More stories

  • in

    Shift in demographic structure and increased reproductive activity of loggerhead turtles in the French Mediterranean Sea revealed by long-term monitoring

    1.Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, 1–6 (2008).
    Google Scholar 
    2.Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 12, 450–455 (2006).ADS 

    Google Scholar 
    3.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 

    Google Scholar 
    4.Ford, K. R., Harrington, C. A., Bansal, S., Gould, P. J. & StClair, J. B. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob. Chang. Biol. 22, 3712–3723 (2016).ADS 
    PubMed 

    Google Scholar 
    5.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279, 3843–3852 (2012).
    Google Scholar 
    6.Gérard, M. et al. Shift in size of bumblebee queens over the last century. Glob. Chang. Biol. 26, 1185–1195 (2020).ADS 
    PubMed 

    Google Scholar 
    7.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Ozgul, A. et al. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Walther, G. R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 365, 2019–2024 (2010).
    Google Scholar 
    10.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 
    11.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 

    Google Scholar 
    12.Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7, 87–99 (2009).ADS 

    Google Scholar 
    13.Lohmann, K. J., Lohmann, C. M. F., Brothers, J. R. & Putman, N. F. Natal homing and imprinting in sea turtles. in The biology of sea turtles, volume III (eds. Wyneken, J., Lohmann, K. J. & Musick, J. A.) 59–78 (2013).14.Hays, G. C. & Scott, R. Global patterns for upper ceilings on migration distance in sea turtles and comparisons with fish, birds and mammals. Funct. Ecol. 27, 748–756 (2013).
    Google Scholar 
    15.Poloczanska, E. S., Limpus, C. J. & Hays, G. C. Vulnerability of marine turtles to climate change. Adv. Mar. Biol. 56, 151–211 (2009).PubMed 

    Google Scholar 
    16.Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. Climate change and marine turtles. Endanger. Species Res. 7, 137–154 (2009).
    Google Scholar 
    17.Fuentes, M. M. P. B., Limpus, C. J. & Hamann, M. Vulnerability of sea turtle nesting grounds to climate change. Glob. Chang. Biol. 17, 140–153 (2011).ADS 

    Google Scholar 
    18.Patrício, A., Hawkes, L., Monsinjon, J., Godley, B. & Fuentes, M. Climate change and marine turtles: Recent advances and future directions. Endanger. Species Res. 44, 363–395 (2021).
    Google Scholar 
    19.Mazaris, A. D., Kallimanis, A. S., Sgardelis, S. P. & Pantis, J. D. Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. J. Exp. Mar. Biol. Ecol. 367, 219–226 (2008).
    Google Scholar 
    20.Almpanidou, V., Katragkou, E. & Mazaris, A. D. The efficiency of phenological shifts as an adaptive response against climate change: a case study of loggerhead sea turtles (Caretta caretta) in the Mediterranean. Mitig. Adapt. Strateg. Glob. Chang. 23, 1143–1158 (2018).
    Google Scholar 
    21.Monsinjon, J. R. et al. The climatic debt of loggerhead sea turtle populations in a warming world. Ecol. Indic. 107, 105657 (2019).
    Google Scholar 
    22.Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213, 901–911 (2010).CAS 
    PubMed 

    Google Scholar 
    23.Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. Investigating the potential impacts of climate change on a marine turtle population. Glob. Chang. Biol. 13, 923–932 (2007).ADS 

    Google Scholar 
    24.Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider mediterranean region. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    25.Revelles, M. et al. Mesoscale eddies, surface circulation and the scale of habitat selection by immature loggerhead sea turtles. J. Exp. Mar. Bio. Ecol. 347, 41–57 (2007).
    Google Scholar 
    26.Witt, M. J. et al. Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic. Mar. Ecol. Prog. Ser. 337, 231–243 (2007).ADS 

    Google Scholar 
    27.Hamann, M. et al. Global research priorities for sea turtles: Informing management and conservation in the 21st century. Endanger. Species Res. 11, 245–269 (2010).
    Google Scholar 
    28.Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e1235 (2010).
    Google Scholar 
    29.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    30.Parry, M. L. Assessment of Potential Effects and Adaptations for Climate Change in Europe: the Europe ACACIA Project (University of East Anglia, 2000).
    Google Scholar 
    31.Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).PubMed 

    Google Scholar 
    32.Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
    Google Scholar 
    33.Kim, G.-U., Seo, K.-H. & Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 9, 18813 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Casale, P. et al. Mediterranean sea turtles: Current knowledge and priorities for conservation and research. Endanger. Species Res. 36, 229–267 (2018).
    Google Scholar 
    35.Margaritoulis, D. et al. Loggerhead turtles in the mediterranean: present knowledge and conservation perspectives. In Biology and Conservation of Loggerhead Sea Turtles (eds Bolten, A. & Witherington, B.) 175–198 (Smithsonian Institution Press, 2003).
    Google Scholar 
    36.Wallace, B. P. et al. Regional management units for marine turtles: A novel framework for prioritizing conservation and research across multiple scales. PLoS ONE 5, 1–11 (2010).
    Google Scholar 
    37.Casale, P., Freggi, D., Basso, R., Vallini, C. & Argano, R. A model of area fidelity, nomadism, and distribution patterns of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea. Mar. Biol. 152, 1039–1049 (2007).
    Google Scholar 
    38.Carreras, C., Pont, S., Maffucci, F., Sanfe, M. & Aguilar, A. Genetic structuring of immature loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea reflects water circulation patterns. Mar. Biol. 149, 1269–1279 (2006).
    Google Scholar 
    39.Clusa, M. et al. Fine-scale distribution of juvenile Atlantic and Mediterranean loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Mar. Biol. 161, 509–519 (2014).
    Google Scholar 
    40.Maffucci, F., Kooistra, W. H. C. F. & Bentivegna, F. Natal origin of loggerhead turtles, Caretta caretta, in the neritic habitat off the Italian coasts, Central Mediterranean. Biol. Conserv. 7, 3–9 (2005).
    Google Scholar 
    41.Carreras, C. et al. Sporadic nesting reveals long distance colonisation in the philopatric loggerhead sea turtle (Caretta caretta). Sci. Rep. 8, 1–14 (2018).ADS 

    Google Scholar 
    42.Maffucci, F. et al. Seasonal heterogeneity of ocean warming: A mortality sink for ectotherm colonizers. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    43.Casale, P. & Tucker, A. D. Caretta caretta (amended version of 2015 assessment). IUCN Red List Threat. Species 2017 e.T3897A119333622 (2017).44.Casale, P. et al. Sea turtle strandings reveal high anthropogenic mortality in Italian waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 611–620 (2010).
    Google Scholar 
    45.Tomás, J., Gozalbes, P., Raga, J. A. & Godley, B. J. Bycatch of loggerhead sea turtles: Insights from 14 years of stranding data. Endanger. Species Res. 5, 161–169 (2008).
    Google Scholar 
    46.Loisier, A. et al. Genetic composition, origin and conservation of loggerhead sea turtles (Caretta caretta) frequenting the French Mediterranean coasts. Mar. Biol. 168, 15 (2021).
    Google Scholar 
    47.Garofalo, L. et al. Genetic characterization of central Mediterranean stocks of the loggerhead turtle (Caretta caretta) using mitochondrial and nuclear markers, and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 868–884 (2013).
    Google Scholar 
    48.MedECC. Climate and environmental change in the Mediterranean basin: Current situation and risks for the future. in First Mediterranean Assessment Report (eds. Cramer, W., Guiot, J. & Marini, K.) 600 (2020).49.Pastor, F., Valiente, J. A. & Khodayar, S. A Warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12, 2687 (2020).ADS 

