More stories

  • in

    Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics

    1.Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21, 1211–1223 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).CAS 
    PubMed 

    Google Scholar 
    3.Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Cragg, G. M., Kingston, D. G. & Newman, D. J. Anticancer Agents from Natural Products. (CRC press, 2011).5.Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochimica et. Biophysica Acta 1830, 3670–3695 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Singh, R., Kumar, M., Mittal, A. & Mehta, P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7, 15 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008).CAS 
    PubMed 

    Google Scholar 
    8.Kang, A. & Lee, T. S. Biotechnology for Biofuel Production and Optimization 35–71 (Elsevier, 2016).9.Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020).
    Google Scholar 
    10.Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).CAS 
    PubMed 

    Google Scholar 
    11.Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. Mbio. 11, 1–17 (2020).
    Google Scholar 
    12.Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 1–9 (2019).CAS 

    Google Scholar 
    13.Haro-Moreno, J. M., López-Pérez, M. & Rodriguez-Valera, F. Enhanced recovery of microbial genes and genomes from a marine water column using long-read metagenomics. Front Microbiol. 2410, 1–15 (2021).
    Google Scholar 
    14.Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 16, 60–68 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    15.Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, 1–11 (2019).
    Google Scholar 
    16.Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).CAS 
    PubMed 

    Google Scholar 
    17.Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS 
    PubMed 

    Google Scholar 
    18.Amos, G. C. et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl Acad. Sci. USA 114, E11121–E11130 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).CAS 

    Google Scholar 
    20.Reddy, B. V. B. et al. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Starkenburg, S. R. et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J. Bacteriol. 193, 4569–4570 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Belnap, J., Weber, B. & Büdel, B. Biological Soil Crusts: an Organizing Principle in Drylands 3–13 (Springer, 2016).23.Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 1–10 (2018).CAS 

    Google Scholar 
    24.Adamek, M., Spohn, M., Stegmann, E. & Ziemert, N. Antibiotics 23–47 (Springer, 2017).25.Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 1–7 (2016).
    Google Scholar 
    26.Martins, T. P. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat. Prod. Rep. 36, 1437–1461 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. & Corbett, T. H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Products 64, 907–910 (2001).CAS 

    Google Scholar 
    28.Chrapusta, E. et al. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 101, 35–40 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 10, 1–15 (2019).
    Google Scholar 
    30.Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).CAS 
    PubMed 

    Google Scholar 
    31.Bowker, M. A., Reed, S. C., Maestre, F. T. & Eldridge, D. J. Biocrusts: the living skin of the earth. (Springer, 2018).32.Büdel, B., Dulić, T., Darienko, T., Rybalka, N. & Friedl, T. Biological Soil Crusts: an Organizing Principle in Drylands 55–80 (Springer, 2016).33.Giraldo‐Silva, A., Nelson, C., Barger, N. N. & Garcia‐Pichel, F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor. Ecol. 27, 793–803 (2019).
    Google Scholar 
    34.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).CAS 
    PubMed 

    Google Scholar 
    36.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016).CAS 
    PubMed 

    Google Scholar 
    38.Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Frank, J. A. et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    40.Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    41.Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574–1577 (2013).CAS 
    PubMed 

    Google Scholar 
    43.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 

    Google Scholar 
    44.Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 499–509 (2020).45.Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).CAS 
    PubMed 

    Google Scholar 
    46.Ciemniecki, J. A. & Newman, D. K. The potential for redox-active metabolites to enhance or unlock anaerobic survival metabolisms in aerobes. J. Bacteriol. 202, 1–14 (2020).
    Google Scholar 
    47.Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7, 2178–2191 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Nunes da Rocha, U. et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6, 277 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    49.Felde, V. J. M. N. L., Peth, S., Uteau-Puschmann, D., Drahorad, S. & Felix-Henningsen, P. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv. 23, 1687–1708 (2014).
    Google Scholar 
    50.Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States), 2014).51.Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem. 12, 1230–1236 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
    Google Scholar 
    53.Couradeau, E., Giraldo-Silva, A., De Martini, F. & Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7, 1–12 (2019).
    Google Scholar 
    54.Magne, F. et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).CAS 
    PubMed Central 

    Google Scholar 
    55.Baran, R. et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6, 8289 (2015).CAS 
    PubMed 

    Google Scholar 
    56.Kupriyanova, E. V. et al. Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. B: Biol. 103, 78–86 (2011).CAS 

    Google Scholar 
    57.Hernandez, M. & Newman, D. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Karaoz, U. et al. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. MBio. 9, e01366–01316 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. MSystems. 3, 1–9 (2018).
    Google Scholar 
    60.Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 

    Google Scholar 
    61.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    63.Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genom. 18, 1–13 (2017).
    Google Scholar 
    65.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
    Google Scholar 
    66.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).PubMed 

    Google Scholar 
    69.von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).
    Google Scholar 
    70.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    71.Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    72.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Complementary resource preferences spontaneously emerge in diauxic microbial communities

