A. Genetic structuring of immature loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea reflects water circulation patterns. Mar. Biol. 149, 1269–1279 (2006).
    Google Scholar 
    39.Clusa, M. et al. Fine-scale distribution of juvenile Atlantic and Mediterranean loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Mar. Biol. 161, 509–519 (2014).
    Google Scholar 
    40.Maffucci, F., Kooistra, W. H. C. F. & Bentivegna, F. Natal origin of loggerhead turtles, Caretta caretta, in the neritic habitat off the Italian coasts, Central Mediterranean. Biol. Conserv. 7, 3–9 (2005).
    Google Scholar 
    41.Carreras, C. et al. Sporadic nesting reveals long distance colonisation in the philopatric loggerhead sea turtle (Caretta caretta). Sci. Rep. 8, 1–14 (2018).ADS 

    Google Scholar 
    42.Maffucci, F. et al. Seasonal heterogeneity of ocean warming: A mortality sink for ectotherm colonizers. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    43.Casale, P. & Tucker, A. D. Caretta caretta (amended version of 2015 assessment). IUCN Red List Threat. Species 2017 e.T3897A119333622 (2017).44.Casale, P. et al. Sea turtle strandings reveal high anthropogenic mortality in Italian waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 611–620 (2010).
    Google Scholar 
    45.Tomás, J., Gozalbes, P., Raga, J. A. & Godley, B. J. Bycatch of loggerhead sea turtles: Insights from 14 years of stranding data. Endanger. Species Res. 5, 161–169 (2008).
    Google Scholar 
    46.Loisier, A. et al. Genetic composition, origin and conservation of loggerhead sea turtles (Caretta caretta) frequenting the French Mediterranean coasts. Mar. Biol. 168, 15 (2021).
    Google Scholar 
    47.Garofalo, L. et al. Genetic characterization of central Mediterranean stocks of the loggerhead turtle (Caretta caretta) using mitochondrial and nuclear markers, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 868–884 (2013).
    Google Scholar 
    48.MedECC. Climate and environmental change in the Mediterranean basin: Current situation and risks for the future. in First Mediterranean Assessment Report (eds. Cramer, W., Guiot, J. & Marini, K.) 600 (2020).49.Pastor, F., Valiente, J. A. & Khodayar, S. A Warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12, 2687 (2020).ADS 

    Google Scholar 
    50.Shaltout, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56, 411–443 (2014).
    Google Scholar 
    51.Delaugerre, M. Status of marine turtles in the Mediterranean (with particular reference to Corsica). Vie Milieu 37, 243–264 (1987).
    Google Scholar 
    52.Delaugerre, M. & Cesarini, C. Confirmed nesting of the loggerhead turtle in Corsica. Mar. Turt. Newsle. 104, 12 (2004).
    Google Scholar 
    53.Gérigny, O. et al. Hatching events of the loggerhead turtle in Corsica Island, France. Mar. Turt. Newsl. 161, 15–18 (2020).
    Google Scholar 
    54.Sénégas, J.-B., Hochscheid, S., Groul, J.-M., Lagarrigue, B. & Bentivegna, F. Discovery of the northernmost loggerhead sea turtle (Caretta caretta) nest. Mar. Biodivers. Rec. 2, 1–4 (2009).
    Google Scholar 
    55.Gérigny, O., Delaugerre, M. & Cesarini, C. Love is a losing game. Loggerhead turtle in corsica vs tourism = nesting failure. Mar. Turt. Newsl. 148, 12–14 (2016).
    Google Scholar 
    56.Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 

    Google Scholar 
    57.Cardona, L. & Hays, G. C. Ocean currents, individual movements and genetic structuring of populations. Mar. Biol. 165, 1–10 (2018).
    Google Scholar 
    58.Hochscheid, S., Bentivegna, F., Bradai, M. N. & Hays, G. C. Overwintering behaviour in sea turtles: Dormancy is optional. Mar. Ecol. Prog. Ser. 340, 287–298 (2007).ADS 

    Google Scholar 
    59.Revelles, M. et al. Tagging reveals limited exchange of immature loggerhead sea turtles (Caretta caretta) between regions in the western Mediterranean. Sci. Mar. 72, 511–518 (2008).
    Google Scholar 
    60.Revelles, M., Cardona, L., Aguilar, A., San Félix, M. & Fernández, G. Habitat use by immature loggerhead sea turtles in the Algerian Basin (western Mediterranean): Swimming behaviour, seasonality and dispersal pattern. Mar. Biol. 151, 1501–1515 (2007).
    Google Scholar 
    61.Casale, P. et al. Long-term residence of juvenile loggerhead turtles to foraging grounds: A potential conservation hotspot in the Mediterranean. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 144–154 (2012).
    Google Scholar 
    62.Benabdi, M. & Belmahi, A. E. First record of loggerhead turtle (Caretta caretta) nesting in the Algerian coast (southwestern Mediterranean). J. Black Sea/Mediterranean Environ. 26, 100–105 (2020).
    Google Scholar 
    63.Bradai, M. N. & Karaa, S. Première mention de la nidification de la tortue caouanne Caretta caretta sur la plage zouaraa (Nord de la Tunisie). Bull l’Inst. Natl. Sci. Technol. Mer Salammbô 44, 203–206 (2017).
    Google Scholar 
    64.Casale, P., Hochscheid, S., Kaska, Y. & Panagopoulou, A. Sea turtles in the Mediterranean region: MTSG annual regional report 2020. Rep. IUCN-SSC Mar. Turtl. Spec. Group 2020, 331 (2020).
    Google Scholar 
    65.Gonzalez-Paredes, D., Fernández-Maldonado, C., Grondona, M., Martínez-Valverde, R. & Marco, A. The westernmost nest of a loggerhead sea turtle, Caretta caretta (Linnaeus 1758), registered in the Mediterranean Basin (Testudines, Cheloniidae). Herpetol. Notes 14, 907–912 (2021).
    Google Scholar 
    66.Howard, R. & Bell, I. Thermal tolerances of sea turtle embryos: current understanding and future directions. Endanger. Species Res. 26, 75–86 (2014).
    Google Scholar 
    67.Yntema, C. L. & Mrosovsky, N. Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Can. J. Zool. 60, 1012–1016 (1982).
    Google Scholar 
    68.Kaska, Y., Downie, R., Tippett, R. & Furness, R. W. Natural temperature regimes for loggerhead and green turtle nests in the eastern Mediterranean. Can. J. Zool. 76, 723–729 (1998).
    Google Scholar 
    69.Fisher, L. R., Godfrey, M. H. & Owens, D. W. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta). PLoS ONE 9, 1–22 (2014).
    Google Scholar 
    70.Mrosovsky, N., Kamel, S., Rees, A. F. & Margaritoulis, D. Pivotal temperature for loggerhead turtles (Caretta caretta) from Kyparissia Bay, Greece. Can. J. Zool. 80, 2118–2124 (2002).
    Google Scholar 
    71.Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).ADS 

