Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds
1.Thieltges, D. W., Mouritsen, K. N. & Poulin, R. in Mudflat Ecology (ed Beninger, P.) (Springer International Publishing, 2018).2.Tyler-Walters, H. Cerastoderma edule Common cockle. Marine Life Information Network: Biology and Sensitivity Key Information Reviews (2007).3.Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577 (2012).4.Magalhaes, L., Freitas, R., Dairain, A. & De Montaudouin, X. Can host density attenuate parasitism?. J. Mar. Biol. Assoc. U. K. 97, 497–505 (2017).
Google Scholar
5.Carss, D. N. et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931 (2020).CAS
PubMed
Google Scholar
6.Lassalle, G., de Montaudouin, X., Soudant, P. & Paillard, C. Parasite co-infection of two sympatric bivalves, the Manila clam (Ruditapes philippinarum) and the cockle (Cerastoderma edule) along a latitudinal gradient. Aquat. Living Resour. 20, 33–42 (2007).
Google Scholar
7.Hoberg, E. P. Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull. Scand. Soc. Parasitol. 6, 65–89 (1996).
Google Scholar
8.Muzaffar, S. B. & Jones, I. L. Parasites and diseases of auks (Alcidae) of the world and their ecology-A review. Mar. Ornithol. 32, 121–146 (2004).
Google Scholar
9.Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. U. S. A. 103, 11211–11216 (2006).ADS
CAS
PubMed
PubMed Central
Google Scholar
10.Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).PubMed
PubMed Central
Google Scholar
11.Johnson, P. T. J. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).PubMed
Google Scholar
12.Zannella, C. et al. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 15, 182 (2017).PubMed Central
Google Scholar
13.Fermer, J., Culloty, S. C., Kelly, T. C. & O’riordan, R. M. Parasitological survey of the edible cockle Cerastoderma edule (Bivalvia) on the south coast of Ireland. J. Mar. Biol. Assoc. U. K. 91, 923–928 (2011).
Google Scholar
14.Longshaw, M. & Malham, S. K. A review of the infectious agents, parasites, pathogens and commensals of European cockles (Cerastoderma edule and C. glaucum) (vol 93, pg 227, 2013). J. Mar. Biol. Assoc. U. K. 93, 1141 (2013).15.Newman, S. H. et al. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 352, 299–309 (2007).ADS
Google Scholar
16.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U. S. A. 113, E5062–E5071 (2016).CAS
PubMed
PubMed Central
Google Scholar
17.Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, e00333-e418 (2018).CAS
PubMed
PubMed Central
Google Scholar
18.Romalde, J. L., Dieguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413 (2014).PubMed
PubMed Central
Google Scholar
19.Allam, B., Paillard, C. & Ford, S. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).
Google Scholar
20.Waechter, M., Le Roux, F., Nicolas, J., Marissal, E. & Berthe, F. Characterisation of Crassostrea gigas spat pathogenic bacteria. C.R. Biol. 325, 231–238 (2002).CAS
PubMed
Google Scholar
21.Gay, M., Renault, T., Pons, A. & Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74 (2004).
Google Scholar
22.Paillard, C., Le Roux, F. & Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498 (2004).
Google Scholar
23.Prado, S., Romalde, J., Montes, J. & Barja, J. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 67, 209–215 (2005).CAS
Google Scholar
24.Garnier, M., Labreuche, Y. & Nicolas, J. Molecular and phenotypic characterization of Vibrio aestuarianus subsp francensis subsp nov., a pathogen of the oyster Crassostrea gigas. Syst. Appl. Microbiol. 31, 358–365 (2008).CAS
PubMed
Google Scholar
25.Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed
PubMed Central
Google Scholar
26.Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).PubMed
Google Scholar
27.Vezzulli, L. et al. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ. Microbiol. 17, 1065–1080 (2015).CAS
PubMed
Google Scholar
28.Azandegbe, A. et al. Occurrence and seasonality of Vibrio aestuarianus in sediment and Crassostrea gigas haemolymph at two oyster farms in France. Dis. Aquat. Org. 91, 213–221 (2010).
Google Scholar
29.Burreson, E. & Ford, S. A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquat. Living Resour. 17, 499–517 (2004).
Google Scholar
30.Engelsma, M. Y. et al. Digenean trematodes and haplosporidian protozoans associated with summer mortality of cockles Cerastoderma edule in the Oosterschelde, The Netherlands. (European Association of Fish Pathologists Conference, Split, Croatia., 2011).31.Arzul, I. & Carnegie, R. B. New perspective on the haplosporidian parasites of molluscs. J. Invertebr. Pathol. 131, 32–42 (2015).PubMed
Google Scholar
32.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150215 (2016).
