More stories

  • in

    Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio

    1.Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. S. 16, 269–311 (1985).
    Google Scholar 
    2.Schmitz, O. J. et al. From individuals to ecosystem function: Toward an integration of evolutionary and ecosystem ecology. Ecology 89, 2436–2445 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    3.Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).CAS 
    PubMed 

    Google Scholar 
    4.Holt, R. D. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    5.Bonsall, M. B. & Hassell, M. P. Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997).CAS 
    ADS 

    Google Scholar 
    6.Tuda, M. & Shimada, M. Complexity, evolution, and persistence in host–parasitoid experimental systems with Callosobruchus beetles as the host. Adv. Ecol. Res. 37, 37–75 (2005).
    Google Scholar 
    7.Briggs, C. J., Nisbet, R. M. & Murdoch, W. W. Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. 44, 341–373 (1993).MATH 

    Google Scholar 
    8.Peri, E., Cusumano, A., Amodeo, V., Wajnberg, E. & Colazza, S. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLoS ONE 9, e99876 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    9.Pekas, A., Tena, A., Harvey, J. A., Garcia-Marí, F. & Frago, E. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 1345–1356 (2016).PubMed 

    Google Scholar 
    10.DeLong, J. P. & Vasseur, D. A. Mutual interference is common and mostly intermediate in magnitude. BMC Ecol. 11, 1 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    11.Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).CAS 
    PubMed 
    ADS 

    Google Scholar 
    12.Hassell, M. P. Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971).
    Google Scholar 
    13.Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).
    Google Scholar 
    14.Free, C. A., Beddington, J. R. & Lawton, J. H. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).
    Google Scholar 
    15.Visser, M. E., Jones, T. H. & Driessen, G. Interference among insect parasitoids: A multi-patch experiment. J. Anim. Ecol. 68, 108–120 (1999).
    Google Scholar 
    16.Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).
    Google Scholar 
    17.DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56, 881–892 (1975).
    Google Scholar 
    18.Arditi, R., Callois, J. M., Tyutyunov, Y. & Jost, C. Does mutual interference always stability predator–prey dynamics? A comparison of models. C. R. Biol. 327, 1037–1057 (2004).PubMed 

    Google Scholar 
    19.Abrams, P. A. Why ratio dependence is (still) a bad model of predation. Biol. Rev. 90, 794–814 (2015).PubMed 

    Google Scholar 
    20.Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism, and niche overlap. J. Appl. Ecol. 41, 973–984 (2004).
    Google Scholar 
    21.Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 269, 2550–2641 (2002).
    Google Scholar 
    22.Mohamad, R., Wajnberg, E., Monge, J. P. & Goubault, M. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177, 305–315 (2015).PubMed 
    ADS 

    Google Scholar 
    23.Elliott, J. M. Interspecific interference and the functional response of four species of carnivorous stoneflies. Freshw. Biol. 48, 1527–1539 (2004).
    Google Scholar 
    24.Nakamichi, Y., Tuda, M. & Wajnberg, E. Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics. Ecol. Entomol. 45, 1263–1271 (2020).
    Google Scholar 
    25.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).CAS 
    PubMed 
    ADS 

    Google Scholar 
    26.Appleby, B. M., Petty, S. J., Blakey, J. K., Rainey, P. & Macdonald, D. W. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco)?. Proc. R. Soc. B 264, 1111–1116 (1997).PubMed Central 
    ADS 

    Google Scholar 
    27.Nishimura, K. & Jahn, G. C. Sex allocation of three solitary ectoparasitic wasp species on bean weevil larvae: Sex ratio change with host quality and local mate competition. J. Ethol. 14, 27–33 (1996).
    Google Scholar 
    28.Shimada, M. & Fujii, K. Niche modification and stability of competitive systems. I. Niche modification process. Res. Popul. Ecol. 27, 185–201 (1985).
    Google Scholar 
    29.Utida, S. Population fluctuation, an experimental and theoretical approach. Cold Spring Harb. Symp. Quant. Biol. 22, 139–151 (1957).
    Google Scholar 
    30.Utida, S. Cyclic fluctuations of population density intrinsic to the host–parasitoid system. Ecology 38, 442–449 (1957).
    Google Scholar 
    31.Fujii, K. Studies on the interspecies competition between the azuki bean weevil and the southern cowpea weevil. III. Some characteristics of strains of two species. Res. Popul. Ecol. 10, 87–98 (1968).
    Google Scholar 
    32.Bellows, T. S. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera, Bruchidae). J. Anim. Ecol. 51, 263–287 (1982).
    Google Scholar 
    33.Tuda, M. Density dependence depends on scale; at larval resource patch and at whole population. Res. Popul. Ecol. 35, 261–271 (1993).
    Google Scholar 
    34.Tuda, M. & Shimada, M. Developmental schedules and persistence of experimental host–parasitoid systems at two different temperatures. Oecologia 103, 283–291 (1995).PubMed 
    ADS 

    Google Scholar 
    35.Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. & Tateishi, Y. Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): High host specificity of non-pests to Cajaninae (Fabaceae). J. Stored Prod. Res. 41, 31–45 (2005).
    Google Scholar 
    36.Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS 
    PubMed 

    Google Scholar 
    37.Tuda, M. Applied evolutionary ecology of insects in the subfamily Bruchinae (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 42, 337–346 (2007).
    Google Scholar 
    38.Clausen, C. P. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review (United States Department of Agriculture Handbook, 1978).
    Google Scholar 
    39.Schmale, I., Wäckers, F. L., Cardona, C. & Dorn, S. Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: The effect of adult parasitoid nutrition on longevity and progeny production. Biol. Control 21, 134–139 (2001).
    Google Scholar 
    40.Vamosi, S. M., den Hollander, M. D. & Tuda, M. Egg dispersion is more important than competition type for herbivores attacked by a parasitoid. Popul. Ecol. 53, 319–326 (2011).
    Google Scholar 
    41.Shimada, M. Population fluctuation and persistence of one-host–two parasitoid systems depending on resource distribution: From parasitizing behavior to population dynamics. Res. Popul. Ecol. 41, 69–79 (1999).
    Google Scholar 
    42.Baker, J. E., Perez-Mendoza, J. & Beeman, R. W. Multiple mating potential in a pteromalid wasp determined by using an insecticide resistance marker. J. Entomol. Sci. 33, 165–170 (1998).
    Google Scholar 
    43.Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 41, 229–234 (1999).
    Google Scholar 
    44.Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Waage, J. K. & Lane, J. B. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Behav. 53, 417–426 (1984).
    Google Scholar 
    46.Strand, M. R. Variable sex ratio strategy of Telonomus heliothidis (Hymenoptera: Scelionidae): Adaptation to host and conspecific density. Oecologia 77, 219–224 (1988).CAS 
    PubMed 
    ADS 

    Google Scholar 
    47.Hassell, M. P. The Dynamics of Arthropod Predator-Prey Systems (Princeton University Press, 1978).MATH 

    Google Scholar 
    48.Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).
    Google Scholar 
    49.Wen, B., Smith, L. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature maize weevils (Coleoptera: Curculionidae) in corn. Environ. Entomol. 23, 367–373 (1994).
    Google Scholar 
    50.Wen, B. & Brower, J. H. Competition between Anisopteromalus calandrae and Choetospila elegans (Hymenoptera: Pteromalidae) at different parasitoid densities on immature rice weevils (Coleoptera: Curculionidae) in wheat. Biol. Control 5, 151–157 (1995).
    Google Scholar 
    51.Campan, E. & Benrey, B. Behavior and performance of a specialist and a generalist parasitoid of bruchids on wild and cultivated beans. Biol. Control 30, 220–228 (2004).
    Google Scholar 
    52.Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).
    Google Scholar 
    53.Wai, K. M. Intra- and interspecific larval competition among wasps parasitic to bean weevil larvae. Thesis—University of Tsukuba, D.Sc. (A), no. 714 (1990).54.Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37 (2018).
    Google Scholar 
    55.Miksanek, J. R. & Heimpel, G. E. Density-dependent lifespan and estimation of life expectancy for a parasitoid with implications for population dynamics. Oecologia 194, 311–320 (2020).PubMed 
    ADS 

    Google Scholar 
    56.Kidd, N. A. C. & Jervis, M. A. The effects of host-feeding behaviour on the dynamics of parasitoid–host interactions, and the implications for biological control. Res. Popul. Ecol. 31, 235–274 (1989).
    Google Scholar 
    57.Comins, H. N. & Wellings, P. W. Density-related parasitoid sex-ratio: Influence on host–parasitoid population dynamics. J. Anim. Ecol. 54, 583–594 (1985).
    Google Scholar 
    58.Hassell, M. P., Waage, J. K. & May, R. M. Variable parasitoid sex ratios and their effect on host–parasitoid dynamics. J. Anim. Ecol. 52, 889–904 (1983).
    Google Scholar 
    59.Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling Type II model. Ecology 82, 3083–3092 (2001).
    Google Scholar 
    60.Kratina, P., Vos, M., Bateman, A. & Anholt, B. R. Functional responses modified by predator density. Oecologia 159, 425–433 (2008).PubMed 
    ADS 

    Google Scholar 
    61.Freedman, H. I. Stability analysis of a predator–prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67–78 (1979).MathSciNet 
    MATH 

    Google Scholar 
    62.Erbe, L. H. & Freedman, H. I. Modeling persistence and mutual interference among subpopulations of ecological communities. Bull. Math. Biol. 47, 295–304 (1985).MathSciNet 
    MATH 

    Google Scholar 
    63.Alonso, D., Bartumeus, F. & Catalan, J. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–34 (2002).
    Google Scholar 
    64.May, R. M. & Hassell, M. P. The dynamics of multiparasitoid–host interactions. Am. Nat. 117, 234–261 (1981).MathSciNet 

    Google Scholar 
    65.Wajnberg, E., Curty, C. & Colazza, S. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: Consequences in terms of patch-time allocation. J. Anim. Ecol. 73, 1179–1189 (2004).
    Google Scholar 
    66.Okuyama, T. Parasitoid aggregation and interference in host–parasitoid dynamics. Ecol. Entomol. 41, 473–479 (2016).
    Google Scholar 
    67.Jeffs, C. T. & Lewis, O. T. Effects of climate warming on host–parasitoid interactions. Ecol. Entomol. 38, 209–218 (2013).
    Google Scholar 
    68.Laws, A. N. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28–34 (2017).PubMed 

