More stories

  • in

    Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms

    1.The State of Food Insecurity in the World—How Does International Price Volatility Affect Domestic Economies and Food Security? (FAO, 2011).2.Catchpoole, D. W. & Blair, G. Forage tree legumes I. Productivity and N economy of leucaena, gliricidia, calliandra and sesbania and tree/green panic mixtures. Aust. J. Agric. Res 41, 521–530 (1990).CAS 
    Article 

    Google Scholar 
    3.Xu, Z. H., Saffigna, P. G., Myers, R. J. K. & Chapman, A. L. Nitrogen cycling in leucaena (Leucaena lecuocephala) alley cropping in semiarid tropics. 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148, 63–72 (1993).CAS 
    Article 

    Google Scholar 
    4.Beer, J., Muschler, R., Kass, D. & Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 38, 139–164 (1998).Article 

    Google Scholar 
    5.Snoeck, D., Zapata, F. & Domenach, A.-M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol. Agron. Soc. Environ. 4, 95–100 (2000).CAS 

    Google Scholar 
    6.Sierra, J. & Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 38, 1893–1903 (2006).CAS 
    Article 

    Google Scholar 
    7.He, X. H., Critchley, C. & Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531–567 (2003).Article 

    Google Scholar 
    8.Jalonen, R., Nygren, P. & Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 32, 1366–1376 (2009).CAS 
    Article 

    Google Scholar 
    9.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).Article 

    Google Scholar 
    10.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).11.Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164, 175–181 (2004).Article 

    Google Scholar 
    12.Newman, E. I. & Ritz, K. Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol. 104, 77–87 (1986).CAS 
    Article 

    Google Scholar 
    13.Mikkelsen, B. L., Rosendahl, S. & Jakobsen, I. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol. 4, 890–898 (2008).Article 

    Google Scholar 
    14.Saka, A. R., Bunderson, W. T., Itimu, O. A., Phombeya, H. S. K. & Mbekeani, Y. The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For. Ecol. Manage. 64, 217–230 (1994).Article 

    Google Scholar 
    15.Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor. Syst. 29, 133–145 (1995).Article 

    Google Scholar 
    16.Sileshi, G. W. et al. in Encyclopedia of Agriculture and Food Systems (ed. van Alfen, N.) 222–234 (Elsevier, 2014).17.Yengwe, J., Gebremikael, M. T., Buchan, D., Lungu, O. & De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 92, 349–363 (2018).
    Google Scholar 
    18.Yengwe, J., Amalia, O., Lungu, O. I. & De Neve, S. Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. Eur. J. Agron. 99, 148–155 (2018).CAS 
    Article 

    Google Scholar 
    19.Sida, T. S., Baudron, F., Ndoli, A., Tirfessa, D. & Giller, K. E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 453, 173–188 (2020).CAS 
    Article 

    Google Scholar 
    20.Umar, B. B., Aune, J. B. & Lungu, O. I. Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr. J. Agric. Res. 8, 173–183 (2013).
    Google Scholar 
    21.Hadgu, K. M., Kooistra, L., Rossing, W. A. H. & van Bruggen, A. H. C. Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security 1, 337–350 (2009).Article 

    Google Scholar 
    22.Dalpé, Y., Diop, T. A., Plenchette, C. & Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10, 125–129 (2000).Article 

    Google Scholar 
    23.Boddey, R. M., Peoples, M. B., Palmer, B. & Dart, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 57, 235–270 (2000).Article 

    Google Scholar 
    24.Oberson, A. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007).CAS 
    Article 

    Google Scholar 
    25.Snapp, S., Borden, H. & Rohrbach, D. Improving nitrogen efficiency: lessons from Malawi and Michigan. Sci. World 1, 42–48 (2001).
    Google Scholar 
    26.Akinnifesi, F. K., Wakumba, W. & Kwesiga, F. R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 42, 441–457 (2006).Article 

    Google Scholar 
    27.Tovihoudji, P. G., Irenikatché Akponikpè, P. B., Agbossou, E. K., Bertin, P. & Bielders, C. L. Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Res. 213, 130–142 (2017).Article 

    Google Scholar 
    28.Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).Article 

    Google Scholar 
    29.Bueno de Mesquita, C. P. et al. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 36, 63–74 (2018).Article 

    Google Scholar 
    30.Alexandre, D. Y. & Ouedraogo, S. J. in Faidherbia albida in the West African Semi-arid Tropics: Proceedings of a Workshop (ed. Vandenbeldt, R. J.) 107–110 (International Centre for Research in Agroforestry, 1992).31.Jones, A. et al. Soil Atlas of Africa (European Commission, 2013).32.Dierks, J. et al. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 318, 107487 (2021).CAS 
    Article 

    Google Scholar 
    33.Mungai, L. M. et al. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01720 (2016).34.Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).CAS 
    Article 

    Google Scholar 
    35.Marschner, H. & Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994).CAS 
    Article 

    Google Scholar 
    36.Gryndler, M. et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450 (2018).Article 

    Google Scholar 
    37.Rillig, M. C. et al. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308, 267–275 (2008).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T. & Li, M. Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol. 111, 35–44 (1989).Article 

    Google Scholar 
    39.Fitter, A. H. & Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 110, 201–206 (1988).CAS 
    Article 

    Google Scholar 
    40.Cavagnaro, T. R., Smith, F. A. & Smith, S. E. Interactions between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato: does a noninfective fungus alter the ability of an infective fungus to colonise the roots—and vice versa? New Phytol. 164, 485–491 (2004).Article 

    Google Scholar 
    41.Carey, P. D., Fitter, A. H. & Watkinson, A. R. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90, 550–555 (1992).Article 

    Google Scholar 
    42.Merryweather, J. & Fitter, A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132, 307–311 (1996).CAS 
    Article 

    Google Scholar 
    43.Shinners, K. J. & Binversie, B. N. Fractional yield and moisture of corn stover biomass produced in northern US Corn Belt. Biomass Bioenergy 31, 576–584 (2007).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/45.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002). More

