1.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).Article
Google Scholar
2.Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 0003 (2017).Article
Google Scholar
3.Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).Article
Google Scholar
4.Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).Article
Google Scholar
5.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897 (2018).Article
Google Scholar
6.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article
Google Scholar
7.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article
Google Scholar
8.Middleton, N. & Sternberg, T. Climate hazards in drylands: a review. Earth Sci. Rev. 126, 48–57 (2013).Article
Google Scholar
9.Park, C.-E. et al. Keeping global warming within 1.5 C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).Article
Google Scholar
10.Pra˘va˘lie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).Article
Google Scholar
11.Huang, J. et al. Declines in global ecological security under climate change. Ecol. Indic. 117, 106651 (2020).Article
Google Scholar
12.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).Article
Google Scholar
13.He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).Article
Google Scholar
14.Zhang, C., Yang, Y., Yang, D. & Wu, X. Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol. 592, 125618 (2020).Article
Google Scholar
15.Pra˘va˘lie, R. Exploring the multiple land degradation pathways across the planet. Earth Sci. Rev. 220, 103689 (2021).Article
Google Scholar
16.Balvanera, P. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).Article
Google Scholar
17.UNCCD. United Nations Convention to Combat Desertification — Global Land Outlook (UNCCD, 2017).18.Pra˘va˘lie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).Article
Google Scholar
19.Yang, X. et al. Quaternary environmental changes in the drylands of China — a critical review. Quat. Sci. Rev. 30, 3219–3233 (2011).Article
Google Scholar
20.Chen, X., Hu, R., Jiang, F., Wang, Y. & Zhang, J. Physical Geography in China’s Drylands (Science, 2015).21.Ci, L. & Yang, X. Desertification and its Control in China (Springer, 2010).22.Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).Article
Google Scholar
23.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article
Google Scholar
24.Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).Article
Google Scholar
25.D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2006).26.Brauman, K. A., Daily, G. C., Duarte, T. K. E. & Mooney, H. A. The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 32, 67–98 (2007).Article
Google Scholar
27.Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).Article
Google Scholar
28.Stringer, L. C. et al. Climate change impacts on water security in global drylands. One Earth 4, 851–864 (2021).Article
Google Scholar
29.Qi, J., Chen, J., Wan, S. & Ai, L. Understanding the coupled natural and human systems in dryland East Asia. Environ. Res. Lett. 7, 015202 (2012).Article
Google Scholar
30.Chi, W., Zhao, Y., Kuang, W. & He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 668, 204–215 (2019).Article
Google Scholar
31.Shi, P., Yan, P., Yuan, Y. & Nearing, M. A. Wind erosion research in China: past, present and future. Prog. Phys. Geogr. 28, 366–386 (2004).Article
Google Scholar
32.Cheng, L. et al. Estimation of the costs of desertification in China: a critical review. Land. Degrad. Dev. 29, 975–983 (2018).Article
Google Scholar
33.Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193 (2018).Article
Google Scholar
34.Scott, R. L., Jenerette, G. D., Potts, D. L. & Huxman, T. E. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res. Biogeosci. 114, G4 (2009).Article
Google Scholar
35.Scott, R. L. et al. When vegetation change alters ecosystem water availability. Glob. Change Biol. 20, 2198–2210 (2014).Article
Google Scholar
36.Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).Article
Google Scholar
37.Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).Article
Google Scholar
38.Arndt, S. K. et al. Contrasting patterns of leaf solute accumulation and salt adaptation in four phreatophytic desert plants in a hyperarid desert with saline groundwater. J. Arid. Environ. 59, 259–270 (2004).Article
Google Scholar
39.Deng, L., Shangguan, Z.-P., Wu, G.-L. & Chang, X.-F. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95 (2017).Article
Google Scholar
40.Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).Article
Google Scholar
41.Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. F. Regional Climate Studies of China (Springer Science & Business Media, 2008).42.Zhao, J., Zhang, Q., Zhu, X., Shen, Z. & Yu, H. Drought risk assessment in China: evaluation framework and influencing factors. Geogr. Sustain. 1, 220–228 (2020).