    Google Scholar 
    69.Tougeron, K., Brodeur, J., Le Lann, C. & van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 45, 167–181 (2020).
    Google Scholar 
    70.Tuda, M. & Bonsall, M. B. Evolutionary and population dynamics of host–parasitoid interactions. Res. Popul. Ecol. 41, 81–91 (1999).
    Google Scholar 
    71.Outreman, Y. et al. Multi-scale and antagonist selection on life-history traits in parasitoids: A community ecology perspective. Funct. Ecol. 32, 736–751 (2018).
    Google Scholar  More

  • in

    Counting using deep learning regression gives value to ecological surveys

    DatasetsIn this study, datasets from two fundamentally different real-world ecological use cases were employed. The objects of interest in these images were manually counted in previous studies2,8,36,37, without the aim of DL applications.Microscopic images of otolith ringsThe first dataset consists of 3585 microscopic images of otoliths (i.e., hearing stones) of plaice (Pleuronectes platessa). Newly settled juvenile plaice of various length classes were collected at stations along the North Sea and Wadden Sea coast during 23 sampling campaigns conducted over 6 years. Each individual fish was measured, the sagittal otoliths were removed and microscopic images of two zoom levels ((10times 20) and (10times 10), depending on fish length) were made. Post-settlement daily growth rings outside the accessory growth centre were then counted by eye6,7. In this dataset, images of otoliths with less than 16 and more than 45 rings were scarce (Fig. 6). Therefore, a stratified random design was used to select 120 images to evaluate the model performance over the full range of ring counts: all 3585 images were grouped in eight bins according to their label (Fig. 6) and from each bin 15 images were randomly selected for the test set. Out of the remaining 3465 images, 80% of the images were randomly selected for training and 20% were used as a validation set, which is used to estimate the model performance and optimise hyperparameters during training.Figure 6Distribution of the labels (i.e., number of post-settlement rings) of all images in the otolith dataset ((n=3585)).Full size imageAerial images of sealsThe second dataset consists of 11,087 aerial images (named ‘main dataset’ from now onwards) of hauled out grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina), collected between 2005 and 2019 in the Dutch part of the Wadden Sea2,36. Surveys for both species were performed multiple times each year: approximately three times during pupping season and twice during the moult8. During these periods, seals haul out on land in larger numbers. Images were taken manually through the airplane window whenever seals were sighted, while flying at a fixed height of approximately 150m, using different focal lengths (80-400mm). Due to variations in survey conditions (e.g., weather, lighting) and image composition (e.g., angle of view, distance towards seals), this main dataset is highly variable. Noisy labels further complicated the use of this dataset: seals present in multiple (partially) overlapping images were counted only once, and were therefore not included in the count label of each image. Recounting the seals on all images in this dataset to deal with these noisy labels would be a tedious task, compromising one of the main aims of this study of reducing annotation efforts. Instead, only a selection of the main dataset was recounted and used for training and testing. First, 100 images were randomly selected (and recounted) for the test set. In the main dataset, images with a high number of seals were scarce, while images with a low number of seals were abundant (Fig. 7, panel A). Therefore, as with the otoliths, all 11,087 images were grouped into 20 bins according to their label (Fig. 7, panel A), after which five images were randomly selected from each bin for the test set. Second, images of sufficient quality and containing easily identifiable were selected from the main dataset (and recounted) for training and validation, until 787 images were retained (named ‘seal subset 1’). In order to create images with zero seals (i.e., just containing the background) and to remove seals that are only partly photographed along the image borders, some of these images were cropped. The dimensions of those cropped images were preserved and, if required, the image-level annotation was modified accordingly. The resulting ‘seal subset 1’ only contains images with zero to 99 seals (Fig. 7, panel B). These 787 images were then randomly split in a training (80%) and validation set (20%). In order to still take advantage of the remaining 10,200 images from the main dataset, a two-step label refinement was performed (see the section “Dealing with noisy labels: two-step label refinement” below).Figure 7Distribution of the labels (i.e., number of seals) in (A) the seal main dataset ((n=11{,}087)), (B) ‘seal subset 1’ ((n=787)) and (C) ‘seal subset 2’ ((n=100)).Full size imageConvolutional neural networksCNNs are a particular type of artificial neural network. Similar to a biological neural network, where many neurons are connected by synapses, these models consist of a series of connected artificial neurons (i.e., nodes), grouped into layers that are applied one by one. In a CNN, each layer receives an input and produces an output by performing a convolution between the neurons (now organised into a rectangular filter) and each spatial input location and its surroundings. This convolution operator computes a dot product at each location in the input (image or previous layer’s output), encoding the correlation between the local input values and the learnable filter weights (i.e., neurons). After this convolution, an activation function is applied so that the final output of the network can represent more than just a linear combination of the inputs. Each layer performs calculations on the inputs it receives from the previous layer, before sending it to the next layer. Regular layers that ingest all previous outputs rather than a local neighbourhood are sometimes also employed at the end; these are called “fully-connected” layers. The number of layers determines the depth of the network. More layers introduce a larger number of free (learnable) parameters, as does a higher number of convolutional filters per layer or larger filter sizes. A final layer usually projects the intermediate, high-dimensional outputs into a vector of size C (the number of categories) in the case of classification, into a single number in the case of regression (ours), or into a custom number of outputs representing arbitrarily complex parameters, such as the class label and coordinates of a bounding box in the case of object detection. During training, the model is fed with many labelled examples to learn the task at hand: the parameters of the neurons are updated to minimise a loss (provided by an error function measuring the discrepancy between predictions and labels; in our case this is the Huber loss as described below). To do so, the gradient and its derivative with respect to each neuron in the last layer is computed; modifying neurons by following their gradients downwards allows reducing the loss (and thereby improving model prediction) for the current image accordingly. Since the series of layers in a CNN can be seen as a set of nested, differentiable functions, the chain rule can be applied to also compute gradients for the intermediate, hidden layers and modify neurons therein backwards until the first layer. This process is known as backpropagation38. With the recent increase of computational power and labelled dataset sizes, these models are now of increasing complexity (i.e., they have higher numbers of learnable parameters in the convolutional filters and layers).CNNs come in many layer configurations, or architectures. One of the most widely used CNN architecture is the ResNet20, which introduced the concept of residual blocks: in ResNets, the input to a residual block (i.e., a group of convolutional layers with nonlinear activations) is added to its output in an element-wise manner. This allows the block to focus on learning residual patterns on top of its inputs. Also, it enables learning signals to by-pass entire blocks, which stabilises training by avoiding the problem of vanishing gradients39. As a consequence, ResNets were the first models that could be trained even with many layers in series and provided a significant increase in accuracy.Model selection and trainingFor the otolith dataset, we employed ResNet20 architectures of various depths (i.e., ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152, where the number corresponds to the number of hidden layers in the model, see Supplementary S1). These ResNet models were pretrained on ImageNet40, which is a large benchmark dataset containing millions of natural images annotated with thousands of categories. Pre-training on ImageNet is a commonly employed methodology to train a CNN efficiently, as it will already have learned how to recognise common recurring features, such as edges and basic geometrical patterns, which would have to be learned from zero otherwise. Therefore, pre-training reduces the required amount of training data significantly.Figure 8Schematic representation of the CNN used in this study. The classification output layer of the pretrained ResNet18 is replaced by two fully-connected layers. The model is trained with a Huber loss.Full size imageWe modified the ResNet architecture to perform a regression task. To do so, we replaced the classification output layer with two fully-connected layers that map to 512 neurons after the first layer and to a single continuous variable after the second layer23 (Fig. 8). Since the final task to be performed is regression, the loss function is a loss function that is tailored for regression. In our experiments we tested both a Mean Squared Error and a Smooth L1 (i.e., Huber) loss21 (see Supplementary S1). The Huber loss is more robust against outliers and is defined as follows:$$begin{aligned} {mathscr {L}}(y,{hat{y}})=frac{1}{n}sum _i^{n} z_i end{aligned}$$
    (1)
    where (z_i) is given by$$begin{aligned} z_i= {left{ begin{array}{ll} 0.5times (y_i-{hat{y}}_i)^2, &{}quad text {if } |y_i-{hat{y}}_i| More

  • in

    Linking migratory performance to breeding phenology and productivity in an Afro-Palearctic long-distance migrant

    1.Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis (Lond. 1759) 156, 1–22 (2014).
    Google Scholar 
    2.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Knight, S. M. et al. Constructing and evaluating a continent-wide migratory songbird network across the annual cycle. Ecol. Monogr. 88, 445–460 (2018).
    Google Scholar 
    4.Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17 (2013).ADS 
    PubMed 

    Google Scholar 
    5.van Wijk, R. E., Schaub, M. & Bauer, S. Dependencies in the timing of activities weaken over the annual cycle in a long-distance migratory bird. Behav. Ecol. Sociobiol. 71, 71–73 (2017).
    Google Scholar 
    6.Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).
    Google Scholar 
    7.Bowler, D. E., Heldbjerg, H., Fox, A. D., Jong, M. & Böhning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 0, 1–11 (2019).
    Google Scholar 
    8.Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18 (2010).PubMed 

    Google Scholar 
    9.Emmenegger, T., Hahn, S. & Bauer, S. Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecol. 14, 1–8 (2014).
    Google Scholar 
    10.Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success?. Ecol. Evol. 9, 8856–8864 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Cooper, N. W., Murphy, M. T., Redmond, L. J. & Dolan, A. C. Reproductive correlates of spring arrival date in the Eastern Kingbird Tyrannus tyrannus. J. Ornithol. 152, 143–152 (2011).
    Google Scholar 
    12.Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845 (2013).PubMed 

    Google Scholar 
    13.Gow, E. A. et al. Effects of spring migration distance on tree swallow reproductive success within and among flyways. Front. Ecol. Evol. 7, 380 (2019).ADS 

    Google Scholar 
    14.Saino, N. et al. Sex-dependent carry-over effects on timing of reproduction and fecundity of a migratory bird. J. Anim. Ecol. 86, 239–249 (2017).PubMed 

