More stories

  • in

    Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts

    The micro-CT results from Arthrorhynchus agree perfectly with the previously known light microscope and transmission electron microscope images2. This emphasizes that microtomography is a good technique to visualize the type of fungal attachment to the host and especially the penetration of the cuticle, apart from the study of thallus in amber fossils17. As Jensen et al. (2019) demonstrated the presence of a haustorium in Arthrorhynchus using scanning electron microscopy, we are confident that the lack of penetration and haustorium in Rickia found by micro-CT is real. This is also in agreement with results from the scanning electron microscopical investigation of the attachment sites of R. gigas, which exhibits no indication of penetration and are very similar to those of R. wasmannii previously shown18.Despite the absence of a haustorium, and hence without any obvious means of obtaining nutrition, Rickia gigas is quite a successful fungus, being often abundant on several species of Afrotropical millipedes of the family Spirostreptidae10. It was originally described from Archispirostreptus gigas, and Tropostreptus (= ‘Spirostreptus’) hamatus20, and was subsequently reported from several other Tropostreptus species19.A further challenge for Laboulbeniales growing on millipedes is that infected millipedes, in some species even adults, may moult, shedding the exuviae with the fungus, as has been observed by us on an undescribed Rickia species on a millipede of the genus Spirobolus (family Spirobolidae).The question of how non-haustoriate Laboulbeniales obtain nutrients has been discussed by several authors18, including staining experiments using fungi of the non-haustoriate genus Laboulbenia on various beetles21. Whereas the surface of the main thallus was almost impenetrable to the dye applied (Nile Blue), the smaller appendages could sometimes be penetrated21. The dye injection into the beetle elytra upon which the fungi were sitting, actually spread from the elytron into the fungus, thus indicating that in spite of the lack of a haustorium, the fungus is able to extract nutrients from the interior of its host21.Such experiments have not been performed on Rickia species, but the possibility that nutrients may pass from the host into the basis of the fungus cannot be excluded. For this genus, or at least R. gigas, there may, however, be an alternative way to obtain nutrients: the small opening in the circular wall by which the thallus is attached to the host may allow nutrients from the surface of the millipede or from the environment to seep into the foot of the fungus. However, further experiments are needed in order to evaluate this hypothesis. Moreover, we should not exclude a potential role of primary and secondary appendages in Laboulbeniales nutrition, as we still do not understand exactly their functional role on the fungus life cycle11.The predominant position of the Laboulbeniales on the host might be related to the absence or presence of a haustorium. Thus, the haustoriate species of the genus Arthrorhynchus are most frequently encountered in large numbers on the arthrodial membranes of the host’s abdomen, although some thalli are found on legs2,22. At the arthrodial membranes the cuticle is more flexible and therefore might be easier to penetrate by a parasite. Furthermore, most tissues providing/storing nutrition (e.g., fat body) are located within the abdomen. In contrast, non-haustoriate fungi as are often located on more stiff and sclerotized body-parts like the genus Rickia on the legs or body-rings of millipedes7,20,23 or the genus Laboulbenia on the elytra of beetles21,24. A reason for this might be that the non-haustoriate forms, which are only superficially attached to the host need a more or less smooth surface for adherence and can easily become detached from a flexible surface, which is movable in itself, like the arthrodial membrane, while the haustoriate forms are firmly anchored within the hosts’ cuticle.Whereas the vast majority of the more than 2000 described species of Laboulbeniales show no sign of host penetration, haustoria have been reported from some other genera18, including Trenomyces parasitizing bird lice25,26, Hesperomyces growing on coccinellid beetles and Herpomyces on cockroaches (formerly a Laboulbeniales and now in the order Herpomycetales10), with pernicious consequences on the hosts’ fitness18,27. Micro-CT studies on these genera could help to understand the host penetration. In order to fully understand how Laboulbeniales obtain nourishment, although other approaches are, also needed—for the time being it remains a mystery how the non-haustoriate Laboulbeniales sustain themselves. More

  • in

    The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.)

    Collection and domestication of the wild populationsThe academic permission for collections and research on medicinal plants was obtained from the Head of Biotechnology Department, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran. The study complies with all relevant guidelines. Some populations of wild spinaches were harvested during spring season 2013 from the mountain habitat of this wild plant in the Tarom region of Zanjan province from an altitude of 2500–3000 m and were transferred to the greenhouses conditions. The domestication and cultivation experiments were conducted at Research Institute of Modern Biological Techniques, University of Zanjan, 1579° m above sea level, with 48° 28′ longitude and 36° 40′ latitude, from April 2013 to August 2020. The resulted seeds were cultured on pots to produce adequate seeds. The seedlings were transferred to the field with rows spaced 50 cm apart and also 50 cm between plants within the rows. Two seeds per hill were planted in an area of approximately 50 m2. Based on the organic conditions, no fertilization was performed. Thinning was done 25 days after emergence, leaving one plant per hill. The other cultural practices were those normally adopted for cultivation in the region.Mass selection of populationsIn the first year, phenotypic studies were performed during the growing season and weak, diseased and underdeveloped plants were removed from the field before the flowering stage. Then plants with the same phenotype and the desired traits were selected and after harvesting, their seeds were mixed. This election cycle was repeated for 5 years. In the final year, the new mass selected population was compared in a pilot project with cultivated spinach in traits such as yield, resistance to wilt, cold and pests, diseases, and mineral contents. This variety before the certification in the related national organization is a candida cultivar. It is a developed population that will be evaluated in the session of the Iranian variety of introduction committee.The seeds of cultivated spinach (Spinacia oleracea L. |Varamin 88|) were prepared from the Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran.Performing tests of stability, uniformity and differentiationTo assess morphologically and differentiate advanced uniformity in the studied population (Candida cultivar), the population was managed as a randomized complete block design with three replications over 2 years according to the instructions for spinach differentiation, uniformity, and stability (DUS Testing) of the International Union New Plant Cultivation (UPOV) and some morphological traits on plants or parts of plants. The studied traits included: cotyledon length, presence or absence of anthocyanin in petiole and veins, green color intensity, shrinkage, presence of lobes in the petiole, petiole state, petiole length, foil shape, foil edge shape, tip shape, and part of the length of the petiole, the time of flowering and the color of the seeds.Mineral analysesTo compare the mineral content of mass-selected population-medicinal spinach (MSP) with cultivated spinach (Spinacia oleracea L. var. Varamin 88), both plants were planted in pots and fields on similar conditions. In five leaves stage, plant samples were taken from both leaf and crown sections. The sampling method was such that after removing half a meter from the beginning and end of each plot (to remove the marginal effect) and also removing the two sidelines, five plants were harvested randomly for plant mineral analysis. Atomic absorption spectroscopy was used to determine the mineral content including iron (Fe), zinc (Z), manganese (Mn), and copper (Cu).The dried samples of root-crown and leave were stored, and later grounded and analyzed for iron (Fe), zinc (Z), manganese (Mn), and copper (Cu) in mass-selected variety (MSP) and cultivated spinach (CSP). Studied minerals were measured using atomic absorption spectrometry in the model of GBC AVANTA (GBC scientific equipment Ltd., Melbourne, Vic., Australia).Calibration of AAS was done using the working standard prepared from commercially available metal/mineral standard solutions (1000 μg/mL, Merck, Germany). The most appropriate wavelength, hollow cathode lamp current, gas mixture flow rate, slit width, and other AAS instrument parameters for metals/minerals were selected as given in the instrument user’s manual, and background correction was used during the determination of metals/minerals. Measurements were made within the linear range of working standards used for calibration15,16.The concentrations of all the minerals were expressed as mg/1000 g (ppm) dry weight of the sample. Each value is the mean of three replicate determination ± standard deviation.Scanning electron microscopy (SEM)For SEM studies, the seeds enveloping were removed and were acetolyzed in a 1:9 sulfuric acid-acetic anhydride solution. The seeds were vigorously shaken for 5 min. Then, they were left for 24–48 h in the solution. After this time, seeds were again shaken for 5 min and then washed.in distilled water by shaking for a further 5 min. The seeds were dried overnight and then were mounted on stubs and covered with Au–Pd by sputter coater model SC 7620. After coating, coated seeds were photographed with an LEO 1450 VP Scanning Electron Microscope. All photographs were taken in the Taban laboratory (Tehran, Iran).Statistical analysisThe statistical evaluation including: data transformation, analysis of variance and comparison of means were performed (SPSS software, Version 11.0). The experiment was structured following a randomized complete block design (RCBD) with three replications. Means comparisons were conducted using an ANOVA protected the least significant difference (LSD) test, with the ANOVA confidence levels of 0.95. Data were presented with their standard deviations (SD). More

