More stories

  • in

    A newly discovered behavior (‘tail-belting’) among wild rodents in sub zero conditions

    1.Simeonovska-Nikolova, D. M. Interspecific social interactions and behavioral responses of Apodemus agrarius and Apodemus flavicollis to conspecific and heterospecific odors. J. Ethol. 25(1), 41–48 (2007).
    Google Scholar 
    2.Yoon, M.-H. & Han, C.-W. A study on daily torpor in the Korean striped field mouse (Apodemus agrarius). J. Life Sci. 16(4), 618–625 (2006).
    Google Scholar 
    3.Stryjek, R. et al. A methodological review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J. Neurosci. Methods 362, 109303 (2021).PubMed 

    Google Scholar 
    4.Stryjek, R. et al. Wild Norway rats do not avoid predator scents when collecting food in a familiar habitat: A field study. Sci. Rep. 8(1), 9475 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Parsons, M. H. et al. Differential responses by city rats (Rattus norvegicus) toward male or female-produced pheromones in sheltered and high-risk presentations. J. Urban Ecol. 5, juz009 (2019).
    Google Scholar 
    6.Vukicevic-Radic, O. et al. Spatial distribution of Apodemus flavicollis and A. agrarius in a forest community quercetum-petraea on Mt. Avala (Serbia). Biotechnol. Biotechnol. Equip. 20(1), 57–60 (2006).
    Google Scholar 
    7.Filippucci, M. G., Macholan, M. & Michaux, J. R. Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biol. J. Lin. Soc. 75(3), 395–419 (2002).
    Google Scholar 
    8.Hille, A. et al. Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence. Acta Theriol. 47(4), 389–416 (2002).
    Google Scholar 
    9.Rubtsov, N. et al. Comparative analysis of DNA homology in pericentric regions of chromosomes of wood mice from genera Apodemus and Sylvaemus. Russ. J. Genet. 51(12), 1233–1242 (2015).CAS 

    Google Scholar 
    10.Suzuki, H. et al. Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol. J. Lin. Soc. 80(3), 469–481 (2003).
    Google Scholar 
    11.Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Lagomorphs and Rodents I (Lynx, 2016).
    Google Scholar 
    12.Ge, D. et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool. J. Linn. Soc. 187(2), 518–534 (2019).
    Google Scholar 
    13.Knitlová, M. & Horáček, I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in central Europe. PLoS ONE 12(3), e0173668 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    14.Bronson, F. & Pryor, S. Ambient temperature and reproductive success in rodents living at different latitudes. Biol. Reprod. 29(1), 72–80 (1983).CAS 
    PubMed 

    Google Scholar 
    15.Kay, E. H. & Hoekstra, H. E. Rodents. Curr. Biol. 18(10), R406–R410 (2008).CAS 
    PubMed 

    Google Scholar 
    16.Auffray, J.-C., Renaud, S. & Claude, J. Rodent biodiversity in changing environments. Agric. Nat. Resour. 43(1), 83–93 (2009).
    Google Scholar 
    17.Atopkin, D., Bogdanov, A. & Chelomina, G. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 43(6), 665–676 (2007).CAS 

    Google Scholar 
    18.Zhigileva, O. Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia. Russ. J. Genet. 50(8), 838–845 (2014).CAS 

    Google Scholar 
    19.Khlyap, L. A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR. Biodivers. Data J. 9, e69159 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Klaus, S., Heldmaier, G. & Ricquier, D. Seasonal acclimation of bank voles and wood mice: Nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B. 158(2), 157–164 (1988).CAS 
    PubMed 

    Google Scholar 
    21.Haim, A., McDevitt, R. & Speakman, J. Daily variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J. Exp. Biol. 198(2), 561–565 (1995).CAS 
    PubMed 

    Google Scholar 
    22.Boratyński, J. S. & Szafrańska, P. A. Does basal metabolism set the limit for metabolic downregulation during torpor?. Physiol. Biochem. Zool. 91(5), 1057–1067 (2018).PubMed 

    Google Scholar 
    23.Bligh, J. et al. Thermoreception and Temperature Regulation (Springer, 1990).
    Google Scholar 
    24.Ijzerman, H. et al. Social thermoregulation: A meta-analysis. Psyarxiv https://doi.org/10.31234/osf.io/fc6yq (2021).Article 