    Google Scholar 
    15.Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 1–8 (2017).
    Google Scholar 
    16.McKinnon, E. A., Macdonald, C. M., Gilchrist, H. G. & Love, O. P. Spring and fall migration phenology of an arctic-breeding passerine. J. Ornithol. 157, 681–693 (2016).
    Google Scholar 
    17.Woodworth, B. K. et al. Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia 181, 413–422 (2016).ADS 
    PubMed 

    Google Scholar 
    18.Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Google Scholar 
    19.Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. B Biol. Sci. 271, 59–64 (2004).
    Google Scholar 
    20.Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc. R. Soc. London B Biol. Sci. 271, S215–S218 (2004).
    Google Scholar 
    21.Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry- over effects from wintering grounds. Biol. Lett. 9 (2013).22.Arbeiter, S., Schulze, M., Tamm, P. & Hahn, S. Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster. J. Ornithol. 157, 155–163 (2016).
    Google Scholar 
    23.Harrison, X. A. et al. Environmental conditions during breeding modify the strength of mass-dependent carry-over effects in a migratory bird. PLoS ONE 8, e77783 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Swift, R. J., Rodewald, A. D., Johnson, J. A., Andres, B. A. & Senner, N. R. Seasonal survival and reversible state effects in a long-distance migratory shorebird. J. Anim. Ecol. 89, 2043–2055 (2020).PubMed 

    Google Scholar 
    25.Brust, V., Bastian, H. V., Bastian, A. & Schmoll, T. Determinants of between-year burrow re-occupation in a colony of the European bee-eater Merops apiaster. Ecol. Evol. 5, 3223–3230 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lessells, C. M. & Krebs, J. R. Age and breeding performance of European bee-eaters. Auk 106, 375–382 (1989).
    Google Scholar 
    27.Pârâu, L. G. et al. Dynamics in numbers of group-roosting individuals in relation to pair-sleeping occurrence and onset of egg-laying in European Bee-eaters Merops apiaster. J. Ornithol. 158, 1119–1122 (2017).
    Google Scholar 
    28.Hoi, H., Darolová, A., Krištofík, J. & Hoi, C. The effect of the ectoparasite Carnus hemapterus on immune defence, condition, and health of nestling European Bee-eaters. J. Ornithol. 159, 291–302 (2018).
    Google Scholar 
    29.Kapun, M., Darolová, A., Krištofik, J., Mahr, K. & Hoi, H. Distinct colour morphs in nestling European Bee-eaters Merops apiaster: Is there an adaptive value?. J. Ornithol. 152, 1001–1005 (2011).
    Google Scholar 
    30.Lessells, C. M. & Avery, M. I. Hatching asynchrony in european bee-eaters merops apiaster. J. Anim. Ecol. 58, 815–835 (1989).
    Google Scholar 
    31.Arbeiter, S., Schulze, M., Todte, I. & Hahn, S. Das Zugverhalten und die Ausbreitung von in Sachsen-Anhalt brütenden Bienenfressern (Merops apiaster). Berichte der Vogelwarte Hiddensee 21, 33–40 (2012).
    Google Scholar 
    32.Dhanjal-Adams, K. L. et al. Spatiotemporal group dynamics in a long-distance migratory bird. Curr. Biol. 28, 2824-2830.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    33.Hahn, S. et al. Range-wide migration corridors and non-breeding areas of a northward expanding Afro-Palaearctic migrant, the European Bee-eater Merops apiaster. Ibis (Lond. 1859) 162, 345–355 (2019).
    Google Scholar 
    34.Fry, C. H. The bee-eaters. (T & A D Polyser Ltd, 1984).35.Ramos, R. et al. Population genetic structure and long-distance dispersal of a recently expanding migratory bird. Mol. Phylogenet. Evol. 99, 194–203 (2016).PubMed 

    Google Scholar 
    36.Jacobsen, L. B. et al. Annual spatiotemporal migration schedules in three larger insectivorous birds: European nightjar, common swift and common cuckoo. Anim. Biotelem1 5, 1–11 (2017).
    Google Scholar 
    37.Åkesson, S., Klaassen, R., Holmgren, J., Fox, J. W. & Hedenström, A. Migration routes and strategies in a highly aerial migrant, the common Swift Apus apus, revealed by light-level. Geolocators. PLoS One 7, e41195 (2012).ADS 
    PubMed 

    Google Scholar 
    38.Carneiro, C., Gunnarsson, T. G. & Alves, J. A. Faster migration in autumn than in spring: seasonal migration patterns and non-breeding distribution of Icelandic Whimbrels Numenius phaeopus islandicus. J. Avian Biol. 50 (2019).39.Sapir, N. et al. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. Proc. R. Soc. B Biol. Sci. 278, 3380–3386 (2011).
    Google Scholar 
    40.Lemke, H. W. et al. Annual cycle and migration strategies of a Trans-Saharan migratory songbird: a geolocator study in the great reed warbler. PLoS ONE 8, e79209 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Briedis, M. et al. A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proc. R. Soc. B Biol. Sci. 286, 20182821 (2019).
    Google Scholar 
    42.Fransson, T. Timing and speed of migration in North and West European populations of Sylvia warblers. J. Avian Biol. 26, 39–48 (1995).
    Google Scholar 
    43.Briedis, M., Hahn, S., Krist, M. & Adamík, P. Finish with a sprint: evidence for time-selected last leg of migration in a long-distance migratory songbird. Ecol. Evol. 8, 6899–6908 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    44.Alerstam, T. Strategies for the transition to breeding in time-selected bird migration. Ardea 94, 347–357 (2006).
    Google Scholar 
    45.Arizaga, J., Willemoes, M., Unamuno, E., Unamuno, J. M. & Thorup, K. Following year-round movements in Barn Swallows using geolocators: could breeding pairs remain together during the winter?. Bird Study 62, 141–145 (2015).
    Google Scholar 
    46.Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307 (2012).ADS 
    PubMed 

    Google Scholar 
    47.Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Google Scholar 
    48.IPMA. Climate bulletin, June 2017, Portugal. http://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20170719/bXUzZOgrqXmTjnUVRtro/cli_20170601_20170630_pcl_mm_co_pt.pdf (2017).49.Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. U.S.A. 106, 3835–3840 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. R. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming Arid Savanna: a study of common fiscals. PLoS ONE 8 (2013).51.Cruz-Mcdonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Chang. Biol. 22, 237–253 (2016).ADS 
    PubMed 

    Google Scholar 
    52.Shukla, P. R. et al. Technical summary. IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (2019).53.Persson, C. Age structure, sex ratios and survival rates in a south Swedish Sand martin (Riparia riparia) population, 1964 to 1984. J. Zool. 1, 639–670 (1987).
    Google Scholar 
    54.Costa, J. S., Rocha, A. D., Correia, R. A. & Alves, J. A. Developing and validating a nestling photographic aging guide for cavity-nesting birds: an example with the European Bee-eater (Merops apiaster). Avian Res. 11, 1–8 (2020).
    Google Scholar 
    55.Lisovski, S., Wotherspoon, S. & Sumner, M. TwGeos: Basic data processing for light-level geolocation archival tags. R package version 0.1.2. (2016). 56.Lisovski, S. et al. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol. Evol. 3, 603–612 (2012).
    Google Scholar 
    57.Wotherspoon, S., Sumner, M. & Lisovski, S. R package SGAT: solar/satellite geolocation for animal tracking (2016).58.Lisovski, S. et al. Light-level geolocator analyses: a user’s guide. J. Anim. Ecol. 89, 221–236 (2019).PubMed 

    Google Scholar 
    59.Lisovski, S. & Hahn, S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).
    Google Scholar 
    60.Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–2. (2019).61.Team, R. C. R: a language and environment for statistical computing. (2017). More

  • in

    More than skin deep

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Predators buffer impacts

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Predation increases multiple components of microbial diversity in activated sludge communities

    1.Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH. Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuw J Microb. 2008;94:21–33.
    Google Scholar 
    2.Jiang X-T, Ye L, Ju F, Wang Y-L, Zhang T. Toward an intensive longitudinal understanding of activated sludge bacterial assembly and dynamics. Environ Sci Technol. 2018;52:8224–32.CAS 
    PubMed 

    Google Scholar 
    3.Fiałkowska E, Pajdak-Stós A. The role of Lecane rotifers in activated sludge bulking control. Water Res. 2008;42:2483–90.PubMed 

    Google Scholar 
    4.Madoni P. Protozoa in wastewater treatment processes: a minireview. Ital J Zool. 2011;78:3–11.
    Google Scholar 
    5.Ye L, Mei R, Liu W-T, Ren H, Zhang X-X. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome. 2020;8:16.PubMed 
    PubMed Central 

    Google Scholar 
    6.Peces M, Astals S, Jensen P, Clarke W. Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res. 2018;141:366–76.CAS 
    PubMed 

    Google Scholar 
    7.Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.CAS 
    PubMed 

    Google Scholar 
    8.Cox HH, Deshusses MA. Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol Bioeng. 1999;62:216–24.CAS 
    PubMed 

    Google Scholar 
    9.Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res. 1994;28:67–75.CAS 

    Google Scholar 
    10.Ratsak C, Maarsen K, Kooijman S. Effects of protozoa on carbon mineralization in activated sludge. Water Res. 1996;30:1–12.CAS 

    Google Scholar 
    11.Pogue AJ, Gilbride KA. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge. Can J Microbiol. 2007;53:559–71.CAS 
    PubMed 

    Google Scholar 
    12.Esteban G, Tellez C, Bautista LM. Dynamics of ciliated protozoa communities in activated-sludge process. Water Res. 1991;25:967–72.
    Google Scholar 
    13.Madoni P, Davoli D, Chierici E. Comparative analysis of the activated sludge microfauna in several sewage treatment works. Water Res. 1993;27:1485–91.CAS 

    Google Scholar 
    14.Otto S, Harms H, Wick LY. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol. 2017;93:fiw241.PubMed 

    Google Scholar 
    15.Peralta-Maraver I, Reiss J, Robertson AL. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ. 2018;610:267–75.PubMed 

    Google Scholar 
    16.Yang JW, Wu W, Chung C-C, Chiang K-P, Gong G-C, Hsieh C-H. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning—interplay between nanoflagellates and bacterioplankton. ISME J. 2018;12:1532–42.PubMed 
    PubMed Central 