    Google Scholar 
    50.Shaltout, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56, 411–443 (2014).
    Google Scholar 
    51.Delaugerre, M. Status of marine turtles in the Mediterranean (with particular reference to Corsica). Vie Milieu 37, 243–264 (1987).
    Google Scholar 
    52.Delaugerre, M. & Cesarini, C. Confirmed nesting of the loggerhead turtle in Corsica. Mar. Turt. Newsle. 104, 12 (2004).
    Google Scholar 
    53.Gérigny, O. et al. Hatching events of the loggerhead turtle in Corsica Island, France. Mar. Turt. Newsl. 161, 15–18 (2020).
    Google Scholar 
    54.Sénégas, J.-B., Hochscheid, S., Groul, J.-M., Lagarrigue, B. & Bentivegna, F. Discovery of the northernmost loggerhead sea turtle (Caretta caretta) nest. Mar. Biodivers. Rec. 2, 1–4 (2009).
    Google Scholar 
    55.Gérigny, O., Delaugerre, M. & Cesarini, C. Love is a losing game. Loggerhead turtle in corsica vs tourism = nesting failure. Mar. Turt. Newsl. 148, 12–14 (2016).
    Google Scholar 
    56.Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 

    Google Scholar 
    57.Cardona, L. & Hays, G. C. Ocean currents, individual movements and genetic structuring of populations. Mar. Biol. 165, 1–10 (2018).
    Google Scholar 
    58.Hochscheid, S., Bentivegna, F., Bradai, M. N. & Hays, G. C. Overwintering behaviour in sea turtles: Dormancy is optional. Mar. Ecol. Prog. Ser. 340, 287–298 (2007).ADS 

    Google Scholar 
    59.Revelles, M. et al. Tagging reveals limited exchange of immature loggerhead sea turtles (Caretta caretta) between regions in the western Mediterranean. Sci. Mar. 72, 511–518 (2008).
    Google Scholar 
    60.Revelles, M., Cardona, L., Aguilar, A., San Félix, M. & Fernández, G. Habitat use by immature loggerhead sea turtles in the Algerian Basin (western Mediterranean): Swimming behaviour, seasonality and dispersal pattern. Mar. Biol. 151, 1501–1515 (2007).
    Google Scholar 
    61.Casale, P. et al. Long-term residence of juvenile loggerhead turtles to foraging grounds: A potential conservation hotspot in the Mediterranean. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 144–154 (2012).
    Google Scholar 
    62.Benabdi, M. & Belmahi, A. E. First record of loggerhead turtle (Caretta caretta) nesting in the Algerian coast (southwestern Mediterranean). J. Black Sea/Mediterranean Environ. 26, 100–105 (2020).
    Google Scholar 
    63.Bradai, M. N. & Karaa, S. Première mention de la nidification de la tortue caouanne Caretta caretta sur la plage zouaraa (Nord de la Tunisie). Bull l’Inst. Natl. Sci. Technol. Mer Salammbô 44, 203–206 (2017).
    Google Scholar 
    64.Casale, P., Hochscheid, S., Kaska, Y. & Panagopoulou, A. Sea turtles in the Mediterranean region: MTSG annual regional report 2020. Rep. IUCN-SSC Mar. Turtl. Spec. Group 2020, 331 (2020).
    Google Scholar 
    65.Gonzalez-Paredes, D., Fernández-Maldonado, C., Grondona, M., Martínez-Valverde, R. & Marco, A. The westernmost nest of a loggerhead sea turtle, Caretta caretta (Linnaeus 1758), registered in the Mediterranean Basin (Testudines, Cheloniidae). Herpetol. Notes 14, 907–912 (2021).
    Google Scholar 
    66.Howard, R. & Bell, I. Thermal tolerances of sea turtle embryos: current understanding and future directions. Endanger. Species Res. 26, 75–86 (2014).
    Google Scholar 
    67.Yntema, C. L. & Mrosovsky, N. Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Can. J. Zool. 60, 1012–1016 (1982).
    Google Scholar 
    68.Kaska, Y., Downie, R., Tippett, R. & Furness, R. W. Natural temperature regimes for loggerhead and green turtle nests in the eastern Mediterranean. Can. J. Zool. 76, 723–729 (1998).
    Google Scholar 
    69.Fisher, L. R., Godfrey, M. H. & Owens, D. W. Incubation temperature effects on hatchling performance in the loggerhead sea turtle (Caretta caretta). PLoS ONE 9, 1–22 (2014).
    Google Scholar 
    70.Mrosovsky, N., Kamel, S., Rees, A. F. & Margaritoulis, D. Pivotal temperature for loggerhead turtles (Caretta caretta) from Kyparissia Bay, Greece. Can. J. Zool. 80, 2118–2124 (2002).
    Google Scholar 
    71.Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 8, 972–980 (2018).ADS 

    Google Scholar 
    72.Pastor, F., Valiente, J. A. & Palau, J. L. Sea surface temperature in the Mediterranean: Trends and spatial patterns (1982–2016). Pure Appl. Geophys. 175, 4017–4029 (2018).ADS 

    Google Scholar 
    73.Sakalli, A. Sea surface temperature change in the Mediterranean sea under climate change: A linear model for simulation of the sea surface temperature up to 2100. Appl. Ecol. Environ. Res. 15, 707–716 (2017).
    Google Scholar 
    74.Mazaris, A. D., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Sea surface temperature variations in core foraging grounds drive nesting trends and phenology of loggerhead turtles in the Mediterranean Sea. J. Exp. Mar. Biol. Ecol. 379, 23–27 (2009).
    Google Scholar 
    75.Fuentes, M. M. P. B., Pike, D. A., Dimatteo, A. & Wallace, B. P. Resilience of marine turtle regional management units to climate change. Glob. Chang. Biol. 19, 1399–1406 (2013).ADS 
    PubMed 

    Google Scholar 
    76.Fuentes, M. M. P. B. et al. Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA. Reg. Environ. Chang. 20, 104 (2020).
    Google Scholar 
    77.Lorne, J. & Salmon, M. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 3, 23–30 (2007).
    Google Scholar 
    78.Camiñas, J. A. et al. Conservation of Marine Turtles in the Mediterranean Sea (IUCN Center for Mediterranean Cooperation, 2020).
    Google Scholar 
    79.Casale, P. Sea turtle by-catch in the Mediterranean. Fish Fish. 12, 299–316 (2011).
    Google Scholar 
    80.Wallace, B. P. et al. Global patterns of marine turtle bycatch. Conserv. Lett. 3, 131–142 (2010).
    Google Scholar 
    81.Sacchi, J. et al. France. in Sea Turtles in the Mediterranean Region: MTSG Annual Regional Report 2020.Report of the IUCN-SSC Marine Turtle Specialist Group, 2020. (eds. Casale, P., Hochscheid, S., Kaska, Y. & Panagopoulou, A.) 115–143 (2020).82.Santos, B. S., Friedrichs, M. A. M., Rose, S. A., Barco, S. G. & Kaplan, D. M. Likely locations of sea turtle stranding mortality using experimentally-calibrated, time and space-specific drift models. Biol. Conserv. 226, 127–143 (2018).
    Google Scholar 
    83.Ministère de l’environnement de l’énergie et de la mer. Arrêté portant dérogation a la protection stricte des espèces. (2016). http://gtmf.mnhn.fr/wp-content/uploads/sites/13/2016/12/arrete-subdelegation-MNHN-cartes-vertes-tortues-marines_signe_251020161.pdf.84.Ministère de la transition écologique & Ministère de la mer. Arrêté portant dérogation a la protection stricte des espèces. (2020). https://www.patrinat.fr/sites/patrinat/files/atoms/files/2021/01/20201230-arrete_subdelegation_mnhn_tm_2021-2026_-_vf_signe.pdf.85.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).86.Casale, P., Freggi, D., Basso, R. & Argano, R. Size at male maturity, sexing methods and adult sex ratio in loggerhead turtles (Caretta caretta) from Italian waters investigated through tail measurements. Herpetol. J. 15, 145–148 (2005).
    Google Scholar  More

  • in

    Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic

    1.Stocker, T. F. et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).2.Jones, M. W. et al. Climate change increases risk of wildfires. ScienceBrief Review 116, 117 (2020).
    Google Scholar 
    3.Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters 15, 030201 (2020).
    Google Scholar 
    4.Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Acadam of Science 110, 6442–6447 (2013).CAS 