Google Scholar
43.Huang, J., Xie, Y., Guan, X., Li, D. & Ji, F. The dynamics of the warming hiatus over the northern hemisphere. Clim. Dyn. 48, 429–446 (2017).Article
Google Scholar
44.Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).Article
Google Scholar
45.Liu, M., Shen, Y., Qi, Y., Wang, Y. & Geng, X. Changes in precipitation and drought extremes over the past half century in China. Atmosphere 10, 203 (2019).Article
Google Scholar
46.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article
Google Scholar
47.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).Article
Google Scholar
48.Li, Y., Huang, J., Ji, M. & Ran, J. Dryland expansion in northern China from 1948 to 2008. Adv. Atmos. Sci. 32, 870–876 (2015).Article
Google Scholar
49.Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).Article
Google Scholar
50.Posner, S. M., McKenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services knowledge. Proc. Natl Acad. Sci. USA 113, 1760–1765 (2016).Article
Google Scholar
51.Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).Article
Google Scholar
52.Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).Article
Google Scholar
53.Cao, S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ. Sci. Technol. 42, 1826–1831 (2008).Article
Google Scholar
54.Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).Article
Google Scholar
55.Wang, X., Zhang, C., Hasi, E. & Dong, Z. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid. Environ. 74, 13–22 (2010).Article
Google Scholar
56.Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Article
Google Scholar
57.Chen, L., Wei, W., Fu, B. & Lü, Y. Soil and water conservation on the Loess Plateau in China: review and perspective. Prog. Phys. Geogr. 31, 389–403 (2007).Article
Google Scholar
58.Lü, Y. et al. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7, e31782 (2012).Article
Google Scholar
59.McVicar, T. R. et al. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China’s re-vegetation program in the Loess Plateau: matching model complexity to data availability. For. Ecol. Manag. 259, 1277–1290 (2010).Article
Google Scholar
60.Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).Article
Google Scholar
61.Xiao, J. et al. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 9, 13596–13607 (2019).Article
Google Scholar
62.Zastrow, M. China’s tree-planting drive could falter in a warming world. Nature 573, 474–476 (2019).Article
Google Scholar
63.Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).Article
Google Scholar
64.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).Article
Google Scholar
65.Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187 (2016).Article
Google Scholar
66.Yue, Y. et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).Article
Google Scholar
67.Peng, S. et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501, 88–92 (2013).Article
Google Scholar
68.Cao, S. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).Article
Google Scholar
69.Wang, G., Innes, J. L., Lei, J., Dai, S. & Wu, S. China’s forestry reforms. Science 318, 1556 (2007).Article
Google Scholar
70.Li, M. M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).Article
Google Scholar
71.Wang, Y., Shao, M. A., Zhu, Y. & Liu, Z. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151, 437–448 (2011).Article
Google Scholar
72.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).Article
Google Scholar
73.Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 24, 499–510 (2013).Article
Google Scholar
74.Fu, B. et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8, 284–293 (2011).Article
Google Scholar
75.Huang, L. & Shao, M. Advances and perspectives on soil water research in China’s Loess Plateau. Earth Sci. Rev. 199, 102962 (2019).Article
Google Scholar
76.Wang, L. & D’Odorico, P. Water limitations to large-scale desert agroforestry projects for carbon sequestration. Proc. Natl Acad. Sci. USA 116, 24925–24926 (2019).Article
Google Scholar
77.Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).Article
Google Scholar
78.Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).Article
Google Scholar
79.Zhenghu, D., Honglang, X., Xinrong, L., Zhibao, D. & Gang, W. Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59, 237–246 (2004).Article
Google Scholar
80.Wang, Y., Shao, M. A. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381, 9–17 (2010).Article
Google Scholar
81.Huang, J., Wang, T., Wang, W., Li, Z. & Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 119, 11–398 (2014).Article
Google Scholar
82.Cheng, S., Guan, X., Huang, J., Ji, F. & Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos. 120, 8658–8670 (2015).Article
Google Scholar
83.Wang, S., Fu, B., Chen, H. & Liu, Y. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy 74, 130–136 (2018).Article
Google Scholar
84.Zhang, S. et al. Excessive afforestation and soil drying on China’s Loess Plateau. J. Geophys. Res. Biogeosci. 123, 923–935 (2018).Article
Google Scholar
85.Jia, X., Shao, M., Yu, D., Zhang, Y. & Binley, A. Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China. Agric. Ecosyst. Environ. 273, 25–35 (2019).Article
Google Scholar
86.Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).Article
Google Scholar
87.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Envir. 1, 14–27 (2020).Article
Google Scholar
88.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article
Google Scholar
89.D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).Article
Google Scholar
90.Xue, Y. in Dryland Ecohydrology 139–169 (Springer, 2019).91.Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).Article
Google Scholar
92.Li, S. G. et al. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin sandy land, China and their implication on regional environmental change. J. Arid. Environ. 52, 101–119 (2002).Article
Google Scholar
93.Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).Article
Google Scholar
94.Xue, Y. The impact of desertification in the Mongolian and the Inner Mongolian grassland on the regional climate. J. Clim. 9, 2173–2189 (1996).Article
Google Scholar
95.Chen, L., Ma, Z. & Zhao, T. Modeling and analysis of the potential impacts on regional climate due to vegetation degradation over arid and semi-arid regions of China. Clim. Change 144, 461–473 (2017).Article
Google Scholar
96.Peng, D. et al. The influences of drought and land-cover conversion on inter-annual variation of NPP in the Three-North Shelterbelt Program zone of China based on MODIS data. PLoS ONE 11, e0158173 (2016).Article
Google Scholar
97.Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: past, present and future. Land Use Policy 31, 311–313 (2013).Article
Google Scholar
98.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article
Google Scholar
99.Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).Article
Google Scholar
100.Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).Article
Google Scholar
101.Deng, L., Liu, G. & Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol. 20, 3544–3556 (2014).Article
Google Scholar
102.Zhao, Y., Wu, J., He, C. & Ding, G. Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landsc. Ecol. 32, 2399–2417 (2017).Article
Google Scholar
103.Gao, Y., Dang, P., Zhao, Q., Liu, J. & Liu, J. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China. Land Degrad. Dev. 29, 1031–1040 (2018).Article
Google Scholar
104.Xu, J., Chen, J., Liu, Y. & Fan, F. Identification of the geographical factors influencing the relationships between ecosystem services in the Belt and Road region from 2010 to 2030. J. Clean. Prod. 275, 124153 (2020).Article
Google Scholar
105.Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).Article
Google Scholar
106.Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).Article
Google Scholar
107.Xu, J. China’s new forests aren’t as green as they seem. Nature 477, 371–371 (2011).Article
Google Scholar
108.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 1–11 (2016).