    Google Scholar 
    25.Tertil, R. The effect of behavioural thermoregulation on the daily metabolism of Apodemus agrarius (Pallas, 1771). Acta Theriol. 17(22), 295–313 (1972).
    Google Scholar 
    26.Hester, P. et al. Effect of partial comb and wattle trim on pullet behavior and thermoregulation. Poult. Sci. 94(5), 860–866 (2015).CAS 
    PubMed 

    Google Scholar 
    27.Arad, Z., Midtgård, U. & Bernstein, M. H. Thermoregulation in turkey vultures: Vascular anatomy, arteriovenous heat exchange, and behavior. The Condor 91(3), 505–514 (1989).
    Google Scholar 
    28.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325(5939), 468–470 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Raman, E. R., Roberts, M. F. & Vanhuyse, V. J. Body temperature control of rat tail blood flow. Am. J. Physiol. 245(3), R426–R432 (1983).CAS 
    PubMed 

    Google Scholar 
    30.Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92(6), 2667–2679 (2002).PubMed 

    Google Scholar 
    31.O’Leary, D. S., Johnson, J. M. & Taylor, W. F. Mode of neural control mediating rat tail vasodilation during heating. J. Appl. Physiol. 59(5), 1533–1538 (1985).CAS 
    PubMed 

    Google Scholar 
    32.Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98(1), 31–48 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Scholander, P. & Krog, J. Countercurrent heat exchange and vascular bundles in sloths. J. Appl. Physiol. 10(3), 405–411 (1957).CAS 
    PubMed 

    Google Scholar 
    34.Heyning, J. E. Thermoregulation in feeding baleen whales: Morphological and physiological evidence. Aquat. Mamm. 27(3), 284–288 (2001).
    Google Scholar 
    35.Davenport, J. et al. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down. Biol. Lett. 11(10), 20150592 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    36.Dawson, N. & Keber, A. Physiology of heat loss from an extremity: The tail of the rat. Clin. Exp. Pharmacol. Physiol. 6(1), 69–80 (1979).CAS 
    PubMed 

    Google Scholar 
    37.Young, A. & Dawson, N. Evidence for on–off control of heat dissipation from the tail of the rat. Can. J. Physiol. Pharmacol. 60(3), 392–398 (1982).CAS 
    PubMed 

    Google Scholar 
    38.Škop, V. et al. Mouse thermoregulation: Introducing the concept of the thermoneutral point. Cell Rep. 31(2), 107501 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Bozinovic, F. et al. Time and energy use under thermoregulatory constraints in a diurnal rodent. J. Therm. Biol 25(3), 251–256 (2000).
    Google Scholar 
    40.Sears, M. W. et al. Out in the cold: Physiological capacity influences behaviour in deer mice. Funct. Ecol. 23(4), 774–783 (2009).
    Google Scholar 
    41.Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk?. J. Mammal. 76(3), 900–905 (1995).
    Google Scholar 
    42.Murray, I. W. & Smith, F. A. Estimating the influence of the thermal environment on activity patterns of the desert woodrat (Neotoma lepida) using temperature chronologies. Can. J. Zool. 90(9), 1171–1180 (2012).
    Google Scholar 
    43.Hoogenboom, I. et al. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31 (1984).ADS 
    CAS 
    PubMed 

    Google Scholar 
    44.Bennie, J. J. et al. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 111(38), 13727–13732 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5), 520–530 (2012).
    Google Scholar 
    46.Pigeon, K. E. et al. Staying cool in a changing landscape: The influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181(4), 1101–1116 (2016).ADS 
    PubMed 

