Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio
1.Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. S. 16, 269–311 (1985).
Google Scholar
2.Schmitz, O. J. et al. From individuals to ecosystem function: Toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008).PubMed
PubMed Central
Google Scholar
3.Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS
PubMed
Google Scholar
4.Holt, R. D. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet
CAS
PubMed
Google Scholar
5.Bonsall, M. B. & Hassell, M. P. Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997).CAS
ADS
Google Scholar
6.Tuda, M. & Shimada, M. Complexity, evolution, and persistence in host–parasitoid experimental systems with Callosobruchus beetles as the host. Adv. Ecol. Res. 37, 37–75 (2005).
Google Scholar
7.Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44, 341–373 (1993).MATH
Google Scholar
8.Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9, e99876 (2014).PubMed
PubMed Central
ADS
Google Scholar
9.Pekas, A., Tena, A., Harvey, J. A., Garcia-Marí, F. & Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 1345–1356 (2016).PubMed
Google Scholar
10.DeLong, J. P. & Vasseur, D. A. Mutual interference is common and mostly intermediate in magnitude. BMC Ecol. 11, 1 (2011).PubMed
PubMed Central
Google Scholar
11.Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).CAS
PubMed
ADS
Google Scholar
12.Hassell, M. P. Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971).
Google Scholar
13.Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).
Google Scholar
14.Free, C. A., Beddington, J. R. & Lawton, J. H. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).
Google Scholar
15.Visser, M. E., Jones, T. H. & Driessen, G. Interference among insect parasitoids: A multi-patch experiment. J. Anim. Ecol. 68, 108–120 (1999).
Google Scholar
16.Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
Google Scholar
17.DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56, 881–892 (1975).
Google Scholar
18.Arditi, R., Callois, J. M., Tyutyunov, Y. & Jost, C. Does mutual interference always stability predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).PubMed
Google Scholar
19.Abrams, P. A. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90, 794–814 (2015).PubMed
Google Scholar
20.Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism, and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).
Google Scholar
21.Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 269, 2550–2641 (2002).
Google Scholar
22.Mohamad, R., Wajnberg, E., Monge, J. P. & Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177, 305–315 (2015).PubMed
ADS
Google Scholar
23.Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2004).
Google Scholar
24.Nakamichi, Y., Tuda, M. & Wajnberg, E. Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics. Ecol. Entomol. 45, 1263–1271 (2020).
Google Scholar
25.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).CAS
PubMed
ADS
Google Scholar
26.Appleby, B. M., Petty, S. J., Blakey, J. K., Rainey, P. & Macdonald, D. W. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)?. Proc. R. Soc. B 264, 1111–1116 (1997).PubMed Central
ADS
Google Scholar
27.Nishimura, K. & Jahn, G. C. Sex allocation of three solitary ectoparasitic wasp species on bean weevil larvae: Sex ratio change with host quality and local mate competition. J. Ethol. 14, 27–33 (1996).
Google Scholar
28.Shimada, M. & Fujii, K. Niche modification and stability of competitive systems. I. Niche modification process. Res. Popul. Ecol. 27, 185–201 (1985).
Google Scholar
29.Utida, S. Population fluctuation, an experimental and theoretical approach. Cold Spring Harb. Symp. Quant. Biol. 22, 139–151 (1957).
Google Scholar
30.Utida, S. Cyclic fluctuations of population density intrinsic to the host–parasitoid system. Ecology 38, 442–449 (1957).
Google Scholar
31.Fujii, K. Studies on the interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res. Popul. Ecol. 10, 87–98 (1968).
Google Scholar
32.Bellows, T. S. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). J. Anim. Ecol. 51, 263–287 (1982).
Google Scholar
33.Tuda, M. Density dependence depends on scale; at larval resource patch and at whole population. Res. Popul. Ecol. 35, 261–271 (1993).
Google Scholar
34.Tuda, M. & Shimada, M. Developmental schedules and persistence of experimental host–parasitoid systems at two different temperatures. Oecologia 103, 283–291 (1995).PubMed
ADS
Google Scholar
35.Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): High host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41, 31–45 (2005).
Google Scholar
36.Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS
PubMed
Google Scholar
37.Tuda, M. Applied evolutionary ecology of insects in the subfamily Bruchinae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 42, 337–346 (2007).
Google Scholar
38.Clausen, C. P. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review (United States Department of Agriculture Handbook, 1978).
Google Scholar
39.Schmale, I., Wäckers, F. L., Cardona, C. & Dorn, S. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: The effect of adult parasitoid nutrition on longevity and progeny production. Biol. Control 21, 134–139 (2001).
