1.Rustad, L. E., Huntington, T. G. & Boone, R. D. Controls on soil respiration: implications for climate change. Biogeochemistry 48, 1–6 (2000).
Google Scholar
2.Smith, P. How long before a change in soil organic carbon can be detected? Glob. Change Biol. 10, 1878–1883 (2004).
Google Scholar
3.Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. 114, 9575 (2017).CAS
Google Scholar
4.Schimel, J. & Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00348 (2012).5.Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).
Google Scholar
6.Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).CAS
Google Scholar
7.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
Google Scholar
8.Kästner, M. & Miltner, A. In The Future of Soil Carbon (eds. Garcia, C. et al.) 125-163 (Academic Press, 2018).9.Mikutta, R., Kleber, M., Torn, M. S. & Jahn, R. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 77, 25–56 (2006).CAS
Google Scholar
10.Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).
Google Scholar
11.Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75–75 (2011).CAS
Google Scholar
12.Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).CAS
Google Scholar
13.Schweigert, M., Herrmann, S., Miltner, A., Fester, T. & Kästner, M. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol. Biochem. 88, 120–127 (2015).CAS
Google Scholar
14.Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).CAS
Google Scholar
15.Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123 (2016).CAS
Google Scholar
16.Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol. 41, 8070–8076 (2007).CAS
Google Scholar
17.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).CAS
Google Scholar
18.Zhu, X., Jackson, R. D., DeLucia, E. H., Tiedje, J. M. & Liang, C. The soil microbial carbon pump: From conceptual insights to empirical assessments. Glob. Change Biol. 26, 6032–6039 (2020).
Google Scholar
19.Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).CAS
Google Scholar
20.Kim, M., Heo, E., Kang, H. & Adams, J. Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66, 171–181 (2013).
Google Scholar
21.Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).CAS
Google Scholar
22.Zhao, S. et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 216, 82–88 (2016).CAS
Google Scholar
23.Liang, C. & Zhu, X. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Sci. China Earth Sci. 64, 545–558 (2021).CAS
Google Scholar
24.Liu, W., Zhang, Z. H. E. & Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 15, 184–195 (2009).
Google Scholar
25.Crowther, T. W. et al. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol. Biochem. 85, 153–161 (2015).CAS
Google Scholar
26.Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).
Google Scholar
27.Chen, X. et al. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob. Change Biol. 27, 2478–2490 (2021).
Google Scholar
28.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).CAS
Google Scholar
29.Jin, J., Wood, J., Franks, A., Armstrong, R. & Tang, C. Long-term CO2 enrichment alters the diversity and function of the microbial community in soils with high organic carbon. Soil Biol. Biochem. 144, 107780 (2020).CAS
Google Scholar
30.Prommer, J. et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 26, 669–681 (2020).
Google Scholar
31.Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).CAS
Google Scholar
32.Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fertil. Soils 54, 559–568 (2018).CAS
Google Scholar
33.Zhang, X. & Amelung, W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).CAS
Google Scholar
34.Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. In Advances in Agronomy vol. 100 155–250 (Academic Press, 2008).35.Glaser, B., Turrión, M. A.-B. & Alef, K. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 36, 399–407 (2004).CAS
Google Scholar
36.Roberts, P., Bol, R. & Jones, D. L. Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling. Soil Biol. Biochem. 39, 3081–3092 (2007).CAS
Google Scholar
37.Ni, X. et al. A quantitative assessment of amino sugars in soil profiles. Soil Biol. Biochem. 143, 107762 (2020).CAS
Google Scholar
38.Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100, 155–250 (2008).CAS
Google Scholar
39.Appuhn, A. & Joergensen, R. G. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).CAS
Google Scholar
40.Ding, X. et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol. Biochem. 135, 13–19 (2019).CAS
Google Scholar
41.Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063–00016 (2017).