    Google Scholar 
    5.Donovan, G. H. & Brown, T. C. Be careful what you wish for: the legacy of Smokey Bear. Frontiers in Ecology and the Environment 5, 73–79 (2007).
    Google Scholar 
    6.Ghil, M. Natural climate variability. Encyclopedia Global Environmental Change 1, 544–549 (2002).
    Google Scholar 
    7.Hinnov, L. A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geological Society of America Bulletin 125, 1703–1734 (2013).
    Google Scholar 
    8.Lantink, M. L., Davies, J. H., Mason, P. R., Schaltegger, U. & Hilgen, F. J. Climate control on banded iron formations linked to orbital eccentricity. Nature Geoscience 12, 369–374 (2019).CAS 

    Google Scholar 
    9.Berger, A. Milankovitch theory and climate. Reviews of Geophysics 26, 624–657 (1988).
    Google Scholar 
    10.Laskar, J. Astrochronology in Geological Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 139–158 (Elsevier, 2020).11.Shackleton, N. J. & Pisias, S. N. Atmospheric carbon dioxide, orbital forcing, and climate. The Carbon Cycle and Atmospheric ({CO}_{2}): Natural Variations Archean to Present, Geophysics Monograph Series 32, 303–317 (1985).12.Huybers, P. & Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005).CAS 

    Google Scholar 
    13.Kutzbach, J. E., Liu, X., Liu, Z. & Chen, G. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dynamics 30, 567–579 (2008).
    Google Scholar 
    14.Weedon, G. P. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters 76, 321–335 (1986).
    Google Scholar 
    15.Weedon, G. P., Jenkyns, H. C., Coe, A. L. & Hesselbo, S. P. Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1787–1813 (1999).
    Google Scholar 
    16.Van Buchem, F. S. P., McCave, I. N. & Weedon, G. P. Orbitally induced small-scale cyclicity in a siliciclastic epicontinental setting (Lower Lias, Yorkshire, UK) in Orbital forcing and cyclic sequences, Special Publication of the International Association of Sedimentologists (eds de Boer, P. L. & Smith, D. G.) 345–366 (1994).17.Zachos, J. C., McCarren, H., Murphy, B., Röhl, U. & Westerhold, T. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299, 242–249 (2010).CAS 

    Google Scholar 
    18.Martinez, M. & Dera, G. Orbital pacing of carbon fluxes by a ∼ 9-My eccentricity cycle during the Mesozoic. Proceedings of the National Academy of Sciences 112, 12604–12609 (2015).CAS 

    Google Scholar 
    19.Laskar, J. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).
    Google Scholar 
    20.Varadi, F., Runnegar, B. & Ghil, M. Successive refinements in long-term integrations of planetary orbits. The Astrophysical Journal 592, 620 (2003).
    Google Scholar 
    21.Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).
    Google Scholar 
    22.Imbrie, J. & Imbrie, K. P. Ice ages: solving the mystery (Harvard University Press, 1979).23.Berger, A. & Loutre, M. F. Climate 400,000 years ago, a key to the future? Geophysical Monograph Series 137, 17–26 (2003).
    Google Scholar 
    24.Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics 532, A89 (2011).
    Google Scholar 
    25.Verardo, D. J. & Ruddiman, W. F. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: climatic and geochemical significance. Geology 24, 855–857 (1996).CAS 

    Google Scholar 
    26.Thevenon, F., Bard, E., Williamson, D. & Beaufort, L. A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 83–99 (2004).
    Google Scholar 
    27.Daniau, A. L. et al. Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences 110, 5069–5073 (2013).CAS 

    Google Scholar 
    28.Inoue, J., Okuyama, C. & Takemura, K. Long-term fire activity under the East Asian monsoon responding to spring insolation, vegetation type, global climate, and human impact inferred from charcoal records in Lake Biwa sediments in central Japan. Quaternary Science Reviews 179, 59–68 (2018).
    Google Scholar 
    29.Zhang, Z. et al. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change 184, 103051 (2020).
    Google Scholar 
    30.Shi, Y. et al. Wildfire evolution and response to climate change in the Yinchuan Basin during the past 1.5 Ma based on the charcoal records of the PL02 core. Quaternary Science Reviews 241, 106393 (2020).
    Google Scholar 
    31.Martínez-Abarca, L. R. et al. Environmental changes during MIS6-3 in the Basin of Mexico: a record of fire, lake productivity history and vegetation. J. South American Earth Sciences 109, 103231 (2021).
    Google Scholar 
    32.Whitlock, C. & Larsen, C. Charcoal as a fire proxy in Tracking environmental change using lake sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 75–97 (Springer, Dordrecht, 2002).33.Hao, Y., Han, Y., An, Z. & Burr, G. S. Climatic control of orbital time-scale wildfire occurrences since the late MIS 3 at Qinghai Lake, monsoon marginal zone. Quaternary International 550, 20–26 (2020).
    Google Scholar 
    34.Zhou, B. et al. Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 617–625 (2007).
    Google Scholar 
    35.Kappenberg, A., Lehndorff, E., Pickarski, N., Litt, T. & Amelung, W. Solar controls of fire events during the past 600,000 years. Quaternary Science Reviews 208, 97–104 (2019).
    Google Scholar 
    36.Han, Y. et al. Asian inland wildfires driven by glacial–interglacial climate change. Proceedings of the National Academy of Sciences 117, 5184–5189 (2020).CAS 

    Google Scholar 
    37.Scott, A. C. & Glasspool, I. J. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology 70, 53–66 (2007).CAS 

    Google Scholar 
    38.House, M. R. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms. Nature 315, 721–725 (1985).
    Google Scholar 
    39.Hesselbo, S. P. & Jenkyns, H. C. A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire. Field Geology of the British Jurassic, Geological Society of London (1995).40.Weedon, G. P. & Jenkyns, H. C. Cyclostratigraphy and the Early Jurassic timescale: data from the Belemnite Marls, Dorset, southern England. Geological Society of America Bulletin 111, 1823–1840 (1999).
    Google Scholar 
    41.Ruhl, M. et al. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295, 262–276 (2010).CAS 

    Google Scholar 
    42.Hüsing, S. K. et al. Astronomically-calibrated magnetostratigraphy of the lower Jurassic marine successions at St. Audrie’s Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology 403, 43–56 (2014).
    Google Scholar 
    43.Ruhl, M. et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters 455, 149–165 (2016).CAS 

    Google Scholar 
    44.Xu, W., Ruhl, M., Hesselbo, S. P., Riding, J. B. & Jenkyns, H. C. Orbital pacing of the Early Jurassic carbon cycle, black‐shale formation and seabed methane seepage. Sedimentology 64, 127–149 (2017).CAS 

    Google Scholar 
    45.Hinnov, L. A., Ruhl, M. R. & Hesselbo, S. P. Reply to the Comment on “Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations” (Ruhl et al. Earth and Planetary Science Letters, 455 149–165). Earth and Planetary Science Letters 481, 415–419 (2018).CAS 

    Google Scholar 
    46.Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proceedings National Academy Science 117, 3974–3982 (2020).CAS 