    A model of diauxic community assemblyCommunity models studying diauxie should mimic serial dilution cultures instead of chemostats, in order to make their predictions both experimentally and ecologically relevant. Experimentally, microbial community assembly assays frequently utilize serial dilution cultures. Ecologically, diauxic growth is best suited to a “feast and famine” lifestyle, which a serial dilution culture mimics30,31,32. Therefore, throughout this manuscript, we model the assembly of a microbial community undergoing a sequence of growth-dilution cycles (see Fig. 1a). Community assembly occurs gradually through the addition of microbial species from a diverse species pool one at a time. Each species in the pool consumes resources diauxically, i.e., one at a time according to its resource preference.Fig. 1: Model of community assembly with diauxie and serial dilution.a Tables of growth rates and resource preferences of two species α (red) and β (yellow), each capable of consuming all four available resources, R1 to R4. The resource preference sets the sequence in which a microbial species utilizes resources, and the corresponding rates gXi indicate the growth rate while consuming each resource (see “Methods”). b Diauxic growth curve of species α during one serial dilution cycle, which has 4 phases of growth on each individual resource, with rates gα1, gα3, gα2, and gα4, respectively (with a brief lag period between two phases). At the end of each dilution cycle, we dilute the population by a factor D = 100, and supply fresh resources (see “Methods”). c Resource depletion curves corresponding to (b), where each resource is represented by a different color. R1 is exhausted at time T1; then species α consumes R3 which runs out at T3, which is followed by exhaustion of R2 at T2, and so on. d Schematic of serial dilution experiment. During community assembly, new species are added one by one from a species pool. After each successful invasion, the system undergoes several growth-dilution cycles until it reaches a steady state. e Population dynamics corresponding to the assembly process in (d). Panels (b) and (c) correspond to a small section of this process (highlighted in gray), where the community dynamics consist only of species α (red) reaching a steady state.Full size imageWe begin by illustrating the growth of a single species (labeled α) grown in an environment with four resources (Fig. 1a–c). The species first grows on its most preferred resource (R1) with a growth rate gα1 until time T1, when this resource gets exhausted. After a lag period τ, the species switches to growing on its next preferred resource (R3) with growth rate gα3 until time T3, when this resource also gets exhausted. This process of diauxic growth by sequential utilization of resources continues until either all resources are depleted, or the cycle ends at time T. At this point, a fraction 1/D of the medium containing the species is transferred to a fresh medium replete with resources. This corresponds to the dilution of species abundances by a factor D, mimicking serial dilution experiments in the laboratory.After several transfers, species dynamics converge to a steady state, where each species starts a cycle with the same initial abundance as the previous cycle. At this point, we add a small population of a new invader species, chosen randomly from the species pool, to the steady-state community (Fig. 1d, e). (Hence, we assume that species invasions are rare enough such that communities always reach a steady state before the next invasion.) The invader may differ from the resident species in both resource preference order and growth rates on each resource (Fig. 1a). Once introduced, the invader may grow and establish itself in the community in a new steady state (Fig. 1d, e), or it may fail, returning the community to its previous steady state.The growth rates and preference orders completely characterize a species, while the set of resource depletion times (T1, T2, etc.) characterize the current state of the abiotic environment. As we will later show, these resource depletion times are important observables in a community, since they determine the success or failure of an invader.A realistic example of a community captured by our model is the human gut microbiome, specifically the assembly of primary consumers (e.g., Bacteroides species) on the polysaccharides (e.g., starch, cellulose, and mucin) that they consume. Here, there is a significant overlap between the metabolic capabilities of the microbes, but they nevertheless coexist. These species often consume polysaccharides diauxically, and engage in resource competition. Moreover, several of these species have different resource preferences, which others have hypothesized help them coexist26,33.Throughout this paper, we neglect diauxic lag times (τ = 0) for simplicity. We will later show that adding lag times only quantitatively strengthens our main results (see “Discussion” and Fig. 5). We also assume that the supplied resource concentrations are sufficiently large, enabling species to always grow exponentially at their resource-specific growth rates. Further, we assume a balanced supply of resources, i.e., that resources are supplied in equal concentrations (see “Discussion” and Supplementary Text for results in an unbalanced resource supply).We simulated the assembly of 1000 communities, each being colonized from a pool of ~10,000 species (see “Methods”). Species could utilize all 4 supplied resources diauxically. Each species had a random resource preference order and different growth rates on each resource, which were picked randomly from a rectified normal distribution (with mean 0.25 and standard deviation 0.05). We assumed that the growth rate distributions for each of the 4 resources were the same, such that no resource was consistently better than the other. This is a simplifying assumption, but it nevertheless captures a variety of experimental observations showing remarkable growth rate variability of different microbial species on the same carbon sources34,35,36. Community assembly proceeded via introduction of species one at a time, in a random order, until each species had attempted to invade exactly once.Emergent properties of diauxic community assemblyTo study the emergent properties of communities of diauxic species, we followed the assembly process from a species pool via invasion of species one at a time. We used the number of invasion attempts to track time; communities matured over successive invasions. We found that the assembly process became slower over time—successful invasions became rarer as the community matured (Fig. 2a inset). Throughout the assembly process, we recorded four key properties of communities: total resource depletion time, species diversity, complementarity of the community, and prevalence of anomalous species (defined below).Fig. 2: Emergent properties of diauxic microbial communities.In all plots, solid bold lines represent the average over 958 individual community assembly simulations, while gray lines correspond to 100 randomly chosen community assembly simulations. a Total resource depletion time during community assembly (the time taken by the community to deplete all available resources). (Inset) Number of successful invasions during community assembly. b Total species diversity during community assembly (number of surviving species at steady state). c Resource utilization complementarity during community assembly. For each time point, the nth choice complementarity was calculated as a number of unique resources among the n-th preferred choices of all species in the community, divided by the number of unique resources in the environment. For a certain community, the null expectation (complementarity without selection) was defined by the complementarity of a random set of species from the pool that has the same diversity of that community. Colored lines show the average trend of complementarity on each preferred resource choice: top (light blue), second (cyan), third (deep green), and fourth (light green). The red dash-dotted line shows the average trend of null expectation. The gray dash-dotted line at the top corresponds to the perfect complementarity, which is 1. d Frequency of species with anomalous resource preferences during community assembly. The gray dash-dotted line is the expectation of fraction of anomalous species (75%) in the pools.Full size imageResource depletion timeIn each community, resources disappear at specific times and in a well-defined order (Fig. 1c). The total resource depletion time measures how quickly the community consumes all supplied resources. In this way, the total resource depletion time characterizes the overall speed at which a community consumes resources. The total resource depletion time decreased as communities assembled (Fig. 2a, solid line). The rate and degree of this decrease depend on the mean and variance of the growth rate distribution and the number of invasion attempts. In addition, the variability in depletion times between communities reduced over community assembly (Fig. 2a, gray lines; coefficient of variation reduces by 47%, see Fig. S1). Thus the assembly process selects for communities that collectively consume resources quickly.Species diversityThe species diversity was quantified as the number of species coexisting in the steady-state community. In the model, like in other consumer-resource models, the number of coexisting species at steady state is limited by the number of resources, 4 (Fig. 2b, dashed line)10,37. This is a natural consequence of competition for resources in our model (see Supplementary Text, section F for a derivation). Notably, species with the same resource preferences can coexist in the model, as long as the number of species is less than the number of resources (e.g., pairs of E. coli strains can coexist in media with glucose and xylose, see below). We found that the average community diversity increased over time, but the rate slowed as the community matured (Fig. 2b; note the logarithmic x-axis scale). Communities displayed significant variability in the trajectories of increasing diversity (Fig. 2b, gray lines). We discuss the slow increase of diversity, and observed variability, in the next section.Top choice complementarityThe top choice complementarity of a community measured the overlap in the top choice resource of each of the species residing in the community. We defined the top choice complementarity of a community as the number of unique top choice resources among community residents, divided by the number of residents. Thus the top choice complementarity varied between 1, in a maximally complementary community where each resident species had a unique top choice resource (Fig. 2c, right), and 1 divided by the number of coexisting species in the community, where all residents chose the same resource as the top choice (Fig. 2c, left). During community assembly, top choice complementarity stayed close to the maximum value throughout the assembly process (Fig. 2c, blue). This observation was in sharp contrast to the prediction from a null model for the complementarity (Fig. 2c, red). We obtained the null prediction by measuring the complementarity of a group of randomly chosen species from the species pool (group size being the number of coexisting species in the community). This null prediction decreased during the assembly process, due to the increasing community diversity, unlike the top choice complementarity which remained close to the maximum value. We also recorded the complementarity in the second, third, and fourth choice resource of the assembled community (defined similarly to the top choice complementarity). The complementarity of all other choices agreed with the null prediction (Fig. 2c). Together, these observations suggest that communities of coexisting diauxic species exhibit high complementarity on the top-choice resources, in a manner reminiscent of niche partitioning in consumer-resource models.Prevalence of anomalous speciesIntuition gleaned from experiments with E. coli dictates that microbes often grow fastest on their top choice resource (glucose for E. coli)18,20. However, exceptions to this trend also exist, such as Bacteroides species in the human gut that often prefer polysaccharides that they grow slower on22,26,38. Based on this intuition, we defined anomalous microbes as microbes that do not grow fastest on their top choice resource. To investigate which resource preferences might give microbes a competitive advantage during community assembly, we tracked the fraction of anomalous resident species during community assembly. Despite the majority (75%) of species in the pool being anomalous (since growth rates and preferences were randomly picked; see “Methods”), anomalous species were absent in mature communities. The fraction of anomalous resident species decreased rapidly during assembly (Fig. 2d). Thus, anomalous resource preferences are strongly selected against during community assembly. Further investigation revealed a reduced selection pressure against anomalous species if either resource supply was severely imbalanced (i.e., the imbalance has to be comparable to the dilution factor, D = 100), or if the dilution factor was small (see Figs. S4 and S5; also see Supplementary Text, sections C and H). However, microbes with anomalous resource preferences were eventually outcompeted in all conditions.Top choice resources chiefly drive emergent assembly patternsTo understand what factors drove the maintenance of top choice complementarity—despite the steady increase in species diversity, expected to reduce complementarity—we focused on growth on top choice resources. We hypothesized that the reason for the much higher than expected top choice complementarity was the following: diauxic species derived most of their growth, and spent most of their time growing on their top choice resources. Co-utilizing microbes, instead, grow on multiple resources simultaneously, spending roughly equal time on each utilized resource.To test this hypothesis, we first simulated the growth of a single diauxic species in monoculture using our model. We found that indeed, the species derived the overwhelming majority of its growth (measured in generations of growth) and spent most of its time growing on its top choice resource (54%, Fig. 3a, b, left). For a simpler case, where a single species had the same growth rate g while growing on two resources (both supplied at the same concentration), and preferring resource R1 over R2, we derived the ratio of time spent growing on the top choice resource R1 (T1) versus the second choice R2 (T2 − T1). We obtained the following approximate expression for a large dilution factor D (see Supplementary Text, section A):$$frac{{T}_{1}}{{T}_{2}-{T}_{1}}=frac{,{{mbox{log}}}(D/2)}{{{mbox{log}}},(2)},$$
    (1)
    which explains that the fraction of time spent growing on the top choice resource increases with the dilution factor.Strikingly, the fraction of time spent growing on the top choice resource became even larger if the species grown in monoculture (Fig. 3b, top row) were instead part of a diverse community (i.e., in co-culture with 3 other species, top choice share 70% versus 54% in monoculture, Fig. 3b, bottom row and top row, respectively). This is because of the following reason. In our model, while a species consumes and grows on all available resources in monoculture, in co-culture, it may not have the opportunity to consume all the resources it can grow on because other species might deplete them first. This further skews growth in favor of the top choice resource. Such a phenomenon only occurs in diauxic species, not co-utilizing species (Supplementary Text, section I).Invader successInterestingly, once we understood that the top choice chiefly drove species growth, we could explain the other emergent patterns in diauxic communities. Importantly, the success of an invader depended on the growth rate on their top choice resource. As community assembly proceeded, the top choice growth rate of successful invaders increased consistently (Fig. 3c, blue line), while their growth rates on all other choices remained constant and close to the average growth rate (Fig. 3c, green lines). Selection on the top choice growth rate in diauxic communities is in striking contrast with co-utilizing communities, which we found select for the average growth rate across all resources instead (Supplementary Text, section I). Further, an invader whose top choice resource coincided with the last depleted resource in the community had the highest probability of invasion success (Fig. 3d). Invaders whose top choice resource was not depleted last had lesser time to grow on it, and thus a lower rate of invasion success. By depleting the last resource faster, invaders reduced the total resource depletion time in the community, thus explaining the trend observed in Fig. 2a. In addition, after a successful invasion, the community’s steady state could have a different resource depletion order.Complementarity and diversitySuccessful invasions could be classified into one of two types based on the “invaded resource”, i.e., the invader’s top choice. If the invaded resource was not the top choice of any other resident community member, we called it an invasion of an “unoccupied” resource (Fig. 3e; in our simulations, 33% of cases). If the invaded resource was instead already the top choice of at least one resident, we called it an invasion of an “occupied” resource (Fig. 3e; 67% of cases). Both types of successful invasions had different effects on species diversity, but interestingly, both maintained complementarity (on the top choice, as in Fig. 2c). invasions of unoccupied resources usually increased community diversity by 1 (62% of cases), and were less likely to result in the extinction of one or more other species (38% of cases). This is because, in that case, the invader did not have to compete with other residents for its top choice resource. For communities with a complementarity {T}_{2},$$
    (2)
    where gα1 and gα2 are the species α’s growth rates on R1 and R2, respectively. The two triangular regions separated by the diagonal define two complementary scenarios: when T1  T2, R1 is depleted second and the species grows on R1 after R2 is depleted.For a given set of initial resource and species concentrations, community dynamics must converge to a steady state lying on the ZNGI of the surviving species (e.g., the bold purple point in Fig. 4a). This point defines the resource depletion times by the resident species at steady state. Changing the resource supply or dilution factor moves this point along the ZNGI.The ZNGI of a species also separates the resource environment space into two regions: a region inside the ZNGI (towards the origin) where that species grows by a factor D. An invader is successful if it is able to grow by a factor ≥D in the community it invades. Geometrically, the invader’s ZNGI must be closer to the origin than the resource environment corresponding to the invaded community (Fig. 4b). In this way, our geometric approach allows easy visualization of invasion criteria.We can also visualize invasion outcomes. A successful invasion of a single-species community leads to either displacement of the resident or coexistence between the invader and resident. For example, in Fig. 4b, because the ZNGI of the invader (blue) lies fully inside the ZNGI of the resident (purple), the invader displaces the resident. This is because the invader reduces the resource depletion times in the environment to a point where the resident can no longer survive, driving it extinct (bold blue point in Fig. 4b). In contrast, in Fig. 4c, the ZNGI of the invader (orange) intersects with the new resident (blue), in a manner that leads to coexistence between both species (albeit at a new set of resource depletion times, i.e., their intersection point in Fig. 4c). In general, whether two species will coexist depends on various factors, such as the supplied resource concentrations, but whenever two species coexist, they will do so at the intersection of their ZNGIs (Supplementary Text, section A). As a corollary, two species whose ZNGIs do not intersect cannot coexist. Notably, the orange and blue species in Fig. 4c coexist stably with each other; a short perturbation to the resource supply is quickly compensated by species growth, and the resource depletion times returned to the coexistence point (see Supplementary Text, section B for details).The geometric approach provides an alternative explanation to why species with complementary top choices are more likely to coexist than species with the same top choice (Fig. 2c). The ZNGIs of species sharing the same top choice are unlikely to intersect with each other (e.g., the blue and purple species in Fig. 4b). This is because of two reasons: (1) their segments in the yellow region are parallel to each other since both species prefer the same resource (R2), and (2) for the slanted segments in the green region to intersect, the blue species would need a higher growth rate on R1 than the purple species. This is as likely as the outcome of a coin toss, since both growth rates derive from the same distribution. Thus, an invasion of an occupied resource often leads to displacement of the resident, not coexistence (Fig. 4b, d) and no change in community diversity, while an invasion of an unoccupied resource often leads to coexistence (Fig. 4c) and an increase in community diversity (Fig. 3e).Fig. 3: Top choice resources chiefly drive community diversity and complementarity.a (top) Table showing the preferences of a diauxic microbial species (purple) for 4 resources, R1 to R4. (bottom) Plots showing the depletion of the 4 resources by the purple species during one serial dilution cycle, when grown alone in our model. b (top) Bar plots showing the time taken by the purple species in (a) to grow on each of the 4 resources. Percentages on each bar represent the fraction of time spent growing on each resource. (bottom) Bar plots showing the number of generations grown, or the number of doublings by the species when growing on each resource. In both cases, the plots on the left show the quantities when the purple species is in monoculture (growing alone), and those on the right show them when the purple species is in a community with 3 other species. c Mean growth rates of successful invaders during community assembly. The blue line corresponds to the invader’s top choice, while the other colors correspond to all other choices. The horizontal dashed line shows the mean growth rate of the species pool. Each quantity represents a moving average from 958 independent community assembly simulations. Error bars represent s.e.m. d Fraction of the successful invasions as a function of the order in which the invader’s top choice resource is depleted, 1 indicating cases where the invader prefers the earliest depleted resource, and 4 where it prefers the last depleted resource. Each bar represents the mean of such a fraction over 958 independent community assembly simulations, and error bars represent s.e.m. e, f Effect of invasions of community diversity and complementarity, based on whether the invader’s top choice was (e) unoccupied or (f) occupied. Cartoons show the typical effect of an invasion. Pie charts show the fraction of invasions that increase, decrease or maintain a community’s species diversity (middle) and complementarity (right). On unoccupied resources, diversity typically increases (62%), but sometimes stays constant (32%) or decreases (6%). On occupied resources, diversity typically stays the same (68%), but sometimes decreases (26%) and rarely increases (6%). In almost all cases complementarity either stays maintained or increases ( >95%), and very rarely decreases ( More

