Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies
1.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (IPCC, 2014).2.Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS
PubMed
ADS
Google Scholar
3.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS
PubMed
ADS
Google Scholar
4.Peñuelas, J. & Filella, I. Responses to a warming world. Science (80-). 294, 793–795 (2001).
Google Scholar
5.Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).ADS
Google Scholar
6.Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
Google Scholar
7.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS
PubMed
ADS
Google Scholar
8.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).
Google Scholar
9.Vanbergen, A. J. et al. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).
Google Scholar
10.Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).
Google Scholar
11.Watanabe, M. E. Pollination worries rise as honey bees decline. Science (80-). 265, 1170 (1994).CAS
ADS
Google Scholar
12.Chauzat, M.-P. et al. Demographics of the European apicultural industry. PLoS ONE 8, e79018 (2013).PubMed
PubMed Central
ADS
Google Scholar
13.Conte, Y. L. & Navajas, M. Climate change: Impact on honey bee populations and diseases. OIE Rev. Sci. Tech. 27, 485–510 (2008).
Google Scholar
14.Le Conte, Y., Ellis, M. & Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses?. Apidologie 41, 353–363 (2010).
Google Scholar
15.Nürnberger, F., Härtel, S. & Steffan-Dewenter, I. Seasonal timing in honey bee colonies: Phenology shifts affect honey stores and Varroa infestation levels. Oecologia 189, 1121–1131 (2019).PubMed
ADS
Google Scholar
16.Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie https://doi.org/10.1007/s13592-016-0431-0 (2016).Article
Google Scholar
17.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. U. S. A. 116, 1792–1801 (2019).CAS
PubMed
PubMed Central
Google Scholar
18.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).PubMed
Google Scholar
19.Switanek, M., Crailsheim, K., Truhetz, H. & Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 579, 1581–1587 (2017).CAS
PubMed
ADS
Google Scholar
20.Genersch, E. et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352 (2010).CAS
Google Scholar
21.van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One 7, e36285 (2012).PubMed
PubMed Central
ADS
Google Scholar
22.Morawetz, L. et al. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 14, e0219293 (2019).CAS
PubMed
PubMed Central
Google Scholar
23.Fries, I., Imdorf, A. & Rosenkranz, P. Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37, 564–570 (2006).
Google Scholar
24.Guzmán-Novoa, E. et al. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41, 443–450 (2010).
Google Scholar
25.Giacobino, A. et al. Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels of Varroa destructor?. Res. Vet. Sci. 112, 1–6 (2017).PubMed
Google Scholar
26.van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
Google Scholar
27.Leza, M. M., Miranda-Chueca, M. A. & Purse, B. V. Patterns in Varroa destructor depend on bee host abundance, availability of natural resources, and climate in Mediterranean apiaries. Ecol. Entomol. 41, 542–553 (2016).
Google Scholar
28.Dietemann, V. et al. Standard methods for Varroa research. J. Apic. Res. 52, 1–54 (2013).
Google Scholar
29.Branco, M. R., Kidd, N. A. C. & Pickard, R. S. A comparative evaluation of sampling methods for Varroa destructor (Acari: Varroidae) population estimation. Apidologie 37, 452–461 (2006).
Google Scholar
30.Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20119 (2008).ADS
Google Scholar
31.Bailey, L. D. & van de Pol, M. climwin: An R toolbox for climate window analysis. PLoS One 11, 1–27 (2016).
Google Scholar
32.Hartig, F. Residual Diagnostics for Hierachical (Multi-Level/Mixed) Regression Models. (2021).33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 51 (2014).
Google Scholar
34.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
35.R Core Team. R: A Language and Environment for Statistical Computing. (2021).36.Seeley, T. D. & Morse, R. A. The nest of the honey bee (Apis mellifera L.). Insectes Soc. 23, 495–512 (1976).
Google Scholar
37.Calis, J. N. M., Fries, I. & Ryrie, S. C. Population modelling of Varroa jacobsoni Oud. Apidologie 30, 111–124 (1999).
Google Scholar
38.Fries, I., Hansen, H., Imdorf, A. & Rosenkranz, P. Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34, 389–397 (2003).
Google Scholar
39.Wilde, J., Fuchs, S., Bratkowski, J. & Siuda, M. Distribution of Varroa destructor between swarms and colonies. J. Apic. Res. 44, 190–194 (2005).
Google Scholar
40.Loftus, J. C., Smith, M. L. & Seeley, T. D. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming. PLoS One 11, 1–11 (2016).
Google Scholar
41.Moretto, G., Goncalves, L. S., De Jong, D. & Bichuette, M. Z. The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie 22, 197–203 (1991).
Google Scholar
42.Guzmán-Novoa, E., Vandame, R. & Arechavaleta, M. E. Susceptibility of European and Africanized honey bees (Apis mellifera L.) to Varroa jacobsoni Oud. in Mexico. Apidologie 30, 173–182 (1999).
Google Scholar
43.Ruttner, F. Biogeography and Taxonomy of Honeybees (Springer, 1988). https://doi.org/10.1007/978-3-642-72649-1.Book
Google Scholar
44.Adam, B. Breeding the Honeybee: A Contribution to the Science of Bee Breeding (Northern Bee Books, 2013).