    Google Scholar 
    47.Ogg, J. G., Hinnov, L. A. & Huang, C. Jurassic in The geologic time scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 731–791 (Elsevier, 2012).48.Hinnov, L. A. & Hilgen, F. J. Cyclostratigraphy and astrochronology in The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 63–83 (2012).49.Deconinck, J. F., Hesselbo, S. P. & Pellenard, P. Climatic and sea‐level control of Jurassic (Pliensbachian) clay mineral sedimentation in the Cardigan Bay Basin, Llanbedr (Mochras Farm) borehole, Wales. Sedimentology 66, 2769–2783 (2019).
    Google Scholar 
    50.Chamley, H. Clay sedimentology 623 (Springer, Berlin, Heidelberg, 1989).51.Ruffell, A., McKinley, J. M. & Worden, R. H. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society London A: Mathematical, Physical and Engineering Sciences 360, 675–693 (2002).
    Google Scholar 
    52.Ghosh, S., Mukhopadhyay, J. & Chakraborty, A. Clay mineral and geochemical proxies for intense climate change in the permian gondwana rock record from eastern india. Research, 8974075 (2019).53.Oboh-Ikuenobe, F. E., Obi, C. G. & Jaramillo, C. A. Lithofacies, palynofacies, and sequence stratigraphy of Palaeogene strata in Southeastern Nigeria. Journal of African Earth Sciences 41, 79–101 (2005).
    Google Scholar 
    54.Sprovieri, M. et al. Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 379, 81–94 (2013).
    Google Scholar 
    55.Raucsik, B. & Varga, A. Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 1–13 (2008).
    Google Scholar 
    56.Martinez, M. Mechanisms of preservation of the eccentricity and longer-term Milankovitch cycles in detrital supply and carbonate production in hemipelagic marl-limestone alternations. Stratigraphy & Timescales 3, 189–218 (2018).
    Google Scholar 
    57.Cochrane, M. A. & Ryan, K. C. Fire and fire ecology: Concepts and principles in Tropical fire ecology, 25–62 (2009).58.Belcher, C. M. & Hudspith, V. A. The formation of charcoal reflectance and its potential use in post-fire assessments. International Journal of Wildland Fire 25, 775–779 (2016).
    Google Scholar 
    59.Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13, 033003 (2018).
    Google Scholar 
    60.Van de Schootbrugge, B. et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 73–97 (2005).
    Google Scholar 
    61.Vakhrameyev, V. A. Classopollis pollen as an indicator of Jurassic and Cretaceous climate. International Geology Review 24, 1190–1196 (1982).
    Google Scholar 
    62.Belcher, C. M., Collinson, M. E. & Scott, A. C. A 450-Million-Year History of Fire in Fire phenomena and the earth system (ed. Belcher, C. M.) 229–249 (Wiley-Blackwell, 2013).63.Rees, P. M., Ziegler, A. M. & Valdes, P. J. Jurassic phytogeography and climates: new data and model comparisons in Warm climates in earth history (eds Huber, B. T., Macleod, K. G. & Wing, S. L.) 297–318 (2000).64.Dera, G. et al. Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 39–51 (2009).
    Google Scholar 
    65.Bonis, N. R., Ruhl, M. & Kürschner, W. M. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie’s Bay, SW UK. Journal of the Geological Society 167, 877–888 (2010).
    Google Scholar 
    66.Deconinck, J. F. et al. Diagenetic and environmental control of the clay mineralogy, organic matter and stable isotopes (C, O) of Jurassic (Pliensbachian-lowermost Toarcian) sediments of the Rodiles section (Asturian Basin, Northern Spain). Marine and Petroleum Geology 115, 104286 (2020).CAS 

    Google Scholar 
    67.Dewhirst, R. A., Smirnoff, N. & Belcher, C. M. Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire 3, 17 (2020).
    Google Scholar 
    68.Berger, A., Loutre, M. F. & Dehant, V. Astronomical frequencies for pre‐Quaternary palaeoclimate studies. Terra Nova 1, 474–479 (1989).
    Google Scholar 
    69.House, M. R. & Gale, A. S. (eds). Orbital forcing timescales and cyclostratigraphy, 85, 1–18 (Geological Society, 1995).70.James, N. P. Facies models 7. Introduction to carbonate facies models. Geoscience Canada 4, 123–125 (1977).
    Google Scholar 
    71.Nelson, C. S., Keane, S. L. & Head, P. S. Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology 60, 71–94 (1988).CAS 

    Google Scholar 
    72.Chave, K. E. Recent carbonate sediments–an unconventional view. Journal of Geological Education 15, 200–204 (1967).CAS 

    Google Scholar 
    73.Parrish, J. T. & Curtis, R. L. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 31–66 (1982).
    Google Scholar 
    74.Crowley, T. J., Baum, S. K. & Hyde, W. T. Milankovitch fluctuations on supercontinents. Geophysical research letters 19, 793–796 (1992).
    Google Scholar 
    75.Parrish, J. T. Climate of the supercontinent Pangea. The. J. Geology 101, 215–233 (1993).
    Google Scholar 
    76.Kutzbach, J. E. & Gallimore, R. G. Pangaean climates: megamonsoons of the megacontinent. Journal of Geophysical Research: Atmospheres 94, 3341–3357 (1989).
    Google Scholar 
    77.Kutzbach, J. E. Idealized Pangean climates: sensitivity to orbital change. Pangea; paleoclimate, tectonics, and sedimentation during accretion, zenith and breakup of a supercontinent. Geological Society of America 15, 41–55 (1994).
    Google Scholar 
    78.Sellwood, B. W. & Valdes, P. J. Mesozoic climates: General circulation models and the rock record. Sedimentary geology 190, 269–287 (2006).
    Google Scholar 
    79.Mutti, M. & Hallock, P. Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International Journal of Earth Sciences 92, 465–475 (2003).CAS 

    Google Scholar 
    80.Clift, P. D., Wan, S. & Blusztajn, J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews 130, 86–102 (2014).CAS 

    Google Scholar 
    81.Clift, P. D. et al. Chemical weathering and erosion responses to changing monsoon climate in the Late Miocene of Southwest Asia. Geological Magazine 157, 939–955 (2020).CAS 

    Google Scholar 
    82.Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).CAS 

    Google Scholar 
    83.Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
    Google Scholar 
    84.Reynard-Callanan, J. R., Pope, G. A., Gorring, M. L. & Feng, H. Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography 31, 407–422 (2010).
    Google Scholar 
    85.Torsvik, T. & Cocks, L. Jurassic in Earth History and Palaeogeography 208–218 (Cambridge University Press, 2016).86.Bjerrum, C. J., Surlyk, F., Callomon, J. H. & Slingerland, R. L. Numerical paleoceanographic study of the Early Jurassic transcontinental Laurasian Seaway. Paleoceanography 16, 390–404 (2001).
    Google Scholar 
    87.Hesselbo, S. P. & Pieńkowski, G. Stepwise atmospheric carbon-isotope excursion during the Toarcian oceanic anoxic event (Early Jurassic, Polish Basin). Earth and Planetary Science Letters 301, 365–372 (2011).CAS 

    Google Scholar 
    88.Sellwood, B. W. & Jenkyns, H. G. Basins and swells and the evolution of an epeiric sea: (Pliensbachian–Bajocian of Great Britain). Journal of the Geological Society 131, 373–388 (1975).
    Google Scholar 
    89.Damborenea, S. E., Echevarría, J. & Ros-Franch, S. Southern hemisphere palaeobiogeography of Triassic-Jurassic marine bivalves. (Springer, 2012).90.Korte, C. et al. Jurassic climate mode governed by ocean gateway. Nature Communications 6, 1–7 (2015).
    Google Scholar 
    91.Dobson, M. R. & Whittington, R. J. The geology of Cardigan Bay. Proceedings of the Geologists’ Association 98, 331–353 (1987).
    Google Scholar 
    92.Woodland, A. W. The Llanbedr (Mochras Farm) Borehole Rep. No. 71/18 (Ed. Woodland, A. W.) 115 (Institute of Geological Sciences, 1971).93.Tappin, D. R. et al. The Geology of Cardigan Bay and the Bristol Channel. United Kingdom offshore regional report, British Geological Survey, HMSO, 107 (1994).94.Xu, W. et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). Earth and Planetary Science Letters 484, 396–411 (2018).CAS 

    Google Scholar 
    95.Hesselbo, S. P. et al. Mochras borehole revisited: A new global standard for Early Jurassic earth history. Scientific Drilling 16, 81–91 (2013).
    Google Scholar 
    96.Moore, D. M. & Reynolds Jr, R. C. X-ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University Press, 1997).97.Petschick, R. MacDiff 4.1. 2. Powder diffraction software (2000). Available from the author at http://www.geol.uni-erlangen.de/html/software/Macdiff.html.98.Belcher, C. M., Collinson, M. E. & Scott, A. C. Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society 162, 591–602 (2005).
    Google Scholar 
    99.Scott, A. C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 11–39 (2010).
    Google Scholar 
    100.Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences 127, 12–22 (2019).CAS 

    Google Scholar 
    101.Damaschke, M., Wylde, S., Jiang, M., Hollaar, T. & Ullmann, C. V. LLANBEDR (MOCHRAS FARM) Core Scanning Dataset. NERC EDS National Geoscience Data Centre. (Dataset). https://doi.org/10.5285/c09e9908-6a21-43a8-bc5a-944f9eb8b97e (2021). More