  • in

    Mapping classes of carbon

    This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). More

  • in

    Field metabolic rates of giant pandas reveal energetic adaptations

    1.Li, B. V. & Pimm, S. L. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv. Biol. 30, 329–339 (2016).PubMed 

    Google Scholar 
    2.Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Google Scholar 
    3.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).
    Google Scholar 
    4.Nowak, R. M. Walker’s Mammals of the World Vol. II (Johns Hopkins University Press, 1991).
    Google Scholar 
    5.Nelson, R. A., Wahner, H. W., Jones, J. D., Ellefson, R. D. & Zollman, P. E. Metabolism of bears before, during, and after winter sleep. Am. J. Physiol. 224, 491–496 (1973).CAS 
    PubMed 

    Google Scholar 
    6.Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 
    7.Watts, P. D., Øritsland, N. A. & Hurst, R. J. Standard metabolic rate of polar bears under simulated denning conditions. Physiol. Zool. 60, 687–691 (1987).
    Google Scholar 
    8.Watts, P. & Cuyler, C. Metabolism of the black bear under simulated denning conditions. Acta Physiol. Scand. 134, 149–152 (1988).CAS 
    PubMed 

    Google Scholar 
    9.Watts, P. D. & Jonkel, C. Energetic cost of winter dormancy in grizzly bear. J. Wildl. Manag. 52, 654–656 (1988).
    Google Scholar 
    10.Tøien, Ø. et al. Hibernation in black bears: Independence of metabolic suppression from body temperature. Science 331, 906–909 (2011).ADS 
    PubMed 

    Google Scholar 
    11.McNab, B. K. Rate of metabolism in the termite-eating sloth bear (Ursus ursinus). J. Mammal. 73, 168–172 (1992).
    Google Scholar 
    12.Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?. J. Exp. Biol. 221, jeb175372 (2018).PubMed 

    Google Scholar 
    13.Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhang, Y., Mathewson, P. D., Zhang, Q., Porter, W. P. & Ran, J. An ecophysiological perspective on likely giant panda habitat responses to climate change. Glob. Change Biol. 24, 1804–1816 (2018).ADS 

    Google Scholar 
    15.Fei, Y. et al. Metabolic rates of giant pandas inform conservation strategies. Sci. Rep. 6, 27248. https://doi.org/10.1038/srep27248 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Sieg, A. E. et al. Mammalian metabolic allometry: Do intraspecific variation, phylogeny, and regression models matter?. Am. Nat. 174, 720–733 (2009).PubMed 

    Google Scholar 
    17.Nie, Y. et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349, 171–174 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Acquarone, M., Born, E. W. & Speakman, J. R. Field metabolic rates of walrus (Odobenus rosmarus) measured by the doubly labeled water method. Aquat. Mamm. 32, 363–369 (2006).
    Google Scholar 
    19.Nagy, K. & Montgomery, G. Field metabolic rate, water flux, and food consumption in three-toed sloths (Bradypus variegatus). J. Mammal. 61, 465–472 (1980).
    Google Scholar 
    20.Mautz, W. & Nagy, K. Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol. Zool. 60, 640–658 (1987).
    Google Scholar 
    21.Anava, A., Kam, M., Shkolnik, A. & Degen, A. Effect of group size on field metabolic rate of Arabian babblers provisioning nestlings. Condor 103, 376–380 (2001).
    Google Scholar 
    22.Fyhn, M. et al. Individual variation in field metabolic rate of kittiwakes (Rissa tridactyla) during the chick-rearing period. Physiol. Biochem. Zool. 74, 343–355 (2001).CAS 
    PubMed 

    Google Scholar 
    23.Møller, A. P. Relative longevity and field metabolic rate in birds. J. Evol. Biol. 21, 1379–1386 (2008).PubMed 

    Google Scholar 
    24.Riek, A. Relationship between field metabolic rate and body weight in mammals: Effect of the study. J. Zool. 276, 187–194 (2008).
    Google Scholar 
    25.Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L. & Speakman, J. R. Estimating field metabolic rates of pinnipeds: Doubly labelled water gets the seal of approval. Funct. Ecol. 22, 245–254 (2008).
    Google Scholar 
    26.Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    27.Munn, A. J. et al. Field metabolic rate, movement distance, and grazing pressures by western grey kangaroos (Macropus fuliginosus melanops) and Merino sheep (Ovis aries) in semi-arid Australia. Mamm. Biol. 81, 423–430 (2016).
    Google Scholar 
    28.Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus) in New Directions in Lemur Studies (eds. Rakotosamimanana, B., Rasamimanana H., Ganzhorn, J. U., & Goodman S. M.) 83–91 (1999).29.Kilham, B. & Gray, E. Among the Bears: Raising Orphan Cubs in the Wild (Henry Holt, 2002).
    Google Scholar 
    30.Xu, W., Ouyang, Z., Jiang, Z., Zheng, H. & Liu, J. Assessment of giant panda habitat in the Daxiangling Mountain Range, Sichuan, China. Biodivers. Sci. 14, 223 (2006).CAS 