    Google Scholar 
    72.Pastor, F., Valiente, J. A. & Palau, J. L. Sea surface temperature in the Mediterranean: Trends and spatial patterns (1982–2016). Pure Appl. Geophys. 175, 4017–4029 (2018).ADS 

    Google Scholar 
    73.Sakalli, A. Sea surface temperature change in the Mediterranean sea under climate change: A linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 15, 707–716 (2017).
    Google Scholar 
    74.Mazaris, A. D., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Sea surface temperature variations in core foraging grounds drive nesting trends and phenology of loggerhead turtles in the Mediterranean Sea. J. Exp. Mar. Biol. Ecol. 379, 23–27 (2009).
    Google Scholar 
    75.Fuentes, M. M. P. B., Pike, D. A., Dimatteo, A. & Wallace, B. P. Resilience of marine turtle regional management units to climate change. Glob. Chang. Biol. 19, 1399–1406 (2013).ADS 
    PubMed 

    Google Scholar 
    76.Fuentes, M. M. P. B. et al. Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Reg. Environ. Chang. 20, 104 (2020).
    Google Scholar 
    77.Lorne, J. & Salmon, M. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 3, 23–30 (2007).
    Google Scholar 
    78.Camiñas, J. A. et al. Conservation of Marine Turtles in the Mediterranean Sea (IUCN Center for Mediterranean Cooperation, 2020).
    Google Scholar 
    79.Casale, P. Sea turtle by-catch in the Mediterranean. Fish Fish. 12, 299–316 (2011).
    Google Scholar 
    80.Wallace, B. P. et al. Global patterns of marine turtle bycatch. Conserv. Lett. 3, 131–142 (2010).
    Google Scholar 
    81.Sacchi, J. et al. France. in Sea Turtles in the Mediterranean Region: MTSG Annual Regional Report 2020.Report of the IUCN-SSC Marine Turtle Specialist Group, 2020. (eds. Casale, P., Hochscheid, S., Kaska, Y. & Panagopoulou, A.) 115–143 (2020).82.Santos, B. S., Friedrichs, M. A. M., Rose, S. A., Barco, S. G. & Kaplan, D. M. Likely locations of sea turtle stranding mortality using experimentally-calibrated, time and space-specific drift models. Biol. Conserv. 226, 127–143 (2018).
    Google Scholar 
    83.Ministère de l’environnement de l’énergie et de la mer. Arrêté portant dérogation a la protection stricte des espèces. (2016). http://gtmf.mnhn.fr/wp-content/uploads/sites/13/2016/12/arrete-subdelegation-MNHN-cartes-vertes-tortues-marines_signe_251020161.pdf.84.Ministère de la transition écologique & Ministère de la mer. Arrêté portant dérogation a la protection stricte des espèces. (2020). https://www.patrinat.fr/sites/patrinat/files/atoms/files/2021/01/20201230-arrete_subdelegation_mnhn_tm_2021-2026_-_vf_signe.pdf.85.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).86.Casale, P., Freggi, D., Basso, R. & Argano, R. Size at male maturity, sexing methods and adult sex ratio in loggerhead turtles (Caretta caretta) from Italian waters investigated through tail measurements. Herpetol. J. 15, 145–148 (2005).
    Google Scholar  More