  • in

    Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance

    Coral collection and laboratory acclimationCorals were obtained from the nursery at Mote Marine Laboratory’s Elizabeth Moore International Center for Coral Reef Research & Restoration. Acropora cervicornis fragments (apical tips ~ 5–6 cm in length) were obtained from Mote’s in situ nursery and mounted to a plastic base with marine epoxy (Instant Ocean Holdfast). The A. cervicornis genotypes used in this study were Mote Marine Laboratory genotype numbers 7, 31, 50, 57, and 70 (n = 12 ramets from each of the 5 genets). The coral O. faveolata was obtained from Mote’s ex situ nursery as fragments (~ 3–4 cm2) attached to individual carbonate plugs. Six genotypes of O. faveolata were used in deoxygenation treatments from genotype numbers F3A, F8, F27, F61, F125, and F132 (n = 12 ramets from each of the 6 genets). The immediate environmental conditions at the ex situ coral nursery are not known in detail, however the corals were maintained in an open, flow-through system with high flow rates and continuous bubbling with air stones.Corals were transported to the wet lab facilities at the Smithsonian Marine Station (SMS) in Fort Pierce, FL and experiments were conducted between October and December 2019. Corals were acclimated to laboratory conditions for 4–6 weeks before exposure to deoxygenation treatments. During this period, corals were kept in an indoor, closed seawater system. Holding tanks contained ~ 570 L of seawater that was recirculated through a sump containing rigorous aeration (ambient air) and a heater/chiller that maintained the temperature at ~ 27 ºC (see Table S3 for all parameters). Water was pumped from the sump through a UV sterilizer (Coralife) and then back into the holding tank. Water flow and circulation was maintained by two aquarium pumps (AquaTop MaxFlow MCP-5), and yielded a full water exchange through the sump ~ 8.5 times per hour. Light was provided by LED aquarium lights (HQD) with a maximum photosynthetically active radiation (PAR) of ~ 300 µmol photon m−2 s−1. Full water changes were conducted weekly, and non-living surfaces on the coral fragments (e.g., plastic or carbonate bases) were cleaned at least once a week to reduce algal growth. Conditions within the acclimation tanks closely matched the ambient (i.e., normoxic) conditions at the collection locations and in the oxygen treatments (Table S3, Fig. S4).Field dissolved oxygen conditionsOxygen concentrations were monitored at Mote Marine Laboratory’s in situ nursery (24.56 latitude, − 81.40 longitude) at the depth of coral outplants (~ 5–6 m) to parameterize oxygen conditions used in laboratory experiments. A dissolved oxygen sensor (miniDot, PMEL) was calibrated according to manufacturer protocols and attached to the benthos adjacent to coral outplants. Dissolved oxygen and temperature were logged every ten minutes for the duration of deployment. Hourly and daily average DO concentrations are presented for one month encompassing the approximate time of coral retrievals (Fig. S4). The 6.25 mg L−1 treatment in the laboratory experiments simulates the average normoxic conditions at the site of collection (6.18 ± 0.10, SD), while the most severe deoxygenation treatment (1.00 mg L−1) simulated extreme oxygen depletion that has occurred during acute deoxygenation events on coral reefs21,22,52 (Fig. S4). The two intermediate deoxygenation treatments represented incremental increases by ~ 2 mg L−1 to capture coral responses over a full range of oxygen conditions (Fig. S4).Experimental designDeoxygenation experiments were conducted in the wet lab facilities at SMS using a mesocosm array consisting of 12 tanks (50 L, AquaLogic Systems), with each tank functioning as a closed system with fully independent temperature and oxygen control. Targeted oxygen levels for treatments were 1.00, 2.25, 4.25, and 6.25 mg L−1 DO, with three independent tank replicates for each oxygen level. Oxygen treatments are referred to by the targeted DO concentrations. Species were run in separate, sequential experiments, and genotypes within a species were co-mingled in treatment tanks with one replicate of each genotype per tank.Oxygen concentrations were maintained in each independent tank by bubbling seawater with nitrogen gas and ambient air, with gas injection controlled through a DO feedback and solenoid valves (Neptune Systems). Oxygen levels were monitored every 15 s in each tank by an OxyGuard DO probe connected to an aquarium controller (Neptune Systems, Apex Aquacontroller), which opened or closed the respective solenoid valves to add nitrogen or air in order to maintain the programmed treatment conditions. Oxygen probes were calibrated at the start of experiments, and then again after five days, following the manufacturer’s protocol.Temperature control was maintained in treatment aquaria through an independent heating/chilling loop in each tank and monitored by AquaLogic temperature probes (sensu53). The average temperature at the collection site in the month prior to collection was 29.01 ± 0.62 ℃ (SD) (Fig. S4), which represents seasonally warm temperatures of the Florida Keys54,55. To reduce the potential confounding effects of temperature on responses to deoxygenation, we acclimated corals to 27 ℃ during the holding period, and conducted experiments at ~ 27 ℃. This represents the average annual temperature at the collection site in the Florida Keys, is the temperature that O. faveolata fragments were maintained at in the ex situ nursery prior to collection (27.0 ± 0.62 ℃), and is commonly used as the ambient temperature for corals from this location54,56. Each tank contained an additional probe (Neptune Systems) that logged temperature every 10 s for the duration of the experiment. In addition to continuous monitoring of DO and temperature, discrete measurements were taken each day for DO, temperature, pH, and salinity with a handheld multi-parameter water quality meter (YSI ProDSS with optical DO sensor) (Tables 1, 2, Tables S1, S2). The YSI DO probe was calibrated at the start of every day following manufacturer protocols and used to validate DO measurements from OxyGuard probes and to adjust programmed values to maintain treatment targets when necessary.Individual tanks were supplied with a 7-color LED aquarium light (Aquaillumination, Hydra 52), programmed to simulate a diel light cycle over a 12:12 h photoperiod, and set to maximum irradiance of ~ 300 µmol photon m−2 s−1 (PAR). This maximum intensity is likely lower than what corals may experience in situ during peak midday irradiances, however, it matches the irradiance levels these corals were maintained at in the ex situ nursery (320 ± 182 SD, n = 45) and is sufficient to stimulate maximal photosynthesis without causing light stress45. Light levels were measured with a light meter (Licor, LI-1400) and an underwater spherical quantum sensor (LI-193SA) submerged at the center of each tank at the start of each experiment and again after five days. Oxygen, temperature, and light conditions were effectively maintained at or near targeted levels for the duration of each experiment (Fig. 1, Table 1), with minimal differences between replicate tanks within a treatment (Tables S1, S2). We did not simultaneously manipulate pH in treatment tanks, which resulted in differences in pH between treatments due to bubbling with nitrogen gas (Tables 1, 2).Coral conditionCorals were monitored daily during the experiments for changes in live tissue cover and photophysiology, and then destructively sampled at the end of the experiment for symbiont densities. Fragments were visually evaluated at each time point for evidence of bleaching, tissue loss, and mortality. Tissue loss was quantified as the percent of each fragment with exposed skeleton, resulting from the sloughing of tissue. Fragments were categorized as dead when all living tissue was lost.The A. cervicornis experiment ended after five days, at which point 50% of corals in the lowest DO treatment were dead or displayed partial mortality. We ended the O. faveolata experiment after 11 days, more than twice the duration of the A. cervicornis experiment (Fig. 1), at which point no observable signs of deterioration were detected in corals from any treatment (Fig. 2a).PAM fluorometryPAM fluorometry is a non-destructive method that directly measures chlorophyll fluorescence and the activity of photosystem II (PSII)57, and the quantum yield can be used as a proxy for coral stress36,58. For all PAM readings, one measurement was taken from the same position on each fragment with the probe held at a 90º angle ~ 0.5 cm from the coral surface (angle and distance were maintained with a Walz probe holder). To optimize initial fluorescence (F0) to between 300–500, the following PAM settings were used: gain = 2, damp = 2, saturation intensity = 8, saturation width = 0.8, and measuring light intensity = 10 for A. cervicornis and 6 for O. faveolata. PAM measurements were taken pre-dawn daily, at 0500–0600 h. The position on A. cervicornis fragments was shifted if tissue sloughing occurred so that measurements were taken on living tissue. After the final PAM measurements, corals were snap frozen in liquid nitrogen and stored at − 80 ºC for subsequent analyses.Symbiont densitySymbiont density analyses were conducted at the University of Florida in Gainesville, FL following standard protocols (sensu59). In brief, tissue was stripped from the coral skeleton with an air brush (Master Airbrush S68) and filtered seawater. The tissue slurry was then homogenized with a handheld electric tissue homogenizer (Tissue-Tearor) and subsampled for symbiont counts. Symbiont cells were counted with a hemocytometer, with six replicate counts per fragment. Replicate counts were averaged per fragment for all analyses.Surface area of A. cervicornis fragments was determined by wax dipping60 and the surface area of O. faveolata fragments was determined through image analysis in ImageJ. For A. cervicornis, surface area was then corrected by the percent tissue loss recorded for each fragment. Symbiont densities were normalized to fragment live tissue surface area and expressed as cells per cm−2.Statistical analysesAll analyses were conducted in R (v 4.0.2)61. The effects of fixed and random factors were evaluated with linear mixed effects models using the package lme462. Normality and homoscedasticity of variances of response variables were evaluated by visual inspection of residuals and Levene’s tests, respectively. All variables met model assumptions, and results are reported for full models that included all fixed and random effects.For maximum quantum yield and tissue loss, the factor corresponding to measurements repeated daily from the start to end of the experiment (i.e., Day 1, 2, 3, etc.) is referred to as “day”. Day, genotype, and treatment were treated as fixed factors in the analysis of maximum quantum yield and tissue loss, with individual included as a random factor to account for repeated measures, and tank as random factor to account for fragments of different genotypes within a tank (Tables 2, 3). For symbiont density, genotype and treatment were analyzed as fixed factors, and tank as a random factor (Table 4). The significance of fixed effects was evaluated with type II ANOVA tables using Satterthwaite’s method, and Tukey’s post-hoc tests were used where necessary to determine significant differences between levels of a factor using the package emmeans63. Data in main figures in which genotype was not a significant effect (i.e., all response variables) are presented as treatment averages (± SE), pooled across genotypes. More