  • in

    Incorporating the field border effect to reduce the predicted uncertainty of pollen dispersal model in Asia

    Dispersal modelsIn this study, the dispersal model consists of two parts, namely, kernel and observation model (Fig. 1). The main purpose of the kernel was employed to estimate the proportion of pollen dispersed from location s′ to location s and calculate the expected number of CP grains. The observation model used the expected number of CP grains as a parameter and described the number of CP grains at location s (Ys) by a specific distribution in the following:$${Y}_{s}sim fleft(left.{y}_{s}right|{{varvec{theta}}}_{s}right),$$
    (1)
    where f indicates the probability density function (PDF) of the specific distribution. The θs is the parameter vector of the distribution. This study constructed eight different dispersal models combined with two observation models, two kernels, and two conditions of the field border (FB) effect (Table 1). The details of the kernels and observation models were described in the following subsections.Figure 1Graphical summary of the establishment of the dispersal model using ZIP distribution observation model as an example.Full size imageTable 1 List of dispersal models constructed in this study.Full size tableKernelsThe kernel indicates the probability when the pollen emitted at location s′ and would fall down at location s. It can be expressed as γ(s, s′), where s′ is the source location closest to location s. Numerous kernels have been used to describe various dispersal phenomena24. The output of the kernel represents the donor pollen density of location s. In order to calculate the expected number of CP grains, the donor pollen density is multiplied by the average total grain number described as follows:$${lambda }_{s}=Ktimes gamma left(s,{s}^{^{prime}}right),$$
    (2)
    where λs and K indicate the expected number of CP grains at location s and the average number of grains per cob, respectively. The effect of the FB was introduced into the kernel to suit to the small-scale farming system in Asia. This study assumed that the relation between the pollen density at the first recipient row and the width of the FB displayed an exponential decrease25,26. To evaluate the improvement of the kernel with the FB effect, the kernels without the FB effect were also established in this study.The compound exponential kernel (γExpo) has been used in the previous pollen dispersal study27. Our study introduced the FB effect into this kernel. Therefore, the form of the compound exponential kernel can be expressed as follows:$$gamma_{{{text{Expo}}}} left( {s,s^{prime}} right) = left{ {begin{array}{*{20}l} {K_{e} exp left( { – a_{1} d^{*} left( {s,s^{prime}} right)} right)exp left( { – ksqrt {FB} } right),} \ {K_{e} exp left( { – a_{1} D – a_{2} left( {d^{*} left( {s,s^{prime}} right) – D} right)} right)exp left( { – ksqrt {FB} } right),} \ end{array} } right.begin{array}{*{20}l} {{text{if}},, d^{*} left( {s,s^{prime}} right) le D} \ {{text{if}} ,,d^{*} left( {s,s^{prime}} right) > D,} \ end{array}$$
    (3)
    where Ke, a1, a2, k, D are the parameters of the kernel. d*(s, s′) indicates the shortest distance between locations s′ and s in which the width of the FB has been subtracted. In the compound exponential kernel without the FB effect, the exponential term of the FB effect was removed and the d*(s, s′) was replaced directly by the shortest distance between s′ and s.The second kernel applied in this study was the modified Cauchy kernel (γCauchy) which was based on the PDF of the Cauchy distribution and the concept of compound distribution. The modified Cauchy kernel is represented as follows:$$gamma_{Cauchy} left( {s,s^{prime}} right) = left{ {begin{array}{*{20}l} {frac{2beta }{{pi left[ {beta^{2} + d^{*} left( {s,s^{prime}} right)^{2} } right]}}{text{exp}}left( { – ksqrt {FB} } right),} \ {frac{2beta }{{pi left[ {beta^{2} + D^{2} + c_{1} left( {d^{*} left( {s,s^{prime}} right) – D} right)^{2} } right]}}{text{exp}}left( { – ksqrt {FB} } right),} \ end{array} } right.begin{array}{*{20}l} {{text{if}} ,,d^{*} left( {s,s^{prime}} right) le D} \ {{text{if}} ,,d^{*} left( {s,s^{prime}} right) > D,} \ end{array}$$
    (4)
    where the β indicates the decline rate of the curve. Parameters of k and D are same as the compound exponential kernel. c1 indicates the relative slow decrease of pollen density at further distances. Similarly, in the modified Cauchy kernel without the FB effect, the term of the FB effect was removed and the d*(s, s′) was replaced directly by the shortest distance between s′ and s in which the row spacing (0.75 m) had been subtracted.Observation modelsBecause of the high proportions of zero value observations, the present study assumed that the CP grain count followed the zero-inflated Poisson (ZIP) distribution to account for zero-excess condition28. The ZIP distribution was first proposed by Lambert29, and several studies had applied the ZIP distribution to deal with the CP data27,30. The ZIP distribution consists of a Dirac distribution in zero and a Poisson distribution. Therefore, the distribution of CP grain count at location s (Ys) can be expressed as follows:$${Y}_{s}sim mathrm{ZIP}left(1-{q}_{s},{uplambda }_{s}right),$$
    (5)
    where qs indicates the probability of an observation following a Poisson distribution, and λs is the parameter of Poisson distribution calculated by Eq. (2). Furthermore, the parameter qs can be assumed to depend on the shortest distance between the recipient and donor plants. The border effect is also included in the estimation of qs because it is related to the distance effect. The relationship among distance, border, and the qs can be described using the following logistic function:$${q}_{s}=frac{1}{1+mathrm{exp}({b}_{1}-{b}_{2}{d}^{*}left(s,{s}^{^{prime}}right))},$$
    (6)
    where b1 and b2 are the parameters of the logistic function. The d*(s, s′) was the shortest distance between s′ and s in the version of dispersal models without the FB effect. The Poisson distribution was also used as an observation model for comparison with the ZIP observation model.Experimental and meteorological data collectionThe pollen dispersal data were collected from experiments performed in 2009 and 2010 at the geographic coordinates 23° 47′ N, 120° 26′ E, and an altitude of 20 m. These experiments were coded as 2009-1, 2009-2, and 2010-1, respectively. The experiment 2009-2 was divided into 2009-2A (without the FB) and 2009-2B (with the FB) based on the presence of the FB. The different layouts of the field experiments were designed to investigate the effect of the FB. Two commercial glutinous maize varieties, black pearl (purple grain) and Tainan No. 23 (white grain), were selected as the pollen donor and pollen recipient, respectively. The distance between the plants in a row was 25 cm, whereas the distance between the rows was 75 cm. The recipient plots consisted of 82 and 91 rows in 2009 and 2010 experiments, respectively.The CP rate was determined based on the differences in grain color on recipient cobs as a result of the xenia effect31. In the sampling framework, the whole field was divided into many grids and corn samples were collected from each grid in the whole field. The CP rate of each grid was calculated using the method presented in a previous study32 and defined as:$$mathrm{CP}left(%right)=left[sum_{i=1}^{n}{Cob}_{i}/left(ntimes Kright)right],$$
    (7)