    Google Scholar 
    17.Seiler C, van Velzen E, Neu TR, Gaedke U, Berendonk TU, Weitere M. Grazing resistance of bacterial biofilms: a matter of predators’ feeding trait. FEMS Microbiol Ecol. 2017;93:fix112.
    Google Scholar 
    18.Burian A, Nielsen JM, Winder M. Food quantity-quality interactions and their impact on consumer behavior and trophic transfer. Ecol Monogr. 2020;90:e01395.
    Google Scholar 
    19.Schmitz OJ. Effects of predator functional diversity on grassland ecosystem function. Ecology. 2009;90:2339–45.PubMed 

    Google Scholar 
    20.Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, et al. Trophic downgrading of planet Earth. Science. 2011;333:301–6.CAS 
    PubMed 

    Google Scholar 
    21.Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202.CAS 
    PubMed 

    Google Scholar 
    23.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.McCann KS. The diversity–stability debate. Nature. 2000;405:228.CAS 
    PubMed 

    Google Scholar 
    25.Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, et al. Biodiversity increases and decreases ecosystem stability. Nature. 2018;563:109–12.CAS 
    PubMed 

    Google Scholar 
    26.Saikaly PE, Oerther DB. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. Microb Ecol. 2011;61:557–67.CAS 
    PubMed 

    Google Scholar 
    27.Worm B, Lotze HK, Hillebrand H, Sommer U. Consumer versus resource control of species diversity and ecosystem functioning. Nature. 2002;417:848–51.CAS 
    PubMed 

    Google Scholar 
    28.Gauzens B, Legendre S, Lazzaro X, Lacroix G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos. 2016;125:595–603.
    Google Scholar 
    29.Chase JM, Biro EG, Ryberg WA, Smith KG. Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett. 2009;12:1210–8.PubMed 

    Google Scholar 
    30.Paine RT. Food web complexity and species diversity. Am Nat. 1966;100:65–75.
    Google Scholar 
    31.Gliwicz ZM, Wursbaugh WA, Szymanska E. Absence of predation eliminates coexistence: experience from the fish–zooplankton interface. Fifty years after the “Homage to Santa Rosalia”: old and new paradigms on biodiversity in aquatic ecosystems. Springer; 2010. p. 103–17.32.Terborgh JW. Toward a trophic theory of species diversity. Proc Natl Acad Sci USA. 2015;112:11415–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Kondoh M. Unifying the relationships of species richness to productivity and disturbance. Proc R Soc B-Biol Sci. 2001;268:269–71.CAS 

    Google Scholar 
    34.Hutchinson GE. The paradox of the plankton. Am Nat. 1961;95:137–45.
    Google Scholar 
    35.Al-Shahwani S, Horan N. The use of protozoa to indicate changes in the performance of activated sludge plants. Water Res. 1991;25:633–8.CAS 

    Google Scholar 
    36.Torsvik V, Øvreås L, Thingstad TF. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.CAS 
    PubMed 

    Google Scholar 
    37.Papadimitriou C, Papatheodoulou A, Takavakoglou V, Zdragas A, Samaras P, Sakellaropoulos G, et al. Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands. Desalination. 2010;250:378–82.CAS 

    Google Scholar 
    38.Rossberg AG. Food webs and biodiversity: foundations, models, data. John Wiley & Sons; 2013.39.Vage S, Bratbak G, Egge J, Heldal M, Larsen A, Norland S, et al. Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs. Ecol Lett. 2018;21:1440–52.PubMed 

    Google Scholar 
    40.Landry M, Hassett R. Estimating the grazing impact of marine micro-zooplankton. Mar Biol. 1982;67:283–8.
    Google Scholar 
    41.Dolan J, Gallegos C, Moigis A. Dilution effects on microzooplankton in dilution grazing experiments. Mar Ecol Prog Ser. 2000;200:127–39.CAS 

    Google Scholar 
    42.Dottorini G, Michaelsen TY, Kucheryavskiy S, Andersen KS, Kristensen JM, Peces M, et al. Mass-immigration determines the assembly of activated sludge microbial communities. Proc Natl Acad Sci USA; 2021;118:e2021589118.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Stevens-Garmon J, Drewes JE, Khan SJ, McDonald JA, Dickenson ERV. Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Res. 2011;45:3417–26.CAS 
    PubMed 

    Google Scholar 
    44.Gasol JM, Morán XAG. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. Hydrocarbon and lipid microbiology protocols. Springer; 2015. p. 159–87.45.Ram AP, Chaibi-Slouma S, Keshri J, Colombet J, Sime-Ngando T. Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microb Ecol. 2016;72:347–58.
    Google Scholar 
    46.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 

    Google Scholar 
    47.Hugerth LW, Muller EE, Hu YO, Lebrun LA, Roume H, Lundin D, et al. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. Plos One. 2014;9:e95567.PubMed 
    PubMed Central 

    Google Scholar 
    48.D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 2016;17:55.
    Google Scholar 
    49.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 

    Google Scholar 
    52.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. Plos One. 2010;5:10.
    Google Scholar 
    53.Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10.
    Google Scholar 
    54.Tsirogiannis C, Sandel B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography. 2016;39:709–14.
    Google Scholar 
    55.Wobbrock JO, Findlater L, Gergle D, Higgins JJ, Acm. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Association Computing Machinery: New York; 2011.56.Burnham KP, Anderson DR. Model selection and multimodel interference: a practical information—theoretic approach. Springer: New York, USA; 2002.57.Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 2012;40:W88–W95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. ISBN 3-900051-07-0, http://wwwR-projectorg.59.Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–57.CAS 

    Google Scholar 
    60.Kiorboe T. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev. 2011;86:311–39.PubMed 

    Google Scholar 
    61.Juergens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuw J Microb. 2002;81:413–34.
    Google Scholar 
    62.Hammill E, Kratina P, Beckerman A, Anholt BR. Precise time interactions between behavioural and morphological defences. Oikos. 2010;119:494–9.
    Google Scholar 
    63.Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.CAS 
    PubMed 

    Google Scholar 
    64.Visser MD, Muller‐Landau HC, Wright SJ, Rutten G, Jansen PA. Tri‐trophic interactions affect density dependence of seed fate in a tropical forest palm. Ecol Lett. 2011;14:1093–1100.PubMed 

    Google Scholar 
    65.Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85–88.CAS 
    PubMed 

    Google Scholar 
    66.Kratina P, Vos M, Anholt BR. Species diversity modulates predation. Ecology. 2007;88:1917–23.PubMed 

    Google Scholar 
    67.Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N. Preference and prey switching in a generalist predator attacking local and invasive alien pests. Plos One. 2013;8:e82231.PubMed 
    PubMed Central 

    Google Scholar 
    68.Coblentz KE, DeLong JP. Predator‐dependent functional responses alter the coexistence and indirect effects among prey that share a predator. Oikos. 2020;129:1404–14.
    Google Scholar 
    69.Madoni P. Estimates of ciliated protozoa biomass in activated sludge and biofilm. Bioresour Technol. 1994;48:245–9.CAS 

    Google Scholar 
    70.Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science. 1997;277:1300–2.CAS 

    Google Scholar 
    71.Sato Y, Hori T, Navarro RR, Habe H, Ogata A. Functional maintenance and structural flexibility of microbial communities perturbed by simulated intense rainfall in a pilot-scale membrane bioreactor. Appl Microbiol Biot. 2016;100:6447–56.CAS 

    Google Scholar 
    72.Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA. 2007;104:18123–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. Phylogenetic diversity and the functioning of ecosystems. Ecol Lett. 2012;15:637–48.PubMed 

    Google Scholar 
    74.Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA. 1999;96:1463–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Mori AS, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol Evol. 2018;33:549–64.PubMed 

    Google Scholar 
    76.Hammill E, Hawkins CP, Greig HS, Kratina P, Shurin JB, Atwood TB. Landscape heterogeneity strengthens the relationship between β‐diversity and ecosystem function. Ecology. 2018;99:2467–75.PubMed 

    Google Scholar 
    77.Ellingsen KE, Yoccoz NG, Tveraa T, Frank KT, Johannesen E, Anderson MJ, et al. The rise of a marine generalist predator and the fall of beta diversity. Glob Change Biol. 2020;26:2897–907.
    Google Scholar 
    78.Weisse T. The significance of inter-and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuw J Microb. 2002;81:327–41.
    Google Scholar 
    79.Nierychlo M, Andersen KS, Xu Y, Green N, Jiang C, Albertsen M, et al. MiDAS 3: an ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020;182:115955.CAS 
    PubMed 

    Google Scholar  More

  • in

    Modeling a primate technological niche

    1.Stiner, M. C. The challenges of documenting coevolution and niche construction: The example of domestic spaces. Evol. Anthropol. https://doi.org/10.1002/evan.21878 (2020).Article 
    PubMed 

    Google Scholar 
    2.Potts, R. Why the Oldowan? Plio-Pleistocene toolmaking and the transport of resources. J. Anthropol. Res. 47, 153–176 (1991).
    Google Scholar 
    3.Kuhn, S. L., Raichlen, D. A. & Clark, A. E. What moves us? How mobility and movement are at the center of human evolution. Evol. Anthropol. 25, 86–97 (2016).PubMed 

    Google Scholar 
    4.Haas, R. & Kuhn, S. L. Forager mobility in constructed environments. Curr. Anthropol. 60, 499–535 (2019).
    Google Scholar 
    5.Iovita, R. et al. Operationalizing niche construction theory with stone tools. Evol. Anthropol. https://doi.org/10.1002/evan.21881 (2021).Article 
    PubMed 

    Google Scholar 
    6.Reeves, J. S., Braun, D. R., Finestone, E. M. & Plummer, T. W. Ecological perspectives on technological diversity at Kanjera South. J. Hum. Evol. 158, 103029 (2021).PubMed 

    Google Scholar 
    7.Finestone, E. M., Braun, D. R., Plummer, T. W., Bartilol, S. & Kiprono, N. Building ED-XRF datasets for sourcing rhyolite and quartzite artifacts: A case study on the Homa Peninsula, Kenya. J. Archaeol. Sci. 33, 102510 (2020).
    Google Scholar 
    8.Braun, D. R. et al. Oldowan behavior and raw material transport: Perspectives from the Kanjera Formation. J. Archaeol. Sci. 35, 2329–2345 (2008).
    Google Scholar 
    9.Potts, R. Home bases and early hominids. Am. Sci. 72, 338–347 (1984).ADS 