Google Scholar
33.Ramilo, A., Abollo, E., Villalba, A. & Carballal, M. J. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). J. Fish Dis. 41, 41–48 (2018).CAS
PubMed
Google Scholar
34.Lynch, S. A. et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 147, 584–592 (2020).CAS
PubMed
Google Scholar
35.Albuixech-Marti, S., Lynch, S. A. & Culloty, S. C. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J. Invertebr. Pathol. 174, 107425 (2020).CAS
PubMed
Google Scholar
36.Azevedo, C., Conchas, R. & Montes, J. Description of Haplosporidium edule n. sp (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 39, 161–167 (2003).
Google Scholar
37.Carballal, M., Diaz, S. & Villalba, A. Urosporidium sp hyperparasite of the turbellarian Paravortex cardii in the cockle Cerastoderma edule. J. Invertebr. Pathol. 90, 104–107 (2005).PubMed
Google Scholar
38.Daoust, P., Conboy, G., McBurney, S. & Burgess, N. Interactive mortality factors in common loons from Maritime Canada. J. Wildl. Dis. 34, 524–531 (1998).CAS
PubMed
Google Scholar
39.Converse, K. & Kidd, G. Duck plague epizootics in the United States, 1967–1995. J. Wildl. Dis. 37, 347–357 (2001).CAS
PubMed
Google Scholar
40.Friend, M., McLean, R. & Dein, F. Disease emergence in birds: Challenges for the twenty-first century. Auk 118, 290–303 (2001).
Google Scholar
41.Hubalek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).PubMed
Google Scholar
42.Quesada, R. J. et al. Detection and phylogenetic characterization of a novel herpesvirus from the trachea of two stranded common loons (Gavia immer). J. Wildl. Dis. 47, 233–239 (2011).PubMed
Google Scholar
43.Niemeyer, C. et al. Genetically diverse herpesviruses in South American Atlantic coast seabirds. PLoS ONE 12, e0178811 (2017).PubMed
PubMed Central
Google Scholar
44.Bookelaar, B., Lynch, S. A. & Culloty, S. C. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasit. Vectors 13, 498 (2020).CAS
PubMed
PubMed Central
Google Scholar
45.Honjo, M. N., Minamoto, T. & Kawabata, Z. Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet. Microbiol. 155, 183–190 (2012).CAS
PubMed
Google Scholar
46.Evans, O., Paul-Pont, I. & Whittington, R. J. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Dis. Aquat. Org. 122, 247–255 (2017).CAS
Google Scholar
47.Slodkowicz-Kowalska, A. et al. Microsporidian species known to infect humans are present in aquatic birds: Implications for transmission via water?. Appl. Environ. Microbiol. 72, 4540–4544 (2006).ADS
CAS
PubMed
PubMed Central
Google Scholar
48.Malcekova, B., Valencakova, A., Molnar, L. & Kocisova, A. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17 (2013).CAS
PubMed
Google Scholar
49.Fermer, J., Culloty, S. C., Kelly, T. C. & O’Riordan, R. M. Intrapopulational distribution of Meiogymnophallus minutus (Digenea, Gymnophallidae) infections in its first and second intermediate host. Parasitol. Res. 105, 1231–1238 (2009).PubMed
Google Scholar
50.Yun, Y. et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 93, 468–474 (2015).CAS
PubMed
PubMed Central
Google Scholar
51.Xu, Y., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
52.King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).CAS
PubMed
Google Scholar
53.Harper, G. et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 14, 819–827 (2005).CAS
PubMed
Google Scholar
54.Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).ADS
CAS
Google Scholar
55.Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M. & Symondson, W. O. C. Molecular detection of predation by soil micro-arthropods on nematodes. Mol. Ecol. 15, 1963–1972 (2006).CAS
PubMed
Google Scholar
56.Harwood, J. D. et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Mol. Ecol. 16, 4390–4400 (2007).CAS
PubMed
Google Scholar
57.Albuixech-Martí, S., Culloty, S. C. & Lynch, S. A. Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology, 1–15 (2021).58.Lewis, L. J. & Tierney, T. D. Low tide waterbird surveys: Survey methods and guidance notes. Irish Wildlife Manuals 80 (2014).59.Garcia, C. et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int. J. Syst. Evol. Microbiol. 71, 004654 (2021).60.Lacoste, A. et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145 (2001).CAS
Google Scholar
61.Le Roux, F. et al. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258 (2002).