    where Cobi and n indicate ith cob and total number of cobs in the grid, respectively. K is the average grain number per cob. Meteorological data were collected from the meteorological station at geographic coordinates 23° 35′ N, 120° 27′ E, and an altitude of 20 m. The detailed experimental setup was described in our previous study33. The study complies with relevant institutional, national, and international guidelines and legislation.Statistical analysesAll statistical analyses were performed using SAS (Statistical Analysis System, version 9.4). The dispersal model parameters were estimated by two methods. First, the nonlinear model estimation was conducted by PROC NLMIXED to evaluate the fitting and predictive abilities of dispersal models. Then the dispersal models with the observation model performed better fitting ability were re-estimated using the Bayesian estimation method to assess the uncertainty by PROC MCMC. In the Bayesian method, the noninformative prior distribution was used to estimate all parameters (Supplementary Table S1). The iteration of Markov Chain was 500,000 times and the burn-in was set to 450,000 iterations. In order to reduce the autocorrelations in the chain, the thinned value was set to 25.The validation method used in this study was the threefold cross-validation for the results of both estimation methods. The data from three experiments were combined and randomly partitioned into three sub-datasets. To avoid the heterogeneity of the different field designs and distances among sub-datasets, the observations from the same field design and same distance were considered as a group, and then partitioned into three parts. Each sub-dataset contained one part of all groups. At each validation run, two sub-datasets were selected as the training set, and the remaining one was used for validation.The fitting ability of the dispersal models was evaluated based on two criteria, namely, Akaike information criterion (AIC), Deviance, and coefficient of determination (R2). The smaller values of AIC or deviance indicate a better fitting. The higher R2 value represents a better fitting performance. The correlation coefficient (r) between the predicted and actual CP rates was used to assess the predictive ability. The deviance information criterion (DIC) was used to evaluate the performance of dispersal model fitting for the Bayesian estimation. The criterion values calculated from three training and validation sets were averaged to assess the overall results. The uncertainty of the model parameter was quantified by the standard deviation (SD) of parameter posterior distribution. The 95% credible intervals of posterior predictive distribution constructed by the 2.5th and 97.5th percentiles of 200,000 samples generated from the posterior predictive distribution were used to assess the predictive uncertainty. Furthermore, to assess the zero-excess condition, the percentage of observed zero CP grain events was compared with the Poisson probability of the zero CP grain event. A zero-excess condition occurred if the observed percentage was higher than the Poisson probability34. More

  • in

    Horizontal gene transfer and adaptive evolution in bacteria

    1.Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).
    Google Scholar 
    2.Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019). Using metagenomic samples form the human gut microbiome, the authors infer lineage structure from within-host polymorphisms in more than 40 species to show adaptation on short timescales can be seeded by HGT.PubMed 
    PubMed Central 

    Google Scholar 
    3.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019). Using the mouse microbiome as a study system, the authors show that rapid, phage-mediated HGT can transfer beneficial genes — already present in a resident strain — to an invading strain.PubMed 
    PubMed Central 

    Google Scholar 
    4.Smith, J. M., Smith, N. H., O’Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).PubMed 
    PubMed Central 

    Google Scholar 
    5.Dykhuizen, D. E. & Green, L. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268 (1991).PubMed 
    PubMed Central 

    Google Scholar 
    6.Feil, E. J. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    7.Suerbaum, S. et al. Free recombination within Helicobacter pylori. PNAS 95, 12619–12624 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    8.Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).PubMed 