    Google Scholar 
    31.Zhao, C. et al. Relationship between human disturbance and endangered giant panda Ailuropoda melanoleuca habitat use in the Daxiangling Mountains. Oryx 51, 146–152 (2017).
    Google Scholar 
    32.Wysowski, D. K. & Pollock, M. L. Reports of death with use of propofol (Diprivan) for nonprocedural (long-term) sedation and literature review. J. Am. Soc. Anesthesiol. 105, 1047–1051 (2006).
    Google Scholar 
    33.Mistraletti, G., Donatelli, F. & Carli, F. Metabolic and endocrine effects of sleep deprivation. Essent. Psychopharmacol. 6, 312–317 (2005).
    Google Scholar 
    34.Champagne, C. D., Houser, D. S., Costa, D. P. & Crocker, D. E. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in Northern elephant seals. PLoS ONE 7, e38442. https://doi.org/10.1371/journal.pone.0038442 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Fahlman, Å. Anaesthesia of wild carnivores and primates. Licentiate Thesis (Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005).36.Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113 (2006).
    Google Scholar 
    37.West, G., Heard, D. & Caulkett, N. Zoo Animal and Wildlife Immobilization and Anesthesia 2nd edn. (John Wiley & Sons, 2014).
    Google Scholar 
    38.Speakman, J. R. Doubly Labelled Water: Theory and Practice (Springer, 1997).
    Google Scholar 
    39.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Prosser, C. L. & Brown, F. A. Jr. Comparative Animal Physiology, Environmental and Metabolic Animal Physiology 260–261 (W. B. Saunders, 1991).
    Google Scholar 
    41.Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258 (1950).CAS 
    PubMed 

    Google Scholar 
    42.Hart, J. S. Rodents in Comparative Physiology of Thermoregulation, Volume II Mammals (ed Whittow, G. C.) 1–149 (Academic Press, 1971).43.McNab, B. K. The Physiological Ecology of Vertebrates: A View From Energetics (Cornell University Press, 2002).
    Google Scholar 
    44.Schaller, G. B., Hu, J. C., Pan, W. S. & Zhu, J. Giant Pandas of Wolong (The University of Chicago Press, 1985).
    Google Scholar 
    45.Taylor, C., Heglund, N. & Maloiy, G. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. exp. Biol. 97, 1–21 (1982).CAS 
    PubMed 

    Google Scholar 
    46.Pagano, A. M. Polar bear (Ursus maritimus) behavior and energetics: New metrics for examining the physiological impact of a changing Arctic environment. Ph.D. Dissertation (University of California Santa Cruz, CA, 2018).47.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Google Scholar 
    48.Hu, J. C. Research on the Giant Panda (Shanghai Publishing House of Science and Technology, 2001).
    Google Scholar 
    49.Liu, G., Guan, T., Dai, Q., Li, H. & Gong, M. Impacts of temperature on giant panda habitat in the north Minshan Mountains. Ecol. Evol. 6, 987–996 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    50.Hull, V. et al. Impact of livestock on giant pandas and their habitat. J. Nat. Conserv. 22, 256–264 (2014).
    Google Scholar 
    51.Hull, V. et al. Habitat use and selection by giant pandas. PLoS ONE 11(9), e0162266 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Li, B. V., Pimm, S. L., Li, S., Zhao, L. & Luo, C. Free-ranging livestock threaten the long-term survival of giant pandas. Biol. Cons. 216, 18–25 (2017).
    Google Scholar 
    53.Pan, W. et al. A Chance for Lasting Survival: Ecology and Behavior of Wild Giant Pandas (Smithsonian Institution Press, 2014).
    Google Scholar 
    54.Hayes, J. P. Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at lowand high altitudes. Physiol. Zool. 62, 732–744 (1989).
    Google Scholar 
    55.Bi, W. Physiological ecology of soft-release giant pandas (Ailuropoda melanoleuca). PhD Dissertation. (Drexel University, Philadelphia, PA, 2020) More