  • in

    Radioecological and geochemical peculiarities of cryoconite on Novaya Zemlya glaciers

    Data for all analysed radionuclides are presented in the “Supplementary Material”. Cryoconite samples were collected on Nalli Glacier (Supplementary Fig. S1) on Sept. 25, 2017 (samples 1701–1714) and on Sept. 10, 2018 (samples 1801–1814) at 28 spots (Fig. 2, Supplementary Table S1). Gamma spectrometric analysis of samples showed the presence of anthropogenic radionuclides 137Cs, 241Am, and 207Bi. All quoted radioactivity values were recalculated for the sampling date, except those for 241Am since the concentration of the parent 241Pu isotope is unknown. However, for this isotope, the correction for decay is negligible. The activity of 137Cs reached 8093 (± 69) Bq kg−1 of dry weight, that of 241Am reached 58.3 (± 2.3) Bq kg−1 and that of 207Bi reached 6.3 (± 0.6) Bq kg−1. The natural radionuclides 210Pb and 7Be were also present in all samples. The activity of 210Pb varied in the range of 1280–9750 Bq kg−1. In addition, in the investigated samples, a significant amount of short-lived cosmogenic radionuclide 7Be was found, whose specific activity reached 2418 (± 76) Bq kg−1 (Fig. 3, Supplementary Table S2). To evaluate the contribution of atmospheric components to the total 210Pb activity, 226Ra activity was determined and found to be 17–27 Bq kg−1 (Supplementary Table S2). Based on the 210Pb/226Ra ratio, we conclude that more than 98% of 210Pb was of atmospheric provenance.Figure 2Location of sampling points on Nalli Glacier. A—137Cs activity zone  95%) of corresponding rocks and numerous outcrops likely promoted entrapment of these elements into explosion clouds, and their subsequent precipitation with radionuclides. This feature of the geological structure of the area explains the extremely high enrichment of surface waters in elements such as Zn, Pb, Sr, Ni, As, Cr, Co, Se, Te, Cd, W, Cu, Sb, and Sn; for many of them, the excess reaches 10-fold with respect to the Clrake values51. This hypothesis is supported by obvious correlations between the concentrations of Bi, Ag, Sn, Sb, Pb, Cd, W, and Cu and the activity of anthropogenic radionuclides 137Cs, 241Am and 207Bi. This relationship is obviously related to the simultaneous release of elements and radionuclides from the contaminated ice layer and their entrapment in cryoconite holes. More

  • in

    ‘For a brown invertebrate’: rescuing native UK oysters

    Download PDF

    For the past five years, I’ve studied oysters — a commercially and environmentally important species in southeast England. My research is very practical: I help to solve problems by working with oyster growers (known locally as oystermen), regulators and other community members. Resulting papers are evidence of work I’ve already done.Most oysters in this area are a non-native species (Crassostrea giga). Locally, it’s well established and has been since the 1960s, but allowing it to spread to nearby estuary systems has been controversial: there are concerns that it could become an invasive species.Working with aquaculture producers, I help to guide efforts to restore the native oyster (Ostrea edulis), populations of which declined owing to overfishing, habitat destruction, pollution and disease. Crassostrea giga oysters have provided enough income for oyster growers to spend time and effort restoring the local species. We’ve done some cool things, including creating one of the largest coastal marine conservation zones in the United Kingdom — more than 284 square kilometres — and all for an unseen brown invertebrate that lacks the charisma of a dolphin.This picture is from a typical day in the field. During high tides, we go out in a boat to take sonar readings to map potential oyster habitats; at low tide, we put on waders and go out on the mud flats to look for juvenile oysters. We focus our conservation efforts on spots where juvenile oysters are already trying to get established.Amazingly, these filter feeders don’t require feeding by humans, and they clean the water as they grow. Bivalve aquaculture such as this has become a cornerstone of the ‘blue economy’ — using marine resources sustainably for economic growth while preserving ocean health. It will take more work to determine how the balance can be reached, but oysters will be part of that conversation.

    Nature 600, 182 (2021)
    doi: https://doi.org/10.1038/d41586-021-03573-5

    Related Articles

    How AI is helping the natural sciences

    Breeding the sweetest biofuels in the business

    Using sound to explore events of the Universe

    Subjects

    Conservation biology

    Agriculture

    Latest on:

    Agriculture

    Even organic pesticides spur change in the wildlife next door
    Research Highlight 17 NOV 21

    Tracking the origin of Transeurasian languages
    News & Views 10 NOV 21

    New rules will make UK gene-edited crop research easier
    News 30 SEP 21

    Jobs

    Full Professor in Microbial Biotechnology

    University of Groningen (RUG)
    Gorningen, Netherlands

    Research Faculty Position Cardiovascular Research Center Massachusetts General Hospital