  • in

    Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods

    Well-mixed populationAs shown in the Methods section, in a well-mixed population, the model can be described in terms of the replicator-mutator dynamics. I begin, by a case where the quality of the two resources are similar, r1 = r2 = r, and plot the frequency (solid blue), the average payoffs from the game (dashed red), and the amplitude of fluctuations (dotted blue) for different strategies in Fig. 1a–d. Here, the replicator dynamic is solved starting from a uniform initial condition in which all the strategies’ initial frequency is equal. The results of simulations in finite populations are in good agreement with the replicator dynamics results (see Supplementary Note 2 and Supplementary Figs. 1, 2, 3, and 4 for comparison to simulations). Throughout this manuscript I fix c = 1.Fig. 1: The frequency, game payoffs, and the amplitude of fluctuations for different strategies.The frequency (solid blue), game payoffs (dashed red), and amplitude of fluctuations (dotted blue) of costly cooperators (a), costly defectors (b), non-costly cooperators (c), and non-costly defectors (d), as a function of the enhancement factor, r. As r increases, above a first threshold (r* = 1 + cg), cooperation in the costly institution evolves, and above a second threshold (approximately r = 2) cooperation in both the costly and the free institutions evolves. For medium r, the system shows periodic fluctuations. Parameter values: g = 5, nu = 10−3, π0 = 2, cg = 0.398. The replicator dynamic, derived in the Methods Section, is solved for 9000 time steps, and the time averages are taken over the last 2000 time steps.Full size imageFor small enhancement factors r, the dynamics settle in a fixed point where only defectors in the free institution survive. The advantage of the costly institution becomes apparent as r increases beyond r* = 1 + cg, such that the maximum possible payoff of the costly institution, which is achieved when nobody defects and is equal to r − 1 − cg becomes positive. As shown in the Methods, a focal defector in a group composed of ({n}_{C}^{1}) costly cooperators and ({n}_{D}^{1}) other costly defectors (and ({n}_{C}^{2}+{n}_{D}^{2}) individuals who prefer the free resource), obtains a payoff of ({n}_{C}^{1}r/({n}_{D}^{1}+{n}_{C}^{1}+1)-{c}_{g}). This payoff becomes negative for a small enough value of ({n}_{C}^{1}) (or a large enough value of ({n}_{D}^{1})). Since groups with a small number of costly cooperators are drawn with a high probability when ({rho }_{C}^{1}) is small (these probabilities can be derived in terms of multinational coefficients, see the Methods), the average payoff of a costly defector remains negative in this regime (for instance, given at the transition ({rho }_{C}^{1}approx nu), a mutant costly defector finds itself in a group with no costly cooperator with probability ({(1-{rho }_{C}^{1})}^{g-1}approx {(1-nu )}^{g-1}), which is close to 1 for low mutation rates, and pays a pure cost of −cg). On the other hand, a costly cooperator’s payoff is equal to (({n}_{C}^{1}+1)r/({n}_{D}^{1}+{n}_{C}^{1}+1)-{c}_{g}-1), which for small enough ({n}_{D}^{1}) becomes positive. As in this region, the frequency of costly defectors, ({rho }_{D}^{1}), is small, such group compositions occur with a high probability (at the transition, ({rho }_{D}^{1}approx nu), and thus the probability that a costly cooperator joins a group with no costly defectors is ({(1-{rho }_{D}^{1})}^{g-1}approx {(1-nu )}^{g-1}), which is close to 1 for low mutation rates). Consequently, the average payoff of costly cooperators from the game becomes positive, and thus, larger than the dominant non-costly defectors’ payoff (who receive a payoff of zero). Consequently, the frequency of costly cooperators rapidly increases at r*. However, due to the rapid increase in the frequency of costly cooperators at r*, the probability of formation of such mixed groups increases, and costly defectors start to appear in the system. Further increasing r in this region, the frequency of costly cooperators and costly defectors increases at the expense of non-costly defectors.As r increases above a second threshold, cyclic fluctuations set in, and the dynamics settle in a periodic orbit. An example of this periodic orbit is presented in Fig. 2a, b. Interestingly, the average payoff of costly cooperators, costly defectors, and non-costly defectors in this region remains close to zero despite the evolution of cooperation. Although individuals constantly update their strategy to overcome others, no strategy wins in the evolution. Instead, individuals engage in a winnerless red queen dynamic. The game payoffs of costly cooperators and costly defectors fluctuate around zero (which is equal to the game payoff of non-costly defectors). The dynamics of the system in this regime resembles the frequency-dependent selection in the host-parasite evolution, coined the red queen dynamic based on the fact that no matter how much they run, all end up in the same place53,54. On this basis, I call this periodic orbit the red queen periodic orbit.Fig. 2: Red queen and black queen orbits.The frequency of different strategies (a) and the game payoffs (b) in the red queen, and the black queen (c, d) periodic orbits. In the red queen orbit, cooperators in the costly institution survive. However, the payoff of the surviving strategies fluctuates around zero, and none dominate others. In contrast, cooperators in both institutions evolve in the black queen orbit, and cooperators of each type suppress defection in their opposite institution. Consequently, the payoff of all the strategies starts to deviate from zero. Parameter values: g = 5, nu = 10−3, π0 = 2, and cg = 0.398. In (a, b) r = 1.7, and in (c, d) r = 2.2.Full size imageThe existence of a costly institution can facilitate the evolution of cooperation in its competing free institution too. As the amplitude of fluctuations increases, episodes where most of the individuals prefer the costly institution occur. During these episodes, ({rho }_{D}^{2}) drops to a small value. Consequently, the probability that a mutant non-costly cooperator finds itself in a group devoid of non-costly defectors ({(1-{rho }_{D}^{2})}^{g-1}), increases. In such groups, non-costly cooperators receive a payoff of r−1, which is larger than the payoff of all the other strategies and outcompete other strategies. At this point, a second periodic orbit emerges in which cooperation in both the costly and free institutions evolves. The evolution of cooperation in the free institution can, in turn, have a positive impact on cooperation in the costly institution. This is the case because above the point where cooperation in the free institution evolves, the frequency of individuals who prefer the free institution starts to increase by increasing r. This effect decreases the frequency of those who prefer the costly institution and its effective size. This decreases the mixing probability between costly cooperators and costly defectors and increases the costly cooperators’ payoffs. Consequently, a functional complementation between cooperators with different game preferences emerges, which is reminiscent of a black queen dynamics in which different types crucially depend on each other for performing vital functions36,55. While vulnerable to defectors in their own institution, cooperators complement each other by beating defectors in their opposite institution. Synergistically thus, they can suppress defection in the population and alternately dominate the population (see Fig. 2c, d). At this stage, the game payoff of all the strategies starts to increase beyond zero. I call this periodic orbit the black queen orbit.The picture depicted above is the typical behavior of the model for large enough values of the cost. To see this, in Fig. 3a, I plot the phase diagram of the model in the cg − r plane. Here, the frequency of cooperators in the population, ({rho }_{C}={rho }_{C}^{1}+{rho }_{C}^{2}), is color plotted as well (see Supplementary Fig. 1 for the frequency of different strategies). Red dashed lines show the boundary of the region where the system settles in a periodic orbit. For high costs, as r increases, the system shows a series of successive cross-overs from a defective fixed point to the red queen periodic orbit, black queen periodic orbit, and finally a cooperative fixed point. On the other hand, for small costs, the system possesses a bistable region where both the red queen and black queen periodic orbits (or a partially cooperative fixed point and black queen periodic orbit to the left of the red dashed line in the bistable region) are stable, and the system shows a discontinuous transition between these two orbits. Orange circles show the lower boundary of the bistable region, below which the black queen orbit is unstable. Its upper boundary, above which the red queen orbit becomes unstable, is plotted by red squares, in Fig. 3. The transition between the two periodic orbits becomes a continuous transition at a single critical point (see Supplementary Fig. 4).Fig. 3: Evolution of cooperation.a Time average total frequency of cooperators, ({rho }_{C}={rho }_{C}^{1}+{rho }_{C}^{2}) in the r − cg plane is color plotted. The dynamics can settle in fixed point (FP) (small and large enhancement factors), or two different periodic orbits, red queen periodic orbit (RPO) where cooperation only in the costly institution evolve and black queen periodic orbit (BPO) where cooperation in both institutions evolve. b Time average difference between the probability that an individual in the costly institution is a cooperator from the probability that an individual in the free institution is a cooperator, (gamma ={rho }_{C}^{1}/({rho }_{C}^{1}+{rho }_{D}^{1})-{rho }_{C}^{2}/({rho }_{C}^{2}+{rho }_{D}^{2})). Individuals are more likely to be cooperators in a costly institution. c The time average total frequency of cooperators in the r − cg plane under pure selection dynamic (ν = 0). Red queen and black queen periodic orbit can occur for, respectively, small and large enhancement factors. In other regions, the dynamics settle in a fixed point where either non-costly defectors (small enhancement factors), costly cooperators (inside the region marked with dashed black line), or non-costly cooperators survive. Parameter values: g = 5, and π0 = 2. In (a, b) ν = 10−3, and in (c) ν = 0. In (a, b) the replicator dynamic is solved for 8000 time steps, and the time average is taken over the last 2000 steps. In (c) the replicator dynamic is solved for 200,000 time steps, and the time average is taken over the last 150,000 time steps.Full size imageExamination of the overall cooperation in the population shows that an entrance cost has a contrasting effect on population cooperation for large and small enhancement factors. An entrance cost keeps free-riders away from a costly institution. This fact makes the relative frequency of cooperators to defectors higher in the costly institution than that in the free institution. To see that defectors are less likely to join the costly institution, I plot the difference between the probabilities that an individual in the costly institution is a cooperator and the probability that an individual in the free institution is a cooperator, (gamma ={rho }_{C}^{1}/({rho }_{C}^{1}+{rho }_{D}^{1})-{rho }_{C}^{2}/({rho }_{C}^{2}+{rho }_{D}^{2})) in Fig. 3b, where it can be seen it is always positive. Intuitively, as a costly defector’s payoff in a group with ({n}_{C}^{1}) cooperators and ({n}_{D}^{1}) other defectors is equal to (r{n}_{C}^{1}/({n}_{C}^{1}+{n}_{D}^{1})-{c}_{g}), a costly defector can reach a positive payoff only when ({n}_{C}^{1}) is large. Otherwise, costly defectors are better off hedging the risk of obtaining a negative payoff by joining the free institution, where their payoff is necessarily non-negative. Consequently, the expected number of cooperators in the costly institution, ({rho }_{C}^{1}g), sets a bound for the frequency of costly defectors. This fact increases a costly institution’s profitability, especially for small enhancement factors, and positively impacts cooperation in the population. On the other hand, for high enhancement factors, a large entrance cost is detrimental to cooperation. This is because, although the frequency of defectors in the costly institution remains close to zero, fewer individuals are willing to choose a