  • in

    Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic

    Mixed layer depth and phytoplankton accumulation dynamics in the North AtlanticThe NAAMES expeditions intensively measured biological, chemical, and physical properties from 4 to 7 locations, or stations, in each bloom phase during November (Winter Transition), March−April (Accumulation), May (Climax; same as Climax Transition22), and September (Decline)22. Stations spanned a broad range in latitude (~37 °N to ~55 °N, Fig. 1a), sub-regional classifications (Gulf Stream and Sargasso Sea, Subtropical, Temperate and Subpolar)24, and MLDs (tens to hundreds of meters) (Fig. 1b and Supplementary Fig. 1). MLDs were calculated using a density difference threshold of 0.03 kg m−3 from the top 10 m25. Field data and associated analyses are derived from phytoplankton 1–20 µm in diameter and their associated communities sampled within the photic zone (40, 20, 1% surface irradiance) and within the mixed layer, unless otherwise noted.Fig. 1: Mixed layer depth and phytoplankton accumulation dynamics.a Locations of sampled stations within subregions of the Northwest Atlantic during the NAAMES expeditions (color coded and shaped by the bloom phase; W. Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline; See key in Panel B). Black rectangle represents the study area of NAAMES and this research. b Mixed layer depths within the NAAMES campaigns (black box in Fig. 1a), calculated from CTD casts at each of the station locations (colored symbols) and Bio-ARGO profiling floats that were deployed at stations and sampled continuously (small circles with separate grey lines for each float). The latter provided a history of mixed layer depths before, during, and after occupation. c Bloom phase distribution of accumulation rates for in situ phytoplankton populations sampled several times per day at 5 m. Each point represents the median accumulation rate of each station. d Bloom phase distribution of phytoplankton cell accumulation rates derived from on-deck incubations of phytoplankton populations at simulated in situ light and temperature conditions (see ‘Methods’). Each point represents a biological replicate. Data in panels (c) and (d) are based on cell concentrations and contoured with ridgeline smoothing to represent the distribution of accumulation rates across stations within a given bloom phase. The size of contour peaks is driven by frequency of observations. e Phytoplankton concentration (taken from 5 m) as a function of water column stratification (expressed as buoyancy frequency; s−1). Higher buoyancy frequencies to the right of the plot represent more stratification. A LOESS line of best fit (shaded area = 95% confidence interval) for data shows the general trend of phytoplankton concentration across all seasonal phases. Different letters denote statistically significant groups (p  0.05, Kruskal−Wallis) between populations collected from 5 m in-line sampling throughout the day (in situ) and contemporaneous incubations of the same phytoplankton populations under simulated in situ irradiance and temperature (incubations; see ‘Methods’) (Fig. 1c, d). Accumulation rates using incubations calculated via cell concentration or via biovolume were not statistically different (Supplementary Fig. 2b).Phytoplankton cell concentration and biovolume generally increased with water column stability (stratification), during the Winter Transition, Accumulation, and Climax phases (Fig. 1e and Supplementary Fig. 2c). Stratification was quantified by the buoyancy frequency averaged over the upper 300 m of the water column (see ‘Methods’). Higher values of buoyancy frequency indicate a more stratified water column where exchange with nutrient-rich water below the surface is reduced. Strongly stratified water columns (buoyancy frequencies above 2 × 10−5 s−1) during the Decline phase were associated with lower cell concentrations (Fig. 1e), consistent with enhanced phytoplankton loss or reduced accumulation. Phytoplankton biovolume and cell size distribution within 1–20 µm-sized phytoplankton cells increased during the Decline phase (Supplementary Fig. 2c–e). These higher biovolumes could have been a result of changes in community composition. They could have also been attributed to aggregation caused by virus infection20,21,28, as virus concentrations were highest during this season (discussed below), or by light stress27, as mixed layer populations were more consistently exposed to daily higher irradiance levels characteristic of shallow mixed layers (Fig. 1e).In situ phytoplankton cell concentrations increased from Winter Transition until the Climax phase, from ~1 × 106 to 2.5 × 107 cells L−1 (Fig. 2a, c, gray boxes). On-deck incubations showed similar trends but had higher overall cell concentrations (Fig. 2a, c, white boxes). The Decline phase was characterized by a 4-fold reduction in median phytoplankton cell concentrations from the peak abundances observed during Climax phase (Fig. 2a, c). The stress markers utilized in this study provided a unique view into the physiological status of communities across these annual bloom phases (Supplementary Table 1). Our ROS and compromised cell membranes biomarkers specifically targeted eukaryotic phytoplankton, given the conditions used for flow cytometry analysis (see ‘Methods’). PCD-related proteases and lipids were extracted from biomass collected onto 1.2 and 0.2 µm diameter membrane filters, respectively. Consequently, these biomarkers could also include eukaryotic heterotrophs and bacteria in the system. Induction of caspase and metacaspase activities have been found in diverse phytoplankton, such as coccolithophores, diatoms, chlorophytes, nitrogen-fixing cyanobacteria, and dinoflagellates cells undergoing stress, senescence, and death29. They have also been reported in stressed or dying grazers30, although no marine species has been explicitly studied. TAGs are found mainly in marine eukaryotic phytoplankton31,33,33 and grazers34. The highly unsaturated fatty acids in the PC and OxPCs detected in our measurements are also indicative of eukaryotic organisms, and not marine cyanobacteria32 or heterotrophic bacteria35.Fig. 2: Seasonal phases have distinct physiological state signatures.a, c Concentration of phytoplankton cells sampled within the mixed layer at depths associated with 40, 20, or 1% surface irradiance during different seasonal phases (W.Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline). Data are shown for in situ water (grey bars) and on-deck incubations (open bars). Population-wide levels of a, b cellular reactive oxygen species (colored by fluorescence fold change from unstained; median per population) and c, d cell death (colored by % compromised membrane). Plots (b) and (d) are contoured with ridgeline smoothing to represent the relative in situ distribution of biomarker levels within each phase. The size of contour peaks is driven by frequency of observations. e, f In situ inventories of live (e; green) and dead (f; red) cells within the mixed layer through the different phases. Individual circles denote biological replicates. Box plots in (a), (c), (e) and (f) represent the median value bounded by the upper and lower quartiles with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  5 µM; PO4  > 0.4 µM). Notably, nutrient concentrations during the Climax phase were similar or higher than those observed for Accumulation phase samples, which had lower ROS signatures (Fig. 2b).Phytoplankton cells in the Decline and Winter Transition phases had a higher percentage of compromised cell membranes, reaching levels as high as 80% (Fig. 2c, d). Both late stage viral infection and PCD have been linked to high levels of compromised membranes13,29. The percentage of phytoplankton cells with compromised membranes was used to calculate concentrations of live and dead cells within the mixed layer across the bloom phases. Living phytoplankton cell concentrations generally increased from the Winter Transition through the Climax phase (Fig. 2e). The variability of dead cells was highest in the Decline phase, which also had the largest variation in total, living, and dead cell concentrations (Fig. 2c, e, f).Targeted analysis of OxPC, and TAGs in resident phytoplankton communities provided further context of changes in physiological states due to their relevance in cellular stress and loss processes. The seasonal bloom phases were characterized by distinct levels of these lipids (Fig. 3 and Supplementary Fig. 4). OxPC levels were highest in the Climax phase (Fig. 3a), where mixed layers had recently shallowed (Fig. 1b) and were concomitant with high intracellular ROS levels (Fig. 2b). Subcellular environments lacking in adequate antioxidant capacity are expected to accumulate OxPC40 particularly when a shallow mixed-layer enhances UV exposure15. Chlorophyll-normalized TAG was highest in the Decline phase (Fig. 3b), which also had the lowest accumulation rates (Fig. 1c, d). High cellular TAG levels have been observed in senescent41,42 or nutrient limited9 diatoms, and virus infected haptophytes43.Fig. 3: Seasonal phases are characterized by distinct lipid profiles and cell death-associated proteolytic activity.a Oxidized phosphatidylcholine (OxPC40:10, OxPC42:11, OxPC44:12) normalized to total phosphatidylcholine (PC40:10, PC42:11, PC44:12). b Triacylglycerol (TAG; pmol L−1), normalized to ChlA (peak area/L). c (top) The proportion of in situ samples with positive caspase activity (cleavage of IETD-AFC; color shading). (bottom) Caspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. d (top) The proportion of in situ samples with positive metacaspase activity (cleavage of VRPR-AMC; color shading). (bottom) Metacaspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. All box plots represent the median value bounded by the upper and lower quartiles, with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  More

  • in

    A newly discovered behavior (‘tail-belting’) among wild rodents in sub zero conditions