    Massachusetts General Hospital
    Charlestown, MA, United States

    Higher Scientific Officer – Biophysical assay development and protein production

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Group Leaders

    John Innes Centre (JIC)
    Norwich, United Kingdom More

  • in

    Camera trap placement for evaluating species richness, abundance, and activity

    1.Gese E. M. Monitoring of terrestrial carnivore populations. Carnivore Conservation. (2001).2.Oconnell, A. F. et al. (eds) Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).
    Google Scholar 
    3.Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
    Google Scholar 
    4.MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Bailey L. A., Hines J. E. Occupancy Modeling and Estimation (2017).5.Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4(1), 75–79 (2001).
    Google Scholar 
    6.Rowcliffe, J. M., Field, J., Turvey, S. T. & Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 1, 1228–1236 (2008).
    Google Scholar 
    7.Karanth, K. U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71(3), 333–338 (1995).
    Google Scholar 
    8.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2), 148–154 (2004).
    Google Scholar 
    9.Jhala, Y., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48(1), 14–24 (2011).
    Google Scholar 
    10.Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144(3), 1017–1024 (2011).
    Google Scholar 
    11.Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014).
    Google Scholar 
    12.Roy, M. et al. Demystifying the Sundarban tiger: Novel application of conventional population estimation methods in a unique ecosystem. Popul. Ecol. 58(1), 81–89 (2016).
    Google Scholar 
    13.Howe, E. J., Buckland, S. T., Després-Einspenner, M. L. & Kühl, H. S. Distance sampling with camera traps. Methods Ecol. Evol. 8(11), 1558–1565 (2017).
    Google Scholar 
    14.Bridges, A. S., Vaughan, M. R. & Klenzendorf, S. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography. Wildl. Biol. 10(1), 277–284 (2004).
    Google Scholar 
    15.Beck, H. & Terborgh, J. Groves versus isolates: How spatial aggregation of Astrocaryum murumuru palms affects seed removal. J. Trop. Ecol. 1, 275–288 (2002).
    Google Scholar 
    16.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17(1), 245–257 (2003).
    Google Scholar 
    17.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002).
    Google Scholar 
    18.Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52(3), 675–685 (2015).
    Google Scholar 
    19.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6(2), 131–139 (2003).
    Google Scholar 
    20.Datta, A., Anand, M. O. & Naniwadekar, R. Empty forests: Large carnivore and prey abundance in Namdapha National Park, north-east India. Biol. Cons. 141(5), 1429–1435 (2008).
    Google Scholar 
    21.Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: Distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006).
    Google Scholar 
    22.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287(4), 269–275 (2012).
    Google Scholar 
    23.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 32, 315–323 (2015).
    Google Scholar 
    24.Edwards, S. et al. Making the most of by-catch data: Assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56(4), 885–894 (2018).
    Google Scholar 
    25.Harmsen, B. J., Foster, R. J., Silver, S., Ostro, L. & Doncaster, C. P. Differential use of trails by forest mammals and the implications for camera-trap studies: A case study from Belize. Biotropica 42(1), 126–133 (2010).
    Google Scholar 
    26.Di Bitetti M. S., Paviolo A. J. & de Angelo C. D. Camera Trap Photographic Rates on Roads vs. Off Roads: Location Does Matter, Vol. 21, 37–46 (2014).27.Blake, J. G. & Mosquera, D. Camera trapping on and off trails in lowland forest of eastern Ecuador: Does location matter?. Mastozool. Neotrop. 21(1), 17–26 (2014).
    Google Scholar 
    28.Cusack, J. J. et al. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5), e0126373 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    29.Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12(10), e0186679 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    30.Srbek-Araujo, A. C. & Chiarello, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota. Neotrop. 13(2), 51–62 (2013).
    Google Scholar 
    31.Wearn, O. R., Rowcliffe, J. M., Carbone, C., Bernard, H. & Ewers, R. M. Assessing the status of wild felids in a highly-disturbed commercial forest reserve in Borneo and the implications for camera trap survey design. PLoS ONE 8(11), e77598 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Sadhu, A. et al. Demography of a small, isolated tiger population in a semi-arid region of western India. BMC Zool. 2(1), 1–13 (2017).
    Google Scholar 
    33.Sunquist, M. What is a tiger? Ecology and behavior. In Tigers of the World 19–33 (William Andrew Publishing, 2010).
    Google Scholar 
    34.Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).
    Google Scholar 
    35.Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).
    Google Scholar 
    36.Rovero, F. & Marshall, A. R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46(5), 1011–1017 (2009).
    Google Scholar 
    37.Jhala, Y. V., Qureshi, Q., Nayak, A. K. Status of tigers, copredators and prey in India, 2018. ISBN No. 81-85496-50-1 https://wii.gov.in/tiger_reports (National Tiger Conservation Authority, Government of India and Wildlife Institute of India, 2020).38.Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008).
    Google Scholar 
    39.Hines J. E. PRESENCE 3.1 Software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html. (2006).40.Meredith, M., & Ridout, M. Overview of the overlap package. R. Project. 1–9 (2014).41.Rowcliffe M, Rowcliffe M. M. Package ‘activity’. Animal activity statistics R Package Version. 1 (2016).42.Soberón, M. J. & Llorente, B. J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7(3), 480–488 (1993).
    Google Scholar 
    43.Broadley, K., Burton, A. C., Avgar, T. & Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 9(24), 14031–14041 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    44.Bunnell, F. L. & Gillingham, M. P. Foraging behavior: Dynamics of dining out. Bioenerget. Wild herbiv. 1, 53–79 (1985).
    Google Scholar 
    45.Mishra H. R. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak) (Doctoral dissertation, University of Edinburgh). 1982.46.Raman, T. S. Factors influencing seasonal and monthly changes in the group size of chital or axis deer in southern India. J. Biosci. 22(2), 203–218 (1997).
    Google Scholar 
    47.Karanth, K. U. & Sunquist, M. E. Behavioral correlates of predation by tiger, leopard and dhole in Nagarhole National Park. India. J Zool. 250(2), 255–265 (2000).
    Google Scholar 
    48.Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. & Doncaster, C. P. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. J. Mammal. 90(3), 612–620 (2009).
    Google Scholar 
    49.Nichols, J. D., Karanth, K. U. & O’Connell, A. F. Science, conservation, and camera traps. In Camera Traps in Animal Ecology 45–56 (Springer, 2011).
    Google Scholar  More

  • in

    Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii

    1.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 

    Google Scholar 
    2.Jankowski, T., Collins, A. G. & Campbell, R. Global diversity of inland water cnidarians. In Freshwater Animal Diversity Assessment 35–40 (Springer, 2008).
    Google Scholar 
    3.Pelosse, J. Étude biologique sur la méduse d’eau douce, Limnocodium Sowerbyi Ray Lankester, du Parc de la Tête-d’Or de Lyon. Publ. Société Linn. Lyon 65, 53–62 (1919).
    Google Scholar 
    4.Lüskow, F., López-González, P. J. & Pakhomov, E. A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 30, 69–84 (2021).
    Google Scholar 
    5.McClary, A. The effect of temperature on growth and reproduction in Craspedacusta sowerbii. Ecology 40, 158–162 (1959).
    Google Scholar 
    6.McClary, A. Experimental studies of bud development in Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 80, 343–353 (1961).
    Google Scholar 
    7.McClary, A. Histological changes during regeneration of Craspedacusta sowerbii. Trans. Am. Microsc. Soc. 83, 349–357 (1964).
    Google Scholar 
    8.Acker, T. S. & Muscat, A. M. The ecology of Craspedacusta sowerbii Lankester, a freshwater hydrozoan. Am. Midl. Nat. 95, 323–336 (1976).
    Google Scholar 
    9.Boothroyd, I. K., Etheredge, M. K. & Green, J. D. Spatial distribution, size structure, and prey of Craspedacusta sowerbyi Lankester in a shallow New Zealand lake. Hydrobiologia 468, 23–32 (2002).
    Google Scholar 
    10.Turquin, M. J. Progrès dans la connaissance de la métagenèse chez Craspedacusta sowerbii (= sowerbyi) (Limnoméduse, Olindiidae). Bourgogne-Nat. 9, 162–174 (2010).
    Google Scholar 
    11.Marchessaux, G. & Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 139, e12308 (2020).
    Google Scholar 
    12.Bouillon, J. & Boero, F. The hydrozoa: A new classification in the ligth of old knowledge. Thalass. Salentina 24, 3–45 (2000).
    Google Scholar 
    13.Dumont, H. J. The distribution and ecology of the fresh-and brackish-water medusae of the world. In Studies on the Ecology of Tropical Zooplankton 1–12 (Springer, 1994).
    Google Scholar 
    14.Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).
    Google Scholar 
    15.Marchessaux, G., Gadreaud, J. & Belloni, B. The freshwater jellyfish Craspedacusta sowerbii lankester, 1880: An overview of its distribution in France. Vie Milieu 69, 201–213 (2019).
    Google Scholar 
    16.Pennak, R. W. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degeneration. Trans. Am. Microsc. Soc. 75, 324–331 (1956).
    Google Scholar 
    17.Matthews, D. C. A Comparative study of Craspedacusta sowerbyi and Calpasoma dactyloptera life cycles (1966).18.Lundberg, S. & Svensson, J. E. Medusae invasions in Swedish lakes. Fauna Flora 98, 18–28 (2003).
    Google Scholar 
    19.Jakovčev-Todorović, D., Đikanović, V., Skorić, S. & Cakić, P. Freshwater jellyfish Craspedacusta sowerbyi Lankester, 1880 (Hydrozoa, Olindiidae): 50 years’ observations in Serbia. Arch. Biol. Sci. 62, 123–127 (2010).
    Google Scholar 
    20.Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manag. 60, 304–313 (2017).ADS 