  • in

    Protect, manage and then restore lands for climate mitigation

    1.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).2.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 

    Google Scholar 
    3.Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. 3, 30 (2021).
    Google Scholar 
    4.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).
    Google Scholar 
    5.Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    Google Scholar 
    6.Fargione, J. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
    Google Scholar 
    7.Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).CAS 

    Google Scholar 
    8.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 

    Google Scholar 
    9.Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).
    Google Scholar 
    10.Gregorio, N. et al. in Enhancing Food Security Through Forest Landscape Restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines (eds Kumar, C. et al.) 174–217 (IUCN, 2015).11.Meyer, J. M. Gifford Pinchot, John Muir, and the boundaries of politics in American thought. Polity 30, 267–284 (1997).
    Google Scholar 
    12.Standard on Biodiversity Offsets (BBOP, 2012).13.Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources (IFC, 2012).14.Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).
    Google Scholar 
    15.Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020).16.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 375, 20190120 (2020).
    Google Scholar 
    17.Ellis, P. W. et al. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. Ecol. Manag. 438, 255–266 (2019).
    Google Scholar 
    18.Martin, D. M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 25, 668–673 (2017).
    Google Scholar 
    19.Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Google Scholar 
    20.Supporting Canadians and Fighting COVID-19 (Department of Finance Canada, 2020).21.Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).
    Google Scholar 
    22.Seddon, N. et al. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020 (IUCN, 2019).23.Carbon Removal Corporate Action Tracker (Institute for Carbon Removal Law and Policy, accessed 6 July 2021); https://research.american.edu/carbonremoval/2020/05/07/carbon-removal-corporate-action-tracker/24.Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    25.Goal 1 Assessment: Striving to End Natural Forest Loss (NYDF Progress Assessment Secretariat, 2020).26.Smith, B. One year later: The path to carbon negative—a progress report on our climate ‘moonshot’. Microsoft Blog (28 January 2021); https://blogs.microsoft.com/blog/2021/01/28/one-year-later-the-path-to-carbon-negative-a-progress-report-on-our-climate-moonshot/27.Ward, C. et al. Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra. Indonesia. Reg. Environ. Change 21, 1 (2020).
    Google Scholar 
    28.Jacobson, M. & Ham, C. The (un)broken promise of agroforestry: a case study of improved fallows in Zambia. Environ. Dev. Sustain. 22, 8247–8260 (2020).
    Google Scholar 
    29.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci USA 117, 24188–24194 (2020).CAS 