    Google Scholar 
    47.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16(4), 1428–1444 (2011).
    Google Scholar 
    48.Morrison, P. R. & Tietz, W. J. Cooling and thermal conductivity in three small Alaskan mammals. J. Mammal. 38(1), 78–86 (1957).
    Google Scholar 
    49.Gosling, L. The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J. Zool. 187(3), 341–367 (1979).
    Google Scholar 
    50.Moinard, C., Doncaster, C. P. & Barré, H. Indirect calorimetry measurements of behavioral thermoregulation in a semiaquatic social rodent, Myocastor coypus. Can. J. Zool. 70(5), 907–911 (1992).
    Google Scholar 
    51.Scholander, P. F. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
    Google Scholar 
    52.Prestrud, P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic 44, 132–138 (1991).
    Google Scholar 
    53.Weihong, J., Veitch, C. & Craig, J. L. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 1999(23), 45–51 (1999).
    Google Scholar 
    54.Jackson, M., Hartley, S. & Linklater, W. Better food-based baits and lures for invasive rats Rattus spp. and the brushtail possum Trichosurus vulpecula: A bioassay on wild, free-ranging animals. J. Pest Sci. 89(2), 479–488 (2016).
    Google Scholar 
    55.Stryjek, R., Kalinowski, A. & Parsons, M. H, Unbiased sampling for rodents and other small mammals: How to overcome neophobia through use of an electronic-triggered live trap: A preliminary test. Front. Ecol. Evol. 7, 11 (2019).
    Google Scholar 
    56.Kilkenny, C. et al. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8(6), e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    57.Hardy, J. D. Physiology of temperature regulation. Physiol. Rev. 41(3), 521–606 (1961).CAS 
    PubMed 

    Google Scholar 
    58.Follmann, E. Behavioral thermoregulation of arctic foxes in winter. Biotelemetry 5, 36 (1978).
    Google Scholar 
    59.Rieger, I. Tail functions in ounces, Uncia uncia. Intl. Ped. Book Snow Leopards 4, 85–97 (1984).
    Google Scholar 
    60.Sokolov, V. Adaptations of mammal skin to the environment. In Mammal Skin 573–630 (University of California Press, 1993).
    Google Scholar 
    61.Donati, G. et al. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthropol. 144(3), 355–364 (2011).PubMed 

    Google Scholar 
    62.Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: A study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54(3), 285–296 (1981).
    Google Scholar 
    63.Mai, T. C. et al. Low-level radiofrequency exposure induces vasoconstriction in rats. Bioelectromagnetics 42, 455–463 (2021).CAS 
    PubMed 

    Google Scholar 
    64.Grant, R. Vasodilatation and body warming in the rat. J. Physiol. 167(2), 311 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Steen, I. & Steen, J. Thermoregulatory importance of the beaver’s tail. Comp. Biochem. Physiol. 15(2), 267–270 (1965).CAS 
    PubMed 

    Google Scholar 
    66.Mohler, F. S. & Heath, J. E. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna. Am. J. Physiol. 254(2), R389–R395 (1988).CAS 
    PubMed 

    Google Scholar 
    67.Klir, J. J., Heath, J. E. & Bennani, N. An infrared thermographic study of surface temperature in relation to external thermal stress in the Mongolian gerbil, Meriones unguiculatus. Comp. Biochem. Physiol. A 96(1), 141–146 (1990).CAS 
    PubMed 

    Google Scholar 
    68.Vejmělka, F. et al. Heat dissipation in subterranean rodents: the role of body region and social organisation. Sci. Rep. 11(1), 1–17 (2021).
    Google Scholar 
    69.Heisig, M. et al. Frostbite protection in mice expressing an antifreeze glycoprotein. PLoS ONE 10(2), e0116562 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    70.Cilulko, J. et al. Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013).
    Google Scholar 
    71.Auerbach, L. J. et al. A novel mouse model for frostbite injury. Wilderness Environ. Med. 24(2), 94–104 (2013).MathSciNet 
    PubMed 

    Google Scholar 
    72.Phifer-Rixey, M. & Nachman, M. W. The Natural History of Model Organisms: Insights into mammalian biology from the wild house mouse Mus musculus. Elife 4, e05959 (2015).PubMed Central 

    Google Scholar  More

  • in

    Effects of species and geo-information on the 137Cs concentrations in edible wild mushrooms and plants collected by residents after the Fukushima nuclear accident

