A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area
1.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS
CAS
Article
PubMed
Google Scholar
2.Wilson, K. A. et al. Conserving biodiversity efficiently: What to do, where, and when. PLoS Biol. 5, 1850–1861. https://doi.org/10.1371/journal.pbio.0050223 (2007).CAS
Article
Google Scholar
3.Carr, M. H. et al. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves. Ecol. Appl. 13, 90–107. https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2 (2003).Article
Google Scholar
4.Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).ADS
Article
Google Scholar
5.Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368. https://doi.org/10.1111/j.1755-263X.2010.00123.x (2010).Article
Google Scholar
6.Brodie, J. & Waterhouse, J. A critical review of environmental management of the ‘not so Great’ Barrier Reef. Estuar. Coast. Shelf Sci. 104, 1–22. https://doi.org/10.1016/j.ecss.2012.03.012 (2012).ADS
Article
Google Scholar
7.Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indicators 7, 100042. https://doi.org/10.1016/j.ecolind.2012.04.005 (2020).Article
Google Scholar
8.Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan. http://www.environment.gov.au/system/files/resources/d98b3e53-146b-4b9c-a84a-2a22454b9a83/files/reef-2050-long-term-sustainability-plan.pdf (2015). (Accessed 09 June 2021).9.Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan—July 2018. https://www.environment.gov.au/system/files/resources/35e55187-b76e-4aaf-a2fa-376a65c89810/files/reef-2050-long-term-sustainability-plan-2018.pdf (2018). (Accessed 09 June 2021).10.Tulloch, V. J. et al. Linking threat maps with management to guide conservation investment. Biol. Cons. 245, 108527. https://doi.org/10.1016/j.biocon.2020.108527 (2020).Article
Google Scholar
11.Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Mapp. Seafloor Habitat Characterization Geol. Assoc. Canada Special Paper 47, 145–159 (2007).
Google Scholar
12.Grech, A. et al. Spatial patterns of seagrass dispersal and settlement. Divers. Distrib. 22, 1150–1162. https://doi.org/10.1111/ddi.12479 (2016).Article
Google Scholar
13.Young, M. & Carr, M. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring. PLoS ONE 10, e0116200. https://doi.org/10.1371/journal.pone.0116200 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
14.Foley, M. M. et al. Guiding ecological principles for marine spatial planning. Mar. Policy 34, 955–966. https://doi.org/10.1016/j.marpol.2010.02.001 (2010).Article
Google Scholar
15.Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy. https://doi.org/10.1016/j.marpol.2019.04.014 (2019).Article
Google Scholar
16.Kenchington, R. & Day, J. Zoning, a fundamental cornerstone of effective Marine Spatial Planning: Lessons learnt from the Great Barrier Reef, Australia. J. Coast. Conserv. 15, 271–278. https://doi.org/10.1007/s11852-011-0147-2 (2011).Article
Google Scholar
17.Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manage. 246, 929–940. https://doi.org/10.1016/j.jenvman.2019.06.048 (2019).Article
PubMed
Google Scholar
18.Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Cons. 226, 120–126. https://doi.org/10.1016/j.biocon.2018.07.009 (2018).Article
Google Scholar
19.den Hartog, C. & Kuo, J. Seagrasses: Biology, Ecology and Conservation Ch. 1 1–23 (Springer Netherlands, 2006).
Google Scholar
20.Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).
Google Scholar
21.Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Cons. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).Article
Google Scholar
22.Coles, R., McKenzie, L., De’ath, G., Roelofs, A. & Long, W. L. Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area. Mar. Ecol. Prog. Ser. 392, 57–68. https://doi.org/10.3354/meps08197 (2009).ADS
Article
Google Scholar
23.McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041. https://doi.org/10.1088/1748-9326/ab7d06 (2020).ADS
Article
Google Scholar
24.Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).Book
Google Scholar
25.Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733. https://doi.org/10.1126/science.aal1956 (2017).ADS
CAS
Article
PubMed
Google Scholar
26.Coles, R. G., Lee Long, W. J., Watson, R. A. & Derbyshire, K. J. Distribution of seagrasses, and their fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, Northern Queensland, Australia. Mar. Freshw. Res. 44, 193–210. https://doi.org/10.1071/MF9930193 (1993).Article
Google Scholar
27.de los Santos, C. B. et al. Seagrass ecosystem services: Assessment and scale of benefits. Out Blue Value Seagrasses Environ. People. 19–21 (2020).