    1.Simeonovska-Nikolova, D. M. Interspecific social interactions and behavioral responses of Apodemus agrarius and Apodemus flavicollis to conspecific and heterospecific odors. J. Ethol. 25(1), 41–48 (2007).
    Google Scholar 
    2.Yoon, M.-H. & Han, C.-W. A study on daily torpor in the Korean striped field mouse (Apodemus agrarius). J. Life Sci. 16(4), 618–625 (2006).
    Google Scholar 
    3.Stryjek, R. et al. A methodological review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J. Neurosci. Methods 362, 109303 (2021).PubMed 

    Google Scholar 
    4.Stryjek, R. et al. Wild Norway rats do not avoid predator scents when collecting food in a familiar habitat: A field study. Sci. Rep. 8(1), 9475 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Parsons, M. H. et al. Differential responses by city rats (Rattus norvegicus) toward male or female-produced pheromones in sheltered and high-risk presentations. J. Urban Ecol. 5, juz009 (2019).
    Google Scholar 
    6.Vukicevic-Radic, O. et al. Spatial distribution of Apodemus flavicollis and A. agrarius in a forest community quercetum-petraea on Mt. Avala (Serbia). Biotechnol. Biotechnol. Equip. 20(1), 57–60 (2006).
    Google Scholar 
    7.Filippucci, M. G., Macholan, M. & Michaux, J. R. Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biol. J. Lin. Soc. 75(3), 395–419 (2002).
    Google Scholar 
    8.Hille, A. et al. Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence. Acta Theriol. 47(4), 389–416 (2002).
    Google Scholar 
    9.Rubtsov, N. et al. Comparative analysis of DNA homology in pericentric regions of chromosomes of wood mice from genera Apodemus and Sylvaemus. Russ. J. Genet. 51(12), 1233–1242 (2015).CAS 

    Google Scholar 
    10.Suzuki, H. et al. Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol. J. Lin. Soc. 80(3), 469–481 (2003).
    Google Scholar 
    11.Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Lagomorphs and Rodents I (Lynx, 2016).
    Google Scholar 
    12.Ge, D. et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool. J. Linn. Soc. 187(2), 518–534 (2019).
    Google Scholar 
    13.Knitlová, M. & Horáček, I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in central Europe. PLoS ONE 12(3), e0173668 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    14.Bronson, F. & Pryor, S. Ambient temperature and reproductive success in rodents living at different latitudes. Biol. Reprod. 29(1), 72–80 (1983).CAS 
    PubMed 

    Google Scholar 
    15.Kay, E. H. & Hoekstra, H. E. Rodents. Curr. Biol. 18(10), R406–R410 (2008).CAS 
    PubMed 

    Google Scholar 
    16.Auffray, J.-C., Renaud, S. & Claude, J. Rodent biodiversity in changing environments. Agric. Nat. Resour. 43(1), 83–93 (2009).
    Google Scholar 
    17.Atopkin, D., Bogdanov, A. & Chelomina, G. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 43(6), 665–676 (2007).CAS 

    Google Scholar 
    18.Zhigileva, O. Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia. Russ. J. Genet. 50(8), 838–845 (2014).CAS 

    Google Scholar 
    19.Khlyap, L. A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR. Biodivers. Data J. 9, e69159 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Klaus, S., Heldmaier, G. & Ricquier, D. Seasonal acclimation of bank voles and wood mice: Nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B. 158(2), 157–164 (1988).CAS 
    PubMed 

    Google Scholar 
    21.Haim, A., McDevitt, R. & Speakman, J. Daily variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J. Exp. Biol. 198(2), 561–565 (1995).CAS 
    PubMed 

    Google Scholar 
    22.Boratyński, J. S. & Szafrańska, P. A. Does basal metabolism set the limit for metabolic downregulation during torpor?. Physiol. Biochem. Zool. 91(5), 1057–1067 (2018).PubMed 

    Google Scholar 
    23.Bligh, J. et al. Thermoreception and Temperature Regulation (Springer, 1990).
    Google Scholar 
    24.Ijzerman, H. et al. Social thermoregulation: A meta-analysis. Psyarxiv https://doi.org/10.31234/osf.io/fc6yq (2021).Article 

    Google Scholar 
    25.Tertil, R. The effect of behavioural thermoregulation on the daily metabolism of Apodemus agrarius (Pallas, 1771). Acta Theriol. 17(22), 295–313 (1972).
    Google Scholar 
    26.Hester, P. et al. Effect of partial comb and wattle trim on pullet behavior and thermoregulation. Poult. Sci. 94(5), 860–866 (2015).CAS 
    PubMed 

    Google Scholar 
    27.Arad, Z., Midtgård, U. & Bernstein, M. H. Thermoregulation in turkey vultures: Vascular anatomy, arteriovenous heat exchange, and behavior. The Condor 91(3), 505–514 (1989).
    Google Scholar 
    28.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325(5939), 468–470 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Raman, E. R., Roberts, M. F. & Vanhuyse, V. J. Body temperature control of rat tail blood flow. Am. J. Physiol. 245(3), R426–R432 (1983).CAS 
    PubMed 

    Google Scholar 
    30.Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92(6), 2667–2679 (2002).PubMed 

    Google Scholar 
    31.O’Leary, D. S., Johnson, J. M. & Taylor, W. F. Mode of neural control mediating rat tail vasodilation during heating. J. Appl. Physiol. 59(5), 1533–1538 (1985).CAS 
    PubMed 

    Google Scholar 
    32.Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98(1), 31–48 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Scholander, P. & Krog, J. Countercurrent heat exchange and vascular bundles in sloths. J. Appl. Physiol. 10(3), 405–411 (1957).CAS 
    PubMed 