    Site informationWe collected radioactivity data of wild mushrooms and wild edible plants from inspection results of specimens brought in by residents in Kawauchi Village, which is located 12–30 km away from the FDNPP (Fig. 1). Kawauchi Village is considered small, with an area of 197.4 km2, and a population of about 2500 (2820 in 2010 and 2518 in 2021)48. It is located in the middle of the Abukuma Highlands, where the elevation ranges from 270 to 1,192 m above the sea level. It has a forest coverage of 89.0%, which is higher than the average for Fukushima Prefecture (71%) and Japan as a whole (69%)49. 137Cs deposition in the village ranged from 42 to 960 kBq/m2 in 2011, estimated from an aircraft monitoring28. Before the accident, its residents were accustomed to gathering wild foods, such as wild edible mushrooms, plants, mammals, and wild honey50; many have been brought in for inspection. Information on collection areas of sub-village levels, called “Ko-aza” in Japanese, is also recorded. For these reasons, we thought that the data of the brought in inspection in Kawauchi Village would possess high value as data for inter-species and inter-region analysis on the wild mushrooms and edible plants’ radioactivity concentrations.Radioactivity data of mushrooms and wild plantsFukushima Prefecture sets up a system for each municipality to inspect radioactivity in vegetables and mushrooms consumed by residents, and Kawauchi Village started its inspection program in May 2012. Simple inspection machines are set up at public facilities, and inspections are conducted upon application by residents. In Kawauchi Village, the location of samples inspected was requested at the sub-village level. The inspection results were regularly reported in the village newsletter, along with the inspection date, inspected food, and collection location. The data compiled from May 2012 to March 2020 was provided to us through the village officials. Orita et al. analyzed the same inspection data of agricultural products in Kawauchi Village24. They used 7668 food data from April 2013 to December 2014, including 1986 wild plants and mushrooms data for internal radiation exposure assessment. Some of their data overlap with the data used in our analyses.System of monitoring radioactivity in Kawauchi VillageKawauchi Village started the brought in inspection in May 2012, and there is a maximum of eight inspection stations and currently three stations managed by residents. In the inspection sites, there are four types of NaI (Tl) or CsI (Tl) scintillation detectors. The machine names are Triathler Becquerel Finder (Hidex, Oy, Finland), Captus-3000A (Capintec, NJ), CAN-OSP-NAI (Hitachi Aloka, Tokyo, Japan), and FD-08Cs1000-1 (X-Ray Technology, Osaka, Japan). Table S4 shows the specifications of the machines51,52,53. All instruments have been confirmed to meet the radiocesium screening method requirements for food53. Among these machines, FD-08Cs1000-1 can measure radioactivity non-destructively, and the others conduct destructive measurements. The sample weight is approximately 500 g, and the counting time is 30 min. FD-08Cs1000-1 outputs the summed concentration of the two radiocesium nuclides (134Cs and 137Cs), and its detection limit is 10 Bq/kg (for total 134Cs + 137Cs). Each of the other three machines separately outputs the concentrations of 134Cs and 137Cs, and the detection limit is 10 Bq/kg for each radionuclide. Energy calibrations and background checks were performed daily, and the accuracy was periodically verified with brown rice whose radiocesium concentration was verified by calibrated high-purity Germanium (HPGe) detectors installed in the Fukushima Nuclear Center49. Table S4 shows the results of quality control using brown rice.Data preparation of radioactivity of samplesFrom the radioactivity data of wild mushrooms and plants, we picked up data that met the following criteria;

    Data have information of sampling location at sub-village levels

    Items that are not confirmed to be cooked products such as “boiled” or “dried.”

    Species with more than ten samples in which radiocesium was detected.