    Google Scholar 
    30.Cook-Patton, S. C. et al. Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth 3, 739–752 (2020).
    Google Scholar 
    31.Petersen, S. O., Højberg, O., Poulsen, M., Schwab, C. & Eriksen, J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J. Appl. Microbiol. 117, 160–172 (2014).CAS 

    Google Scholar 
    32.Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).
    Google Scholar 
    33.Qin, Z. et al. Delayed impact of natural climate solutions. Glob. Change Biol. 27, 215–217 (2021).
    Google Scholar 
    34.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 

    Google Scholar 
    35.Pagiola, S., Honey-Rosés, J. & Freire-González, J. Assessing the permanence of land-use change induced by payments for environmental services: evidence from Nicaragua. Trop. Conserv. Sci. https://doi.org/10.1177/1940082920922676 (2020).36.Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).
    Google Scholar 
    37.Smith, P. et al. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).
    Google Scholar 
    38.Nunez, S., Verboom, J. & Alkemade, R. Assessing land-based mitigation implications for biodiversity. Environ. Sci. Policy 106, 68–76 (2020).
    Google Scholar 
    39.Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 26, 6134–6155 (2020).
    Google Scholar 
    40.Infield, M., Entwistle, A., Anthem, H., Mugisha, A. & Phillips, K. Reflections on cultural values approaches to conservation: lessons from 20 years of implementation. Oryx 52, 220–230 (2018).
    Google Scholar 
    41.Rosenstock, T. S. et al. A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1, 330–344 (2019).
    Google Scholar 
    42.Garrett, H. E. et al. Hardwood silvopasture management in North America. Agrofor. Syst. 61, 21–33 (2004).
    Google Scholar 
    43.Kroeger, T. et al. Returns on investment in watershed conservation: application of a best practices analytical framework to the Rio Camboriú Water Producer program, Santa Catarina, Brazil. Sci. Total Environ. 657, 1368–1381 (2019).CAS 

    Google Scholar 
    44.Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).CAS 

    Google Scholar 
    45.Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744–749 (2018).CAS 

    Google Scholar 
    46.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 

    Google Scholar 
    47.Wilson, S. J., Schelhas, J., Grau, R., Nanni, A. S. & Sloan, S. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22, 38 (2017).
    Google Scholar 
    48.Funk, J. M. et al. Securing the climate benefits of stable forests. Clim. Policy 19, 845–860 (2019).
    Google Scholar 
    49.Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341 (2021).CAS 

    Google Scholar 
    50.Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).
    Google Scholar 
    51.Hiraishi, T. et al. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (WMO, 2013).52.Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).CAS 

    Google Scholar 
    53.Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).CAS 

    Google Scholar 
    54.Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).CAS 

    Google Scholar 
    55.Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).
    Google Scholar 
    56.Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).
    Google Scholar 
    57.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 
    58.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).59.Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 

    Google Scholar 
    60.Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).
    Google Scholar 
    61.Brancalion, P. H. S. et al. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degrad. Dev. 32, 830–841 (2021).
    Google Scholar 
    62.Bustamante-Sánchez, M. A. & Armesto, J. J. Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. J. Appl. Ecol. 49, 1103–1112 (2012).
    Google Scholar 
    63.Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).CAS 

    Google Scholar 
    64.Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).CAS 

    Google Scholar 
    65.Johnson, K. A. et al. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction. Nat. Sustain. 3, 56–62 (2020).
    Google Scholar 
    66.Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl Acad. Sci. USA 117, 29577–29583 (2020).CAS 

    Google Scholar 
    67.Reetz, H., Heffer, P. & Bruulsema, T. in Managing Water and Fertilizer for Sustainable Agricultural Intensification (eds Drechsel, P. et al.) 65–86 (IFA, IWMI, IPNI and IPI, 2015).68.Sharma, P. et al. The role of cover crops towards sustainable soil health and agriculture—a review paper. Am. J. Plant Sci. 09, 1935–1951 (2018).CAS 

    Google Scholar 
    69.Bergeron, M. et al. Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agrofor. Syst. 83, 321–330 (2011).
    Google Scholar 
    70.Moore, A. A. & Palmer, M. A. Invertebrate biodiveristy in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15, 1169–1177 (2005).
    Google Scholar 
    71.Martin, M. P. et al. People plant trees for utility more often than for biodiversity or carbon. Biol. Conserv. 261, 109224 (2021).
    Google Scholar 
    72.Mendes, T. P., de Assis Montag, L. F., Alvarado, S. T. & Juen, L. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 848, 1147–1161 (2021).
    Google Scholar 
    73.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
    Google Scholar 
    74.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).
    Google Scholar 
    75.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
    Google Scholar 
    76.Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).
    Google Scholar 
    77.Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).
    Google Scholar 
    78.Xu, S., Liu, X., Li, X. & Tian, C. Soil organic carbon changes following wetland restoration: a global meta-analysis. Geoderma 353, 89–96 (2019).CAS 

    Google Scholar 
    79.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 

    Google Scholar 
    80.Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P. & Wang, L. Where the people are: current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. cities. Landsc. Urban Plan. 177, 277–240 (2018).
    Google Scholar 
    81.McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2020).
    Google Scholar 
    82.Heris, M. et al. Piloting urban ecosystem accounting for the United States. Ecosyst. Serv. 48, 101226 (2021).
    Google Scholar 
    83.Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).
    Google Scholar 
    84.Li, R. et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 7, eabf8650 (2021).
    Google Scholar 
    85.Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).
    Google Scholar 
    86.Griscom, B. W., Goodman, R. C., Burivalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, e12362 (2018).
    Google Scholar 
    87.Gabon’s Proposed National RED+ Forest Reference Level (Gabonese Republic, 2021).88.Umunay, P., Gregoire, T., Gopalakrishna, T., Ellis, P. & Putz, F. Selective logging emissions and potential emission reductions from reduced-impact logging in the Congo Basin. Ecol. Manag. 437, 360–371 (2019).
    Google Scholar 
    89.Natural Climate Solutions World Atlas (Nature4Climate, accessed 9 December 2020); https://nature4climate.org/n4c-mapper/90.Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019); https://doi.org/10.2305/IUCN.CH.2019.06.en91.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
    Google Scholar 
    92.Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).
    Google Scholar 
    93.Kronenberg, J. & Mieszkowicz, J. Planting trees for publicity—how much are they worth? Sustainability 3, 1022–1034 (2011).
    Google Scholar 
    94.Microsoft Carbon Removal: Lessons from an Early Corporate Purchase (Microsoft, 2021).95.Toor, I. A., Smith, E. G., Whalen, J. K. & Naseem, A. Tree-based intercropping in southern Ontario, Canada. Can. J. Agric. Econ. 60, 141–154 (2012).
    Google Scholar 
    96.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS 

    Google Scholar 
    97.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).
    Google Scholar 
    98.Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015). More

  • in

    Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms

    1.The State of Food Insecurity in the World—How Does International Price Volatility Affect Domestic Economies and Food Security? (FAO, 2011).2.Catchpoole, D. W. & Blair, G. Forage tree legumes I. Productivity and N economy of leucaena, gliricidia, calliandra and sesbania and tree/green panic mixtures. Aust. J. Agric. Res 41, 521–530 (1990).CAS 
    Article 