    Google Scholar 
    10.Schick, K. D. Modeling the formation of Early Stone Age artifact concentrations. J. Hum. Evol. 16, 789–807 (1987).
    Google Scholar 
    11.Binford, L. R. Willow smoke and dogs’ Tails: Hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 45, 4–20 (1980).
    Google Scholar 
    12.Schiffer, M. B. Archaeology as behavioral science. Am. Anthropol. 77, 836–848 (1975).
    Google Scholar 
    13.Schiffer, M. B. Formation Processes of the Archaeological Record (University of New Mexico Press, 1987).
    Google Scholar 
    14.Binford, L. R. Behavioral Archaeology and the ‘Pompeii Premise’. J. Anthropol. Res. 37, 195–208 (1981).
    Google Scholar 
    15.Binford, L. R. The archaeology of place. J. Anthropol. Archaeol. 1, 5–31 (1982).
    Google Scholar 
    16.Braun, D. R. et al. Ecosystem engineering in the Quaternary of the West Coast of South Africa. Evol. Anthropol. 30, 50–62 (2020).
    Google Scholar 
    17.Yellen, J. E. Archaeological Approaches to the Present: Models for Reconstructing the Past (Academic Press, 1977).
    Google Scholar 
    18.Isaac, G. L. L. The Harvey Lecture Series, 1977–1978. Food sharing and human evolution: Archaeological Evidence from the Plio-Pleistocene of East Africa Author (s): Glynn Ll Isaac Published by: The University of Chicago Press Stable. http://www.jstor.org/sta. 34, 311–325 (1978).19.Brooks, A. S. & Yellen, J. E. The preservation of activity areas in the archaeological record: Ethnoarchaeological and archaeological work in NOrthwest Ngamiland, Botswana. In Methog and Theory for Activity Area Research: An Ethnoarchaeological Approach 63–106 (Columbia University Press, 1987).
    Google Scholar 
    20.Binford, L. R. Nunamiut Ethnoarchaeology (Percheron Press, 2012).
    Google Scholar 
    21.Hawkes, K. Ethnoarchaeology and Plio-Pleistocene sites: Some lessons from the Hadza. J. Anthropol. Archaeol. 44, 158–165 (2016).
    Google Scholar 
    22.McGrew, W. Chimpanzee Material Culture: Implications for Human Evolution (Cambridge University Press, 1992).
    Google Scholar 
    23.Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T. Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. J. Hum. Evol. 55, 148–163 (2008).PubMed 

    Google Scholar 
    24.Whiten, A. Archaeology meets primate technology. Nature 498, 303–305 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    25.Haslam, M. et al. Primate archaeology evolves. Nat. Ecol. Evol. 1, 1431–1437 (2017).PubMed 

    Google Scholar 
    26.Biro, D., Haslam, M. & Rutz, C. Tool use as adaptation. Philos. Trans. R. Soc. B 368, 20120408 (2013).
    Google Scholar 
    27.Carvalho, S., Biro, D., McGrew, W. C. & Matsuzawa, T. Tool-composite reuse in wild chimpanzees (Pan troglodytes): Archaeologically invisible steps in the technological evolution of early hominins?. Anim. Cogn. 12, 103–114 (2009).
    Google Scholar 
    28.Haslam, M. et al. Primate archaeology. Nature 460, 339–344 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Boesch, C. & Boesch, H. Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking. Primates 25, 160–170 (1984).
    Google Scholar 
    30.Hannah, A. C. & McGrew, W. C. Chimpanzees using stones to crack open oil palm nuts in Liberia. Primates 28, 31–46 (1987).
    Google Scholar 
    31.Luncz, L. V., Proffitt, T., Kulik, L., Haslam, M. & Wittig, R. M. Distance-decay effect in stone tool transport by wild chimpanzees. Proc. R. Soc. B 283, 20161607 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    32.Braun, D. R., Harris, J. W. K. & Maina, D. N. Oldowan raw material procurement and use: Evidence from the koobi fora formation. Archaeometry 51, 26–42 (2009).CAS 

    Google Scholar 
    33.Plummer, T. W. Flaked stones and old bones: Biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164 (2004).
    Google Scholar 
    34.Isaac, G. The archaeology of human origins: Studies of the Lower Pleistocene in East Africa, 1971–1981. Adv. World Archaeol. 3, 1–86 (1984).
    Google Scholar 
    35.Blumenschine, R. J., Masao, F. T., Tactikos, J. C. & Ebert, J. I. Effects of distance from stone source on landscape-scale variation in Oldowan artifact assemblages in the Paleo-Olduvai Basin, Tanzania. J. Archaeol. Sci. 35, 76–86 (2008).
    Google Scholar 
    36.Blumenschine, R. J. et al. Landscape distribution of Oldowan stone artifact assemblages across the fault compartments of the eastern Olduvai Lake Basin during early lowermost Bed II times. J. Hum. Evol. 63, 384–394 (2012).PubMed 

    Google Scholar 
    37.Visalberghi, E. et al. Distribution of potential suitable hammers and transport of hammer tools and nuts by wild capuchin monkeys. Primates 50, 95–104 (2009).PubMed 

    Google Scholar 
    38.Fragaszy, D. M. et al. The fourth dimension of tool use: Temporally enduring artefacts aid primates learning to use tools. Philos Trans R Soc Lond B 368, 20120410 (2013).CAS 

    Google Scholar 
    39.Stern, N. et al. The structure of the lower pleistocene archaeological record: A case study From the Koobi Fora Formation [and Comments and Reply]. Curr. Anthropol. 34, 201–225 (1993).
    Google Scholar 
    40.Stern, N. The implications of time-averaging for reconstructing the land-use patterns of early tool-using hominids. J. Hum. Evol. 27, 89–105 (1994).
    Google Scholar 
    41.Blumenschine, R. J. et al. Environments and hominin activities across the FLK Peninsula during Zinjanthropus times (1.84 Ma), Olduvai Gorge, Tanzania. J. Hum. Evol. 63, 364–383 (2012).PubMed 

    Google Scholar 
    42.Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Dibble, H. L. et al. Major fallacies surrounding stone artifacts and assemblages. J. Archaeol. Method Theory 24, 813–851 (2017).
    Google Scholar 
    44.Wilson, M. L. Long-term studies of the chimpanzees of Gombe National Park, Tanzania. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 357–384 (Springer, 2012).
    Google Scholar 
    45.Proffitt, T., Haslam, M., Mercader, J. F., Boesch, C. & Luncz, L. V. Revisiting Panda 100, the first archaeological chimpanzee nut-cracking site. J. Hum. Evol. 124, 117–139 (2018).CAS 
    PubMed 

    Google Scholar 
    46.Panger, M. A., Brooks, A. S., Richmond, B. G. & Wood, B. Older than the Oldowan? Rethinking the emergence of hominin tool use. Evol. Anthropol. 11, 235–245 (2003).
    Google Scholar 
    47.Premo, L. Agent-based models as behavioral laboratories for evolutionary anthropological research. Ariz. Anthropol. 17, 91–113 (2006).
    Google Scholar 
    48.Premo, L. S. Exploratory agent-based models: Towards an experimental ethnoarchaeology. In Digital Discovery. Exploring New Frontiers in Human Heritage. CAA2006. Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 34th Conference 22–29 (Archaeolingua, 2007).49.Faith, J. T. et al. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.04.011 (2021).Article 
    PubMed 

    Google Scholar 
    50.Wurzer, G., Kowarik, K. & Reschreiter, H. Agent-Based Modeling and Simulation in Archaeology Vol. 7 (Springer, 2015).
    Google Scholar 
    51.Boesch, C. Wild cultures a comparison between chimpanzee and human cultures. (Cambridge University Press, 2014).52.Masad, D. & Kazil, J. MESA: An agent-based modeling framework. Proceedings of the 14th Python in Science Conference (SCIPY 2015) 53–60 (2015).53.Grimm, V. et al. The ODD protocol: A review and first update. Ecol. Model. 221, 2760–2768 (2010).
    Google Scholar 
    54.Koops, K., McGrew, W. C. & Matsuzawa, T. Ecology of culture: Do environmental factors influence foraging tool use in wild chimpanzees, Pan troglodytes verus?. Anim. Behav. 85, 175–185 (2013).
    Google Scholar 
    55.Visalberghi, E., Sirianni, G., Fragaszy, D. & Boesch, C. Percussive tool use by Taï Western chimpanzees and Fazenda Boa Vista bearded capuchin monkeys: A comparison. Phil. Trans. R. Soc. B 370, 20140351 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    56.Whiten, A. et al. Cultures in chimpanzees. Nature 399, 682–685 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    57.Potts, R. Variables versus models of early Pleistocene hominid land use. J. Hum. Evol. 27, 7–24 (1994).
    Google Scholar 
    58.Potts, R., Behrensmeyer, A. K. & Ditchfield, P. Paleolandscape variation and early Pleistocene hominid activities: Members 1 and 7, Olorgesailie formation, Kenya. J. Hum. Evol. 37, 747–788 (1999).CAS 
    PubMed 

    Google Scholar 
    59.Foley, R. A model of regional archaeological structure. Proc. Prehist. Soc 47, 1–17 (1981).ADS 

    Google Scholar 
    60.Maurin, T., Bertran, P., Delagnes, A. & Boisserie, J.-R. Early hominin landscape use in the Lower Omo Valley, Ethiopia: Insights from the taphonomical analysis of Oldowan occurrences in the Shungura Formation (Member F). J. Hum. Evol. 111, 33–53 (2017).PubMed 

    Google Scholar 
    61.Binford, L. R. Constructing Frames of Reference (University of California Press, 2001).
    Google Scholar  More

  • in

    Wheat (Triticum aestivum) adaptability evaluation in a semi-arid region of Central Morocco using APSIM model

    1.FAO. Food and Agriculture Organization of the United Nations. FAOSTAT Data; www.faostat.fao.org (last access 15.06.21), (2016).2.Gomez, D., Salvador, P., Sanz, J. & Casanova, J. L. Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in Mexico. Agric. For. Meteorol. 300, 108317. https://doi.org/10.1016/j.agrformet.2020.108317 (2021).ADS 
    Article 