28.Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).Book
Google Scholar
29.Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).Article
Google Scholar
30.Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509. https://doi.org/10.1038/ngeo1477 (2012).ADS
CAS
Article
Google Scholar
31.Carter, A., Taylor, H. & Rasheed, M. Torres Strait Mapping: Seagrass Consolidation, 2002–2014 Vol. 47 (James Cook University, 2014).
Google Scholar
32.Lee Long, W. J., Mellors, J. E. & Coles, R. G. Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Austr. J. Mar. Freshw. Res. 44, 19–32. https://doi.org/10.1071/MF9930019 (1993).Article
Google Scholar
33.Maxwell, P. et al. Seagrasses of Moreton Bay Quandamooka: Diversity, ecology and resilience. in Moreton Bay Quandamooka & Catchment: Past, Present, and Future (eds I. R. Tibbetts et al.) 279–298 (Moreton Bay Foundation Ltd, 2019).
34.Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).Article
PubMed
Google Scholar
35.McKenna, S. A. et al. Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J. Biosci. 40, 389–398. https://doi.org/10.1007/s12038-015-9516-6 (2015).Article
PubMed
Google Scholar
36.Collier, C. J., Waycott, M. & McKenzie, L. J. Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol. Indicators 23, 211–219. https://doi.org/10.1016/j.ecolind.2012.04.005 (2012).Article
Google Scholar
37.York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
38.Grech, A., Coles, R. & Marsh, H. A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar. Policy 35, 560–567. https://doi.org/10.1016/j.marpol.2011.03.003 (2011).Article
Google Scholar
39.Brodie, J. & Pearson, R. G. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence. Estuar. Coast. Shelf Sci. 183, 438–451. https://doi.org/10.1016/j.ecss.2016.05.008 (2016).ADS
Article
Google Scholar
40.York, P. H. et al. Identifying knowledge gaps in seagrass research and management: An Australian perspective. Mar. Environ. Res. 127, 163–172. https://doi.org/10.1016/j.marenvres.2016.06.006 (2017).CAS
Article
PubMed
Google Scholar
41.Carruthers, T. J. B. et al. Seagrass habitats of Northeast Australia: Models of key processes and controls. Bull. Mar. Sci. 71, 1153–1153 (2002).
Google Scholar
42.Waycott, M., Longstaff, B. J. & Mellors, J. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions. Mar. Pollut. Bull. 51, 343–350. https://doi.org/10.1016/j.marpolbul.2005.01.017 (2005).CAS
Article
PubMed
Google Scholar
43.Grech, A. & Coles, R. G. An ecosystem-scale predictive model of coastal seagrass distribution. Aquat. Conserv.-Mar. Freshw. Ecosyst. 20, 437–444. https://doi.org/10.1002/aqc.1107 (2010).Article
Google Scholar
44.Carter, A. et al. Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10193 (2021).Article
Google Scholar
45.Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m. Dataset. http://pid.geoscience.gov.au/dataset/115066 (2017). (Accessed 10 March 2020).46.Bishop-Taylor, R., Sagar, S., Lymburner, L. & Beaman, R. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 223, 115–128. https://doi.org/10.1016/j.ecss.2019.03.006 (2019).ADS
Article
Google Scholar
47.Geoscience Australia. Intertidal Extents Model 25m. v. 2.0.0. Dataset. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search?node=srv#/metadata/7d6f3432-5f93-45ee-8d6c-14b26740048a (2017). (Accessed 10 March 2021).48.Steven, A. D. et al. eReefs: An operational information system for managing the Great Barrier Reef. J. Operat. Oceanogr. 12, S12–S28. https://doi.org/10.1080/1755876X.2019.1650589 (2019).Article
Google Scholar
49.Baird, M. E. et al. CSIRO environmental modelling suite (EMS): Scientific description of the optical and biogeochemical models (vB3p0). Geosci. Model Dev. 13, 4503–4553. https://doi.org/10.5194/gmd-13-4503-2020 (2020).ADS
CAS
Article
Google Scholar
50.Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 78, 79–96. https://doi.org/10.1016/j.envsoft.2015.11.025 (2016).Article
Google Scholar
51.Margvelashvili, N. et al. Simulated fate of catchment-derived sediment on the Great Barrier Reef shelf. Mar. Pollut. Bull. 135, 954–962. https://doi.org/10.1016/j.marpolbul.2018.08.018 (2018).CAS
Article
PubMed
Google Scholar
52.Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2020).Article
Google Scholar
53.Unsworth, R. K. F. et al. Global challenges for seagrass conservation. Ambio 48, 801–815. https://doi.org/10.1007/s13280-018-1115-y (2019).Article
PubMed
Google Scholar