    Google Scholar 
    3.Xu, Z. H., Saffigna, P. G., Myers, R. J. K. & Chapman, A. L. Nitrogen cycling in leucaena (Leucaena lecuocephala) alley cropping in semiarid tropics. 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148, 63–72 (1993).CAS 
    Article 

    Google Scholar 
    4.Beer, J., Muschler, R., Kass, D. & Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 38, 139–164 (1998).Article 

    Google Scholar 
    5.Snoeck, D., Zapata, F. & Domenach, A.-M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol. Agron. Soc. Environ. 4, 95–100 (2000).CAS 

    Google Scholar 
    6.Sierra, J. & Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 38, 1893–1903 (2006).CAS 
    Article 

    Google Scholar 
    7.He, X. H., Critchley, C. & Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531–567 (2003).Article 

    Google Scholar 
    8.Jalonen, R., Nygren, P. & Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 32, 1366–1376 (2009).CAS 
    Article 

    Google Scholar 
    9.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).Article 

    Google Scholar 
    10.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).11.Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164, 175–181 (2004).Article 

    Google Scholar 
    12.Newman, E. I. & Ritz, K. Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol. 104, 77–87 (1986).CAS 
    Article 

    Google Scholar 
    13.Mikkelsen, B. L., Rosendahl, S. & Jakobsen, I. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol. 4, 890–898 (2008).Article 

    Google Scholar 
    14.Saka, A. R., Bunderson, W. T., Itimu, O. A., Phombeya, H. S. K. & Mbekeani, Y. The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For. Ecol. Manage. 64, 217–230 (1994).Article 

    Google Scholar 
    15.Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor. Syst. 29, 133–145 (1995).Article 

    Google Scholar 
    16.Sileshi, G. W. et al. in Encyclopedia of Agriculture and Food Systems (ed. van Alfen, N.) 222–234 (Elsevier, 2014).17.Yengwe, J., Gebremikael, M. T., Buchan, D., Lungu, O. & De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 92, 349–363 (2018).
    Google Scholar 
    18.Yengwe, J., Amalia, O., Lungu, O. I. & De Neve, S. Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. Eur. J. Agron. 99, 148–155 (2018).CAS 
    Article 

    Google Scholar 
    19.Sida, T. S., Baudron, F., Ndoli, A., Tirfessa, D. & Giller, K. E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 453, 173–188 (2020).CAS 
    Article 

    Google Scholar 
    20.Umar, B. B., Aune, J. B. & Lungu, O. I. Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr. J. Agric. Res. 8, 173–183 (2013).
    Google Scholar 
    21.Hadgu, K. M., Kooistra, L., Rossing, W. A. H. & van Bruggen, A. H. C. Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security 1, 337–350 (2009).Article 

    Google Scholar 
    22.Dalpé, Y., Diop, T. A., Plenchette, C. & Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10, 125–129 (2000).Article 

    Google Scholar 
    23.Boddey, R. M., Peoples, M. B., Palmer, B. & Dart, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 57, 235–270 (2000).Article 

    Google Scholar 
    24.Oberson, A. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007).CAS 
    Article 

    Google Scholar 
    25.Snapp, S., Borden, H. & Rohrbach, D. Improving nitrogen efficiency: lessons from Malawi and Michigan. Sci. World 1, 42–48 (2001).
    Google Scholar 
    26.Akinnifesi, F. K., Wakumba, W. & Kwesiga, F. R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 42, 441–457 (2006).Article 

    Google Scholar 
    27.Tovihoudji, P. G., Irenikatché Akponikpè, P. B., Agbossou, E. K., Bertin, P. & Bielders, C. L. Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Res. 213, 130–142 (2017).Article 

    Google Scholar 
    28.Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).Article 

    Google Scholar 
    29.Bueno de Mesquita, C. P. et al. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 36, 63–74 (2018).Article 

    Google Scholar 
    30.Alexandre, D. Y. & Ouedraogo, S. J. in Faidherbia albida in the West African Semi-arid Tropics: Proceedings of a Workshop (ed. Vandenbeldt, R. J.) 107–110 (International Centre for Research in Agroforestry, 1992).31.Jones, A. et al. Soil Atlas of Africa (European Commission, 2013).32.Dierks, J. et al. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 318, 107487 (2021).CAS 
    Article 

    Google Scholar 
    33.Mungai, L. M. et al. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01720 (2016).34.Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).CAS 
    Article 

    Google Scholar 
    35.Marschner, H. & Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994).CAS 
    Article 

    Google Scholar 
    36.Gryndler, M. et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450 (2018).Article 

    Google Scholar 
    37.Rillig, M. C. et al. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308, 267–275 (2008).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T. & Li, M. Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol. 111, 35–44 (1989).Article 

    Google Scholar 
    39.Fitter, A. H. & Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 110, 201–206 (1988).CAS 
    Article 

    Google Scholar 
    40.Cavagnaro, T. R., Smith, F. A. & Smith, S. E. Interactions between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato: does a noninfective fungus alter the ability of an infective fungus to colonise the roots—and vice versa? New Phytol. 164, 485–491 (2004).Article 

    Google Scholar 
    41.Carey, P. D., Fitter, A. H. & Watkinson, A. R. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90, 550–555 (1992).Article 

    Google Scholar 
    42.Merryweather, J. & Fitter, A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132, 307–311 (1996).CAS 
    Article 

    Google Scholar 
    43.Shinners, K. J. & Binversie, B. N. Fractional yield and moisture of corn stover biomass produced in northern US Corn Belt. Biomass Bioenergy 31, 576–584 (2007).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/45.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002). More

  • in

    Mapping classes of carbon

    This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). More

  • in

    Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues

    1.Rustad, L. E., Huntington, T. G. & Boone, R. D. Controls on soil respiration: implications for climate change. Biogeochemistry 48, 1–6 (2000).
    Google Scholar 
    2.Smith, P. How long before a change in soil organic carbon can be detected? Glob. Change Biol. 10, 1878–1883 (2004).
    Google Scholar 
    3.Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 114, 9575 (2017).CAS 

    Google Scholar 
    4.Schimel, J. & Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00348 (2012).5.Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).
    Google Scholar 
    6.Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).CAS 

    Google Scholar 
    7.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
    Google Scholar 
    8.Kästner, M. & Miltner, A. In The Future of Soil Carbon (eds. Garcia, C. et al.) 125-163 (Academic Press, 2018).9.Mikutta, R., Kleber, M., Torn, M. S. & Jahn, R. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 77, 25–56 (2006).CAS 

    Google Scholar 
    10.Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
    Google Scholar 
    11.Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75–75 (2011).CAS 

    Google Scholar 
    12.Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).CAS 

    Google Scholar 
    13.Schweigert, M., Herrmann, S., Miltner, A., Fester, T. & Kästner, M. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol. Biochem. 88, 120–127 (2015).CAS 

    Google Scholar 
    14.Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).CAS 

    Google Scholar 
    15.Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123 (2016).CAS 

    Google Scholar 
    16.Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol. 41, 8070–8076 (2007).CAS 

    Google Scholar 
    17.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS 

    Google Scholar 
    18.Zhu, X., Jackson, R. D., DeLucia, E. H., Tiedje, J. M. & Liang, C. The soil microbial carbon pump: From conceptual insights to empirical assessments. Glob. Change Biol. 26, 6032–6039 (2020).
    Google Scholar 
    19.Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).CAS 

    Google Scholar 
    20.Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181 (2013).
    Google Scholar 
    21.Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).CAS 

    Google Scholar 
    22.Zhao, S. et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 216, 82–88 (2016).CAS 

    Google Scholar 
    23.Liang, C. & Zhu, X. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Sci. China Earth Sci. 64, 545–558 (2021).CAS 

    Google Scholar 
    24.Liu, W., Zhang, Z. H. E. & Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 15, 184–195 (2009).
    Google Scholar 
    25.Crowther, T. W. et al. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol. Biochem. 85, 153–161 (2015).CAS 

    Google Scholar 
    26.Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).
    Google Scholar 
    27.Chen, X. et al. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob. Change Biol. 27, 2478–2490 (2021).
    Google Scholar 
    28.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS 

    Google Scholar 
    29.Jin, J., Wood, J., Franks, A., Armstrong, R. & Tang, C. Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon. Soil Biol. Biochem. 144, 107780 (2020).CAS 