Google Scholar
62.Garnier, M., Labreuche, Y., Garcia, C., Robert, A. & Nicolas, J. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196 (2007).CAS
PubMed
Google Scholar
63.McCleary, S. & Henshilwood, K. Novel quantitative TaqMan (R) MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. Dis. Aquat. Org. 114, 239–248 (2015).CAS
Google Scholar
64.Halpern, M., Senderovich, Y. & Izhaki, I. Waterfowl-The missing link in epidemic and pandemic cholera dissemination?. PLoS Pathog. 4, e1000173 (2008).PubMed
PubMed Central
Google Scholar
65.Rodríguez, J., López, P., Muñoz, J. & Rodríguez, N. Detection of Vibrio cholerae no toxigenico in migratory and resident birds (Charadriiformes) in a coastal lagoon from northeastern Venezuela. Saber 22, 122–126 (2010).
Google Scholar
66.Fernandez-Delgado, M. et al. Prevalence and distribution of Vibrio spp. in wild aquatic birds of the Southern Caribbean Sea, Venezuela, 2011–12. J. Wildl. Dis. 52, 621–626 (2016).67.Laviad-Shitrit, S., Izhaki, I. & Halpern, M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog. 15, e1007814 (2019).CAS
PubMed
PubMed Central
Google Scholar
68.Buck, J. D. Isolation of Candida-albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl. Environ. Microbiol. 56, 826–828 (1990).ADS
CAS
PubMed
PubMed Central
Google Scholar
69.Miyasaka, J. et al. Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiol. Infect. 134, 780–785 (2006).CAS
PubMed
Google Scholar
70.Fu, S. et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: A potential threat to the public health. Sci. Rep. 9, 16303 (2019).ADS
PubMed
PubMed Central
Google Scholar
71.Senderovich, Y., Izhaki, I. & Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5, e8607 (2010).ADS
PubMed
PubMed Central
Google Scholar
72.Laviad-Shitrit, S. et al. Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae. Sci. Rep. 7, 7973 (2017).ADS
PubMed
PubMed Central
Google Scholar
73.Hossain, Z. Z., Farhana, I., Tulsiani’, S. M., Beguml, A. & Jensen, P. K. M. Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front. Microbiol. 9, 222 (2018).PubMed
PubMed Central
Google Scholar
74.Bryant, D. M. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar. Coast. Mar. Sci. 9, 369–384 (1979).ADS
Google Scholar
75.Hicklin, P. W. & Smith, P. C. Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris-pusilla (Pallas), in Minas Basin, Bay of Fundy. Can. J. Zool. 62, 2201–2210 (1984).
Google Scholar
76.Colwell, M. A. & Landrum, S. L. Nonrandom shorebird distribution and fine-scale variation in prey abundance. Condor 95, 94–103 (1993).
Google Scholar
77.Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D. A. & Bushek, D. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131, 155–176 (2015).PubMed
Google Scholar
78.Pruzzo, C., Vezzulli, L. & Colwell, R. R. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10, 1400–1410 (2008).CAS
PubMed
Google Scholar
79.Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 27–33 (2010).PubMed
Google Scholar
80.Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. 14, 230–244 (2020).PubMed
Google Scholar
81.Vezzulli, L. et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 58, 808–818 (2009).CAS
PubMed
Google Scholar
82.Piersma, T., Degoeij, P. & Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective – Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 31, 503–512 (1993).
Google Scholar
83.Hervas, A., Tully, O., Hickey, J., O’Keefe, E. & Kelly, K. Assessment, monitoring and management of the Dundalk Bay and Waterford Cockle (Cerastoderma edule) Fisheries in 2007. BIM Fisheries Resource Series 7 (2008).84.Martins, R. C., Catry, T., Santos, C. D., Palmeirim, J. M. & Granadeiro, J. P. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European Estuary: Improved feeding conditions for northward migrants. PLoS ONE 8, e81174 (2013).ADS
PubMed
PubMed Central
Google Scholar
85.Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS
PubMed
Google Scholar
86.Lynch, S. A., Mulcahy, M. F. & Culloty, S. C. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281, 17–21 (2008).
Google Scholar
87.Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS
PubMed
Google Scholar
88.Freire, R., Arias, A., Mendez, J. & Insua, A. Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur. Food Res. Technol. 232, 83–86 (2011).89.Thompson, J. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).ADS
CAS
PubMed
PubMed Central
Google Scholar
90.Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J. 6, 21–30 (2012).PubMed
Google Scholar
91.Renault, T. et al. Haplosporidiosis in the pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 42, 207–214 (2000).CAS
Google Scholar
92.Molloy, D. P., Giamberini, L., Stokes, N. A., Burreson, E. M. & Ovcharenko, M. A. Haplosporidium raabei n. sp (Haplosporidia): A parasite of zebra mussels, Dreissena polymorpha (Pallas, 1771). Parasitology 139, 463–477 (2012).93.Lynch, S. A., Dillane, E., Carlsson, J. & Culloty, S. C. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. J. Shellfish Res. 32, 657–664 (2013).
Google Scholar More