    Google Scholar 
    34.Heyning, J. E. Thermoregulation in feeding baleen whales: Morphological and physiological evidence. Aquat. Mamm. 27(3), 284–288 (2001).
    Google Scholar 
    35.Davenport, J. et al. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down. Biol. Lett. 11(10), 20150592 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    36.Dawson, N. & Keber, A. Physiology of heat loss from an extremity: The tail of the rat. Clin. Exp. Pharmacol. Physiol. 6(1), 69–80 (1979).CAS 
    PubMed 

    Google Scholar 
    37.Young, A. & Dawson, N. Evidence for on–off control of heat dissipation from the tail of the rat. Can. J. Physiol. Pharmacol. 60(3), 392–398 (1982).CAS 
    PubMed 

    Google Scholar 
    38.Škop, V. et al. Mouse thermoregulation: Introducing the concept of the thermoneutral point. Cell Rep. 31(2), 107501 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Bozinovic, F. et al. Time and energy use under thermoregulatory constraints in a diurnal rodent. J. Therm. Biol 25(3), 251–256 (2000).
    Google Scholar 
    40.Sears, M. W. et al. Out in the cold: Physiological capacity influences behaviour in deer mice. Funct. Ecol. 23(4), 774–783 (2009).
    Google Scholar 
    41.Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk?. J. Mammal. 76(3), 900–905 (1995).
    Google Scholar 
    42.Murray, I. W. & Smith, F. A. Estimating the influence of the thermal environment on activity patterns of the desert woodrat (Neotoma lepida) using temperature chronologies. Can. J. Zool. 90(9), 1171–1180 (2012).
    Google Scholar 
    43.Hoogenboom, I. et al. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31 (1984).ADS 
    CAS 
    PubMed 

    Google Scholar 
    44.Bennie, J. J. et al. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 111(38), 13727–13732 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5), 520–530 (2012).
    Google Scholar 
    46.Pigeon, K. E. et al. Staying cool in a changing landscape: The influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181(4), 1101–1116 (2016).ADS 
    PubMed 

    Google Scholar 
    47.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16(4), 1428–1444 (2011).
    Google Scholar 
    48.Morrison, P. R. & Tietz, W. J. Cooling and thermal conductivity in three small Alaskan mammals. J. Mammal. 38(1), 78–86 (1957).
    Google Scholar 
    49.Gosling, L. The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J. Zool. 187(3), 341–367 (1979).
    Google Scholar 
    50.Moinard, C., Doncaster, C. P. & Barré, H. Indirect calorimetry measurements of behavioral thermoregulation in a semiaquatic social rodent, Myocastor coypus. Can. J. Zool. 70(5), 907–911 (1992).
    Google Scholar 
    51.Scholander, P. F. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
    Google Scholar 
    52.Prestrud, P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic 44, 132–138 (1991).
    Google Scholar 
    53.Weihong, J., Veitch, C. & Craig, J. L. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 1999(23), 45–51 (1999).
    Google Scholar 
    54.Jackson, M., Hartley, S. & Linklater, W. Better food-based baits and lures for invasive rats Rattus spp. and the brushtail possum Trichosurus vulpecula: A bioassay on wild, free-ranging animals. J. Pest Sci. 89(2), 479–488 (2016).
    Google Scholar 
    55.Stryjek, R., Kalinowski, A. & Parsons, M. H, Unbiased sampling for rodents and other small mammals: How to overcome neophobia through use of an electronic-triggered live trap: A preliminary test. Front. Ecol. Evol. 7, 11 (2019).
    Google Scholar 
    56.Kilkenny, C. et al. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8(6), e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    57.Hardy, J. D. Physiology of temperature regulation. Physiol. Rev. 41(3), 521–606 (1961).CAS 
    PubMed 

    Google Scholar 
    58.Follmann, E. Behavioral thermoregulation of arctic foxes in winter. Biotelemetry 5, 36 (1978).
    Google Scholar 
    59.Rieger, I. Tail functions in ounces, Uncia uncia. Intl. Ped. Book Snow Leopards 4, 85–97 (1984).
    Google Scholar 
    60.Sokolov, V. Adaptations of mammal skin to the environment. In Mammal Skin 573–630 (University of California Press, 1993).
    Google Scholar 
    61.Donati, G. et al. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthropol. 144(3), 355–364 (2011).PubMed 

    Google Scholar 
    62.Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: A study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54(3), 285–296 (1981).
    Google Scholar 
    63.Mai, T. C. et al. Low-level radiofrequency exposure induces vasoconstriction in rats. Bioelectromagnetics 42, 455–463 (2021).CAS 
    PubMed 

    Google Scholar 
    64.Grant, R. Vasodilatation and body warming in the rat. J. Physiol. 167(2), 311 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Steen, I. & Steen, J. Thermoregulatory importance of the beaver’s tail. Comp. Biochem. Physiol. 15(2), 267–270 (1965).CAS 
    PubMed 

    Google Scholar 
    66.Mohler, F. S. & Heath, J. E. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna. Am. J. Physiol. 254(2), R389–R395 (1988).CAS 
    PubMed 

    Google Scholar 
    67.Klir, J. J., Heath, J. E. & Bennani, N. An infrared thermographic study of surface temperature in relation to external thermal stress in the Mongolian gerbil, Meriones unguiculatus. Comp. Biochem. Physiol. A 96(1), 141–146 (1990).CAS 
    PubMed 

    Google Scholar 
    68.Vejmělka, F. et al. Heat dissipation in subterranean rodents: the role of body region and social organisation. Sci. Rep. 11(1), 1–17 (2021).
    Google Scholar 
    69.Heisig, M. et al. Frostbite protection in mice expressing an antifreeze glycoprotein. PLoS ONE 10(2), e0116562 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    70.Cilulko, J. et al. Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013).
    Google Scholar 
    71.Auerbach, L. J. et al. A novel mouse model for frostbite injury. Wilderness Environ. Med. 24(2), 94–104 (2013).MathSciNet 
    PubMed 

    Google Scholar 
    72.Phifer-Rixey, M. & Nachman, M. W. The Natural History of Model Organisms: Insights into mammalian biology from the wild house mouse Mus musculus. Elife 4, e05959 (2015).PubMed Central 