    Google Scholar 
    9.Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    10.Bradley, P. H., Nayfach, S. & Pollard, K. S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Computational Biol. 14, e1006242 (2018). The authors use phylogenetic linear regression to control for important confounders and identify genes potentially involved in adaptation to the human gut.
    Google Scholar 
    11.Andreani, N. A., Hesse, E. & Vos, M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 11, 1719–1721 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Mcinerney, J. O., Mcnally, A. & Connell, M. J. O. Why prokaryotes have pangenomes. Nat. Publ. Gr. 2, 1–5 (2017).
    Google Scholar 
    13.Shapiro, B. J. The population genetics of pangenomes. Nat. Microbiol. 2, 1005860 (2017).
    Google Scholar 
    14.Vos, M. & Eyre-walker, A. Are pangenomes adaptive or not? Nat. Microbiol. https://doi.org/10.1038/s41564-017-0067-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Johnsborg, O., Eldholm, V. & Håvarstein, L. S. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158, 767–778 (2007).PubMed 

    Google Scholar 
    16.Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).PubMed 

    Google Scholar 
    17.Pimentel, Z. T. & Zhang, Y. Evolution of the natural transformation protein, ComEC, in Bacteria. Front. Microbiol. 9, 1–10 (2018).
    Google Scholar 
    18.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).
    Google Scholar 
    19.Camarillo-Guerrero, L. F. et al. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Guglielmini, J., Quintais, L., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7, e1002222 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    21.Dubey, G. P. & Ben-Yehuda, S. Intercellular nanotubes mediate bacterial communication. Cell 144, 590–600 (2011).PubMed 

    Google Scholar 
    22.Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 96, 1–12 (2020).
    Google Scholar 
    23.Bárdy, P. et al. Structure and mechanism of DNA delivery of a gene transfer agent. Nat. Commun. 11, 3034 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    24.Hasegawa, H., Suzuki, E. & Maeda, S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front. Microbiol. 9, 1–6 (2018).
    Google Scholar 
    25.Seitz, P. & Blokesch, M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev. 37, 336–363 (2013).PubMed 

    Google Scholar 
    26.Wall, D. Kin recognition in bacteria. Annu. Rev. Microbiol. 70, 143–160 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Frye, S. A., Nilsen, M., Tønjum, T. & Ambur, O. H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003458 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Redfield, R. J. et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol. Biol. 6, 1–15 (2006).
    Google Scholar 
    29.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0311-5 (2020).Article 
    PubMed 

    Google Scholar 
    30.Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).PubMed 

    Google Scholar 
    31.Vulić, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    32.Majewski, J. et al. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).PubMed 
    PubMed Central 

    Google Scholar 
    33.Wyres, K. L. et al. Pneumococcal capsular switching: a historical perspective. J. Infect. Dis. 207, 439–449 (2013).PubMed 

    Google Scholar 
    34.Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21, 157–178 (1997).PubMed 

    Google Scholar 
    35.Durrant, M. G., Li, M. M., Siranosian, B. A., Montgomery, S. B. & Bhatt, A. S. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27, 140–153.e9 (2020).PubMed 

    Google Scholar 
    36.Rajeev, L., Malanowska, K. & Gardner, J. F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73, 300–309 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hickman, A. B., Chandler, M. & Dyda, F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit. Rev. Biochem. Mol. Biol. 45, 50–69 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    38.Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 1–10 (2017).
    Google Scholar 
    39.Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, 1–17 (2018).
    Google Scholar 
    40.Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834.e14 (2019). The authors create a metric of recent gene flow to define ecological populations and discover genes that have experienced positive selection across populations.PubMed 

    Google Scholar 
    41.Croucher, N. J. et al. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 14, 1–42 (2016). A model of transformation with known bias towards the acquisition of shorter alleles suggests HGT may effectively purge bacterial genomes of parasitic MGEs.
    Google Scholar 
    42.Apagyi, K. J., Fraser, C. & Croucher, N. J. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol. Biol. Evol. 35, 575–581 (2018).PubMed 

    Google Scholar 
    43.Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).PubMed 

    Google Scholar 
    44.Kuo, C.-H. & Ochman, H. Deletional bias across the three domains of life. Genome Biol. Evol. 1, 145–152 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    45.Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).PubMed 
    PubMed Central 

    Google Scholar 
    46.Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).PubMed 

    Google Scholar 
    47.Campbell, A. Prophage insertion sites. Res. Microbiol. 154, 277–282 (2003).PubMed 

    Google Scholar 
    48.Chu, N. D. et al. A mobile element in mutS drives hypermutation in a marine Vibrio. mBio 8, 1–13 (2017).
    Google Scholar 
    49.Bobay, L. M., Rocha, E. P. C. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).PubMed 

    Google Scholar 
    50.Lee, H., Doak, T. G., Popodi, E., Foster, P. L. & Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 44, 7109–7119 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    51.Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).PubMed 

    Google Scholar 
    52.Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004).PubMed 

    Google Scholar 
    53.Hendry, T. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio https://doi.org/10.1128/mBio.01033-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio https://doi.org/10.1128/mBio.02430-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Vos, M. et al. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598–605 (2015).PubMed 

    Google Scholar 
    56.Cohen, E., Kessler, D. A. & Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett. 94, 1–4 (2005).
    Google Scholar 
    57.Levin, B. R. & Cornejo, O. E. The population and evolutionary dynamics of homologous gene recombination in bacteria. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000601 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Arnold, B. J. et al. Weak epistasis may drive adaptation in recombining bacteria. Genetics 208, 1247–1260 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    59.Moradigaravand, D. & Engelstädter, J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput. Biol. 8, 35–37 (2012).
    Google Scholar 
    60.Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, 1899–1905 (2007).
    Google Scholar 
    61.Winkler, J. & Kao, K. C. Harnessing recombination to speed adaptive evolution in Escherichia coli. Metab. Eng. 14, 487–495 (2012).PubMed 

    Google Scholar 
    62.Chu, H. Y., Sprouffske, K. & Wagner, A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J. Evol. Biol. 30, 1692–1711 (2017).PubMed 

    Google Scholar 
    63.Arnold, B. et al. Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial pathogen. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msz225 (2019).Article 
    PubMed Central 

    Google Scholar 
    64.Yahara, K. et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol. Biol. Evol. 33, 456–471 (2016).PubMed 

    Google Scholar 
    65.Engelstädter, J. & Moradigaravand, D. Adaptation through genetic time travel? Fluctuating selection can drive the evolution of bacterial transformation. Proc. R. Soc. B Biol. Sci. 281, 20132609 (2014).
    Google Scholar 
    66.Cohan, F. M. Periodic selection and ecological diversity in bacteria. Selective Sweep https://doi.org/10.1007/0-387-27651-3_7 (2007).Article 

    Google Scholar 
    67.Shapiro, B. J., David, L. A., Friedman, J. & Alm, E. J. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17, 196–204 (2009).PubMed 