Google Scholar
109.Kong, Z.-H., Stringer, L. C., Paavola, J. & Lu, Q. Situating China in the global effort to combat desertification. Land 10, 702 (2021).Article
Google Scholar
110.Cao, S. et al. Greening China naturally. Ambio 40, 828–831 (2011).Article
Google Scholar
111.Chen, H., Shao, M. & Li, Y. Soil desiccation in the Loess Plateau of China. Geoderma 143, 91–100 (2008).Article
Google Scholar
112.Chu, X., Zhan, J., Li, Z., Zhang, F. & Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 215, 382–389 (2019).Article
Google Scholar
113.Yang, H., Huang, Q., Zhang, J., Songer, M. & Liu, J. Range-wide assessment of the impact of China’s nature reserves on giant panda habitat quality. Sci. Total. Environ. 769, 145081 (2021).Article
Google Scholar
114.Feng, C. et al. Which management measures lead to better performance of China’s protected areas in reducing forest loss? Sci. Total Environ. 764, 142895 (2021).Article
Google Scholar
115.Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article
Google Scholar
116.Luedeling, E. et al. Forest restoration: overlooked constraints. Science 366, 315–315 (2019).Article
Google Scholar
117.Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. 14, 084001 (2019).Article
Google Scholar
118.Morton, S. et al. A fresh framework for the ecology of arid Australia. J. Arid. Environ. 75, 313–329 (2011).Article
Google Scholar
119.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).Article
Google Scholar
120.Kotiaho, J. S. & Halme, P. The IPBES Assessment Report on Land Degradation and Restoration (Univ. of Jyväskylä, 2018).121.Bhattachan, A., D’Odorico, P., Dintwe, K., Okin, G. S. & Collins, S. L. Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere 5, 1–14 (2014).Article
Google Scholar
122.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article
Google Scholar
123.Yu, G. et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 26, 803–826 (2016).Article
Google Scholar
124.Fu, B. et al. Chinese ecosystem research network: progress and perspectives. Ecol. Complex. 7, 225–233 (2010).Article
Google Scholar
125.Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, 4799 (2014).Article
Google Scholar
126.Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).Article
Google Scholar
127.Assessment, M. E. Ecosystems and Human Well-Being Vol. 5 (Island, 2005).128.Zhu, Q., Castellano, M. J. & Yang, G. Coupling soil water processes and the nitrogen cycle across spatial scales: potentials, bottlenecks and solutions. Earth Sci. Rev. 187, 248–258 (2018).Article
Google Scholar
129.Fu, B. Promoting geography for sustainability. Geogr. Sustain. 1, 1–7 (2020).
Google Scholar
130.Fu, B. et al. The research priorities of resources and environmental sciences. Geogr. Sustain. 2, 87–94 (2021).
Google Scholar
131.Li, C., Zhang, C., Luo, G. & Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007 — the spatiotemporal patterns and climate controls. Ecol. Model. 267, 148–157 (2013).Article
Google Scholar
132.Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).Article
Google Scholar
133.Zhang, Y., Zhao, R., Liu, Y., Huang, K. & Zhu, J. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain. 2, 40–47 (2021).
Google Scholar
134.Wang, X., Chen, F. & Dong, Z. The relative role of climatic and human factors in desertification in semiarid China. Glob. Environ. Change 16, 48–57 (2006).Article
Google Scholar
135.An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 75, 248–256 (2008).Article
Google Scholar
136.Huang, J. et al. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 31, 1380–1391 (2020).Article
Google Scholar
137.Sun, D. et al. The effects of land use change on soil infiltration capacity in China: a meta-analysis. Sci. Total Environ. 626, 1394–1401 (2018).Article
Google Scholar
138.Ren, C. et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 376, 59–66 (2016).Article
Google Scholar
139.Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).Article
Google Scholar
140.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).Article
Google Scholar
141.Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).Article
Google Scholar More