Google Scholar
40.Vamosi, S. M., den Hollander, M. D. & Tuda, M. Egg dispersion is more important than competition type for herbivores attacked by a parasitoid. Popul. Ecol. 53, 319–326 (2011).
Google Scholar
41.Shimada, M. Population fluctuation and persistence of one-host–two parasitoid systems depending on resource distribution: From parasitizing behavior to population dynamics. Res. Popul. Ecol. 41, 69–79 (1999).
Google Scholar
42.Baker, J. E., Perez-Mendoza, J. & Beeman, R. W. Multiple mating potential in a pteromalid wasp determined by using an insecticide resistance marker. J. Entomol. Sci. 33, 165–170 (1998).
Google Scholar
43.Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 41, 229–234 (1999).
Google Scholar
44.Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).CAS
PubMed
ADS
Google Scholar
45.Waage, J. K. & Lane, J. B. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Behav. 53, 417–426 (1984).
Google Scholar
46.Strand, M. R. Variable sex ratio strategy of Telonomus heliothidis (Hymenoptera: Scelionidae): Adaptation to host and conspecific density. Oecologia 77, 219–224 (1988).CAS
PubMed
ADS
Google Scholar
47.Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).MATH
Google Scholar
48.Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
Google Scholar
49.Wen, B., Smith, L. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature maize weevils (Coleoptera: Curculionidae) in corn. Environ. Entomol. 23, 367–373 (1994).
Google Scholar
50.Wen, B. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. Biol. Control 5, 151–157 (1995).
Google Scholar
51.Campan, E. & Benrey, B. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30, 220–228 (2004).
Google Scholar
52.Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).
Google Scholar
53.Wai, K. M. Intra- and interspecific larval competition among wasps parasitic to bean weevil larvae. Thesis—University of Tsukuba, D.Sc. (A), no. 714 (1990).54.Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37 (2018).
Google Scholar
55.Miksanek, J. R. & Heimpel, G. E. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia 194, 311–320 (2020).PubMed
ADS
Google Scholar
56.Kidd, N. A. C. & Jervis, M. A. The effects of host-feeding behaviour on the dynamics of parasitoid–host interactions, and the implications for biological control. Res. Popul. Ecol. 31, 235–274 (1989).
Google Scholar
57.Comins, H. N. & Wellings, P. W. Density-related parasitoid sex-ratio: Influence on host–parasitoid population dynamics. J. Anim. Ecol. 54, 583–594 (1985).
Google Scholar
58.Hassell, M. P., Waage, J. K. & May, R. M. Variable parasitoid sex ratios and their effect on host–parasitoid dynamics. J. Anim. Ecol. 52, 889–904 (1983).
Google Scholar
59.Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling Type II model. Ecology 82, 3083–3092 (2001).
Google Scholar
60.Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. Functional responses modified by predator density. Oecologia 159, 425–433 (2008).PubMed
ADS
Google Scholar
61.Freedman, H. I. Stability analysis of a predator–prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979).MathSciNet
MATH
Google Scholar
62.Erbe, L. H. & Freedman, H. I. Modeling persistence and mutual interference among subpopulations of ecological communities. Bull. Math. Biol. 47, 295–304 (1985).MathSciNet
MATH
Google Scholar
63.Alonso, D., Bartumeus, F. & Catalan, J. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002).
Google Scholar
64.May, R. M. & Hassell, M. P. The dynamics of multiparasitoid–host interactions. Am. Nat. 117, 234–261 (1981).MathSciNet
Google Scholar
65.Wajnberg, E., Curty, C. & Colazza, S. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73, 1179–1189 (2004).
Google Scholar
66.Okuyama, T. Parasitoid aggregation and interference in host–parasitoid dynamics. Ecol. Entomol. 41, 473–479 (2016).
Google Scholar
67.Jeffs, C. T. & Lewis, O. T. Effects of climate warming on host–parasitoid interactions. Ecol. Entomol. 38, 209–218 (2013).
Google Scholar
68.Laws, A. N. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28–34 (2017).PubMed
Google Scholar
69.Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).
Google Scholar
70.Tuda, M. & Bonsall, M. B. Evolutionary and population dynamics of host–parasitoid interactions. Res. Popul. Ecol. 41, 81–91 (1999).
Google Scholar
71.Outreman, Y. et al. Multi-scale and antagonist selection on life-history traits in parasitoids: A community ecology perspective. Funct. Ecol. 32, 736–751 (2018).
Google Scholar More