    Google Scholar 
    30.Prommer, J. et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 26, 669–681 (2020).
    Google Scholar 
    31.Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).CAS 

    Google Scholar 
    32.Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fertil. Soils 54, 559–568 (2018).CAS 

    Google Scholar 
    33.Zhang, X. & Amelung, W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).CAS 

    Google Scholar 
    34.Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. In Advances in Agronomy vol. 100 155–250 (Academic Press, 2008).35.Glaser, B., Turrión, M. A.-B. & Alef, K. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 36, 399–407 (2004).CAS 

    Google Scholar 
    36.Roberts, P., Bol, R. & Jones, D. L. Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biol. Biochem. 39, 3081–3092 (2007).CAS 

    Google Scholar 
    37.Ni, X. et al. A quantitative assessment of amino sugars in soil profiles. Soil Biol. Biochem. 143, 107762 (2020).CAS 

    Google Scholar 
    38.Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100, 155–250 (2008).CAS 

    Google Scholar 
    39.Appuhn, A. & Joergensen, R. G. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).CAS 

    Google Scholar 
    40.Ding, X. et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol. Biochem. 135, 13–19 (2019).CAS 

    Google Scholar 
    41.Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063–00016 (2017).
    Google Scholar 
    42.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007GB002952 (2008).43.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 
    44.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 

    Google Scholar 
    45.McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–286 (1981).CAS 

    Google Scholar 
    46.Wardle, D. A. Drivers of decoupling in drylands. Nature 502, 628–629 (2013).CAS 

    Google Scholar 
    47.Zhang, B., Liang, C., He, H. & Zhang, X. Variations in soil microbial communities and residues along an altitude gradient on the Northern Slope of Changbai Mountain, China. PLoS ONE 8, e66184 (2013).CAS 

    Google Scholar 
    48.Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).CAS 

    Google Scholar 
    49.Vicente-Serrano, S. M., Zouber, A., Lasanta, T. & Pueyo, Y. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol. Monogr. 82, 407–428 (2012).
    Google Scholar 
    50.Whitford, W. G. & Duval, B. D. Ecology of Desert Systems (Academic Press, 2019).51.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).CAS 

    Google Scholar 
    52.Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS 

    Google Scholar 
    53.McHugh, T. A. et al. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix116 (2017).54.De Boeck, H. J. & Verbeeck, H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences 8, 1121–1130 (2011).
    Google Scholar 
    55.Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).CAS 

    Google Scholar 
    56.He, N., Chen, Q., Han, X., Yu, G. & Li, L. Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China. Agric. Ecosyst. Environ. 158, 184–191 (2012).
    Google Scholar 
    57.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 

    Google Scholar 
    58.Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS 

    Google Scholar 
    59.Zhang, X. et al. Links between microbial biomass and necromass components in the top- and subsoils of temperate grasslands along an aridity gradient. Geoderma 379, 114623 (2020).CAS 

    Google Scholar 
    60.Zhu, E. et al. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. https://doi.org/10.1111/gcb.15541 (2021).61.Deng, L. et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth Sci. Rev. 214, 103501 (2021).CAS 

    Google Scholar 
    62.Moritz, L. K., Liang, C., Wagai, R., Kitayama, K. & Balser, T. C. Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials. Biogeochemistry 92, 83–94 (2009).
    Google Scholar 
    63.Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).
    Google Scholar 
    64.Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 153, 108112 (2021).CAS 

    Google Scholar 
    65.Zhu, E. et al. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. 27, 2241–2253 (2021).
    Google Scholar 
    66.Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).CAS 

    Google Scholar 
    67.Jia, J. et al. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biol. Biochem. 104, 141–151 (2017).CAS 

    Google Scholar 
    68.Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2020.108112 (2021).69.Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).CAS 

    Google Scholar 
    70.Samson, M.-E. et al. Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils. Soil Biol. Biochem. 148, 107867 (2020).CAS 

    Google Scholar 
    71.Luo, R. et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biol. Biochem. 144, 107764 (2020).CAS 

    Google Scholar 
    72.Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Change Biol. 21, 3200–3209 (2015).
    Google Scholar 
    73.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Google Scholar 
    74.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS 

    Google Scholar 
    75.Larsen, K. S. et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol. 17, 1884–1899 (2011).
    Google Scholar 
    76.Cregger, M. A., McDowell, N. G., Pangle, R. E., Pockman, W. T. & Classen, A. T. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Funct. Ecol. 28, 1534–1544 (2014).
    Google Scholar 
    77.Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 1, 36 (2020).
    Google Scholar 
    78.Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).CAS 

    Google Scholar 
    79.von Lutzow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57, 426–445 (2006).
    Google Scholar 
    80.Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).CAS 

    Google Scholar 
    81.Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).CAS 

    Google Scholar 
    82.Blanco, H. & Lal, R. Principles of Soil Conservation and Management vol. 167169 (Springer, 2008).83.Marshall, K. J. A. R. O. P. Clay mineralogy in relation to survival of soil bacteria. Annu. Rev. Phytopathol. 13, 357–373 (1975).84.Zhiguo, H. et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. figshare, Dataset, https://doi.org/10.6084/m9.figshare.16749967.v1 (2021).85.Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).CAS 

    Google Scholar 
    86.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 
    87.Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2011).
    Google Scholar 
    88.Liaw, A. & Wiener, M. J. R. N. Classification and regression by randomForest. R News 2, 18–22 (2002).89.Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).CAS 

    Google Scholar 
    90.Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 8, 23–74 (2003).91.Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684 (2008).CAS 

    Google Scholar 
    92.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787 (2020).CAS 

    Google Scholar 
    93.Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).
    Google Scholar 
    94.Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinform. 18, 454 (2017).
    Google Scholar  More

  • in

    Diverse phylogenetic neighborhoods enhance community resistance to drought in experimental assemblages

    1.Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton, 2001).
    Google Scholar 
    2.Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).PubMed 

    Google Scholar 
    3.Diamond, J. M. Assembly of species communities. In Ecology and Evolution of Communities (eds. Cody, M. L. & Diamond, J. M.) 342–444 (Harvard University Press, 1975).4.Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
    Google Scholar 
    5.Götzenberger, L. et al. Ecological assembly rules in plant communities––Approaches, patterns and prospects. Biol. Rev. Camb. Philos. Soc. 87, 111–127 (2012).PubMed 

    Google Scholar 
    6.HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Google Scholar 
    7.Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait–based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 

    Google Scholar 
    8.Lortie, C. J. et al. Rethinking plant community theory. Oikos 107, 433–438 (2004).
    Google Scholar 
    9.Vellend, M. Conceptual synthesis in community Ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 

    Google Scholar 
    10.Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).
    Google Scholar 
    11.Escudero, A. & Valladares, F. Trait-based plant Ecology: Moving towards a unifying species coexistence theory: Features of the special section. Oecologia 180, 919–922 (2016).ADS 
    PubMed 

    Google Scholar 
    12.Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS One 7, 1–9 (2012).
    Google Scholar 
    13.Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 187–191 (1994).
    Google Scholar 
    14.Kraft, N. J., Godoy, O. & Levine, J. M. PNAS. Proc. Natl. Acad. Sci. 112, 797–802 (2015).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    15.Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).
    Google Scholar 
    16.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    17.Pausas, J. G. & Verdú, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625 (2010).
    Google Scholar 
    18.Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).
    Google Scholar 
    19.Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283 (2007).PubMed 

    Google Scholar 
    20.Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).PubMed 

    Google Scholar 
    21.Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community Ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 

    Google Scholar 
    22.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    23.Godoy, O., Kraft, N. J. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).PubMed 

    Google Scholar 
    24.Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).PubMed 

    Google Scholar 
    25.de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).ADS 

    Google Scholar 
    26.Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4, e5695 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    28.Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).
    Google Scholar 
    29.Huang, M., Liu, X., Cadotte, M. W. & Zhou, S. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129, 1185–1195 (2020).
    Google Scholar 
    30.Staab, M. et al. Tree phylogenetic diversity structures multitrophic communities. Funct. Ecol. 35, 521–534 (2021).
    Google Scholar 
    31.Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Kembel, S. W. Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).PubMed 

    Google Scholar 
    33.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).PubMed 