54.Grech, A. et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Glob. Change Biol. 24, 3093–3104. https://doi.org/10.1111/gcb.14127 (2018).ADS
Article
Google Scholar
55.Fernandes, L. et al. A process to design a network of marine no-take areas: Lessons from the Great Barrier Reef. Ocean Coast. Manag. 52, 439–447. https://doi.org/10.1016/j.ocecoaman.2009.06.004 (2009).Article
Google Scholar
56.Bainbridge, Z. et al. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar. Pollut. Bull. 135, 1205–1220. https://doi.org/10.1016/j.marpolbul.2018.08.002 (2018).CAS
Article
PubMed
Google Scholar
57.Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 4458. https://doi.org/10.1038/s41598-017-04421-1 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
58.Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).CAS
Article
PubMed
Google Scholar
59.Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050 (2014).CAS
Article
PubMed
Google Scholar
60.Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Modell. Softw. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).Article
Google Scholar
61.Taylor, H. A. & Rasheed, M. A. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia—The value of long-term marine habitat monitoring in high risk areas. Mar. Pollut. Bull. 63, 431–437. https://doi.org/10.1016/j.marpolbul.2011.04.039 (2011).CAS
Article
PubMed
Google Scholar
62.Fraser, M. W. et al. Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol. Ind. 78, 229–242. https://doi.org/10.1016/j.ecolind.2017.03.026 (2017).Article
Google Scholar
63.Wolanski, E. Physical Oceanographic Processes of the Great Barrier Reef (CRC Press, 1994).
Google Scholar
64.Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge University Press, 2007).Book
Google Scholar
65.Hopley, D. The Queensland coastline: attributes and issues. in Queensland: A Geographical Interpretation (ed J. H. Holmes) 73–94 (Booralong Publications, 1986).66.McKenzie, L. J. et al. Marine Monitoring Program: Annual report for inshore seagrass monitoring 2017–2018. http://hdl.handle.net/11017/3488 (Great Barrier Reef Marine Park Authority, 2019). (Accessed 23 December 2020).67.Van De Wetering, C., Reason, C., Rasheed, M., Wilkinson, J. & York, P. Port of Abbot Point Long-Term Seagrass Monitoring Program—2019 Vol. 53 (James Cook University, 2020).
Google Scholar
68.Van De Wetering, C., Carter, A. & Rasheed, M. Seagrass Habitat of Mourilyan Harbour: Annual Monitoring Report—2019 Vol. 51 (James Cook University, 2020).
Google Scholar
69.McKenna, S. et al. Port of Townsville Seagrass Monitoring Program: 2019 (James Cook University, 2020).
Google Scholar
70.York, P. & Rasheed, M. Annual Seagrass Monitoring in the Mackay-Hay Point Region—2019 Vol. 51 (James Cook University, 2020).
Google Scholar
71.Reason, C., McKenna, S. & Rasheed, M. Seagrass Habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2019 Vol. 54 (James Cook University, 2020).
Google Scholar
72.Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual Long-Term Monitoring and Whole Port Survey Vol. 71 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/02, James Cook University, 2020).
Google Scholar
73.Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).CAS
Article
PubMed
Google Scholar
74.Dyall, A. et al. Queensland Coastal Waterways Geomorphic Habitat Mapping, Version 2 (1:100 000 scale digital data). http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a05f7892-c344-7506-e044-00144fdd4fa6 (2004). (Accessed 05 October 2020).75.Heap, A. D. & Harris, P. T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 55, 555–585. https://doi.org/10.1080/08120090801888669 (2008).ADS
Article
Google Scholar
76.Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Article
MATH
Google Scholar
77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
78.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Google Scholar
79.plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).80.caret: Classification and Regression Training. R package version 6.0-86 (2020).81.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evolut. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article
Google Scholar
82.raster: Geographic Data Analysis and Modeling. R package version 3.3-13 (2020).83.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article
Google Scholar
84.De’ath, G. Multivariate partitioning. The mvpart Package version 1.1-1. Archive form on CRAN, https://cran.r-project.org. (2004).85.De’ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).
Google Scholar More