Drosophilids with darker cuticle have higher body temperature under light
Massey, J. H. & Wittkopp, P. J. The genetic basis of pigmentation differences within and between Drosophila species. Curr. Top. Dev. Biol. 119, 27–61 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Yassin, A. et al. The pdm3 locus is a hotspot for recurrent evolution of female-limited color dimorphism in Drosophila. Curr. Biol. 26, 2412–2422 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Williams, T. M. et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134, 610–623 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Bastide, H. et al. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet. 9, e1003534 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Pool, J. E. & Aquadro, C. F. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol. Ecol. 16, 2844–2851 (2007).Article
PubMed
PubMed Central
Google Scholar
Wittkopp, P. J. et al. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326, 540–544 (2009).Article
ADS
CAS
PubMed
Google Scholar
Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).Article
CAS
PubMed
Google Scholar
Rajpurohit, S. et al. Pigmentation and fitness trade-offs through the lens of artificial selection. Biol. Lett. 12, (2016).Massey, J. H. et al. Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster. Front. Physiol. 10, 518 (2019).Article
PubMed
PubMed Central
Google Scholar
Parkash, R., Rajpurohit, S. & Ramniwas, S. Impact of darker, intermediate and lighter phenotypes of body melanization on desiccation resistance in Drosophila melanogaster. J. Insect Sci. 9, 1–10 (2009).Article
PubMed
Google Scholar
Dombeck, I. & Jaenike, J. Ecological genetics of abdominal pigmentation in Drosophila falleni: A pleiotropic link to nematode parasitism. Evolution 58, 587–596 (2004).PubMed
Google Scholar
Kutch, I. C., Sevgili, H., Wittman, T. & Fedorka, K. M. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J. Exp. Biol. 217, 3664–3669 (2014).PubMed
Google Scholar
Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).Article
CAS
PubMed
Google Scholar
Bastide, H., Yassin, A., Johanning, E. J. & Pool, J. E. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol. Biol. 14, 179 (2014).Article
PubMed
PubMed Central
Google Scholar
Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).Article
Google Scholar
Gibert, P., Moreteau, B. & David, J. R. Developmental constraints on an adaptive plasticity: Reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol. Dev. 2, 249–260 (2000).Article
CAS
PubMed
Google Scholar
Parkash, R., Rajpurohit, S. & Ramniwas, S. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J. Insect Physiol. 54, 1050–1056 (2008).Article
CAS
PubMed
Google Scholar
Telonis-Scott, M., Hoffmann, A. A. & Sgro, C. M. The molecular genetics of clinal variation: A case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol. Ecol. 20, 2100–2110 (2011).Article
PubMed
Google Scholar
Munjal, A. K. et al. Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. Genet. Sel. Evol. 29, 601–610 (1997).Article
PubMed Central
Google Scholar
David, J. R., Capy, P., Payant, V. & Tsakas, S. Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations. Genet. Sel. Evol. 17, 211–224 (1985).Article
CAS
Google Scholar
Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Sibilia, C. D. et al. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). J. Insect Sci. 18, (2018).Jong, P., Gussekloo, S. & Brakefield, P. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J. Exp. Biol. 199, 2655–2666 (1996).Article
CAS
PubMed
Google Scholar
Zverev, V., Kozlov, M. V., Forsman, A. & Zvereva, E. L. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J. Therm. Biol 74, 100–109 (2018).Article
PubMed
Google Scholar
Watt, W. B. Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. USA 63, 767–74 (1969).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kuyucu, A. C., Sahin, M. K. & Caglar, S. S. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J. Therm. Biol. 71, 212–220 (2018).Article
PubMed
Google Scholar
Köhler, G. & Schielzeth, H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol. Evol. 10, 441–450 (2020).Article
PubMed
Google Scholar
Willmer, P. G. & Unwin, D. M. Field analyses of insect heat budgets: Reflectance, size and heating rates. Oecologia 50, 250–255 (1981).Article
ADS
CAS
PubMed
Google Scholar
Pecsenye, K., Bokor, K., Lefkovitch, L. P., Giles, B. E. & Saura, A. Enzymatic responses of Drosophila melanogaster to long- and short-term exposures to ethanol. Mol. Gen. Genet. 255, 258–268 (1997).Article
CAS
PubMed
Google Scholar
De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E. & Gibert, J.-M. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet. 14, e1007573 (2018).Article
PubMed
PubMed Central
Google Scholar
Cooley, A. M., Shefner, L., McLaughlin, W. N., Stewart, E. E. & Wittkopp, P. J. The ontogeny of color: Developmental origins of divergent pigmentation in Drosophila americana and D. novamexicana. Evol. Dev. 14, 317–25 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
John, A. V., Sramkoski, L. L., Walker, E. A., Cooley, A. M. & Wittkopp, P. J. Sensitivity of allelic divergence to genomic position: Lessons from the Drosophila tan Gene. G3 (Bethesda) (2016) doi:https://doi.org/10.1534/g3.116.032029.Liu, Y. et al. Changes throughout a genetic network mask the contribution of hox gene evolution. Curr. Biol. 29, 2157-2166.e6 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
David, J. R. et al. Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol. Evol. 12, e8821 (2022).Article
PubMed
PubMed Central
Google Scholar
Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).Article
CAS
PubMed
Google Scholar
Davis, J. S. & Moyle, L. C. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol. Biol. 19, 204 (2019).Article
PubMed
PubMed Central
Google Scholar
Nagy, O. et al. Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change. Curr. Biol. 28, 3450-3457.e13 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Lachaise, D. et al. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc. Biol. Sci. 267, 1487–1495 (2000).Article
CAS
PubMed
PubMed Central
Google Scholar
Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Gen. 12, 101–109 (1922).Article
Google Scholar
Turissini, D. A. & Matute, D. R. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet. 13, e1006971 (2017).Article
PubMed
PubMed Central
Google Scholar
Hoffmann, A. A. Physiological climatic limits in Drosophila: Patterns and implications. J. Exp. Biol. 213, 870–880 (2010).Article
CAS
PubMed
Google Scholar
Sunaga, S., Akiyama, N., Miyagi, R. & Takahashi, A. Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes Genet. Syst. 91, 127–137 (2016).Article
CAS
PubMed
Google Scholar
Rajpurohit, S. & Schmidt, P. S. Latitudinal pigmentation variation contradicts ultraviolet radiation exposure: A case study in Tropical Indian Drosophila melanogaster. Front. Physiol. 10, 84 (2019).Article
PubMed
PubMed Central
Google Scholar
Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).Article
PubMed
PubMed Central
Google Scholar
Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).Fabian, D. K. et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol. Ecol. 21, 4748–4769 (2012).Article
PubMed
PubMed Central
Google Scholar
Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).Article
ADS
CAS
PubMed
Google Scholar
Brakefield, P. M. & de Jong, P. W. A steep cline in ladybird melanism has decayed over 25 years: A genetic response to climate change?. Heredity (Edinb) 107, 574–578 (2011).Article
CAS
PubMed
Google Scholar
Zvereva, E. L., Hunter, M. D., Zverev, V., Kruglova, O. Y. & Kozlov, M. V. Climate warming leads to decline in frequencies of melanic individuals in subarctic leaf beetle populations. Sci. Total Environ. 673, 237–244 (2019).Article
ADS
CAS
PubMed
Google Scholar
Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).Article
ADS
PubMed
Google Scholar More