    Google Scholar 
    34.Luzuriaga, A. L., Ferrandis, P., Flores, J. & Escudero, A. Effect of aridity on species assembly in gypsum drylands: A response mediated by the soil affinity of species. AoB Plants 12, plaa020 (2020).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    35.Valiente-Banuet, A. & Verdu, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).PubMed 

    Google Scholar 
    36.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).PubMed 
    CAS 

    Google Scholar 
    37.Slingsby, J. A. & Verboom, G. A. Phylogenetic relatedness limits co–occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am. Nat. 168, 14–27 (2006).PubMed 

    Google Scholar 
    38.Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. Does phylogenetic relatedness influence the strength of competition among vascular plants?. Perspect. Plant. Ecol. Evol. Syst. 10, 41–50 (2008).
    Google Scholar 
    39.Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).PubMed 
    CAS 

    Google Scholar 
    40.Feng, Y., Fouqueray, T. D. & van Kleunen, M. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).
    Google Scholar 
    41.Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).
    Google Scholar 
    42.Peralta, A. M., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).CAS 

    Google Scholar 
    43.Luzuriaga, A. L., Sánchez, A. M., López-Angulo, J. & Escudero, A. Habitat fragmentation determines diversity of annual plant communities at landscape and fine spatial scales. Basic. Appl. Ecol. 29, 12–19 (2018).
    Google Scholar 
    44.Luzuriaga, A. L., González, J. M. & Escudero, A. Annual plant community assembly in edaphically heterogeneous environments. J. Veg. Sci. 26, 866–875 (2015).
    Google Scholar 
    45.Pistón, N., Armas, C., Schöb, C., Macek, P. & Pugnaire, F. I. Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos 124, 1354–1359 (2015).
    Google Scholar 
    46.Matías, L., Godoy, O., Gómez-Aparicio, L. & Pérez-Ramos, I. M. An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J. Ecol. 106, 826–837 (2018).
    Google Scholar 
    47.Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).ADS 

    Google Scholar 
    48.Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    PubMed 

    Google Scholar 
    49.Hart, S. P. & Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. Ecology 94, 2719–2731 (2013).PubMed 

    Google Scholar 
    50.Armas, C. & Pugnaire, F. I. Belowground zone of influence in a tussock grass species. Acta Oecol. 37, 284–289 (2011).ADS 

    Google Scholar 
    51.Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).PubMed 

    Google Scholar 
    52.Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. PNAS 103, 6230–6235 (2006).ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    53.Lamb, E. G. & Cahill, J. F. Jr. When competition does not matter: Grassland diversity and community composition. Am. Nat. 17, 777–787 (2008).
    Google Scholar 
    54.Yan, B. G. et al. Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J. Veg. Sci. 23, 698–708 (2012).
    Google Scholar 
    55.Helmus, M. R., Savage, K., Diebel, M. W., Maxted, J. T. & Ives, A. R. Separating the determinants of phylogenetic community structure. Ecol. Lett. 10, 917–925 (2007).PubMed 

    Google Scholar 
    56.Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).PubMed 

    Google Scholar 
    57.Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
    Google Scholar 
    58.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and Ecology. Bioinformatics 26, 1463–1464 (2010).PubMed 
    CAS 

    Google Scholar 
    59.Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).
    Google Scholar 
    60.Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).
    Google Scholar 
    61.Pacala, S. W. & Tilman, D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am. Nat. 143, 222–257 (1994).
    Google Scholar 
    62.Holt, R. D. Theoretical perspectives on resource pulses. Ecology 89, 671–681 (2008).PubMed 

    Google Scholar 
    63.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).ADS 
    PubMed 
    CAS 

    Google Scholar 
    64.Verdú, M., Rey, P. J., Alcantara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).
    Google Scholar 
    65.Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).
    Google Scholar 
    66.Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).
    Google Scholar 
    67.Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Google Scholar 
    68.Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).PubMed 

    Google Scholar 
    69.Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).PubMed 

    Google Scholar 
    70.D’Antonio, C. M. & Mahall, B. E. Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. Am. J. Bot. 78, 885–894 (1991).
    Google Scholar 
    71.Jumpponen, A., Högberg, P., Huss-Danell, K. & Mulder, C. P. H. Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct. Ecol. 16, 454–461 (2002).
    Google Scholar 
    72.Miller, A. E., Bowman, W. D. & Suding, K. N. Plant uptake of inorganic and organic nitrogen: Neighbor identity matters. Ecology 88, 1832–1840 (2007).PubMed 

    Google Scholar 
    73.de Kroon, H. & Mommer, L. Root foraging theory put to the test. Trends Ecol. Evol. 21, 113–116 (2006).PubMed 

    Google Scholar 
    74.Maynard, D. S., Serván, C. A., Capitán, J. A. & Allesina, S. Phenotypic variability promotes diversity and stability in competitive communities. Ecol. Lett. 22, 1776–1786 (2019).PubMed 

    Google Scholar 
    75.Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).PubMed 

    Google Scholar 
    76.García-Camacho, R., Metz, J., Bilton, M. C. & Tielbörger, K. Phylogenetic structure of annual plant communities along an aridity gradient. Interacting effects of habitat filtering and shifting plant–plant interactions. Isr. J. Plant. Sci. 64, 122–134 (2017).
    Google Scholar 
    77.Vellend, M. The Theory of Ecological Communities (Princeton University Press, 2016).
    Google Scholar 
    78.Madrigal-González, J., Cano-Barbacil, C., Kigel, J., Ferrandis, P. & Luzuriaga, A. L. Nurse plants promote taxonomic and functional diversity in a semi-arid Mediterranean annual plant community. J. Veg. Sci. 31, 658–666 (2020).
    Google Scholar 
    79.McPeek, M. A. Evolutionary Community Ecology (Princeton University, 2017).
    Google Scholar 
    80.terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).
    Google Scholar 
    81.Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).
    Google Scholar 
    82.Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).PubMed 

    Google Scholar 
    83.Chacón-Labella, J., de la Cruz, M. & Escudero, A. Beyond the classical nurse species effect: Diversity assembly in a Mediterranean semi-arid dwarf shrubland. J. Veg. Sci. 27, 80–88 (2016).
    Google Scholar 
    84.IPCC 2014: Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds. Core Writing Team, Pachauri, R. K. & Meyer, L. A.) 151 (IPCC, 2014). More

  • in

    Transpiration rates of red maple (Acer rubrum L.) differ between management contexts in urban forests of Maryland, USA

    1.Askarizadeh, A. et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 49, 11264–11280 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2, 263–275 (2005).
    Google Scholar 
    3.Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24, 706–723 (2005).
    Google Scholar 
    4.US EPA. What is Green Infrastructure? US EPA. https://www.epa.gov/green-infrastructure/what-green-infrastructure (2015).5.Hoover, F. A. & Hopton, M. E. Developing a framework for stormwater management: Leveraging ancillary benefits from urban greenspace. Urban Ecosyst. 22, 1139–1148 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    6.Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 157, 135–144 (2017).PubMed 

    Google Scholar 
    7.Konijnendijk, C. C., Ricard, R. M., Kenney, A. & Randrup, T. B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 4, 93–103 (2006).
    Google Scholar 
    8.Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Bartens, J., Day, S. D., Harris, J. R., Dove, J. E. & Wynn, T. M. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?. J. Environ. Qual. 37, 2048–2057 (2008).CAS 
    PubMed 

    Google Scholar 
    10.Geronimo, F. K. F., Maniquiz-Redillas, M. C., Tobio, J. A. S. & Kim, L. H. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter. Water Sci. Technol. 69, 2460–2467 (2014).CAS 
    PubMed 

    Google Scholar 
    11.Jayasooriya, V. M. & Ng, A. W. M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air. Soil Pollut. 225, 2055 (2014).ADS 

    Google Scholar 
    12.Keeley, M. et al. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 51, 1093–1108 (2013).ADS 

    Google Scholar 
    13.Dhakal, K. P. & Chevalier, L. R. Urban stormwater governance: The need for a paradigm shift. Environ. Manag. 57, 1112–1124 (2016).ADS 