    Google Scholar 
    68.Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    69.Rosen, M., Davison, M., Bhaya, D. & Fisher, D. S. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348, 1019–1024 (2015).PubMed 

    Google Scholar 
    70.Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 10, 1589–1601 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    71.Porter, S. S., Chang, P. L., Conow, C. A., Dunham, J. P. & Friesen, M. L. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 11, 248–262 (2017).PubMed 

    Google Scholar 
    72.Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. https://doi.org/10.1038/s41396-020-0655-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA 117, 26868–26875 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    74.Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).PubMed 

    Google Scholar 
    75.De Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).PubMed 

    Google Scholar 
    76.Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    77.Takeuchi, N., Cordero, O. X., Koonin, E. V. & Kaneko, K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 13, 1–11 (2015). The authors show that in the presence of NFDS, genes or mutations that are unconditionally beneficial can spread through populations only via HGT, giving rise to gene-specific sweeps.
    Google Scholar 
    78.Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 2017, 1950–1960 (2018).
    Google Scholar 
    79.Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 7, 828–836 (2009).PubMed 

    Google Scholar 
    80.Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    81.Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load allows for high mutation rate variation in gut commensal bacteria. PLoS Biol. https://doi.org/10.1101/568709 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    83.Cohan, F. M. Transmission in the origins of bacterial diversity, from ecotypes to phyla. Microbiol. Spectr. https://doi.org/10.1128/9781555819743.ch18 (2017).Article 
    PubMed 

    Google Scholar 
    84.Fondi, M. et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol. Evol. 8, 1388–1400 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    85.Cohan, F. M. The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143, 965–986 (1994).
    Google Scholar 
    86.Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    87.Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2013.08.003 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Cui, Y. et al. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. Evol. 32, 1396–1410 (2015).PubMed 

    Google Scholar 
    89.Skwark, M. et al. Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006508 (2016).Article 

    Google Scholar 
    90.Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112–e112 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    91.Puranen, S. et al. SuperDCA for genome-wide epistasis analysis. Microb. Genomics 4, e000184 (2018).
    Google Scholar 
    92.Whelan, F. J., Rusilowicz, M. & McInerney, J. O. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6, e000338 (2020).
    Google Scholar 
    93.Slomka, S. et al. Experimental evolution of bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests adaptive and neutral effects. Genetics 216, 543–558 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    94.Maddamsetti, R. & Lenski, R. E. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection. PLoS Genet. 14, 1–30 (2018).
    Google Scholar 
    95.Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 (2014).PubMed 

    Google Scholar 
    96.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).PubMed 

    Google Scholar 
    97.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    98.Haegeman, B. & Weitz, J. S. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13, 196 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    99.Hughes, A. L. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics 169, 533–538 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    100.Van Passel, M. W. J., Marri, P. R. & Ochman, H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4, e1000059 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    101.Hao, W. & Golding, G. B. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res. 16, 636–643 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    102.Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. 3, e130 (2005).103.Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol. Evol. 5, 233–242 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    104.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. https://doi.org/10.1038/nrg2526 (2009).Article 
    PubMed 

    Google Scholar 
    106.Cohan, F. M. & Perry, E. B. A systematics for discovering the fundamental units of bacterial diversity. Curr. Biol. 17, 373–386 (2007).
    Google Scholar 
    107.Domingo-Sananes, M. R. & McInerney, J. O. Selection-based model of prokaryote pangenomes. bioRxiv https://doi.org/10.1101/782573 (2019).Article 

    Google Scholar 
    108.Azarian, T. et al. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol. 18, e3000878 (2020). The authors provide evidence that NFDS is a pervasive evolutionary force that shapes the accessory genome of S. pneumoniae.PubMed 
    PubMed Central 

    Google Scholar 
    109.Bobay, L. M., Touchon, M. & Rocha, E. P. C. Pervasive domestication of defective prophages by bacteria. Proc. Natl Acad. Sci. USA 111, 12127–12132 (2014). Although prophages can be considered parasitic, the authors show evidence of purifying selection within prophage genes, suggesting that they serve a beneficial purpose within their bacterial hosts.PubMed 
    PubMed Central 

    Google Scholar 
    110.Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Med. 12, 1–19 (2014).
    Google Scholar 
    111.Lynch, M. Streamlining and simplification of microbial genome architecture. Annu.Rev.Microbiol. 60, 327–349 (2006).PubMed 

    Google Scholar 
    112.Bobay, L. & Ochman, H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18, 15 (2018).
    Google Scholar 
    113.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    114.Evans, T. G. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 218, 1925–1935 (2015).PubMed 

    Google Scholar 
    115.Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).PubMed 

    Google Scholar 
    116.Wu, M. et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science (80-.) 350, aac5992 (2015).
    Google Scholar 
    117.Poulsen, B. E. et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 116, 10072–10080 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    118.Pál, C., Papp, B. & Lercher, M. J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).PubMed 

    Google Scholar 
    119.Ansari, A. & Didelot, X. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196, 253–265 (2014).PubMed 

    Google Scholar 
    120.Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199–204 (2019). The authors develop a fast and clever method that uses linkage information to estimate recombination rates and the diversity of the gene pool that has contributed alleles to the sample via HGT.PubMed 

    Google Scholar 
    121.Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, 1–12 (2012).
    Google Scholar 
    122.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, 1–18 (2015).
    Google Scholar 
    123.Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. https://doi.org/10.1371/journal.pcbi.1004041 (2015).124.Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    125.Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K. & Falush, D. Efficient inference of recombination hot regions in bacterial genomes. Mol. Biol. Evol. 31, 1593–1605 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    126.Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).PubMed 

    Google Scholar 
    127.Daubin, V. & Szollosi, G. Horizontal gene transfer and the tree of life. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1007/978-94-007-2941-4_37 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Bertelli, C., Tilley, K. E. & Brinkman, F. S. L. Microbial genomic island discovery, visualization and analysis. Brief. Bioinform. 20, 1685–1698 (2019).PubMed 

    Google Scholar 
    129.Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).PubMed 

    Google Scholar 
    130.Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000304 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    131.Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Roberts and Company Publishers, 2010).132.Castillo-Ramírez, S. et al. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002129 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, 1–21 (2017).
    Google Scholar 
    134.Dillon, M., Thakur, S., Almeida, R. & Guttman, D. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. https://doi.org/10.1101/227413 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems

    1.Navarra, A. & Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5772-1.Book 

    Google Scholar 
    2.Solomon, S. S. IPCC (2007): Climate Change the Physical Science Basis. AGUFM 2007, U43D-01 (2007).3.Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (2012).4.Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat (2008).5.Neve, P., Vila-Aiub, M. & Phytologist, F.R.-N. Evolutionary-thinking in agricultural weed management. New Phytol. 184(4), 783–793 (2009).Article 