    Google Scholar 
    3.Wrigley, C. W. Wheat: A unique grain for the world. In Wheat chemistry and technology 4th edn (eds Khan, K. & Shewry, P. R.) 1–17 (AACC Int. Inc, St Paul, 2009).
    Google Scholar 
    4.Awika, J. M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, Vol. 1089 (eds Awika, J. M., Piironen, V. & Bean, S.) 1–13 (American Chemical Society, 2011).5.Gupta, R., Meghwal, M. & Prabhakar, P. K. Bioactive compounds of pigmented wheat (Triticum aestivum): Potential benefits in human health. Trends Food Sci. Technol. 110, 240–252. https://doi.org/10.1016/j.tifs.2021.02.003 (2021).CAS 
    Article 

    Google Scholar 
    6.FAO. Food and Agriculture Organization of the United Nations. FAOSTAT Data; www.faostat.fao.org (last access 15.06.21), (2020).7.USDA. Grain and Feed Annual. United States Department of Agriculture (USDA), Foreign Agricultural Service (FAS), MO2020-0007; https://www.fas.usda.gov/data/morocco-grain-and-feed-annual-3 (last access 15.06.21), (2020).8.McIntyre, C. L. et al. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120, 527–541. https://doi.org/10.1007/s00122-009-1173-4 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.UN. World population prospects. United Nations (UN), Department of Economic and Social Affairs (DESA); https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (last access 15.06.21), (2017).10.Gomez-Macpherson, H. & Richards, R. A. Effect of sowing time on yield and agronomic characteristics of wheat in south-eastern Australia. Aust. J. Agric. Res. 46, 1381–1399. https://doi.org/10.1071/AR9951381 (1995).Article 

    Google Scholar 
    11.Stone, P. J. & Nicolas, M. E. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Aust. J. Plant Physiol. 22, 927–934. https://doi.org/10.1071/PP9950927 (1995).Article 

    Google Scholar 
    12.Mahdi, L., Bell, C. J. & Ryan, J. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depths in a semi-arid Mediterranean environment. Field Crops Res. 58, 187–196. https://doi.org/10.1016/S0378-4290(98)00094-X (1998).Article 

    Google Scholar 
    13.Radmehr, M., Ayeneh, G. A. & Mamghani, R. Responses of late, medium and early maturity bread wheat genotypes to different sowing date. I. Effect of sowing date on phonological, morphological, and grain yield of four breed wheat genotypes. Iran. J. Seed. Sapling 21, 175–189 (2003).
    Google Scholar 
    14.Turner, N. C. Agronomic options for improving rainfall use efficiency of crops in dryland farming systems. J. Exp. Bot. 55, 2413–2425. https://doi.org/10.1093/jxb/erh154 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Pickering, P. A. & Bhave, M. Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci. 172, 371–379. https://doi.org/10.1016/j.plantsci.2006.09.013 (2007).CAS 
    Article 

    Google Scholar 
    16.Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?. Glob. Change Biol. 18, 2899–2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x (2012).ADS 
    Article 

    Google Scholar 
    17.Wu, X. S., Chang, X. P. & Jing, R. L. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7, e31249. https://doi.org/10.1371/journal.pone.0031249 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Mueller, B. et al. Lengthening of the growing season in wheat and maize producing regions. Weather Clim. Extrem. 9, 47–56. https://doi.org/10.1016/j.wace.2015.04.001 (2015).Article 

    Google Scholar 
    19.Hunt, J. R., Hayman, P. T., Richards, R. A. & Passioura, J. B. Opportunities to reduce heat damage in rainfed wheat crops based on plant breeding and agronomic management. Field Crops Res. 224, 126–138. https://doi.org/10.1016/j.fcr.2018.05.012 (2018).Article 

    Google Scholar 
    20.Ababaei, B. & Chenu, K. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agric. For. Meteorol. 284, 107889. https://doi.org/10.1016/j.agrformet.2019.107889 (2020).ADS 
    Article 

    Google Scholar 
    21.Anderson, W. K. & Smith, W. R. Yield advantage of two semi-dwarf compared with two tall wheats depends on sowing time. Aust. J. Agric. Res. 41, 811–826. https://doi.org/10.1071/AR9900811 (1990).Article 

    Google Scholar 
    22.Connor, D. J., Theiveyanathan, S. & Rimmington, G. M. Development, growth, water-use and yield of a spring and a winter wheat in response to time of sowing. Aust. J. Agric. Res. 43, 493–516. https://doi.org/10.1071/AR9920493 (1992).Article 

    Google Scholar 
    23.Owiss, T., Pala, M. & Ryan, J. Management alternatives for improved durum wheat production under supplemental irrigation in Syria. Eur. J. Agron. 11, 255–266. https://doi.org/10.1016/S1161-0301(99)00036-2 (1999).Article 

    Google Scholar 
    24.Bassu, S., Asseng, A., Motzo, R. & Giunta, F. Optimizing sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109–118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).Article 

    Google Scholar 
    25.Bannayan, M., Eyshi Rezaei, E. & Hoogenboom, G. Determining optimum sowing dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration. Agric. Water Manag. 126, 56–63. https://doi.org/10.1016/j.agwat.2013.05.001 (2013).Article 

    Google Scholar 
    26.Liang, Y. F. et al. Subsoiling and sowing time influence soil water content, nitrogen translocation and yield of dryland winter wheat. Agronomy 9, 37. https://doi.org/10.3390/agronomy9010037 (2019).Article 

    Google Scholar 
    27.Farooq, M., Basra, S. M. A., Rehman, H. & Saleem, B. A. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 194, 55–60. https://doi.org/10.1111/j.1439-037X.2007.00287.x (2008).Article 

    Google Scholar 
    28.Kudair, I. M. & Adary, A. H. The effects of temperature and planting depth on coleoptile length of some Iraqi local and introduced wheat cultivars. Mesopotamia J. Agric. 17, 49–62 (1982).
    Google Scholar 
    29.Leoncini, E. et al. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 7, e45997. https://doi.org/10.1371/journal.pone.0045997 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Busko, M. et al. The effect of Fusarium inoculation and fungicide application on concentrations of flavonoids (apigenin, kaempferol, luteolin, naringenin, quercetin, rutin, vitexin) in winter wheat cultivars. Am. J. Plant Sci. 5, 3727–3736. https://doi.org/10.4236/ajps.2014.525389 (2014).CAS 
    Article 

    Google Scholar 
    31.Bannayan, M., Kobayashi, K., Marashi, H. & Hoogenboom, G. Gene-based modeling for rice: An opportunity to enhance the simulation of rice growth and development?. J. Theor. Biol. 249, 593–605. https://doi.org/10.1016/j.jtbi.2007.08.022 (2007).ADS 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    32.Soler, C. M. T., Sentelhas, P. C. & Hoogenboom, G. Application of the CSM-CERES-Maize model for sowing date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 18, 165–177. https://doi.org/10.1016/j.eja.2007.03.002 (2007).Article 

    Google Scholar 
    33.Andarzian, B. et al. WheatPot: A simple model for spring wheat yield potential using monthly weather data. Biosyst. Eng. 99, 487–495. https://doi.org/10.1016/j.biosystemseng.2007.12.008 (2008).Article 

    Google Scholar 
    34.Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. & Andarzian, B. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J. Saudi Soc. Agric. Sci. 14, 189–199. https://doi.org/10.1016/j.jssas.2014.04.004 (2015).Article 

    Google Scholar 
    35.Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 35, 103–114. https://doi.org/10.1016/j.eja.2011.05.001 (2011).Article 

    Google Scholar 
    36.Rötter, R. P. et al. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Res. 133, 23–36. https://doi.org/10.1016/j.fcr.2012.03.016 (2012).Article 

    Google Scholar 
    37.Ran, H. et al. Capability of a solar energy-driven crop model for simulating water consumption and yield of maize and its comparison with a water-driven crop model. Agric. For. Meteorol. 287, 107955. https://doi.org/10.1016/j.agrformet.2020.107955 (2020).ADS 
    Article 

    Google Scholar 
    38.Keating, B. A. et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9 (2003).Article 

    Google Scholar 
    39.Probert, M. E. & Dimes, J. P. Modelling release of nutrients from organic resources using APSIM. In Modelling nutrient management in tropical cropping systems Vol. 114 (eds Delve, R. J. & Probert, M. E.) 25–31 (ACIAR Proceedings, 2004).40.Mohanty, M. et al. Simulating soybean–wheat cropping system: APSIM model parameterization and validation. Agric. Ecosyst. Environ. 152, 68–78. https://doi.org/10.1016/j.agee.2012.02.013 (2012).Article 

    Google Scholar 
    41.George, N., Thompson, S. E., Hollingsworth, J., Orloff, S. & Kaffka, S. Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agric. Water Manag. 196, 15–23. https://doi.org/10.1016/j.agwat.2017.09.015 (2018).Article 

    Google Scholar 
    42.Bahri, H., Annabi, M., M’Hamed, H. C. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci. Total Environ. 692, 1223–1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci. Rep. 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Eyni-Nargeseh, H., Deihimfard, R., Rahimi-Moghaddam, R. & Mokhtassi-Bidgoli, A. Analysis of growth functions that can increase irrigated wheat yield under climate change. Meteorol. Appl. 27, 1–10. https://doi.org/10.1002/met.1804 (2020).Article 

    Google Scholar 
    45.Rahimi-Moghaddam, S., Eyni-Nargeseh, H., Kalantar Ahmadi, S. A. & Azizi, K. Towards withholding irrigation regimes and resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach. Agric. Water Manag. 243, 106487. https://doi.org/10.1016/j.agwat.2020.106487 (2021).Article 

    Google Scholar 
    46.Berghuijs, H. N. C. et al. Calibrating and testing APSIM for wheat-faba bean pure cultures and intercrops across Europe. Field Crops Res. 264, 108088. https://doi.org/10.1016/j.fcr.2021.108088 (2021).Article 