    In cases where mushrooms and wild plants were given in dialects, we confirmed the species’ names with residents. The names of the species were determined from the Japanese names of the items, but in some cases, it was not possible to distinguish between Cortinarius salor (“Murasakiaburashimejimodoki” in Japanese) and C. iodes (“Murasakiaburashimeji”), considered to be closely related species, so the two were mixed for analysis. The leaf stalk and scape of Petasites japonicus (Japanese butterbur) are called “Fuki” and “Fukinotou” in Japanese, respectively, and are registered separately. Therefore, despite being the same species, they were distinguished in the analysis. In this data, there were not sampling date but measurement date. Therefore, the date of measurement and sample collection were assumed to be the same.The 137Cs concentration results were used in the model analysis. The reason for not using the134Cs concentration among the measured values is explained in the subsection of “Bayesian estimation”. 137Cs concentrations were decay-corrected to March 11th, 2011 for comparison with Komatsu et al. (2019). Based on the assumption that the 134Cs/137Cs ratio at the time of the accident was one54, the summed concentration of 134Cs and 137Cs concentration taken by FD08-Cs1000-1 was converted to a 137Cs concentration, which was decay-corrected to March 11th, 2011, using the following equation;$${}^{137}C{s}_{2011/03/11}=tC{s}_{mathrm{sampling}_mathrm{day}}*frac{{0.5}^{dy/30.17}}{{0.5}^{dy/2.065}+{0.5}^{dy/30.17}}$$In this equation, dy indicates the period from March 11th, 2011, to the date of measuring, and it is expressed by decimal years.Sub-village (“Ko-aza”) boundary map of Kawauchi VillageKawauchi Village comprises eight administrative communities (called “Oh-aza” in Japanese), which are further subdivided into small administrative units known as “Ko-aza”. Here, we refer to these small administrative units as sub-villages. We obtained a sub-village map from the administrative office. The printed map was originally drawn by hand and had been used for village administration. To create a polygon shapefile of the map, we digitized it by scanning, geo-rectifying, and digitizing using GIS software in TNTmips v2014 (MicroImages, Inc, NE) and ArcGIS 10.3 (Esri, Inc, CA). We used this map to associate land names with monthly radioactivity data from samples and to estimate sample collection locations.Deposition dataFor the 137Cs deposition data of this area, we used 250 m grid deposition data measured by the Ministry of Education, Culture, Sports, Science and Technology28,55 and then corrected by Kato and Onda26. We computed the geometric mean value of 137Cs deposition within each sub-village polygon. The 137Cs deposition is also decay-corrected to March 11th, 2011.Bayesian estimationWe constructed a Bayesian model partially modified from Komatsu et al.22 to estimate 137Cs concentration (137Cssample). The model is based on the Gonze and Calmon’s concept of normalized concentration (NC) as expressed by:$$NC= frac{Cs}{D}$$where D indicates the radiocesium deposition amount based on the aircraft monitoring. Then the above equation is transformed and logarithmized to yield;$$mathrm{log}Cs=mathrm{log}NC+mathrm{log}D$$In this expression of the model equation, we further assumed that the logartihm of NC encompassed the summed effects of species identity, collection date, and collection site, and that the logarithm of NC was normally distributed around the estimated mean as per the following equations;$$begin{array}{l}{text{log}}_{10}{hspace{0.17em}}^{137}C{s}_{mathrm{sample}} sim Normal({mu }_{mathrm{sample}},sigma )\ {mu }_{mathrm{sample}} ={text{log}}_{10}N{C}_{mathrm{sp}}+{lambda }_{mathrm{sp}}Y+{text{log}}_{10}{D}_{mathrm{loc}}+{r}_{mathrm{loc}}\ {text{log}}_{10}N{C}_{mathrm{sp}} sim Normal({mu }_{mathrm{sp}},{sigma }_{mathrm{sp}})\ {lambda }_{mathrm{sp}} sim Normal({mu }_{mathrm{lambda sp}},{sigma }_{mathrm{lambda sp}})\ {r}_{mathrm{loc}} sim Normal(0,{sigma }_{mathrm{loc}})end{array}$$where NCsp, λsp, Dloc and rloc indicate characteristics of concentration of species, temporal trends of species, 137Cs deposition of each sub-village area and effects of sub-village on concentration, respectively. rloc is a parameter with zero mean that represents the deviation of the concentration effect from the expected value based on the deposition (Dloc) value at the point of collection. These parameters except Dloc were obtained from hierarchically sampled from normal distribution with hierarchical parameters (μsp, σsp, μλsp, σλsp, σloc). Additionally, rloc was sampled using the Intrinsic Conditional Auto-Regressive (Intrinsic CAR) model56, which is one of the models considering spatial auto-correlation. For samples whose measured radiocesium concentrations were below the detection limit, radiocesium concentration values were estimated by a censoring distribution in which the detection limit was treated as the upper bound57. This model was defined as the “sub-village model” for this research. This model is similar to model 6 in Komatsu et al.22 but differs in that their previous model takes into account 134Cs values and differences between 134 and 137Cs values. Komatsu et al. evaluated the regional trend in the difference between134Cs and 137Cs concentrations across eastern Japan because 137Cs originating from nuclear bomb tests before the FDNPP accident was detected in wild mushrooms sampled in the northern and southern parts of eastern Japan, which are far from the FDNPP and received less deposition from the accident ( More