costly institution with a high cost. This increases the effective size of the free institution and the mixing between cooperators and defectors in the free institution. Since defectors can better exploit cooperators in well-mixed groups, the increased mixing between cooperators and defectors in the free institution hinders cooperation.As shown in the Supplementary Note 3, while the phenomenology of the model remains the same for lower mutation rates, lower mutation rates increase the size of the region where the dynamics settle in a periodic orbit (see Supplementary Fig. 5). Regarding the dependence of the dynamics on the mutation rate, an interesting case is the zero mutation rate, where selection is the sole driver of the dynamics. The time average cooperation for zero mutation rate, starting from an initial condition where all the strategies are equal, is plotted in Fig. 3c (See Supplementary Fig. 6 for the frequency of different strategies). Both the red queen (for small enhancement factors) and the black queen (for large enhancement factors) periodic orbits are observed in this case. However, for zero mutation rate, both the amplitude and period of fluctuations increase: The fluctuating dynamics go through periods where one of the surviving strategies reaches a frequency close to 1 only to be later replaced by another strategy (see Supplementary Fig. 7). The dynamics can also settle in different fixed points. For cg = 0, depending on the enhancement factor, either cooperators or defectors in both institutions survive in equal densities. For nonzero cg, however, only one of the strategies survives. For small enhancement factors, non-costly defectors dominate the population. For larger enhancement factors, either costly cooperators (the region marked with a dashed black line) or non-costly cooperators dominate the population.In the Supplementary Note 2, I consider a case where the two institutions have different productivities, i.e., different enhancement factors, and show that similar phases are at work in this case (see the Supplementary Figs. 2 and 3). For instance, I show that a large entrance cost destabilizes full defection, removes the system’s bistability, and ensures the evolution of cooperation starting from all the initial compositions of the population. In addition, I study the continuous replicator dynamics and show similar phenomenology is at work in this case (see Supplementary Notes 1.4 and 4, and Supplementary Figs. 8 and 9).Finally, I note that a similar phenomenology is at work in a context where instead of a costly and a cost-free institution, two costly institutions interact. To see this, assume institution 1 has a cost cg and institution 2 has a cost ({c}_{g}^{0}). Without loss of generality, assume ({c}_{g} , > , {c}_{g}^{0}). Writing ({c}_{g}=({c}_{g}-{c}_{g}^{0})+{c}_{g}^{0}), it is easy to see that it is possible to absorb ({c}_{g}^{0}) in the base payoff b (as all the individual pay a cost ({c}_{g}^{0}) irrespective of their institution choice). Thus, the model is equivalent to a context where resource 2 has zero cost, resource 1 has a cost of ({c}_{g}-{c}_{g}^{0}), and all the individuals receive a shifted base payoff of (b-{c}_{g}^{0}) (see Supplementary Note 5 and Supplementary Fig. 10).Structured populationIn contrast to the well-mixed population, the model shows no bistability in a structured population, and the fate of the dynamics is independent of the initial condition. To see why this is the case, I note that in a well-mixed population, a situation where all the individuals are defectors, and randomly prefer one of the two institutions, is the worst case for the evolution of cooperation, as in this case, mutant cooperators are in a disadvantage in both institutions. However, in a structured population, starting from such an initial condition, blocks of defectors, most of whom prefer the same institution, form due to spatial fluctuations. A mutant cooperator who prefers the minority institution in these blocks obtains a high payoff and proliferates. This removes the bistability of the dynamics in a structured population.To study the model’s behavior in a structured population, I perform simulations starting from an initial condition in which all the individuals are defectors and prefer one of the two institutions at random. The model shows similar behavior in a structured population to that in a well-mixed population. This can be seen in Fig. 4a–d, where the densities of different strategies are color plotted in the cg − r plane (see Supplementary Note 6 and Supplementary Figs. 11 and 12 for further details). As was the case in a well-mixed population, cooperation does not evolve for too small values of r. As r increases beyond a threshold, cooperation does evolve in the costly institution but not in the free institution. In this region, for a fixed enhancement factor, an optimal cost, approximately equal to cg = r − 1, optimizes the cooperation in the population. On the other hand, cooperation in both the costly and the free institutions evolves for large enhancement factors. In this region, increasing the cost can slightly increases defection in the free institution and have a detrimental effect on the evolution of cooperation, but not as much as it does in a well-mixed population.Fig. 4: The frequency of different strategies in the cg − r plane in a structured population.The time average frequencies of costly cooperators (a), costly defectors (b), non-costly cooperators (c), and non-costly defectors (d) in the cg − r plane are color plotted. The system shows a red queen dynamic in which cooperators only in the costly institution survive in large numbers (for smaller enhancement factors), or a black queen dynamic, where cooperators in both institutions survive and help each other to suppress defection (for larger enhancement factors). Parameter values: g = 5, nu = 10−3, and π0 = 2. The population resides on a 200 × 200 first nearest neighbor square lattice with von Neumann connectivity and periodic boundaries. The simulation is performed for 5000 time steps starting from an initial condition in which all the individuals are defectors and prefer one of the two institutions at random. The time average is taken over the last 2000 steps.Full size imageInstead of periodic orbits observed in the well-mixed population, on a spatial structure the model’s dynamic is governed by the cyclic dominance of different strategies through spatiotemporal fluctuations manifested by traveling waves. In Fig. 5, I present snapshots of the population’s stationary state in different phases. In this figure, I consider a model in which individuals reproduce with a probability proportional to the exponential of their payoff, π, times a selection parameter, β, (exp (beta pi )) (see the Supplementary Note 1.3), with β = 5. The situation in the model where individuals reproduce with a probability proportional to their payoff is similar. In Fig. 5a, I have set r1 = r2 = 1.7, and cg = 0.6. This phase corresponds to the red queen periodic orbit in the well-mixed population case. Here, the majority of the population are non-costly defectors. Costly cooperators experience an advantage over the former and can proliferate in the sea of non-costly defectors. However, costly cooperators are vulnerable to both costly defectors and non-costly cooperators. The former can only survive in small bands around costly cooperators, as they rapidly get replaced by non-costly defectors once they eliminate costly cooperators. This phenomenon shows that spatial competition between defectors with differing institution preferences can positively impact the evolution of cooperation. Non-costly cooperators, in turn, can survive by forming compact domains where they reap the benefit of cooperation among themselves. However, as the effect of network reciprocity is too small to promote cooperation in this region, non-costly cooperators get eliminated by non-costly defectors once costly cooperators are out of the picture. Consequently, the system’s dynamic is governed by traveling waves of costly cooperators followed by small trails of costly defectors and non-costly cooperators in a sea of non-costly defectors (see the Supplementary Video, SV.156, and Supplementary Note 7 for an illustration of the dynamics in this regime).Fig. 5: Snapshots of the population in the stationary state for different parameter values.Different strategies are color codded (legend). In (a,) r1 = 1.7, r2 = 1.7, in (b,) r1 = 3.5 and r2 = 3.5, and in c, r1 = 3, and r2 = 1.8. In all the cases cg = 0.6. For small enhancement factors (a), the red queen dynamics in which cooperators only in the costly institute survive in large numbers occur. For larger enhancement factors (b), the black queen dynamics in which cooperators in both institutions survive and help each other suppress defection occur. By increasing the enhancement factors (c), non-costly cooperators dominate. However, a small frequency of costly cooperators survives and purge the population from defectors by moving along the bands of non-costly defectors. Here, individuals reproduce with a probability proportional to the exponential of their payoff with a selection parameter equal to β = 5. The population resides on a 400 × 400 square lattice with von Neumann connectivity and periodic boundaries. Parameter values: g = 5 and ν = 10−3.Full size imageFigure 5b shows a snapshot of the population for r1 = r2 = 2.2. This phase corresponds to the black queen periodic orbit in a well-mixed population. In this phase, cooperators in both the costly and free institutions evolve. Cooperators are vulnerable to defectors in their institution and lose their territory to defectors of similar type. Defectors are in turn vulnerable to cooperators in their opposite institution and are replaced by them. Consequently, the dynamic of the model is governed by traveling waves of cooperators, chased by defectors of similar type, who are in turn extincted by cooperators of the opposite type. Thus, while cooperators of different types on their own either can not survive (in the case of non-costly cooperators) or are doomed to a winnerless competition with defectors (in the case of costly cooperators), they complement each other to efficiently suppress defection in the population (see the Supplementary Video, SV.256, for an illustration of the dynamics in this regime).Another manifestation of functional complementation between cooperators of different types can be seen in the regime of large enhancement factors. An example of this situation is plotted in Fig. 5c. Here, r1 = r2 = 3.5 and cg = 0.6. In this region, non-costly cooperators dominate the population. However, non-costly defectors can survive in small bands in the sea of non-costly cooperators. While at a disadvantage in the sea of non-costly cooperators, costly cooperators beat non-costly defectors. Consequently, small blocks of costly cooperators are formed within the bands of non-costly defectors. These blocks of costly cooperators move along the bands of non-costly defectors and purge the population from non-costly defectors. In this way, although costly cooperators exist only in small frequency, they play a constructive role in helping non-costly cooperators to dominate the population.In summary, the analysis of the spatial patterns reveals that competition or synergistic relation between individuals with different institution preferences plays an essential role in the evolution of cooperation in the system. Defectors with different institution preferences always appear as competitors who compete over space. By eliminating each other, they play a surprisingly constructive role in the evolution of cooperation. Cooperators, on the other hand, while having direct competition over scarce sites, can also act synergistically and help the evolution of cooperation in their opposite institution since they can eliminate defectors in their opposite institution. In this way, by purging defectors with an opposite game preference, cooperators help fellow cooperators with an opposite game preference. Consequently, cooperators with different game preferences can engage in a mutualistic relation to efficiently suppress defection in the population.Finally, as shown in the Supplementary Note 6, the spatial model shows similar phases in the case where the two public resources have heterogeneous profitability, that is, when r1 ≠ r2 (see the Supplementary Fig. 12). More