    Google Scholar 
    6.Harrison, M. T., Cullen, B. R. & Rawnsley, R. P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. https://doi.org/10.1016/j.agsy.2016.07.006 (2016).Article 

    Google Scholar 
    7.Moret, D., Arrúe, J. L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J. Agron. 26, 54–63. https://doi.org/10.1016/j.eja.2006.08.007 (2007).Article 

    Google Scholar 
    8.FAO (Food and Agriculture Organization). Rome: Introduction to Conservation Agriculture (Its Principles and Benefits). http://teca.fao.org/technology/introduction-conservationagriculture-its-principles-benefits (2013).9.Kertész, À. & Madarász, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96 (2014).Article 

    Google Scholar 
    10.Álvaro-Fuentes, J., López, M. V., Cantero-Martínez, C. & Arrúe, J. L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72, 541–547 (2008).ADS 
    Article 

    Google Scholar 
    11.Bouchery, Y., Ghaffari, A., Jemai, Z. & Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222, 229–240 (2012).MathSciNet 
    Article 

    Google Scholar 
    12.Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87 (2012).Article 

    Google Scholar 
    13.Madejón, E. et al. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 105, 55–62 (2009).Article 

    Google Scholar 
    14.De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69–78. https://doi.org/10.1016/j.still.2006.01.012 (2007).Article 

    Google Scholar 
    15.Giambalvo, D. et al. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360, 215–227. https://doi.org/10.1007/s11104-012-1224-5 (2012).CAS 
    Article 

    Google Scholar 
    16.Ruisi, P. et al. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 9(560), 1–7. https://doi.org/10.4081/ija.2014.560 (2014).Article 

    Google Scholar 
    17.Plaza-Bonilla, D., Cantero-Martínez, C., Viñas, P. & Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82 (2013).ADS 
    Article 

    Google Scholar 
    18.Barberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seed bank size and composition. Weed Res. 41(4), 325–340. https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).Article 

    Google Scholar 
    19.Batey, T. & McKenzie, D. C. Soil compaction: Identification directly in the field. Soil Use Manag. 22, 123–131. https://doi.org/10.1111/j.1475-2743.2006.00017.x (2006).Article 

    Google Scholar 
    20.Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 198, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010 (2016).Article 

    Google Scholar 
    21.Ruisi, P. et al. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 55, 320–328. https://doi.org/10.1111/wre.12142 (2015).Article 

    Google Scholar 
    22.Mahli, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil Tillage Res. 96, 269–283. https://doi.org/10.1016/j.still.2007.06.011 (2007).Article 

    Google Scholar 
    23.Santín-Montanyá, M. I., Gandía, M. L., Zambrana, E. & Tenorio, J. L. Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177, 256–265. https://doi.org/10.1111/aab.12620 (2020).Article 

    Google Scholar 
    24.Chaghazardi, H. R., Jahansouz, M. R., Ahmadi, A. & Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 162, 26–33. https://doi.org/10.1016/j.still.2016.04.010 (2016).Article 

    Google Scholar 
    25.López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertiliser effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88, 783–791 (1996).Article 

    Google Scholar 
    26.Cantero-Martínez, C., Angás, P. & Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 150, 293–305. https://doi.org/10.1111/j.1744-7348.2007.00142.x (2007).Article 

    Google Scholar 
    27.Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. & Radicetti, E. The long-term effects of conventional and organic ropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of central Italy. Field Crops Res. 176, 34–44. https://doi.org/10.1016/j.fcr.2015.02.021 (2015).Article 

    Google Scholar 
    28.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).Article 

    Google Scholar 
    29.Plourde, J. D., Pijanowski, B. C. & Pekin, B. K. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–59 (2013).Article 

    Google Scholar 
    30.Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia—Insights from over three decades of research. Crop Pasture Sci. 63, 1 (2012).Article 

    Google Scholar 
    31.Wang, H. & Ortiz-Bobea, A. Market-driven corn monocropping in the U.S. Midwest. Agric. Resour. Econ. Rev. 48, 274–296 (2019).Article 

    Google Scholar 
    32.Tekin, S., Yazar, A. & Barut, H. Comparison of wheat-based rotation systems vs monocropping under dryland Mediterranean conditions. Int. J. Agric. Biol. Eng. 10, 203–213. https://doi.org/10.25165/j.ijabe.20171005.3443 (2017).Article 

    Google Scholar 
    33.Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319. https://doi.org/10.1016/S0065-2113(07)00007-7 (2008).CAS 
    Article 

    Google Scholar 
    34.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    35.Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15(12), 124011 (2020).Article 

    Google Scholar 
    36.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Amato, G. et al. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 105, 1317–1327 (2013).Article 

    Google Scholar 
    38.Loke, P. F., Kotzé, E. & Du Preez, C. C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 51, 415–426. https://doi.org/10.1071/SR12359 (2013).CAS 
    Article 

    Google Scholar 
    39.Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92, 1–9 (2007).Article 

    Google Scholar 
    40.Hadjichristodoulou, A. The relationship of grain yield with harvest index and total biological yield of barley in drylands. Tech. Bull. 126, 1–10 (1991).
    Google Scholar 
    41.Zimdahl, R. L. Weed-Crop Competition: A Review 49–50, 109–145 (Blackwell Publishing, 2004).42.Nkoa, R., Owen, M. D. K. & Swanton, C. J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 63, 64–90. https://doi.org/10.1614/ws-d-13-00075.1 (2015).Article 

    Google Scholar 
    43.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    44.Fried, G., Petit, S. & Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 10, 20 (2010).Article 

    Google Scholar 
    45.Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 36, 1–22. https://doi.org/10.1007/s13593-016-0350-5 (2016).Article 

    Google Scholar 
    46.Acevedo, E. H., Silva, P. C., Silva, H. R. & Solar, B. R. Wheat production in Mediterranean environments. In Wheat: Ecology and Physiology of Yield Determination 295–331 (1999).47.Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00095 (2017).CAS 
    Article 

    Google Scholar 
    48.Calzarano, F. et al. Durum wheat quality, yield and sanitary status under conservation agriculture. Agriculture https://doi.org/10.3390/agriculture8090140 (2018).Article 

    Google Scholar 
    49.Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E. & Tenorio, J. L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31(3), 269–282. https://doi.org/10.1080/15324982.2017.1307289 (2017).Article 