  • in

    Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

    1.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).CAS 
    PubMed 

    Google Scholar 
    2.Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    3.Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    PubMed 

    Google Scholar 
    5.Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).6.de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    7.Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).CAS 

    Google Scholar 
    10.Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).PubMed 
    ADS 

    Google Scholar 
    12.Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    13.Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).Article 
    PubMed 

    Google Scholar 
    15.Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    PubMed 

    Google Scholar 
    16.Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).PubMed 

    Google Scholar 
    17.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).
    Google Scholar 
    20.O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    22.Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 

    Google Scholar 
    23.Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    24.Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).PubMed 

    Google Scholar 
    25.Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).
    Google Scholar 
    26.Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    27.Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).CAS 
    PubMed 

    Google Scholar 
    29.McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    30.Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
    Google Scholar 
    31.Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    33.Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).
    Google Scholar 
    35.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 

    Google Scholar 
    36.Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).ADS 

    Google Scholar 
    37.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).
    Google Scholar 
    39.Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).PubMed 

    Google Scholar 
    40.Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).PubMed Central 

    Google Scholar 
    41.Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).
    Google Scholar 
    42.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).
    Google Scholar 
    44.Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 

    Google Scholar 
    46.Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).
    Google Scholar 
    47.Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).
    Google Scholar 
    48.Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).
    Google Scholar 
    49.Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    51.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar  More

  • in

    Shallow-emerged coral may warn of deep-sea coral response to thermal stress

    1.Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).Article 

    Google Scholar 
    2.Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).3.Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).Article 

    Google Scholar 
    4.Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).Article 

    Google Scholar 
    5.Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).6.Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).7.Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).8.Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).MathSciNet 
    Article 

    Google Scholar 
    9.Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).10.Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).11.Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).13.Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).Article 

    Google Scholar 
    14.Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).
    Google Scholar 
    15.Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. A, John Wiley and Sons Ltd, UK (1999).16.National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).17.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    18.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    19.Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).
    Google Scholar 
    20.Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).Article 

    Google Scholar 
    22.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    23.Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).Article 

    Google Scholar 
    24.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).26.Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    28.Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).ADS 
    Article 

    Google Scholar 
    33.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    34.Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).ADS 
    Article 

    Google Scholar 
    35.Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).Article 

    Google Scholar 
    37.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    38.Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).Article 

    Google Scholar 
    39.Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).Article 

    Google Scholar 
    40.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).Article 

    Google Scholar 
    41.Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).Article 

    Google Scholar 
    42.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).Article 

    Google Scholar 
    45.Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).Article 

    Google Scholar 
    47.IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.48.Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).Article 

    Google Scholar 
    49.Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Microbes in a sea of sinking particles

    1.Alcolombri, U. et al. Nat. Geosci. 14, 775–780 (2021).CAS 
    Article 

    Google Scholar 
    2.Briggs, N., Dall’Olmo, G. & Claustre, H. Science 367, 791–793 (2020).CAS 
    Article 

    Google Scholar 
    3.Azam, F. Science 280, 694–696 (1998).CAS 
    Article 

    Google Scholar 
    4.Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Nature 568, 327–335 (2019).CAS 
    Article 

    Google Scholar 
    5.Steinberg, D. K. et al. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    6.Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Mar. Biol. 116, 689–702 (1993).Article 

    Google Scholar 
    7.Mende, D. R. et al. Nat. Microbiol. 2, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    8.Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Nat. Commun. 9, 2743 (2018).Article 

    Google Scholar 
    9.Trull, T. W. et al. 55, 1684–1695 (2008).10.Bressac, M. et al. Nat. Geosci. 12, 995–1000 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Hot and cold water