  • in

    Radioecological and geochemical peculiarities of cryoconite on Novaya Zemlya glaciers

    Data for all analysed radionuclides are presented in the “Supplementary Material”. Cryoconite samples were collected on Nalli Glacier (Supplementary Fig. S1) on Sept. 25, 2017 (samples 1701–1714) and on Sept. 10, 2018 (samples 1801–1814) at 28 spots (Fig. 2, Supplementary Table S1). Gamma spectrometric analysis of samples showed the presence of anthropogenic radionuclides 137Cs, 241Am, and 207Bi. All quoted radioactivity values were recalculated for the sampling date, except those for 241Am since the concentration of the parent 241Pu isotope is unknown. However, for this isotope, the correction for decay is negligible. The activity of 137Cs reached 8093 (± 69) Bq kg−1 of dry weight, that of 241Am reached 58.3 (± 2.3) Bq kg−1 and that of 207Bi reached 6.3 (± 0.6) Bq kg−1. The natural radionuclides 210Pb and 7Be were also present in all samples. The activity of 210Pb varied in the range of 1280–9750 Bq kg−1. In addition, in the investigated samples, a significant amount of short-lived cosmogenic radionuclide 7Be was found, whose specific activity reached 2418 (± 76) Bq kg−1 (Fig. 3, Supplementary Table S2). To evaluate the contribution of atmospheric components to the total 210Pb activity, 226Ra activity was determined and found to be 17–27 Bq kg−1 (Supplementary Table S2). Based on the 210Pb/226Ra ratio, we conclude that more than 98% of 210Pb was of atmospheric provenance.Figure 2Location of sampling points on Nalli Glacier. A—137Cs activity zone  95%) of corresponding rocks and numerous outcrops likely promoted entrapment of these elements into explosion clouds, and their subsequent precipitation with radionuclides. This feature of the geological structure of the area explains the extremely high enrichment of surface waters in elements such as Zn, Pb, Sr, Ni, As, Cr, Co, Se, Te, Cd, W, Cu, Sb, and Sn; for many of them, the excess reaches 10-fold with respect to the Clrake values51. This hypothesis is supported by obvious correlations between the concentrations of Bi, Ag, Sn, Sb, Pb, Cd, W, and Cu and the activity of anthropogenic radionuclides 137Cs, 241Am and 207Bi. This relationship is obviously related to the simultaneous release of elements and radionuclides from the contaminated ice layer and their entrapment in cryoconite holes. More