    Google Scholar 
    50.Shimshi, D., Bielorai, H. & Mantell, A. Irrigation of field crops. In Arid Zone Irrigation 369–381 (Springer, 1973).51.Schultz, J. E. Crop production in a rotation trial at Tarlee, South Australia. Aust. J. Exp. Agric. 35, 865–876. https://doi.org/10.1071/EA9950865 (1995).Article 

    Google Scholar 
    52.Alarcón, R. et al. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 179, 54–62. https://doi.org/10.1016/j.still.2018.01.014 (2018).Article 

    Google Scholar 
    53.Šíp, V., Vavera, R., Chrpová, J., Kusá, H. & Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 132, 77–85. https://doi.org/10.1016/j.still.2013.05.002 (2013).Article 

    Google Scholar 
    54.Woźniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 14, 1–8. https://doi.org/10.1007/s42106-019-00062-8 (2020).Article 

    Google Scholar 
    55.Schulte, B. J., Tomasek, B. J., Davis, A. S., Andersson, L. & Benoit, D. L. An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Res. 54, 1–12. https://doi.org/10.1111/wre.12054 (2014).Article 

    Google Scholar 
    56.Calado, J. M. G., Basch, G. & de Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 82, 81–88. https://doi.org/10.1007/s10340-008-0225-x (2009).Article 

    Google Scholar 
    57.Siddique, K. H. M. et al. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32, 45–64 (2012).Article 

    Google Scholar 
    58.Payne, W. A., Rasmussen, P. E., Chen, C. & Ramig, R. E. Assessing simple wheat and pea models using data from a long-term tillage experiment. Agron. J. 93, 250–260. https://doi.org/10.2134/agronj2001.931250x (2001).Article 

    Google Scholar 
    59.Machado, S., Petrie, S., Rhinhart, K. & Ramig, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. 100, 154–162. https://doi.org/10.2134/agrojnl2006.0218 (2008).Article 

    Google Scholar 
    60.Copec, K., Filipovic, D., Husnjak, S., Kovacev, I. & Kosustic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61(5), 213–219. https://doi.org/10.17221/156/2015-pse (2015).Article 

    Google Scholar 
    61.López-Bellido, L., López-Bellido, R. J., Redondo, R. & Benítez, J. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crop Res. 98, 253–260 (2006).Article 

    Google Scholar 
    62.López-Bellido, R. J., López-Bellido, L., Benítez-Vega, J. & López-Bellido, F. J. Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. Agron. J. 99, 59–65. https://doi.org/10.2134/agronj2006.0025 (2007).Article 

    Google Scholar 
    63.López-Bellido, L., Muñoz-Romero, V., Fernández-García, P. & López-Bellido, R. J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean vertisol. Soil Use Manag. 30(4), 471–479 (2014).Article 

    Google Scholar 
    64.Bilalis, D., Efthimiadis, P. & Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 186, 135–141. https://doi.org/10.1046/j.1439-037X.2001.00458.x (2001).Article 

    Google Scholar 
    65.Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E. & Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture https://doi.org/10.3390/agriculture10050186 (2020).Article 

    Google Scholar 
    66.Pala, M., Ryan, J., Zhang, H., Singh, M. & Harris, H. C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 93, 136–144. https://doi.org/10.1016/j.agwat.2007.07.001 (2007).Article 

    Google Scholar 
    67.Légère, A., Stevenson, F. C. & Benoit, D. L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x (2005).Article 

    Google Scholar 
    68.Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).Article 

    Google Scholar 
    69.Sarani, M., Oveisi, M., Mashhadi, H. R., Alizade, H. & Gonzalez-Andujar, J. L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol. Manag. 14, 198–208. https://doi.org/10.1111/wbm.12047 (2014).Article 

    Google Scholar 
    70.Pardo, G. et al. Effects of reduced and conventional tillage on weed communities: Results of a long-term experiment in Southwestern Spain. Planta Daninha https://doi.org/10.1590/s0100-83582019370100152 (2019).Article 

    Google Scholar 
    71.Fennimore, S. A. & Jackson, L. E. Organic amendment and tillage effects on vegetable field weed emergence and seedbanks 1. Weed Technol. 17, 42–50. https://doi.org/10.1614/0890-037x(2003)017[0042:oaateo]2.0.co;2 (2003).Article 

    Google Scholar 
    72.Francis, A. & Warwick, S. I. The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can. J. Plant Sci. 88, 379–401. https://doi.org/10.4141/CJPS07100 (2008).Article 

    Google Scholar  More

  • in

    High species richness of tachinid parasitoids (Diptera: Calyptratae) sampled with a Malaise trap in Baihua Mountain Reserve, Beijing, China

    1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    2.Stork, N. E. How many species are there?. Biodivers. Conserv. 2, 215–232 (1993).
    Google Scholar 
    3.Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopts. Bull. 36, 74–75 (1982).
    Google Scholar 
    4.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 

    Google Scholar 
    6.Linnaeus, C. Amoenitates Academicae, seu Dissertationes Variae Physicae, Medicae, Botanicae, Volume 2. (Laurentium Salvium, 1749).7.Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. (Laurentium Salvium, 1758).8.Metcalf, Z. P. How many insects are there in the world?. Entomol. News 51, 219–222 (1940).
    Google Scholar 
    9.Ødegaard, F. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J. Biogeogr. 27, 283–296 (2000).
    Google Scholar 
    10.Geiger, M. F. et al. The global Malaise trap program–how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).11.D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460 (2018).PubMed 

    Google Scholar 
    12.Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. Bmc. Biol. 17, 96 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Wu, Y. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).
    Google Scholar 
    14.Morelli, F. et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 23, 84–92 (2017).
    Google Scholar 
    15.White, E. P. Spatiotemporal scaling of species richness: Patterns, processes and implications. In Scaling biodiversity (eds Storch, D. et al.) 325–346 (Cambridge University Press, 2007).
    Google Scholar 
    16.Schwartz, M. D. Phenology: An Integrative Environmental Science. (Springer, 2013).17.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    18.Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Google Scholar 
    19.Le, C. M., Wilson, S. W. & Soulier-Perkins, A. Elevational gradient of Hemiptera (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. PeerJ 3, e978 (2015).
    Google Scholar 
    20.McCravy, K. W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170 (2018).PubMed Central 

    Google Scholar 
    21.Karlsson, D. et al. The Swedish Malaise trap project: A 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    22.Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).PubMed 

