Reduced deforestation and degradation in Indigenous Lands pan-tropically
1.Weisse, M. & Goldman, E. D. We Lost a Football Pitch of Primary Rainforest Every 6 Seconds in 2019 (World Resources Institute, 2020); https://www.wri.org/blog/2020/06/global-tree-cover-loss-data-20192.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS
Google Scholar
3.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS
Google Scholar
4.State of the World’s Indigenous Peoples: Rights to Lands, Territories and Resources (UN, 2021).5.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS
Google Scholar
6.Larsen, P. B. et al. Understanding and responding to the environmental human rights defenders crisis: the case for conservation action. Conserv. Lett. 14, e12777 (2020).
Google Scholar
7.Tauli-Corpuz, V., Alcorn, J., Molnar, A., Healy, C. & Barrow, E. Cornered by PAs: adopting rights-based approaches to enable cost-effective conservation and climate action. World Dev. 130, 104923 (2020).
Google Scholar
8.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS
Google Scholar
9.Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).
Google Scholar
10.Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3 (Convention on Biological Diversity, 2020).11.NGO Concerns Over the Proposed 30% Target for Protected Areas and Absence of Safeguards for Indigenous Peoples and Local Communities (Rainforest Foundation UK, 2021).12.Reyes-García, V. et al. Recognizing Indigenous Peoples’ and local communities’ rights and agency in the post-2020 Biodiversity Agenda. Ambio https://doi.org/10.1007/s13280-021-01561-7 (2021).13.Territories of Life: 2021 Report 52 (ICCA Consortium, 2021); https://report.territoriesoflife.org14.Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
Google Scholar
15.Fa, J. E. et al. Importance of Indigenous Peoples’ lands for the conservation of intact forest landscapes. Front. Ecol. Environ. 18, 135–140 (2020).
Google Scholar
16.Vergara-Asenjo, G. & Potvin, C. Forest protection and tenure status: the key role of indigenous peoples and protected areas in Panama. Glob. Environ. Change 28, 205–215 (2014).
Google Scholar
17.Blackman, A. & Veit, P. Titled Amazon indigenous communities cut forest carbon emissions. Ecol. Econ. 153, 56–67 (2018).
Google Scholar
18.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).CAS
Google Scholar
19.Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).CAS
Google Scholar
20.Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
Google Scholar
21.Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).
Google Scholar
22.State of the World’s Indigenous Peoples (UN, 2009).23.Jackson, J. E. & Warren, K. B. Indigenous movements in Latin America, 1992–2004: controversies, ironies, new directions. Annu. Rev. Anthropol. 34, 549–573 (2005).
Google Scholar
24.Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
Google Scholar
25.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
Google Scholar
26.Stuart, E. A. & Rubin, D. B. in Best Practices in Quantitative Methods (ed. Osborne, J.) 155–176 (SAGE Publications, 2008).27.Pfaff, A., Robalino, J., Lima, E., Sandoval, C. & Herrera, L. D. Governance, location and avoided deforestation from protected areas: greater restrictions can have lower impact, due to differences in location. World Dev. 55, 7–20 (2014).
Google Scholar
28.Leberger, R., Rosa, I. M. D., Guerra, C. A., Wolf, F. & Pereira, H. M. Global patterns of forest loss across IUCN categories of protected areas. Biol. Conserv. 241, 108299 (2020).
Google Scholar
29.Borrini-Feyerabend, G. et al. Governance of Protected Areas: From Understanding to Action (IUCN, 2013).30.Who Owns the World’s Land? A Global Baseline of Formally Recognized Indigenous and Community Land Rights (Rights and Resources Initiative, 2015); https://rightsandresources.org/wp-content/uploads/GlobalBaseline_web.pdf31.Dubertret, F. & Alden Wily, L. Percent of Indigenous and Community Lands (Landmark, 2015).32.Under the Cover of COVID: New Laws in Asia Favor Business at the Cost of Indigenous Peoples’ and Local Communities’ Land and Territorial Rights (Rights and Resources Initiative, 2020).33.Domínguez, L. & Luoma, C. Decolonising conservation policy: how colonial land and conservation ideologies persist and perpetuate indigenous injustices at the expense of the environment. Land 9, 65 (2020).
Google Scholar
34.Pyhälä, A., Orozco, A. O. & Counsell, S. Protected Areas in the Congo Basin: Failing both people and biodiversity? (FAO, 2016).35.Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).
Google Scholar
36.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).CAS
Google Scholar
37.Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).
Google Scholar
38.Milodowski, D. T. et al. The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. J. Appl. Ecol. 58, 1764–1775 (2021).
Google Scholar
39.Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17, e3000247 (2019).
Google Scholar
40.Miettinen, J., Stibig, H.-J. & Achard, F. Remote sensing of forest degradation in Southeast Asia—aiming for a regional view through 5–30 m satellite data. Glob. Ecol. Conserv. 2, 24–36 (2014).
Google Scholar
41.Yuliani, E. L. et al. Keeping the land: indigenous communities’ struggle over land use and sustainable forest management in Kalimantan, Indonesia. Ecol. Soc. 23, art49 (2018).