Google Scholar
45.Tarpy, D. R., Hatch, S. & Fletcher, D. J. C. The influence of queen age and quality during queen replacement in honeybee colonies. Anim. Behav. 59, 97–101 (2000).CAS
PubMed
Google Scholar
46.Simeunovic, P. et al. Nosema ceranae and queen age influence the reproduction and productivity of the honey bee colony. J. Apic. Res. 53, 545–554 (2014).
Google Scholar
47.Akyol, E., Yeninar, H., Karatepe, M., Karatepe, B. & Özkök, D. Effects of queen ages on Varroa (Varroa destructor) infestation level in honey bee (Apis mellifera caucasica) colonies and colony performance. Ital. J. Anim. Sci. 6, 143–149 (2007).
Google Scholar
48.Harris, J. W., Harbo, J. R., Villa, J. D. & Danka, R. G. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32, 1305–1312 (2003).
Google Scholar
49.Kruuk, L. E. B., Osmond, H. L. & Cockburn, A. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird. Glob. Change Biol. 21, 2929–2941 (2015).ADS
Google Scholar
50.Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Predictive markers of honey bee colony collapse. PLoS One 7, e32151 (2012).CAS
PubMed
PubMed Central
ADS
Google Scholar
51.Peck, D. T., Smith, M. L. & Seeley, T. D. Varroa destructor mites can nimbly climb from flowers onto foraging honey bees. PLoS One 11, e0167798 (2016).PubMed
PubMed Central
Google Scholar
52.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS One 14, e0218392 (2019).CAS
PubMed
PubMed Central
Google Scholar
53.Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46, 716–727 (2015).
Google Scholar
54.Vetharaniam, I. Predicting reproduction rate of Varroa. Ecol. Model. 224, 11–17 (2012).
Google Scholar
55.Nürnberger, F., Härtel, S. & Steffan-Dewenter, I. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ 6, e4801. https://doi.org/10.7717/peerj.4801 (2018).Article
PubMed
PubMed Central
Google Scholar
56.Seeley, T. D. & Visscher, P. K. Survival of honeybees in cold climates: The critical timing of colony growth and reproduction. Ecol. Entomol. 10, 81–88 (1985).
Google Scholar
57.Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in worker brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. https://doi.org/10.1007/BF00055033 (1994).Article
Google Scholar
58.Martin, S. J. Reproduction of Varroa jacobsoni in cells of Apis mellifera containing one or more mother mites and the distribution of these cells. J. Apic. Res. 34, 187–196 (1995).
Google Scholar
59.Sparks, T. H. et al. Advances in the timing of spring cleaning by the honeybee Apis mellifera in Poland. Ecol. Entomol. 35, 788–791 (2010).
Google Scholar
60.Langowska, A. et al. Long-term effect of temperature on honey yield and honeybee phenology. Int. J. Biometeorol. 61, 1125–1132 (2017).PubMed
ADS
Google Scholar
61.Bordier, C. et al. Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Sci. Rep. 7, 1–11 (2017).CAS
Google Scholar
62.Fahrenholz, L., Lamprecht, I. & Schricker, B. Thermal investigations of a honey bee colony: Thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 159, 551–560 (1989).
Google Scholar
63.Villa, J. D., Gentry, C. & Taylor, O. R. Jr. Preliminary observations on thermoregulation, clustering, and energy utilization in African and European Honey Bees. J. Kansas Entomol. Soc. 60, 4–14 (1987).
Google Scholar
64.Anderson, D. L. & Trueman, J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189 (2000).CAS
PubMed
Google Scholar
65.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263 (2006).ADS
Google Scholar
66.Schmickl, T. & Crailsheim, K. Cannibalism and early capping: Strategy of honeybee colonies in times of experimental pollen shortages. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 187, 541–547 (2001).CAS
Google Scholar
67.Requier, F., Odoux, J. F., Henry, M. & Bretagnolle, V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 54, 1161–1170 (2017).
Google Scholar
68.Seeley, T. D. Honeybee Ecology. A Study of Adaptation in Social Life (Princeton University Press, 1985).
Google Scholar
69.Martin, S. J. Ontogenesis of the mite Varroa jacobsoni Oud. in drone brood of the honeybee Apis mellifera L. under natural conditions. Exp. Appl. Acarol. 19, 199–210 (1995).ADS
Google Scholar
70.Amiri, E., Strand, M. K., Rueppell, O. & Tarpy, D. R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects 8, 48 (2017).PubMed Central
Google Scholar
71.Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).
Google Scholar
72.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47, 467–482 (2016).
Google Scholar
73.FAO. Good beekeeping practices: Practical manual on how to identify and control the main diseases of the honeybee (Apis mellifera). TECA—Technologies and practices for small agricultural producers. (2020).74.Harbo, J. R. Effect of population size on brood production, worker survival and honey gain in colonies of honeybees. J. Apic. Res. 25, 22–29 (1986).
Google Scholar
75.Döke, M. A., McGrady, C. M., Otieno, M., Grozinger, C. M. & Frazier, M. Colony size, rather than geographic origin of stocks, predicts overwintering success in honey bees (Hymenoptera: Apidae) in the Northeastern United States. J. Econ. Entomol. 112, 525–533 (2019).PubMed
Google Scholar
76.Martin, S. J. The role of Varroa and viral pathogens in the collapse of honeybee colonies: A modelling approach. J. Appl. Ecol. 38, 1082–1093 (2001).
Google Scholar More