    Google Scholar 
    47.METLE. National Report. Ministry of Equipment, Transport, Logistics and Water (last access 15.06.21), (2019).48.HCP. Voluntary national review of the implementation of the sustainable development goals. High Comm. Plng. p. 188 (2020).49.Hammer, G. L. et al. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61, 2185–2202. https://doi.org/10.1093/jxb/erq095 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Holzworth, D. P. et al. APSIM—evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009 (2014).Article 

    Google Scholar 
    51.Gaydon, D. S. et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 204, 52–75. https://doi.org/10.1016/j.fcr.2016.12.015 (2017).Article 

    Google Scholar 
    52.Climate Kelpie website. http://www.climatekelpie.com.au/manage-climate/decision-support-tools-for-managing-climate (2010).53.McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 50, 255–271. https://doi.org/10.1016/0308-521X(94)00055-V (1996).Article 

    Google Scholar 
    54.Cichota, R., Vogeler, I., Werner, A., Wigley, K. & Paton, B. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems. Agric. Syst. 162, 56–65. https://doi.org/10.1016/j.agsy.2018.01.017 (2018).Article 

    Google Scholar 
    55.Laurenson, S., Cichota, R., Reese, P. & Breneger, S. Irrigation runoff from a rolling landscape with slowly permeable subsoils in New Zealand. Irrig. Sci. 36, 121–131. https://doi.org/10.1007/s00271-018-0570-3 (2018).Article 

    Google Scholar 
    56.Rodriguez, D. et al. Predicting optimum crop designs using crop models and seasonal climate forecasts. Sci. Rep. 8, 2231. https://doi.org/10.1038/s41598-018-20628-2 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Archontoulis, S. V., Miguez, F. E. & Moore, K. J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw. 62, 465e477. https://doi.org/10.1016/j.envsoft.2014.04.009 (2014).Article 

    Google Scholar 
    58.Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: Using wheat as a case study. Eur. J. Agron. 100, 141–150. https://doi.org/10.1016/j.eja.2018.02.002 (2018).Article 

    Google Scholar 
    59.Yang, X. et al. Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs. Continuous systems. Agric. Water Manag. 229, 105959. https://doi.org/10.1016/j.agwat.2019.105959 (2020).Article 

    Google Scholar 
    60.Balboa, G. R. et al. A systems-level yield gap assessment of maize-soybean rotation under highand low-management inputs in the Western US Corn Belt using APSIM. Agric. Syst. 174, 125–154. https://doi.org/10.1016/j.agsy.2019.04.008 (2019).Article 

    Google Scholar 
    61.Yang, X. et al. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess plateau of China using APSIM. Agric. Syst. 166, 111–123. https://doi.org/10.1016/j.agsy.2018.08.005 (2018).Article 

    Google Scholar 
    62.Mohanty, M. et al. Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agric. Syst. 184, 102906. https://doi.org/10.1016/j.agsy.2020.102906 (2020).Article 

    Google Scholar 
    63.Vogeler, I., Thomas, S. & van der Weerden, T. Effect of irrigation management on pasture yield and nitrogen losses. Agric. Water Manag. 216, 60–69. https://doi.org/10.1016/j.agwat.2019.01.022 (2019).Article 

    Google Scholar 
    64.Bosi, C. et al. APSIM-tropical pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha). Agric. Syst. 184, 102917. https://doi.org/10.1016/j.agsy.2020.102917 (2020).Article 

    Google Scholar 
    65.Smethurst, P. J., Valadares, R. V., Huth, N. I., Almeida, A. C. & Júlio, C. L. N. Generalized model for plantation production of Eucalyptus grandisand hybrids forgenotype-site-management applications. For. Ecol. Manag. 469, 118164. https://doi.org/10.1016/j.foreco.2020.118164 (2020).Article 

    Google Scholar 
    66.Xiao, D. P., Liu, D. L., Wang, B., Feng, P. Y. & Tang, J. Z. Climate change impact on yields and water use of wheat and maize in the north China plain under future climate change scenarios. Agric. Water Manag. 238, 1–15. https://doi.org/10.1016/j.agwat.2020.106238 (2020).Article 

    Google Scholar 
    67.Seyoum, S., Rachaputi, R., Chauhan, Y., Prasanna, B. & Fekybelu, S. Application of the APSIM model to exploit G × E × M interactions for maize improvement in Ethiopia. Field Crops Res. 217, 113–124. https://doi.org/10.1016/j.fcr.2017.12.012 (2018).Article 

    Google Scholar 
    68.Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 14, e0215702. https://doi.org/10.1371/journal.pone.0215702 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Holzworth, D. et al. The development of a farming systems model (APSIM): A disciplined approach. In Proceedings of the iEMSs Third Biennial Meeting, Burlington, VT, USA, 9–13 July 2006 (International Environmental Modelling and Software Society, Manno, Switzerland, 2006).70.Gaydon, D. S. The APSIM model—an overview. In SAC Monograph: The SAARC-Australia Project Developing Capacity in Cropping Systems Modelling for South Asia (eds Dr. Donald S. Gaydon et al.) 15–31 (2014).71.Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Statistics and Computing) (Springer, New York, 2000).Book 

    Google Scholar 
    72.El Halimi, R. Nonlinear Mixed-effects Models and Bootstrap resampling: Analysis of Non-normal Repeated Measures in Biostatistical Practice. Amazon Books. 320 (2009).73.Vock, D. M., Davidian, M., Tsiatis, A. A. & Muir, A. J. Mixed model analysis of censored longitudinal data with flexible random-effects density. Biostat. 13, 61–73. https://doi.org/10.1093/biostatistics/kxr026 (2012).Article 
    MATH 

    Google Scholar 
    74.Beroho, M. et al. Analysis and prediction of climate forecasts in Northern Morocco: Application of multilevel linear mixed effects models using R Software. Heliyon 6, e05094. https://doi.org/10.1016/j.heliyon.2020.e05094 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. Biometrics 38, 963–974. https://doi.org/10.2307/2529876 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    76.Littell, R. C., Henry, P. R. & Ammerman, C. B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. Biotechnol. 76, 1216–1231. https://doi.org/10.2527/1998.7641216x (1998).CAS 
    Article 

    Google Scholar 
    77.Bouyoucos, G. J. Direction for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42, 225–230. https://doi.org/10.1097/00010694-193609000-00007 (1936).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models, part I: A discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 (1970).ADS 
    Article 

    Google Scholar 
    79.Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088–2094. https://doi.org/10.1002/joc.2419 (2011).Article 

    Google Scholar 
    80.Loague, K. & Green, R. E. Statistical and graphical methods for evaluating solute transport models; overview and application. J. Contam. Hydrol. 7, 51–73. https://doi.org/10.1016/0169-7722(91)90038-3 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Willmott, C. J. et al. Statistic for the evaluation and comparison of models. J. Geophys. Res. 90, 8995–9005. https://doi.org/10.1029/JC090iC05p08995 (1985).ADS 
    Article 

    Google Scholar 
    82.Jones, C. A., Kiniry, J. R. & Dyke, P. T. CERES-Maize, A simulation model of maize growth and development 1st edn. (Texas University Press, College Station, 1986).
    Google Scholar 
    83.Dardanelli, J. L., Bacheier, O. A., Sereno, R. & Gil, R. Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res. 54, 29–38. https://doi.org/10.1016/S0378-4290(97)00017-8 (1997).Article 

    Google Scholar 
    84.Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. & Strong, W. M. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric. Syst. 56, 1–28. https://doi.org/10.1016/S0308-521X(97)00028-0 (1998).Article 

    Google Scholar 
    85.Littleboy, M., Freebairn, D. M., Silburn, D. M., Woodruff, D. R., Hammer, G. L. PERFECT version 3. A computer simulation model of productivity erosion runoff functions to evaluate conservation techniques. Queensland department of natural resources and department of plant industries. Queensland Dep. Prim. Ind., Queensland, Australia (1999).86.Dalgliesh, N. P. & Foale, M. A. Soil matters: Monitoring soil water and nutrients in dryland farming. Agric. Prod. Sys. Res. Unit, Toowoomba, Australia; http://hdl.handle.net/102.100.100/217161?index=1 (1998).87.Malone, R. W. et al. Evaluating and predicting agricultural management effects under tile drainage using modified APSIM. Geoderma 140, 310–322. https://doi.org/10.1016/j.geoderma.2007.04.014 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Cresswell, H. P. et al. Catchment response to farm scale land use change. CSIRO and NSW Dept. of Ind. & Invest. (2009).89.Hammer, G. L. et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?. Crop Sci. 49, 299–312. https://doi.org/10.2135/cropsci2008.03.0152 (2009).Article 

    Google Scholar 
    90.Archontoulis, S. V., Miguez, F. E. & Moore, K. J. Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agron. J. 106, 1025. https://doi.org/10.2134/agronj2013.0421 (2014).CAS 
    Article 

    Google Scholar 
    91.MacCarthy, D. S., Sommer, R. & Vlek, P. L. G. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Res. 113, 105–115. https://doi.org/10.1016/j.fcr.2009.04.006 (2009).Article 

    Google Scholar 
    92.Yang, Y. et al. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: Sensitivity of future changes to projected climate changes and soil type. Theor. Appl. Climatol. 123, 565–579. https://doi.org/10.1007/s00704-015-1376-3 (2016).ADS 
    Article 

    Google Scholar 
    93.Deihimfard, R., Eyni-Nargeseh, H. & Mokhtassi-Bidgoli, A. Effect of future climate change on wheat yield and water use efficiency under semi-arid conditions as predicted by APSIM-wheat model. Int. J. Plant Prod. 12, 115–125. https://doi.org/10.1007/s42106-018-0012-4 (2018).Article 

    Google Scholar 
    94.Zhao, P. et al. The adaptability of Apsim-wheat model in the middle and lower reaches of the Vangtze river plain of china: A case study of winter wheat in hubei province. Agronomy 10, 981. https://doi.org/10.3390/agronomy10070981 (2020).Article 

    Google Scholar 
    95.SHNP, D. S., Takahashi, T., Okada, K. Evaluation of APSIM-wheat to simulate the response of yield and grain protein content to nitrogen application on an Andosol in Japan. Plant Prod. Sci. https://doi.org/10.1080/1343943X.2021.1883989 (2021).96.O’Leary, G. J. et al. Response of wheat growth, grain yield and water use to elevated CO2 under afree-air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686. https://doi.org/10.1111/gcb.12830 (2015).ADS 
    Article 