  • in

    ‘For a brown invertebrate’: rescuing native UK oysters

    Download PDF

    For the past five years, I’ve studied oysters — a commercially and environmentally important species in southeast England. My research is very practical: I help to solve problems by working with oyster growers (known locally as oystermen), regulators and other community members. Resulting papers are evidence of work I’ve already done.Most oysters in this area are a non-native species (Crassostrea giga). Locally, it’s well established and has been since the 1960s, but allowing it to spread to nearby estuary systems has been controversial: there are concerns that it could become an invasive species.Working with aquaculture producers, I help to guide efforts to restore the native oyster (Ostrea edulis), populations of which declined owing to overfishing, habitat destruction, pollution and disease. Crassostrea giga oysters have provided enough income for oyster growers to spend time and effort restoring the local species. We’ve done some cool things, including creating one of the largest coastal marine conservation zones in the United Kingdom — more than 284 square kilometres — and all for an unseen brown invertebrate that lacks the charisma of a dolphin.This picture is from a typical day in the field. During high tides, we go out in a boat to take sonar readings to map potential oyster habitats; at low tide, we put on waders and go out on the mud flats to look for juvenile oysters. We focus our conservation efforts on spots where juvenile oysters are already trying to get established.Amazingly, these filter feeders don’t require feeding by humans, and they clean the water as they grow. Bivalve aquaculture such as this has become a cornerstone of the ‘blue economy’ — using marine resources sustainably for economic growth while preserving ocean health. It will take more work to determine how the balance can be reached, but oysters will be part of that conversation.

    Nature 600, 182 (2021)
    doi: https://doi.org/10.1038/d41586-021-03573-5

    Related Articles

    How AI is helping the natural sciences

    Breeding the sweetest biofuels in the business

    Using sound to explore events of the Universe

    Subjects

    Conservation biology

    Agriculture

    Latest on:

    Agriculture

    Even organic pesticides spur change in the wildlife next door
    Research Highlight 17 NOV 21

    Tracking the origin of Transeurasian languages
    News & Views 10 NOV 21

    New rules will make UK gene-edited crop research easier
    News 30 SEP 21

    Jobs

    Full Professor in Microbial Biotechnology

    University of Groningen (RUG)
    Gorningen, Netherlands

    Research Faculty Position Cardiovascular Research Center Massachusetts General Hospital

    Massachusetts General Hospital
    Charlestown, MA, United States

    Higher Scientific Officer – Biophysical assay development and protein production

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Group Leaders

    John Innes Centre (JIC)
    Norwich, United Kingdom More

  • in

    Camera trap placement for evaluating species richness, abundance, and activity

    1.Gese E. M. Monitoring of terrestrial carnivore populations. Carnivore Conservation. (2001).2.Oconnell, A. F. et al. (eds) Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).
    Google Scholar 
    3.Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
    Google Scholar 
    4.MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Bailey L. A., Hines J. E. Occupancy Modeling and Estimation (2017).5.Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4(1), 75–79 (2001).
    Google Scholar 
    6.Rowcliffe, J. M., Field, J., Turvey, S. T. & Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 1, 1228–1236 (2008).
    Google Scholar 
    7.Karanth, K. U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71(3), 333–338 (1995).
    Google Scholar 
    8.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2), 148–154 (2004).
    Google Scholar 
    9.Jhala, Y., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48(1), 14–24 (2011).
    Google Scholar 
    10.Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144(3), 1017–1024 (2011).
    Google Scholar 
    11.Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014).
    Google Scholar 
    12.Roy, M. et al. Demystifying the Sundarban tiger: Novel application of conventional population estimation methods in a unique ecosystem. Popul. Ecol. 58(1), 81–89 (2016).
    Google Scholar 
    13.Howe, E. J., Buckland, S. T., Després-Einspenner, M. L. & Kühl, H. S. Distance sampling with camera traps. Methods Ecol. Evol. 8(11), 1558–1565 (2017).
    Google Scholar 
    14.Bridges, A. S., Vaughan, M. R. & Klenzendorf, S. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography. Wildl. Biol. 10(1), 277–284 (2004).
    Google Scholar 
    15.Beck, H. & Terborgh, J. Groves versus isolates: How spatial aggregation of Astrocaryum murumuru palms affects seed removal. J. Trop. Ecol. 1, 275–288 (2002).
    Google Scholar 
    16.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17(1), 245–257 (2003).
    Google Scholar 
    17.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002).
    Google Scholar 
    18.Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52(3), 675–685 (2015).
    Google Scholar 
    19.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6(2), 131–139 (2003).
    Google Scholar 
    20.Datta, A., Anand, M. O. & Naniwadekar, R. Empty forests: Large carnivore and prey abundance in Namdapha National Park, north-east India. Biol. Cons. 141(5), 1429–1435 (2008).
    Google Scholar 
    21.Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: Distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006).
    Google Scholar 
    22.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287(4), 269–275 (2012).
    Google Scholar 
    23.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 32, 315–323 (2015).
    Google Scholar 
    24.Edwards, S. et al. Making the most of by-catch data: Assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56(4), 885–894 (2018).
    Google Scholar 
    25.Harmsen, B. J., Foster, R. J., Silver, S., Ostro, L. & Doncaster, C. P. Differential use of trails by forest mammals and the implications for camera-trap studies: A case study from Belize. Biotropica 42(1), 126–133 (2010).
    Google Scholar 
    26.Di Bitetti M. S., Paviolo A. J. & de Angelo C. D. Camera Trap Photographic Rates on Roads vs. Off Roads: Location Does Matter, Vol. 21, 37–46 (2014).27.Blake, J. G. & Mosquera, D. Camera trapping on and off trails in lowland forest of eastern Ecuador: Does location matter?. Mastozool. Neotrop. 21(1), 17–26 (2014).
    Google Scholar 
    28.Cusack, J. J. et al. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5), e0126373 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    29.Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12(10), e0186679 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    30.Srbek-Araujo, A. C. & Chiarello, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota. Neotrop. 13(2), 51–62 (2013).
    Google Scholar 
    31.Wearn, O. R., Rowcliffe, J. M., Carbone, C., Bernard, H. & Ewers, R. M. Assessing the status of wild felids in a highly-disturbed commercial forest reserve in Borneo and the implications for camera trap survey design. PLoS ONE 8(11), e77598 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Sadhu, A. et al. Demography of a small, isolated tiger population in a semi-arid region of western India. BMC Zool. 2(1), 1–13 (2017).
    Google Scholar 
    33.Sunquist, M. What is a tiger? Ecology and behavior. In Tigers of the World 19–33 (William Andrew Publishing, 2010).
    Google Scholar 
    34.Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).
    Google Scholar 
    35.Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).
    Google Scholar 
    36.Rovero, F. & Marshall, A. R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46(5), 1011–1017 (2009).
    Google Scholar 
    37.Jhala, Y. V., Qureshi, Q., Nayak, A. K. Status of tigers, copredators and prey in India, 2018. ISBN No. 81-85496-50-1 https://wii.gov.in/tiger_reports (National Tiger Conservation Authority, Government of India and Wildlife Institute of India, 2020).38.Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008).
    Google Scholar 
    39.Hines J. E. PRESENCE 3.1 Software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html. (2006).40.Meredith, M., & Ridout, M. Overview of the overlap package. R. Project. 1–9 (2014).41.Rowcliffe M, Rowcliffe M. M. Package ‘activity’. Animal activity statistics R Package Version. 1 (2016).42.Soberón, M. J. & Llorente, B. J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7(3), 480–488 (1993).
    Google Scholar 
    43.Broadley, K., Burton, A. C., Avgar, T. & Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 9(24), 14031–14041 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    44.Bunnell, F. L. & Gillingham, M. P. Foraging behavior: Dynamics of dining out. Bioenerget. Wild herbiv. 1, 53–79 (1985).
    Google Scholar 
    45.Mishra H. R. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak) (Doctoral dissertation, University of Edinburgh). 1982.46.Raman, T. S. Factors influencing seasonal and monthly changes in the group size of chital or axis deer in southern India. J. Biosci. 22(2), 203–218 (1997).
    Google Scholar 
    47.Karanth, K. U. & Sunquist, M. E. Behavioral correlates of predation by tiger, leopard and dhole in Nagarhole National Park. India. J Zool. 250(2), 255–265 (2000).
    Google Scholar 
    48.Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. & Doncaster, C. P. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. J. Mammal. 90(3), 612–620 (2009).
    Google Scholar 
    49.Nichols, J. D., Karanth, K. U. & O’Connell, A. F. Science, conservation, and camera traps. In Camera Traps in Animal Ecology 45–56 (Springer, 2011).
    Google Scholar  More