    Google Scholar 
    21.Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Hosmer, D. W., Jovanovic, B. & Lemeshow, S. Best subsets logistic regression. Biometrics 45, 1265–1270 (1989).MATH 

    Google Scholar 
    23.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    24.Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250 (2005).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Walther, G. Inference and modeling with log-concave distributions. Stat. Sci. 24, 319–327 (2009).MathSciNet 
    MATH 

    Google Scholar 
    26.Mangano, M. C. et al. Moving toward a strategy for addressing climate displacement of marine resources: A proof-of-concept. Front. Mar. Sci. 7, 408 (2020).ADS 

    Google Scholar 
    27.Perkins-Taylor, I. & Frey, J. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101, 1035–1048 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).
    Google Scholar 
    29.Thapa, A. et al. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 8, 10542–10554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    30.Fernández, M. & Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS ONE 10, e0119891 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    31.Sarà, G., Palmeri, V., Rinaldi, A., Montalto, V. & Helmuth, B. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: A case study with the bivalve B rachidontes pharaonis. Divers. Distrib. 19, 1235–1247 (2013).
    Google Scholar 
    32.Sarà, G., Porporato, E. M., Mangano, M. C. & Mieszkowska, N. Multiple stressors facilitate the spread of a non-indigenous bivalve in the Mediterranean Sea. J. Biogeogr. 45, 1090–1103 (2018).
    Google Scholar 
    33.Markovic, D., Freyhof, J. & Wolter, C. Where are all the fish: Potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7, e40530 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Hamner, W. M., Gilmer, R. W. & Hamner, P. P. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau 1. Limnol. Oceanogr. 27, 896–909 (1982).CAS 
    ADS 

    Google Scholar 
    35.Hamner, W. M. & Hauri, I. R. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias) 1. Limnol. Oceanogr. 26, 414–423 (1981).ADS 

    Google Scholar 
    36.Duggan, I. C. & Eastwood, K. R. Detection and distribution of Craspedacusta sowerbii: Observations of medusae are not enough. (2012).37.Galarce, L. C., Riquelme, K. V., Osman, D. Y. & Fuentes, R. A. A new record of the non indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria) in Northern Patagonia (40 S, Chile). Bioinvasions Rec. 2, 263–270 (2013).
    Google Scholar 
    38.Stanković, I. & Ternjej, I. New ecological insight on two invasive species: Craspedacusta sowerbii (Coelenterata: Limnomedusae) and Dreissenia polymorpha (Bivalvia: Dreissenidae). J. Nat. Hist. 44, 2707–2713 (2010).
    Google Scholar 
    39.Stefani, F., Leoni, B., Marieni, A. & Garibaldi, L. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in northern Italy. J. Limnol. 69, 189 (2010).
    Google Scholar 
    40.Jankowski, T., Strauss, T. & Ratte, H. T. Trophic interactions of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 27, 811–823 (2005).CAS 

    Google Scholar 
    41.Adams, I. B. The effect of light and prey availability on the activity of the freshwater jellyfish, Craspedacusta sowerbii (Hydrozoan) (Mém. B Sc Univ James Madison À Harrisonburg Virginie, 2009).
    Google Scholar 
    42.Marchessaux, G. & Bejean, M. Growth and ingestion rates of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 42, 783–786 (2020).CAS 

    Google Scholar 
    43.Himchik, V., Marenkov, O. & Shmyhol, N. Biology of reproduction of aquatic organisms: The course of oogenesis of freshwater jellyfish Craspedacusta sowerbii Lancester, 1880 in the Dnieper reservoir. World Sci. News 160, 1–15 (2021).
    Google Scholar 
    44.Caputo, L., Huovinen, P., Sommaruga, R. & Gómez, I. Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia 817, 179–191 (2018).CAS 

    Google Scholar 
    45.Bozman, A., Titelman, J., Kaartvedt, S., Eiane, K. & Aksnes, D. L. Jellyfish distribute vertically according to irradiance. J. Plankton Res. 39, 280–289 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Salonen, K. et al. Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): A semiautonomous microcosm in the food web of Lake Tanganyika. In Jellyfish Blooms IV 97–112 (Springer, 2012).
    Google Scholar 
    47.Dodson, S. I. & Cooper, S. D. Trophic relationships of the freshwater jellyfish Craspedacusta sowerbyi Lankester 1880. Limnol. Oceanogr. 28, 345–351 (1983).ADS 

    Google Scholar 
    48.Smith, A. S. & Alexander, J. E. Jr. Potential effects of the freshwater jellyfish Craspedacusta sowerbii on zooplankton community abundance. J. Plankton Res. 30, 1323–1327 (2008).
    Google Scholar 
    49.Spadinger, R. & Maier, G. Prey selection and diel feeding of the freshwater jellyfish, Craspedacusta sowerbyi. Freshw. Biol. 41, 567–573 (1999).
    Google Scholar 
    50.Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 

    Google Scholar 
    51.Uchida, T. A new sporozoan-like reproduction in the hydromedusa. Gonionemus vertens. Proc. Jpn. Acad. 52, 387–388 (1976).
    Google Scholar 
    52.Williams, A. B. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida (1984).53.Parent, G. H. La découverte lorraine de Craspedacusta sowerbyi Lank. dans son contexte chorologique et écologique européen. Bull. Soc. D’Histoire Nat. Moselle 43, 317–337 (1982).
    Google Scholar 
    54.Amemiya, I. Freshwater medusa found in the tank of my laboratory. Jpn. J. Zool. Trans. Abstr. 3, Abstract (1930).55.Joshi, M. V. & Tonapi, G. T. A new record of freshwater medusa from India. Curr. Sci. 34, 665–666 (1965).
    Google Scholar 
    56.El Moussaoui, N. & Beisner, B. L. La méduse d’eau douce Craspedacusta sowerbii: espèce exotique répandue dans les lacs du Québec. Nat. Can. 141, 40–46 (2017).
    Google Scholar 
    57.Fish, G. R. Craspedacusta sowerbyi Lankester (Coelenterata: Limnomedusae) in New Zealand lakes. N. Z. J. Mar. Freshw. Res. 5, 66–69 (1971).
    Google Scholar 
    58.Rayner, N. A. First record of Craspedacusta sowerbyi Lankester (Cnidaria: Limnomedusae) from Africa. Hydrobiologia 162, 73–77 (1988).
    Google Scholar 
    59.Somveille, M., Manica, A., Butchart, S. H. & Rodrigues, A. S. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    60.Newton, I. & Dale, L. C. Bird migration at different latitudes in eastern North America. Auk 113, 626–635 (1996).
    Google Scholar 
    61.Zhang, J. et al. Determination of original infection source of H7N9 avian influenza by dynamical model. Sci. Rep. 4, 1–16 (2014).
    Google Scholar 
    62.Fuentes, R., Cárdenas, L., Abarzua, A. & Caputo, L. Southward invasion of Craspedacusta sowerbii across mesotrophic lakes in Chile: Geographical distribution and genetic diversity of the medusa phase. Freshw. Sci. 38, 193–202 (2019).
    Google Scholar 
    63.Harrell, F. E. Hmisc: Harrell Miscellaneous (Version 4.5-0) (2021).64.Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. Mapping the global distribution of the freshwater hydrozoan Craspedacusta sowerbii. Pangaea https://doi.org/10.1594/PANGAEA.936074 (2021).65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    66.McGarvey, D. J. et al. On the use of climate covariates in aquatic species distribution models: Are we at risk of throwing out the baby with the bath water?. Ecography 41, 695–712 (2018).
    Google Scholar 
    67.Zeng, Y. & Yeo, D. C. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biol. Conserv. 223, 58–67 (2018).
    Google Scholar 
    68.Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    69.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).70.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    71.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Google Scholar 
    72.Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    73.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    74.Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Google Scholar 
    75.Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 634, 1326–1334 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    76.Silva, C., Leiva, F. & Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-northern Chile. Fish. Oceanogr. 28, 171–182 (2019).
    Google Scholar 
    77.Nenzén, H. K. & Araújo, M. B. Choice of threshold alters projections of species range shifts under climate change. Ecol. Model. 222, 3346–3354 (2011).
    Google Scholar 
    78.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Google Scholar 
    79.DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 837–845 (1988). More