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate

    Acrylic and polydimethylsiloxane (PDMS) molds preparationThe incubating device for the porous microplate was designed using a CAD software (Solidworks, Dassault Systèmes) and the exported drawing files were used to laser cut 1/4” and 1/8” acrylic sheet (Universal Laser Systems; Supplementary Fig. S2). After washing the cut acrylic parts with deionized water, they were attached by acrylic (Weld-On) and epoxy (3 M) adhesives that were followed by a curing process for ~18 h. Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was cast onto the acrylic mold and cured at 80 °C for at least 3 h. The PDMS mold was carefully detached from the acrylic surface by dispensing isopropyl alcohol (VWR) into the area between the PDMS and the acrylic molds (Fig. 2a).Fig. 2: Synthesis and characterization of porous microplate.a Procedure to build a porous microplate using polydimethylsiloxane (PDMS) and acrylic molds. b Image of the microplate with an array of culture wells (wall thickness: 0.9 mm). c Scanning electron microscopy image of nanoporous copolymer HEMA–EDMA.Full size imagePorous microplate preparationSynthesis of copolymer HEMA–EDMA was based on previously described protocols [30, 31] and details are given as follows. Prepolymer solution HEMA − EDMA was prepared by mixing 2-hydroxyethyl methacrylate (HEMA; monomer, 24 wt.%, Sigma-Aldrich), ethylene glycol dimethacrylate (EDMA; crosslinker, 16 wt.%, Sigma-Aldrich), 1-decanol (porogen, 12 wt.%, Sigma-Aldrich), cyclohexanol (porogen, 48 wt.%, Sigma-Aldrich) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP; photoinitiator, 1 wt.%). The solution was stored at room temperature without light exposure until further use. Glass slides (75 × 50 mm2, VWR) were chemically cleaned by sequentially soaking in 1 M hydrochloric acid and 1 M sodium hydroxide for one hour, followed by rinsing with deionized water and air drying. The prepolymer solution was cast onto the PDMS mold and a glass slide was placed on the mold. The solution was then polymerized under ultraviolet light with a wavelength 365 nm for 15 min by using a commercial UV lamp (VWR). The photopolymerized device was detached from the PDMS mold and stored in a jar containing methanol (VWR) until further use (Fig. 2a). The jar was refilled with new methanol twice in order to remove the remaining porogen and uncrosslinked monomers from the hydrogel.Upon each incubation experiment with the porous microplate, each device was decontaminated by replacing the solvent with 70% alcohol (VWR) and storing it for 24 h. They were immersed in a pre-autoclaved jar for two weeks with f/2 medium with omitted silicate, where the jar was refilled once with a new sterile medium to adjust its pH for the algal culture and remove any solvent remaining in the hydrogel. Before inoculating microbial cells, each microplate was taken out from the jar and the media remaining on the top surface was removed by absorbing it with a pre-sterilized wipe to minimize the chance for cross-contamination between wells (Fig. 2b).Scanning electron microscopyPhotopolymerized HEMA − EDMA was removed from methanol and dried in air for at least one week to evaporate the excess solvent. A ~5 × 5 mm2 specimen was collected from the dried copolymer and attached to a pin stub. The stub was loaded on a scanning electron microscope (SEM; MERLIN, Carl Zeiss), and the specimen was characterized with imaging software (SmartSEM, Carl Zeiss) with 16,270X magnification and an operating voltage of 1 kV. The SEM imaging was performed at the Electron Microscopy Facility in the MIT Materials Research Science and Engineering Centers (MRSEC; Fig. 2c).Strains and culturing conditionsAxenic P. tricornutum CCMP 2561 was acquired from the National Center for Marine Algae and Microbiota (NCMA) and shown to be axenic via epifluorescence microscopy and sequencing of the 16 S rRNA gene [11]. P. tricornutum was maintained in f/2 medium with 20 g L−1 commercially available sea salts (Instant Ocean, Blacksburg) and with omitted silicate, which we will refer to as f/2-Si [11, 16]. Batch cultures were grown at 20 °C with a 12 h light/12 h dark diurnal cycle and a light intensity of 200 μmol photons m−2 s−1 (Exlenvce). Every 2–3 weeks, axenic cultures were monitored for bacterial contamination by streaking culture samples on marine broth agar [33], that tests for contamination by bacteria that can grow on agar media and is not definitive. Every 6–12 months, every axenic and bacterial co-culture of P. tricornutum was inspected for the absence/presence of bacteria by staining the cellular DNA with 0.1% v/v SYTO BC Green Fluorescent Acid Stain (Thermofisher, Supplementary Fig. S1).Bacterial community samples (referred to as “phycosphere enrichments”) were obtained from mesocosms of P. tricornutum and maintained as previously described [11, 16]. Briefly, an outdoor P. tricornutum mesocosm sample in natural seawater was collected in Corpus Christi, TX and filtered with 0.6–1 µm pores to remove larger algal cells. The bacterial filtrates were inoculated to an axenic algal culture, maintained in f/2-Si media for ~3 months, and washed with a sterile medium to enrich for phycosphere-associated bacteria. These enriched communities were subsequently co-cultured with P. tricornutum in f/2-Si media for ~4 years prior to the start of the experiments.Two bacterial strains, Marinobacter sp. 3-2 and Algoriphagus sp. ARW1R1, were isolated from the phycosphere enrichment samples (Supplementary Table S1). The isolates were either maintained by growing on marine broth agar plates at 30 °C or by co-culturing with P. tricornutum through inoculation of a single colony into the axenic culture.
    P. tricornutum culture in porous microplateThree baseline experiments were designed to study how the alga P. tricornutum interacts with its associated bacteria in the porous microplate (Fig. 1). For experiments assessing the algal growth in the microplate, axenic P. tricornutum was acclimated to a copolymer environment in advance by inoculating a stationary phase-culture to a separate microplate. After acclimation for 4 days, the culture was diluted to ~1 × 106 cells ml−1 and transferred to the experimental microplate. Three replicated microplates were placed in a single transparent covered container (128 × 85 × 10 mm3, VWR) which was filled with ~25 ml f/2-Si medium to keep the microplate hydrated throughout the incubation period of 20 days with an initial culture volume of 75 µl (Fig. 1a). The procedures were conducted under a biosafety cabinet to prevent any biological contamination. The cells were incubated under the same conditions as described above for the batch cultures (temperature, light intensity, diurnal cycle).Growth of P. tricornutum was measured by counting cells using a hemocytometer (Electron Microscopy Sciences) or flow cytometry (described later). Specific growth rates were calculated from the natural log of the cell densities in triplicate sampled during an exponential growth phase (day 3 for the batch culture, day 5 for the porous microplate system; Fig. 3a).Fig. 3: Cultivation of P. tricornutum in the porous microplate.a Schematic of a microplate for algal cultivation. b Growth curve and maximal growth rate (inset) comparing the porous microplate with flask culture. Error bars, standard deviation of triplicates. c Cell abundance at center (n = 3) and surrounding (n = 18) wells after incubation. Asterisks denote statistical differences with following levels (two-tailed t-test): ***P  More