    Google Scholar  More

  • in

    Effects of species and geo-information on the 137Cs concentrations in edible wild mushrooms and plants collected by residents after the Fukushima nuclear accident

    Site informationWe collected radioactivity data of wild mushrooms and wild edible plants from inspection results of specimens brought in by residents in Kawauchi Village, which is located 12–30 km away from the FDNPP (Fig. 1). Kawauchi Village is considered small, with an area of 197.4 km2, and a population of about 2500 (2820 in 2010 and 2518 in 2021)48. It is located in the middle of the Abukuma Highlands, where the elevation ranges from 270 to 1,192 m above the sea level. It has a forest coverage of 89.0%, which is higher than the average for Fukushima Prefecture (71%) and Japan as a whole (69%)49. 137Cs deposition in the village ranged from 42 to 960 kBq/m2 in 2011, estimated from an aircraft monitoring28. Before the accident, its residents were accustomed to gathering wild foods, such as wild edible mushrooms, plants, mammals, and wild honey50; many have been brought in for inspection. Information on collection areas of sub-village levels, called “Ko-aza” in Japanese, is also recorded. For these reasons, we thought that the data of the brought in inspection in Kawauchi Village would possess high value as data for inter-species and inter-region analysis on the wild mushrooms and edible plants’ radioactivity concentrations.Radioactivity data of mushrooms and wild plantsFukushima Prefecture sets up a system for each municipality to inspect radioactivity in vegetables and mushrooms consumed by residents, and Kawauchi Village started its inspection program in May 2012. Simple inspection machines are set up at public facilities, and inspections are conducted upon application by residents. In Kawauchi Village, the location of samples inspected was requested at the sub-village level. The inspection results were regularly reported in the village newsletter, along with the inspection date, inspected food, and collection location. The data compiled from May 2012 to March 2020 was provided to us through the village officials. Orita et al. analyzed the same inspection data of agricultural products in Kawauchi Village24. They used 7668 food data from April 2013 to December 2014, including 1986 wild plants and mushrooms data for internal radiation exposure assessment. Some of their data overlap with the data used in our analyses.System of monitoring radioactivity in Kawauchi VillageKawauchi Village started the brought in inspection in May 2012, and there is a maximum of eight inspection stations and currently three stations managed by residents. In the inspection sites, there are four types of NaI (Tl) or CsI (Tl) scintillation detectors. The machine names are Triathler Becquerel Finder (Hidex, Oy, Finland), Captus-3000A (Capintec, NJ), CAN-OSP-NAI (Hitachi Aloka, Tokyo, Japan), and FD-08Cs1000-1 (X-Ray Technology, Osaka, Japan). Table S4 shows the specifications of the machines51,52,53. All instruments have been confirmed to meet the radiocesium screening method requirements for food53. Among these machines, FD-08Cs1000-1 can measure radioactivity non-destructively, and the others conduct destructive measurements. The sample weight is approximately 500 g, and the counting time is 30 min. FD-08Cs1000-1 outputs the summed concentration of the two radiocesium nuclides (134Cs and 137Cs), and its detection limit is 10 Bq/kg (for total 134Cs + 137Cs). Each of the other three machines separately outputs the concentrations of 134Cs and 137Cs, and the detection limit is 10 Bq/kg for each radionuclide. Energy calibrations and background checks were performed daily, and the accuracy was periodically verified with brown rice whose radiocesium concentration was verified by calibrated high-purity Germanium (HPGe) detectors installed in the Fukushima Nuclear Center49. Table S4 shows the results of quality control using brown rice.Data preparation of radioactivity of samplesFrom the radioactivity data of wild mushrooms and plants, we picked up data that met the following criteria;

    Data have information of sampling location at sub-village levels

    Items that are not confirmed to be cooked products such as “boiled” or “dried.”

    Species with more than ten samples in which radiocesium was detected.