Google Scholar
42.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007GB002952 (2008).43.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
Google Scholar
44.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS
Google Scholar
45.McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–286 (1981).CAS
Google Scholar
46.Wardle, D. A. Drivers of decoupling in drylands. Nature 502, 628–629 (2013).CAS
Google Scholar
47.Zhang, B., Liang, C., He, H. & Zhang, X. Variations in soil microbial communities and residues along an altitude gradient on the Northern Slope of Changbai Mountain, China. PLoS ONE 8, e66184 (2013).CAS
Google Scholar
48.Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).CAS
Google Scholar
49.Vicente-Serrano, S. M., Zouber, A., Lasanta, T. & Pueyo, Y. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol. Monogr. 82, 407–428 (2012).
Google Scholar
50.Whitford, W. G. & Duval, B. D. Ecology of Desert Systems (Academic Press, 2019).51.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).CAS
Google Scholar
52.Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).CAS
Google Scholar
53.McHugh, T. A. et al. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix116 (2017).54.De Boeck, H. J. & Verbeeck, H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences 8, 1121–1130 (2011).
Google Scholar
55.Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).CAS
Google Scholar
56.He, N., Chen, Q., Han, X., Yu, G. & Li, L. Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China. Agric. Ecosyst. Environ. 158, 184–191 (2012).
Google Scholar
57.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS
Google Scholar
58.Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS
Google Scholar
59.Zhang, X. et al. Links between microbial biomass and necromass components in the top- and subsoils of temperate grasslands along an aridity gradient. Geoderma 379, 114623 (2020).CAS
Google Scholar
60.Zhu, E. et al. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. https://doi.org/10.1111/gcb.15541 (2021).61.Deng, L. et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth Sci. Rev. 214, 103501 (2021).CAS
Google Scholar
62.Moritz, L. K., Liang, C., Wagai, R., Kitayama, K. & Balser, T. C. Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials. Biogeochemistry 92, 83–94 (2009).
Google Scholar
63.Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).
Google Scholar
64.Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 153, 108112 (2021).CAS
Google Scholar
65.Zhu, E. et al. Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth. Glob. Change Biol. 27, 2241–2253 (2021).
Google Scholar
66.Spohn, M. et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97, 168–175 (2016).CAS
Google Scholar
67.Jia, J. et al. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biol. Biochem. 104, 141–151 (2017).CAS
Google Scholar
68.Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2020.108112 (2021).69.Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).CAS
Google Scholar
70.Samson, M.-E. et al. Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils. Soil Biol. Biochem. 148, 107867 (2020).CAS
Google Scholar
71.Luo, R. et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biol. Biochem. 144, 107764 (2020).CAS
Google Scholar
72.Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E. & Six, J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Change Biol. 21, 3200–3209 (2015).
Google Scholar
73.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
Google Scholar
74.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS
Google Scholar
75.Larsen, K. S. et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol. 17, 1884–1899 (2011).
Google Scholar
76.Cregger, M. A., McDowell, N. G., Pangle, R. E., Pockman, W. T. & Classen, A. T. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Funct. Ecol. 28, 1534–1544 (2014).
Google Scholar
77.Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 1, 36 (2020).
Google Scholar
78.Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).CAS
Google Scholar
79.von Lutzow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57, 426–445 (2006).
Google Scholar
80.Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).CAS
Google Scholar
81.Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).CAS
Google Scholar
82.Blanco, H. & Lal, R. Principles of Soil Conservation and Management vol. 167169 (Springer, 2008).83.Marshall, K. J. A. R. O. P. Clay mineralogy in relation to survival of soil bacteria. Annu. Rev. Phytopathol. 13, 357–373 (1975).84.Zhiguo, H. et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. figshare, Dataset, https://doi.org/10.6084/m9.figshare.16749967.v1 (2021).85.Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).CAS
Google Scholar
86.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
87.Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2011).
Google Scholar
88.Liaw, A. & Wiener, M. J. R. N. Classification and regression by randomForest. R News 2, 18–22 (2002).89.Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).CAS
Google Scholar
90.Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 8, 23–74 (2003).91.Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684 (2008).CAS
Google Scholar
92.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787 (2020).CAS
Google Scholar
93.Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).
Google Scholar
94.Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinform. 18, 454 (2017).
Google Scholar More