  • in

    Harmonizing climate-smart and sustainable agriculture

    1.Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (in the press); https://www.ipcc.ch/srccl/chapter/chapter-5/2.Jägermeyr, J. et al. Nat. Food https://doi.org/10.1038/s43016-021-00400-y (2021).3.Rosenzweig, C. et al. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Fischer, T., Byerlee, D. & Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158 (Australian Centre for International Agricultural Research, 2014).5.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Part A (Cambridge Univ. Press, 2014).6.Dang, H. L., Li, E., Nuberg, I. & Bruwer, J. Clim. Dev. 11, 765–774 (2019).Article 

    Google Scholar 
    7.Peng, B. et al. Nat. Plants 6, 338–348 (2020).Article 

    Google Scholar 
    8.Song, X.-P. et al. Nat. Sustain. 4, 784–792 (2021).Article 

    Google Scholar 
    9.Rosenzweig, C. & Tubiello, F. N. Mitig. Adapt. Strat. Glob. Chang. 12, 855–873 (2007).Article 

    Google Scholar 
    10.Smith, P. & Olesen, J. E. J. Agric. Sci. 148, 543–552 (2010).CAS 
    Article 

    Google Scholar 
    11.Lobell, D. B., Baldos, U. L. C. & Hertel, T. W. Environ. Res. Lett. 8, 015012 (2013).ADS 
    Article 

    Google Scholar 
    12.Springmann, M. et al. Nature 562, 519–525 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Gerten, D. et al. Nat. Sustain. 3, 200–208 (2020).Article 

    Google Scholar 
    14.Chang, J. et al. Nat. Food 2, 700–711 (2021).Article 

    Google Scholar 
    15.Ruane, A. C. et al. Environ. Res. Lett. 12, 125003 (2017).ADS 
    Article 

    Google Scholar  More