    In cases where mushrooms and wild plants were given in dialects, we confirmed the species’ names with residents. The names of the species were determined from the Japanese names of the items, but in some cases, it was not possible to distinguish between Cortinarius salor (“Murasakiaburashimejimodoki” in Japanese) and C. iodes (“Murasakiaburashimeji”), considered to be closely related species, so the two were mixed for analysis. The leaf stalk and scape of Petasites japonicus (Japanese butterbur) are called “Fuki” and “Fukinotou” in Japanese, respectively, and are registered separately. Therefore, despite being the same species, they were distinguished in the analysis. In this data, there were not sampling date but measurement date. Therefore, the date of measurement and sample collection were assumed to be the same.The 137Cs concentration results were used in the model analysis. The reason for not using the134Cs concentration among the measured values is explained in the subsection of “Bayesian estimation”. 137Cs concentrations were decay-corrected to March 11th, 2011 for comparison with Komatsu et al. (2019). Based on the assumption that the 134Cs/137Cs ratio at the time of the accident was one54, the summed concentration of 134Cs and 137Cs concentration taken by FD08-Cs1000-1 was converted to a 137Cs concentration, which was decay-corrected to March 11th, 2011, using the following equation;$${}^{137}C{s}_{2011/03/11}=tC{s}_{mathrm{sampling}_mathrm{day}}*frac{{0.5}^{dy/30.17}}{{0.5}^{dy/2.065}+{0.5}^{dy/30.17}}$$In this equation, dy indicates the period from March 11th, 2011, to the date of measuring, and it is expressed by decimal years.Sub-village (“Ko-aza”) boundary map of Kawauchi VillageKawauchi Village comprises eight administrative communities (called “Oh-aza” in Japanese), which are further subdivided into small administrative units known as “Ko-aza”. Here, we refer to these small administrative units as sub-villages. We obtained a sub-village map from the administrative office. The printed map was originally drawn by hand and had been used for village administration. To create a polygon shapefile of the map, we digitized it by scanning, geo-rectifying, and digitizing using GIS software in TNTmips v2014 (MicroImages, Inc, NE) and ArcGIS 10.3 (Esri, Inc, CA). We used this map to associate land names with monthly radioactivity data from samples and to estimate sample collection locations.Deposition dataFor the 137Cs deposition data of this area, we used 250 m grid deposition data measured by the Ministry of Education, Culture, Sports, Science and Technology28,55 and then corrected by Kato and Onda26. We computed the geometric mean value of 137Cs deposition within each sub-village polygon. The 137Cs deposition is also decay-corrected to March 11th, 2011.Bayesian estimationWe constructed a Bayesian model partially modified from Komatsu et al.22 to estimate 137Cs concentration (137Cssample). The model is based on the Gonze and Calmon’s concept of normalized concentration (NC) as expressed by:$$NC= frac{Cs}{D}$$where D indicates the radiocesium deposition amount based on the aircraft monitoring. Then the above equation is transformed and logarithmized to yield;$$mathrm{log}Cs=mathrm{log}NC+mathrm{log}D$$In this expression of the model equation, we further assumed that the logartihm of NC encompassed the summed effects of species identity, collection date, and collection site, and that the logarithm of NC was normally distributed around the estimated mean as per the following equations;$$begin{array}{l}{text{log}}_{10}{hspace{0.17em}}^{137}C{s}_{mathrm{sample}} sim Normal({mu }_{mathrm{sample}},sigma )\ {mu }_{mathrm{sample}} ={text{log}}_{10}N{C}_{mathrm{sp}}+{lambda }_{mathrm{sp}}Y+{text{log}}_{10}{D}_{mathrm{loc}}+{r}_{mathrm{loc}}\ {text{log}}_{10}N{C}_{mathrm{sp}} sim Normal({mu }_{mathrm{sp}},{sigma }_{mathrm{sp}})\ {lambda }_{mathrm{sp}} sim Normal({mu }_{mathrm{lambda sp}},{sigma }_{mathrm{lambda sp}})\ {r}_{mathrm{loc}} sim Normal(0,{sigma }_{mathrm{loc}})end{array}$$where NCsp, λsp, Dloc and rloc indicate characteristics of concentration of species, temporal trends of species, 137Cs deposition of each sub-village area and effects of sub-village on concentration, respectively. rloc is a parameter with zero mean that represents the deviation of the concentration effect from the expected value based on the deposition (Dloc) value at the point of collection. These parameters except Dloc were obtained from hierarchically sampled from normal distribution with hierarchical parameters (μsp, σsp, μλsp, σλsp, σloc). Additionally, rloc was sampled using the Intrinsic Conditional Auto-Regressive (Intrinsic CAR) model56, which is one of the models considering spatial auto-correlation. For samples whose measured radiocesium concentrations were below the detection limit, radiocesium concentration values were estimated by a censoring distribution in which the detection limit was treated as the upper bound57. This model was defined as the “sub-village model” for this research. This model is similar to model 6 in Komatsu et al.22 but differs in that their previous model takes into account 134Cs values and differences between 134 and 137Cs values. Komatsu et al. evaluated the regional trend in the difference between134Cs and 137Cs concentrations across eastern Japan because 137Cs originating from nuclear bomb tests before the FDNPP accident was detected in wild mushrooms sampled in the northern and southern parts of eastern Japan, which are far from the FDNPP and received less deposition from the accident ( More

  • in

    Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

    1.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).CAS 
    PubMed 

    Google Scholar 
    2.Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    3.Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    PubMed 

    Google Scholar 
    5.Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).6.de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    7.Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).CAS 

    Google Scholar 
    10.Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).PubMed 
    ADS 

    Google Scholar 
    12.Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    13.Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).Article 
    PubMed 

    Google Scholar 
    15.Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    PubMed 

    Google Scholar 
    16.Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).PubMed 

    Google Scholar 
    17.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).
    Google Scholar 
    20.O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    22.Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 

    Google Scholar 
    23.Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    24.Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).PubMed 

    Google Scholar 
    25.Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).
    Google Scholar 
    26.Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    27.Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).CAS 
    PubMed 

    Google Scholar 
    29.McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    30.Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
    Google Scholar 
    31.Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    33.Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).
    Google Scholar 
    35.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 

    Google Scholar 
    36.Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).ADS 

    Google Scholar 
    37.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).
    Google Scholar 
    39.Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).PubMed 

    Google Scholar 
    40.Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).PubMed Central 

    Google Scholar 
    41.Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).
    Google Scholar 
    42.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).
    Google Scholar 
    44.Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 

    Google Scholar 
    46.Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).
    Google Scholar 
    47.Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).
    Google Scholar 
    48.Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).
    Google Scholar 
    49.Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    51.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar  More

  • in

    Shallow-emerged coral may warn of deep-sea coral response to thermal stress

    1.Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).Article 

    Google Scholar 
    2.Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).3.Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).Article 

    Google Scholar 
    4.Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).Article 

    Google Scholar 
    5.Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).6.Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).7.Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).8.Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).MathSciNet 
    Article 

    Google Scholar 
    9.Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).10.Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).11.Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).13.Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).Article 

    Google Scholar 
    14.Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).
    Google Scholar 
    15.Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. A, John Wiley and Sons Ltd, UK (1999).16.National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).17.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    18.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    19.Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).
    Google Scholar 
    20.Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).Article 

    Google Scholar 
    22.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    23.Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).Article 

    Google Scholar 
    24.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).26.Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    28.Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).ADS 
    Article 

    Google Scholar 
    33.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    34.Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).ADS 
    Article 

    Google Scholar 
    35.Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).Article 

    Google Scholar 
    37.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    38.Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).Article 

    Google Scholar 
    39.Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).Article 

    Google Scholar 
    40.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).Article 

    Google Scholar 
    41.Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).Article 

    Google Scholar 
    42.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).Article 

    Google Scholar 
    45.Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).Article 

    Google Scholar 
    47.IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.48.Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).Article 

    Google Scholar 
    49.Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More