Google Scholar
42.Berkes, F. Sacred Ecology (Routledge, 2017).43.Sheil, D., Boissière, M. & Beaudoin, G. Unseen sentinels: local monitoring and control in conservation’s blind spots. Ecol. Soc. 20, 39 (2015).
Google Scholar
44.Sasaoka, M. & Laumonier, Y. Suitability of local resource management practices based on supernatural enforcement mechanisms in the local social-cultural context. Ecol. Soc. 17, 6 (2012).
Google Scholar
45.Asante, E. A., Ababio, S. & Boadu, K. B. The use of indigenous cultural practices by the Ashantis for the conservation of forests in Ghana. SAGE Open 7, 215824401668761 (2017).
Google Scholar
46.Schwartzman, S. et al. The natural and social history of the indigenous lands and protected areas corridor of the Xingu River basin. Philos. Trans. R. Soc. B 368, 20120164 (2013).
Google Scholar
47.Hayes, T. M. & Murtinho, F. Are indigenous forest reserves sustainable? An analysis of present and future land-use trends in Bosawas, Nicaragua. Int. J. Sustain. Dev. World Ecol. 15, 497–511 (2008).
Google Scholar
48.Tellman, B. et al. Illicit drivers of land use change: narcotrafficking and forest loss in central America. Glob. Environ. Change 63, 102092 (2020).
Google Scholar
49.Bryan, J. For Nicaragua’s indigenous communities, land rights in name only: delineating boundaries among indigenous and black communities in eastern Nicaragua was supposed to guaranteed their land rights. Instead, it did the opposite. NACLA Rep. Am. 51, 55–64 (2019).
Google Scholar
50.Seymour, F., La Vina, T. & Hite, K. Evidence Linking Community-level Tenure and Forest Condition: An Annotated Bibliography (Climate and Land Use Alliance, 2014).51.Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).
Google Scholar
52.Robinson, B. E. et al. Incorporating land tenure security into conservation: conservation and land tenure security. Conserv. Lett. 11, e12383 (2018).
Google Scholar
53.Smith, D. A., Holland, M. B., Michon, A., Ibáñez, A. & Herrera, F. The hidden layer of indigenous land tenure: informal forest ownership and its implications for forest use and conservation in Panama’s largest collective territory. Int. For. Rev. 19, 478–494 (2017).
Google Scholar
54.Larson, A. M. & Springer, J. Recognition and Respect for Tenure Rights (IUCN, CEESP, CIFOR, 2016).55.Arizona, Y., Wicaksono, M. T. & Vel, J. The role of indigeneity NGOs in the legal recognition of adat communities and customary forests in Indonesia. Asia Pac. J. Anthropol. 20, 487–506 (2019).
Google Scholar
56.Malavasi, M. The map of biodiversity mapping. Biol. Conserv. 252, 108843 (2020).
Google Scholar
57.Witter, R. & Satterfield, T. The ebb and flow of indigenous rights recognitions in conservation policy: indigenous rights recognitions in conservation policy. Dev. Change 50, 1083–1108 (2019).
Google Scholar
58.Dutta, A. et al. Response to a “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2021).
Google Scholar
59.Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).CAS
Google Scholar
60.Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).CAS
Google Scholar
61.Johnson, C. J., Venter, O., Ray, J. C. & Watson, J. E. M. Growth‐inducing infrastructure represents transformative yet ignored keystone environmental decisions. Conserv. Lett. https://doi.org/10.1111/conl.12696 (2020).62.Davis, K. F., Yu, K., Rulli, M. C., Pichdara, L. & D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 8, 772–775 (2015).CAS
Google Scholar
63.Conigliani, C., Cuffaro, N. & D’Agostino, G. Large-scale land investments and forests in Africa. Land Use Policy 75, 651–660 (2018).
Google Scholar
64.Global Land Analysis & Discovery. Global 2010 Tree Cover (30m) (Department of Geographical Sciences, Univ. Maryland, 2013).65.Global Forest Watch. Tree Cover Loss version 1.6 (World Resources Institute, 2019).66.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).CAS
Google Scholar
67.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, accessed January 2020; www.protectedplanet.net68.Hanson, J. O. wdpar: Interface to the world database on protected areas (CRAN, 2020); https://CRAN.R-project.org/package=wdpar69.Global Forest Watch. Spatial Database of Planted Trees (World Resources Institute, data aaccessed May 2021).70.Transparent World & Global Forest Watch. Tree Plantations (World Resources Institute, date accessed May 2021).71.Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).CAS
Google Scholar
72.Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).
Google Scholar
73.Global Forest Watch. Tree Cover 2000 version 1.2 (World Resources Institute, 2015).74.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).
Google Scholar
75.Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).
Google Scholar
76.Global Roads Open Access Data Set Version 1 (gROADSv1) (1980–2010) (NASA SEDAC, 2013).77.Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).
Google Scholar
78.GADM Database of Global Administrative Areas version 3.6 (FAO, 2018).79.Ho, D., Imai, K., King, G. & Stuart, E. matchIt: Nonparametric preprocessing for parametric causal inference (CRAN, 2018); https://CRAN.R-project.org/package=MatchIt80.Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation (CRAN, 2019); https://CRAN.R-project.org/package=mgcv More