  • in

    Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii

    1.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 

    Google Scholar 
    2.Jankowski, T., Collins, A. G. & Campbell, R. Global diversity of inland water cnidarians. In Freshwater Animal Diversity Assessment 35–40 (Springer, 2008).
    Google Scholar 
    3.Pelosse, J. Étude biologique sur la méduse d’eau douce, Limnocodium Sowerbyi Ray Lankester, du Parc de la Tête-d’Or de Lyon. Publ. Société Linn. Lyon 65, 53–62 (1919).
    Google Scholar 
    4.Lüskow, F., López-González, P. J. & Pakhomov, E. A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 30, 69–84 (2021).
    Google Scholar 
    5.McClary, A. The effect of temperature on growth and reproduction in Craspedacusta sowerbii. Ecology 40, 158–162 (1959).
    Google Scholar 
    6.McClary, A. Experimental studies of bud development in Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 80, 343–353 (1961).
    Google Scholar 
    7.McClary, A. Histological changes during regeneration of Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 83, 349–357 (1964).
    Google Scholar 
    8.Acker, T. S. & Muscat, A. M. The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am. Midl. Nat. 95, 323–336 (1976).
    Google Scholar 
    9.Boothroyd, I. K., Etheredge, M. K. & Green, J. D. Spatial distribution, size structure, and prey of Craspedacusta sowerbyi Lankester in a shallow New Zealand lake. Hydrobiologia 468, 23–32 (2002).
    Google Scholar 
    10.Turquin, M. J. Progrès dans la connaissance de la métagenèse chez Craspedacusta sowerbii (= sowerbyi) (Limnoméduse, Olindiidae). Bourgogne-Nat. 9, 162–174 (2010).
    Google Scholar 
    11.Marchessaux, G. & Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 139, e12308 (2020).
    Google Scholar 
    12.Bouillon, J. & Boero, F. The hydrozoa: A new classification in the ligth of old knowledge. Thalass. Salentina 24, 3–45 (2000).
    Google Scholar 
    13.Dumont, H. J. The distribution and ecology of the fresh-and brackish-water medusae of the world. In Studies on the Ecology of Tropical Zooplankton 1–12 (Springer, 1994).
    Google Scholar 
    14.Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).
    Google Scholar 
    15.Marchessaux, G., Gadreaud, J. & Belloni, B. The freshwater jellyfish Craspedacusta sowerbii lankester, 1880: An overview of its distribution in France. Vie Milieu 69, 201–213 (2019).
    Google Scholar 
    16.Pennak, R. W. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degeneration. Trans. Am. Microsc. Soc. 75, 324–331 (1956).
    Google Scholar 
    17.Matthews, D. C. A Comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles (1966).18.Lundberg, S. & Svensson, J. E. Medusae invasions in Swedish lakes. Fauna Flora 98, 18–28 (2003).
    Google Scholar 
    19.Jakovčev-Todorović, D., Đikanović, V., Skorić, S. & Cakić, P. Freshwater jellyfish Craspedacusta sowerbyi Lankester, 1880 (Hydrozoa, Olindiidae): 50 years’ observations in Serbia. Arch. Biol. Sci. 62, 123–127 (2010).
    Google Scholar 
    20.Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manag. 60, 304–313 (2017).ADS 

    Google Scholar 
    21.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Hosmer, D. W., Jovanovic, B. & Lemeshow, S. Best subsets logistic regression. Biometrics 45, 1265–1270 (1989).MATH 

    Google Scholar 
    23.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    24.Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Walther, G. Inference and modeling with log-concave distributions. Stat. Sci. 24, 319–327 (2009).MathSciNet 
    MATH 

    Google Scholar 
    26.Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 408 (2020).ADS 

    Google Scholar 
    27.Perkins-Taylor, I. & Frey, J. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101, 1035–1048 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).
    Google Scholar 
    29.Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    30.Fernández, M. & Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS ONE 10, e0119891 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    31.Sarà, G., Palmeri, V., Rinaldi, A., Montalto, V. & Helmuth, B. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: A case study with the bivalve B rachidontes pharaonis. Divers. Distrib. 19, 1235–1247 (2013).
    Google Scholar 
    32.Sarà, G., Porporato, E. M., Mangano, M. C. & Mieszkowska, N. Multiple stressors facilitate the spread of a non-indigenous bivalve in the Mediterranean Sea. J. Biogeogr. 45, 1090–1103 (2018).
    Google Scholar 
    33.Markovic, D., Freyhof, J. & Wolter, C. Where are all the fish: Potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7, e40530 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Hamner, W. M., Gilmer, R. W. & Hamner, P. P. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau 1. Limnol. Oceanogr. 27, 896–909 (1982).CAS 
    ADS 