    Google Scholar 
    14.Dhakal, K. P. & Chevalier, L. R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 203, 171–181 (2017).
    Google Scholar 
    15.Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178 (2007).
    Google Scholar 
    16.Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10, e1813 (2017).
    Google Scholar 
    17.Law, N. L. & Hanson, J. Recommendations of the Expert Panel to Define BMP Effectiveness for Urban Tree Canopy Expansion. Center for Watershed Protection and Chesapeake Stormwater Network. 236. https://owl.cwp.org/mdocs-posts/recommendations-of-the-expert-panel-to-define-bmp-effectiveness-forurban-tree-canopy-expansion/ (Ellicott City, MD, 2016).18.Phillips, T. H., Baker, M. E., Lautar, K., Yesilonis, I. & Pavao-Zuckerman, M. A. The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J. Environ. Manag. 246, 11–18 (2019).
    Google Scholar 
    19.Zipper, S. C., Schatz, J., Kucharik, C. J. & Loheide, S. P. Urban heat island-induced increases in evapotranspirative demand. Geophys. Res. Lett. 44, 873–881 (2017).ADS 

    Google Scholar 
    20.Riikonen, A., Järvi, L. & Nikinmaa, E. Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosyst. 19, 1693–1715 (2016).
    Google Scholar 
    21.Asawa, T., Kiyono, T. & Hoyano, A. Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol. Process. 31, 3056–3068 (2017).ADS 

    Google Scholar 
    22.Hagishima, A., Narita, K. & Tanimoto, J. Field experiment on transpiration from isolated urban plants. Hydrol. Process. 21, 1217–1222 (2007).ADS 

    Google Scholar 
    23.Moriwaki, R. & Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 1988–2005(43), 1700–1710 (2004).
    Google Scholar 
    24.Spronken-Smith, R. A., Oke, T. R. & Lowry, W. P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 20, 1033–1047 (2000).
    Google Scholar 
    25.Giraldo, M. A., Jackson, P. & Van-Horne, W. Suburban Forest Change and Vegetation Water Dynamics in Atlanta, USA. Southeast. Geogr. 55, 193–212 (2015).
    Google Scholar 
    26.Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001266 (2010).Article 

    Google Scholar 
    27.Bhaskar, A. S., Hogan, D. M. & Archfield, S. A. Urban base flow with low impact development. Hydrol. Process. 30, 3156–3171 (2016).ADS 

    Google Scholar 
    28.Peters, E. B., Hiller, R. V. & McFadden, J. P. Seasonal contributions of vegetation types to suburban evapotranspiration. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001463 (2011).Article 

    Google Scholar 
    29.Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 195, 1–12 (2017).ADS 

    Google Scholar 
    30.McPherson, E. G. Urban forestry: The final frontier?. J. For. 101, 20–25 (2003).
    Google Scholar 
    31.Lefsky, M. A. & McHale, M. R. Volume estimates of trees with complex architecture from terrestrial laser scanning. J. Appl. Remote Sens. 2, 023521 (2008).
    Google Scholar 
    32.Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project.(eds. McPherson, E. G., Nowak, D. J. & Rowntree, R. A.). 83–94 (Gen. Tech. Rep. NE-186. Radnor, PA: U.S. Department of Agriculture, Forest Service, 1994)33.Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).PubMed 

    Google Scholar 
    34.Yılmaz, S., Toy, S., Irmak, M. A. & Yilmaz, H. Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Build. Environ. 42, 1604–1612 (2007).
    Google Scholar 
    35.Nowak, D. J., Stevens, J. C., Sisinni, S. M. & Luley, C. J. Effects of urban tree management and species selection on atmospheric carbon dioxide. J. Arboric. 28(3), 113–122 (2002).
    Google Scholar 
    36.Nowak, D. J. et al. A ground-based method of assessing urban forest structure and ecosystem services. Aboricult. Urban For. 34(6), 347–358 (2008).
    Google Scholar 
    37.Zipperer, W. C., Sisinni, S. M., Pouyat, R. V. & Foresman, T. W. Urban tree cover: An ecological perspective. Urban Ecosyst. 1, 229–246 (1997).
    Google Scholar 
    38.Oke, T. R. Boundary Layer Climates (Routledge, 1987).
    Google Scholar 
    39.McCarthy, H. R. & Pataki, D. E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst. 13, 393–414 (2010).
    Google Scholar 
    40.MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).
    Google Scholar 
    41.Day, S. D., Wiseman, P. E., Dickinson, S. B. & Harris, J. R. Contemporary concepts of root system architecture of urban trees. Arboric. Urban For. 36, 149–159 (2010).
    Google Scholar 
    42.Harrison, J. L., Blagden, M., Green, M. B., Salvucci, G. D. & Templer, P. H. Water sources for red maple trees in a northern hardwood forest under a changing climate. Ecohydrology 13, e2248 (2020).
    Google Scholar 
    43.Marchionni, V. et al. Groundwater buffers drought effects and climate variability in urban reserves. Water Resour. Res. 56, e2019WR026192 (2020).ADS 

    Google Scholar 
    44.Chen, L. et al. Biophysical control of whole tree transpiration under an urban environment in Northern China. J. Hydrol. 402, 388–400 (2011).ADS 

    Google Scholar 
    45.Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063 (2020).ADS 

    Google Scholar 
    46.Rodríguez-Gamir, J., Primo-Millo, E. & Forner-Giner, M. Á. An integrated view of whole-tree hydraulic architecture. Does stomatal or hydraulic conductance determine whole tree transpiration?. PLoS ONE 11, e0155246 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    47.Rogiers, S. Y., Greer, D. H., Hutton, R. J. & Clarke, S. J. Transpiration efficiency of the grapevine cv. Semillon is tied to VPD in warm climates. Ann. Appl. Biol. 158, 106–114 (2011).
    Google Scholar 
    48.Tirpak, R. A., Hathaway, J. M. & Franklin, J. A. Evaluating the influence of design strategies and meteorological factors on tree transpiration in bioretention suspended pavement practices. Ecohydrology 11, e2037 (2018).
    Google Scholar 
    49.Fair, B. A., Metzger, J. D. & Vent, J. Characterization of physical, gaseous, and hydrologic properties of compacted subsoil and its effects on growth and transpiration of two maples grown under greenhouse conditions. Arboric. Urban For. 38, 151–159 (2012).
    Google Scholar 
    50.Kjelgren, R. K. & Clark, J. R. Growth and water relations of Liquidambar styraciflua L. in an urban park and plaza. Trees 7, 195–201 (1993).
    Google Scholar 
    51.Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).
    Google Scholar 
    52.Wullschleger, S. D., Wilson, K. B. & Hanson, P. J. Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agric. For. Meteorol. 104, 157–168 (2000).ADS 

    Google Scholar 
    53.Band, L., Nowak, D., Yang, Y., Endreny, T. & Wang, J. Modeling in the Chesapeake Bay Watershed: effects of trees on stream flow in the Chesapeake Bay. Rep. For. Serv. Agreem. No07­CO‐11242300‐145 (2010).54.Goddard, H. C. Cap and trade for stormwater management. In Economic Incentives for Stormwater Control (ed. Thurston, H.) 211–232 (CRC Press, 2012).
    Google Scholar 
    55.Blanken, P. D. et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28915–28927 (1997).ADS 

    Google Scholar 
    56.Wullschleger, S. D., Hanson, P. J. & Todd, D. E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For. Ecol. Manag. 143, 205–213 (2001).
    Google Scholar 
    57.USDA Forest Service. Baltimore Cooperating Experimental Forest – Northern Research Station – USDA Forest Service. https://www.nrs.fs.fed.us/ef/locations/md/baltimore/ (2016).58.NOAA. Find a Station | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (2007).59.Campbell, G. S. & Norman, J. An Introduction to Environmental Biophysics (Springer, 2012).
    Google Scholar 
    60.Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).CAS 
    PubMed 

    Google Scholar 
    61.Lu, P. A direct method for estimating the average sap flux density using a modified Granier measuring system. Funct. Plant Biol. 24, 701–705 (1997).
    Google Scholar 
    62.Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42, 193–200 (1985).
    Google Scholar 
    63.Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).ADS 

    Google Scholar 
    64.Bates, D. M. & Pinheiro, J. C. Linear and nonlinear mixed-effects models. Conf. Appl. Stat. Agric. https://doi.org/10.4148/2475-7772.1273 (1998).Article 

    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    66.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. Nlme: Linear and nonlinear mixed effects models (R package version 3.1. 140)[Computer software]. (2019).67.Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package 1(3), 4 (2019).
    Google Scholar  More