Climate and land-use changes reduce the benefits of terrestrial protected areas
1.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS
Google Scholar
2.Juffe-Bignoli, D. et al. Protected Planet Report 2014 (UNEP-WCMC, 2014).3.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).4.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).CAS
Google Scholar
5.Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).CAS
Google Scholar
6.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
Google Scholar
7.Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).8.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
Google Scholar
9.Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).10.Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).
Google Scholar
11.Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).CAS
Google Scholar
12.Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).CAS
Google Scholar
13.Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26, 2944–2955 (2020).
Google Scholar
14.McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl Acad. Sci. USA 113, 7195–7200 (2016).CAS
Google Scholar
15.Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).
Google Scholar
16.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
17.Jones, C., Giorgi, F. & Asrar, G. The coordinated regional downscaling experiment: CORDEX–an international downscaling link to CMIP5. CLIVAR Exch. 16, 34–40 (2011).
Google Scholar
18.Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).CAS
Google Scholar
19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS
Google Scholar
20.Ordonez, A., Martinuzzi, S., Radeloff, V. C. & Williams, J. W. Combined speeds of climate and land-use change of the conterminous US until 2050. Nat. Clim. Change 4, 811–816 (2014).
Google Scholar
21.UN General Assembly Resolution A/RES/70/1 (UN, 2015).22.Harrop, S. R. ‘Living in harmony with nature’? Outcomes of the 2010 Nagoya conference of the convention on biological diversity. J. Environ. Law 23, 117–128 (2011).
Google Scholar
23.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS
Google Scholar
24.Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS
Google Scholar
25.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS
Google Scholar
26.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS
Google Scholar
27.Ando, A. W. & Mallory, M. L. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc. Natl Acad. Sci. USA 109, 6484–6489 (2012).CAS
Google Scholar
28.Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
Google Scholar
29.Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).30.Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).31.Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).CAS
Google Scholar
32.Ordonez, A., Williams, J. W. & Svenning, J.-C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).
Google Scholar
33.Carroll, C. et al. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol. 23, 4508–4520 (2017).
Google Scholar
34.Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).
Google Scholar
35.Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl Acad. Sci. USA 111, 7492–7497 (2014).CAS
Google Scholar
36.Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).
Google Scholar
37.Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl Acad. Sci. USA 115, 6004–6009 (2018).CAS
Google Scholar
38.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).CAS
Google Scholar
39.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS
Google Scholar
40.Fitzpatrick, M. C., Gove, A. D., Sanders, N. & Dunn, R. R. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob. Change Biol. 14, 1337–1352 (2008).
Google Scholar
41.Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).CAS
Google Scholar
42.Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).CAS
Google Scholar
43.Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, eaay9969 (2019).
Google Scholar
44.Osorio, F., Vallejos, R. & Cuevas, F. SpatialPack: Package for Analysis of Spatial Data. R package version 0.2-3 (2014).45.Williams, K. D. et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 8, 1509–1524 (2015).
Google Scholar
46.Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. https://doi.org/10.1002/jame.20038 (2013).47.Knudsen, E. M. & Walsh, J. E. Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M). Geosci. Model Dev. 9, 2335–2355 (2016).
Google Scholar
48.Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).
Google Scholar
49.García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
Google Scholar
50.UNEP‐WCMC & IUCN Protected Planet: The World Database on Protected Areas (WDPA, 2018).51.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).
Google Scholar
52.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).53.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).54.Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, 30535 (2012).55.Asamoah, E. F. Climate Velocity and Land-use Instability 1971–2100 (Figshare, 2021); https://doi.org/10.6084/m9.figshare.14852955.v4 More