    Google Scholar 
    97.Lilley, J. M. & Kirkegaard, J. A. Farming system context drives the value of deep wheat roots in semi-arid environments. J. Exp. Bot. 67, 3665–3681. https://doi.org/10.1093/jxb/erw093 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Whitbread, A. M., Hoffmann, M. P., Davoren, C. W., Mowat, D. & Baldock, J. A. Measuring and modeling the water balance in low-Rainfall cropping systems. Trans. ASABE 60, 2097–2110. https://doi.org/10.13031/trans.12581 (2017).Article 

    Google Scholar 
    99.Silungwe, F. R. et al. Crop upgrading strategies and modelling for rainfed cereals in a semi-arid climate—a review. Water 10, 356. https://doi.org/10.3390/w10040356 (2018).Article 

    Google Scholar 
    100.Hussain, J., Khaliq, T., Ahmad, A. & Akhtar, J. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS ONE 13, e0197546. https://doi.org/10.1371/journal.pone.0197546 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Asseng, S., Turner, N. C. & Keating, B. A. Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant Soil 233, 127–143. https://doi.org/10.1023/A:1010381602223 (2001).CAS 
    Article 

    Google Scholar 
    102.Moeller, C., Pala, M., Manschadi, A. M., Meinke, H. & Sauerborn, J. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation. Aust. J. Agric. Res. 58, 75–86. https://doi.org/10.1007/s11625-013-0228-2 (2007).Article 

    Google Scholar 
    103.Bassu, S., Asseng, S., Giunta, F. & Motzo, R. Optimizing triticale sowing densities across the Mediterranean Basin. Field Crops Res. 144, 167–178. https://doi.org/10.1016/j.fcr.2013.01.014 (2013).Article 

    Google Scholar 
    104.Bationo, A., Mokwunye, U., Vlek, P. L. G., Koala, S. & Shapiro, B. I. Soil fertility management for sustainable land use in the West African Sudano-Sahelian Zone. In Soil Fertility Management in Africa: A Regional Perspective, African Academy of Sciences Centro Internacional de Agricultura Tropical (CIAT); Tropical Soil Biology and Fertility (TSBF) (eds Gichuri, M. P. et al.) 253–292 (Academic and Scientific Publishing, Nairobi, 2003).
    Google Scholar 
    105.Bernstein, L. et al. IPCC, 2007: Climate Change 2007: Synth. Rep. Geneva: IPCC. ISBN 2-9169-122-4 (2008).106.Tramblay, Y. et al. Climate change impacts on extreme precipitation in Morocco. Glob. Planet Change 82, 104–114. https://doi.org/10.1016/j.gloplacha.2011.12.002 (2012).ADS 
    Article 

    Google Scholar 
    107.Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R. & Servat, E. High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: A first evaluation of the ALADIN-Climate model in Morocco. Hydrol. Earth Syst. Sci. 17, 3721–3739. https://doi.org/10.5194/hess-17-3721-2013 (2013).ADS 
    Article 

    Google Scholar 
    108.Seif-Ennasr, M. et al. Climate change and adaptive water management measures in Chtouka Aït Baha region (Morocco). Sci. Total Environ. 573, 862–875. https://doi.org/10.1016/j.scitotenv.2016.08.170 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    109.Hirich, A., Fatnassi, H., Ragab, R. & Choukr-Allah, R. Prediction of climate change impact on corn grown in the South of Morocco using the saltmed model. J. Irrigat. Drain. Eng. 65, 9–18. https://doi.org/10.1002/ird.2002 (2016).Article 

    Google Scholar 
    110.Ouhamdouch, S. & Bahir, M. Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira basin, Morocco). Environ. Process. 4, 975–990. https://doi.org/10.1007/s40710-017-0265-4 (2017).Article 

    Google Scholar 
    111.Brouziyne, Y. et al. Modelling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 162, 154–163. https://doi.org/10.1016/j.agsy.2018.01.024 (2018).Article 

    Google Scholar 
    112.Dosio, A. & Panitz, H.-J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim. Dyn. 46, 1599–1625. https://doi.org/10.1007/s00382-015-2664-4 (2016).Article 

    Google Scholar 
    113.Zeroual, A., Assani, A. A., Meddi, M. & Alkama, R. Assessment of climate change in Algeria from 1951 to 2098 using the Köppen-Geiger climate classification scheme. Clim. Dyn. 52, 227–243. https://doi.org/10.1007/s00382-018-4128-0 (2018).Article 

    Google Scholar 
    114.Mami, A. et al. Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: Case of the Tafna basin (North-Western Africa). Int. J. Glob. Warm. 23, 58–90. https://doi.org/10.1504/IJGW.2021.112489 (2021).Article 

    Google Scholar 
    115.Arora, V. K. & Gajri, P. R. Evaluation of a crop growth–water balance model for analyzing wheat responses to climate and water-limited environments. Field Crops Res. 59, 213–224. https://doi.org/10.1016/S0378-4290(98)00124-5 (1998).Article 

    Google Scholar 
    116.Aggarwal, P. K., Talukdar, K. K., Mall, R. K. Potential yields of rice–wheat system in the Indo-Gangetic plains of India. Rice–Wheat Consortium Paper Series 10. New Delhi, India. RWCIGP, CIMMYT. p. 16 (2000).117.Arora, V. K., Singh, H. & Singh, B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer–nitrogen regimes in a semi-arid sub–tropical environment using the CERES-Wheat model. Agric. Water Manag. 94, 22–30. https://doi.org/10.1016/j.agwat.2007.07.002 (2007).Article 

    Google Scholar 
    118.Timsina, J. et al. Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT–CSM-CERES-wheat model. Agric. Water Manag. 95, 1099–1110. https://doi.org/10.1016/j.agwat.2008.04.009 (2008).Article 

    Google Scholar 
    119.Balwinder-Singha, Humphreys & E., Gaydon, D. S., Eberbach, P. L.,. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Res. 197, 83–96. https://doi.org/10.1016/j.fcr.2016.08.016 (2016).Article 

    Google Scholar 
    120.Choudhury, A. K. et al. Optimum Sowing Window and Yield Forecasting for Maize in Northern and Western Bangladesh Using CERES Maize Model. Agronomy 11, 635. https://doi.org/10.3390/agronomy11040635 (2021).Article 

    Google Scholar 
    121.Sun, H., Shao, I., Chen, S. & Zhang, X. Effects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain. Int. J. Plant Prod. 7, 117–138 (2013).
    Google Scholar 
    122.Qu, H. J. et al. Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar Lankao Aizao 8. Acta Agron. Sin. 35, 124–131. https://doi.org/10.3724/SP.J.1006.2009.00124 (2009).CAS 
    Article 

    Google Scholar 
    123.Liu, P. et al. Effect of seeding rate and sowing date on population traits and grain yield of drip irrigated winter wheat. J. Triticeae Crops 33, 1202–1207 (2013).CAS 

    Google Scholar 
    124.Lu, H. D., Xue, J. Q., Hao, Y. C., Zhang, R. H. & Gao, J. Effects of sowing time on spring maize (Zea mays L.) growth and water use efficiency in rainfed dryland. Acta Agron. Sin. 41, 1906–1914 (2015).Article 

    Google Scholar 
    125.Taylor, S. & Evans, C. Wheat: Susceptibility of varieties to common root rot. CWFS Research Compendium (2005).126.Bowden, P. et al. Wheat growth & development. NSW Department of Primary Industries, State of New South Wales, p. 104 (2008).127.DEEDI. Wheat varieties. Queensland Department of Employment, Economic Development and Innovation (DEEDI). p. 20 (2010).128.Lush, D. et al. Queensland wheat varieties. Grains Research and Development Corporation (GRDC) and the Queensland Department of Agriculture, Fisheries and Forestry (DAFF). p. 20 (2015).129.Greenwood, J. R. Wheat inflorescence architecture. Thesis report, Australian National University, p. 218 (2017).130.Lush, D., Forknall, C., Neate, S., Sheedy, J. Queensland wheat varieties. Grains Research and Development Corporation (GRDC) and the Queensland Department of Agriculture and Fisheries (DAF). p. 20 (2018).131.Hines, S., Andrews, M., Scott, W. R. & Jack, D. Sowing depth and nitrogen effects on emergence of a range of New Zealand wheat cultivars. Proc. Agron. Soc. N. Z. 21, 67–72 (1991).
    Google Scholar 
    132.Zaicou, C. et al. Wheat variety guide 2008 Western Australia. Department of Agriculture and Food, Western Australia, Perth. Bull. 4733 (2008).133.Kelbert, A. J., Spaner, D., Briggs, K. G. & King, J. R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica 136, 211–221. https://doi.org/10.1023/B:EUPH.0000030670.36730.a4 (2004).Article 

    Google Scholar 
    134.Mason, H., Navabi, A., Frick, B., O’Donovan, J. & Spaner, D. Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in northern Canada. Agron. J. 99, 1199–1207. https://doi.org/10.2134/agronj2006.0262 (2007).Article 

    Google Scholar 
    135.Shah, L. et al. Improving lodging resistance: Using wheat and rice as classical examples. Int. J. Mol. Sci. 20, 4211. https://doi.org/10.3390/ijms20174211 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    136.Mitter, V. et al. A high-throughput greenhouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol. 55, 433–441. https://doi.org/10.1111/j.1365-3059.2006.01384.x (2006).Article 

    Google Scholar 
    137.Hare, R. Agronomy of the durum wheats Kamilaroi, Yallaroi, Wollaroi and EGA Bellaroi. NSW Department of Primary Industries, State of New South Wales, Primefact 140 (2006).138.DPI&F. Wheat varieties for Queensland. Department of Primary Industries and Fisheries (DPI&F), State of Queensland, p. 12 (2007).139.Singh, B. et al. Inheritance and chromosome location of leaf rust resistance in durum wheat cultivar Wollaroi. Euphytica 175, 351–355. https://doi.org/10.1007/s10681-010-0179-y (2010).Article 

    Google Scholar 
    140.Bansal, U. K., Kazi, A. G., Singh, B., Hare, R. A. & Bariana, H. S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33, 51–59. https://doi.org/10.1007/s11032-013-9933-x (2014).CAS 
    Article 

    Google Scholar  More