    Google Scholar 
    35.Hamner, W. M. & Hauri, I. R. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias) 1. Limnol. Oceanogr. 26, 414–423 (1981).ADS 

    Google Scholar 
    36.Duggan, I. C. & Eastwood, K. R. Detection and distribution of Craspedacusta sowerbii: Observations of medusae are not enough. (2012).37.Galarce, L. C., Riquelme, K. V., Osman, D. Y. & Fuentes, R. A. A new record of the non indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria) in Northern Patagonia (40 S, Chile). Bioinvasions Rec. 2, 263–270 (2013).
    Google Scholar 
    38.Stanković, I. & Ternjej, I. New ecological insight on two invasive species: Craspedacusta sowerbii (Coelenterata: Limnomedusae) and Dreissenia polymorpha (Bivalvia: Dreissenidae). J. Nat. Hist. 44, 2707–2713 (2010).
    Google Scholar 
    39.Stefani, F., Leoni, B., Marieni, A. & Garibaldi, L. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in northern Italy. J. Limnol. 69, 189 (2010).
    Google Scholar 
    40.Jankowski, T., Strauss, T. & Ratte, H. T. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 27, 811–823 (2005).CAS 

    Google Scholar 
    41.Adams, I. B. The effect of light and prey availability on the activity of the freshwater jellyfish, Craspedacusta sowerbii (Hydrozoan) (Mém. B Sc Univ James Madison À Harrisonburg Virginie, 2009).
    Google Scholar 
    42.Marchessaux, G. & Bejean, M. Growth and ingestion rates of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 42, 783–786 (2020).CAS 

    Google Scholar 
    43.Himchik, V., Marenkov, O. & Shmyhol, N. Biology of reproduction of aquatic organisms: The course of oogenesis of freshwater jellyfish Craspedacusta sowerbii Lancester, 1880 in the Dnieper reservoir. World Sci. News 160, 1–15 (2021).
    Google Scholar 
    44.Caputo, L., Huovinen, P., Sommaruga, R. & Gómez, I. Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia 817, 179–191 (2018).CAS 

    Google Scholar 
    45.Bozman, A., Titelman, J., Kaartvedt, S., Eiane, K. & Aksnes, D. L. Jellyfish distribute vertically according to irradiance. J. Plankton Res. 39, 280–289 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Salonen, K. et al. Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): A semiautonomous microcosm in the food web of Lake Tanganyika. In Jellyfish Blooms IV 97–112 (Springer, 2012).
    Google Scholar 
    47.Dodson, S. I. & Cooper, S. D. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnol. Oceanogr. 28, 345–351 (1983).ADS 

    Google Scholar 
    48.Smith, A. S. & Alexander, J. E. Jr. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. J. Plankton Res. 30, 1323–1327 (2008).
    Google Scholar 
    49.Spadinger, R. & Maier, G. Prey selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshw. Biol. 41, 567–573 (1999).
    Google Scholar 
    50.Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 

    Google Scholar 
    51.Uchida, T. A new sporozoan-like reproduction in the hydromedusa. Gonionemus vertens. Proc. Jpn. Acad. 52, 387–388 (1976).
    Google Scholar 
    52.Williams, A. B. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida (1984).53.Parent, G. H. La découverte lorraine de Craspedacusta sowerbyi Lank. dans son contexte chorologique et écologique européen. Bull. Soc. D’Histoire Nat. Moselle 43, 317–337 (1982).
    Google Scholar 
    54.Amemiya, I. Freshwater medusa found in the tank of my laboratory. Jpn. J. Zool. Trans. Abstr. 3, Abstract (1930).55.Joshi, M. V. & Tonapi, G. T. A new record of freshwater medusa from India. Curr. Sci. 34, 665–666 (1965).
    Google Scholar 
    56.El Moussaoui, N. & Beisner, B. L. La méduse d’eau douce Craspedacusta sowerbii: espèce exotique répandue dans les lacs du Québec. Nat. Can. 141, 40–46 (2017).
    Google Scholar 
    57.Fish, G. R. Craspedacusta sowerbyi Lankester (Coelenterata: Limnomedusae) in New Zealand lakes. N. Z. J. Mar. Freshw. Res. 5, 66–69 (1971).
    Google Scholar 
    58.Rayner, N. A. First record of Craspedacusta sowerbyi Lankester (Cnidaria: Limnomedusae) from Africa. Hydrobiologia 162, 73–77 (1988).
    Google Scholar 
    59.Somveille, M., Manica, A., Butchart, S. H. & Rodrigues, A. S. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    60.Newton, I. & Dale, L. C. Bird migration at different latitudes in eastern North America. Auk 113, 626–635 (1996).
    Google Scholar 
    61.Zhang, J. et al. Determination of original infection source of H7N9 avian influenza by dynamical model. Sci. Rep. 4, 1–16 (2014).
    Google Scholar 
    62.Fuentes, R., Cárdenas, L., Abarzua, A. & Caputo, L. Southward invasion of Craspedacusta sowerbii across mesotrophic lakes in Chile: Geographical distribution and genetic diversity of the medusa phase. Freshw. Sci. 38, 193–202 (2019).
    Google Scholar 
    63.Harrell, F. E. Hmisc: Harrell Miscellaneous (Version 4.5-0) (2021).64.Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. Mapping the global distribution of the freshwater hydrozoan Craspedacusta sowerbii. Pangaea https://doi.org/10.1594/PANGAEA.936074 (2021).65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    66.McGarvey, D. J. et al. On the use of climate covariates in aquatic species distribution models: Are we at risk of throwing out the baby with the bath water?. Ecography 41, 695–712 (2018).
    Google Scholar 
    67.Zeng, Y. & Yeo, D. C. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biol. Conserv. 223, 58–67 (2018).
    Google Scholar 
    68.Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    69.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).70.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    71.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 
    72.Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    73.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    74.Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Google Scholar 
    75.Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326–1334 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    76.Silva, C., Leiva, F. & Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fish. Oceanogr. 28, 171–182 (2019).
    Google Scholar 
    77.Nenzén, H. K. & Araújo, M. B. Choice of threshold alters projections of species range shifts under climate change. Ecol. Model. 222, 3346–3354 (2011).
    Google Scholar 
    78.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Google Scholar 
    79.DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 837–845 (1988). More