    Google Scholar 
    23.Fraser, S. E. M., Dytham, C. & Mayhew, P. J. The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 1, 22–31 (2008).
    Google Scholar 
    24.Gaston, K. J., Gauld, I. D. & Hanson, P. The size and composition of the hymenopteran fauna of Costa Rica. J. Biogeogr. 23, 105–113 (1996).
    Google Scholar 
    25.Townes, H. K. Design of a Malaise trap. Proc. Entomol. Soc. Wash. 64, 253–262 (1962).
    Google Scholar 
    26.O’Hara, J. E. History of tachinid classification (Diptera, Tachinidae). ZooKeys 316, 1–34 (2013).
    Google Scholar 
    27.O’Hara, J. E., Henderson, S. J. & Wood, D. M. Preliminary Checklist of the Tachinidae of the World. Version 2.1. http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html (2020).28.Stireman, J. O., O’Hara, J. E. & Wood, D. M. Tachinidae: Evolution, behavior, and ecology. Annu. Rev. Entomol. 51, 525–555 (2006).CAS 
    PubMed 

    Google Scholar 
    29.Cerretti, P. et al. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst. Entomol. 39, 335–353 (2014).
    Google Scholar 
    30.Stireman, J. O., Dyer, L. A. & Greeney, H. F. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Diver. 10, 367–384 (2017).
    Google Scholar 
    31.Belshaw, R. Tachinid (Diptera) assemblages in habitats of a secondary succession in southern Britain. Entomology 111, 151–161 (1992).
    Google Scholar 
    32.Inclán, D. J. & Stireman, J. O. Tachinid (Diptera: Tachinidae) Parasitoid diversity and temporal abundance at a single site in the northeastern United States. Ann. Entomol. Soc. Am. 104, 287–296 (2011).
    Google Scholar 
    33.Cerretti, P., Whitmore, D., Mason, F. & Taglianti, A. V. Survey on the spatio-temporal distribution of tachinid flies: Using Malaise traps (Diptera, Tachinidae). In Invertebrati diuna foresta della Pianura Padana, Bosco della Fontana, Secondo contributo (eds Cerretti, P. et al.) 229–256 (Springer, 2004).34.Stireman, J. O. Alpha and beta diversity of a tachinid parasitoid community. Ann. Entomol. Soc. Am. 101, 362–370 (2008).
    Google Scholar 
    35.Pei, W. Y. et al. Species diversity of Tachinidae in Baihuashan National Nature Reserve of Beijing, China. J. Environ. Entomol. 41, 1218–1225 (2019).
    Google Scholar 
    36.Zhao, Y. et al. Fauna resource investigation of Tachinidae (Diptera) from Mt. Huangyi, Eastern Liaoning, China. J. Environ. Entomol. 41, 1208–1217 (2019).
    Google Scholar 
    37.Zhang, Y. Z. et al. Fauna resource investigation of Tachinidae (Diptera) from the grasslands, Inner Mongolia of China. J. Environ. Entomol. 40, 1353–1363 (2018).
    Google Scholar 
    38.Zhang, C. T. et al. Preliminary investigation on Tachinidae (Diptera) of Hanma National Nature Reserve, Inner Mongolia, China. J. Environ. Entomol. 35, 257–264 (2017).CAS 

    Google Scholar 
    39.Liang, H. C. et al. Fauna resource of Tachinidae in Liaoning Hun River Source Nature Reserve of China. J. Environ. Entomol. 38, 1214–1223 (2016).
    Google Scholar 
    40.Zhang, C. T. et al. Faunistic investigation of Tachinidae in Liaoning Bailang Mountain National Nature Reserve of China. J. Environ. Entomol. 37, 726–734 (2015).
    Google Scholar 
    41.Zhang, D. et al. Study on Tachinidae fauna in Songshan National Nature Reserve of Beijing, China. Chin. J. Vector Biol. Control 22, 459–465 (2011).
    Google Scholar 
    42.Herting, B. & Dely-Draskovits, A. Family Tachinidae. In Catalogue of Palaearctic Diptera. Volume 13. Anthomyiidae–Tachinidae. (eds Soós, A. & Papp, L.) 118–458 (Hungarian Natural History Museum, 1993).43.O’Hara, J. E. & Henderson, S. J. World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 11.0. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Worldgenera.html (2020).44.Tschorsnig, H. P. & Richter, V. A. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance) (eds Papp, L. & Darvas, B) 691–827 (Higher Brachycera Science Herald Press, 1998).45.Cerretti, P., Tschorsnig, H. P., Lopresti, M. & Giovanni, F. D. MOSCHweb: A matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205, 5–18 (2012).
    Google Scholar 
    46.Andersen, S. Revision of European species of Phytomyptera Rondani (Diptera: Tachinidae). Insect Syst. Evol. 19, 43–80 (1988).
    Google Scholar 
    47.Andersen, S. The Siphonini (Diptera: Tachinidae) of Europe. Fauna Entomol. Scand. 33, 1–146 (1996).
    Google Scholar 
    48.Chao, C. M. et al. Tachinidae. In Flies of China Vol. 2 (eds Xue, W. Q. & Chao, C. M.) (Liaoning Science and Technology Press, 1998).
    Google Scholar 
    49.Chao, C. M. et al. Fauna Sinica. Insecta. Vol. 23. Diptera. Tachinidae (1) (Science Press, 2001).
    Google Scholar 
    50.O’Hara, J. E., Shima, H. & Zhang, C. T. Annotated catalogue of the Tachinidae (Insecta: Diptera) of China. Zootaxa 2190, 1–236 (2009).
    Google Scholar 
    51.Tachi, T. & Shima, H. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae). Tijdschr. voor Entomol. 145, 115–144 (2002).
    Google Scholar 
    52.Tschorsnig, H. P. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home.html (2017).53.Zhang, C. T., Shima, H. & Chen, X. L. A review of the genus Dexia Meigen in the Palearctic and Oriental Regions (Diptera: Tachinidae). Zootaxa 2705, 1–81 (2010).
    Google Scholar 
    54.Colwell, R. K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/ (2019).55.Oksanen, J. F. et al. Vegan: Community Ecology Package. R Package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 20 May 2018 (2017).56.Mielke, P. W. 34 Meteorological applications of permutation techniques based on distance functions. Handb. Stat. 4, 813–830 (1984).
    Google Scholar 
    57.Ge, Y. et al. Exotic spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China. Estuar. Coast. Shelf. Sci. 239, 106755 (2020).
    Google Scholar 
    58.Haq, F. et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 80, 232–241 (2017).
    Google Scholar 
    59.Oara, J. E., Zhang, C. T. & Shima, H. Catalogue of the Tachinidae (Insecta: Diptera) of China. In Catalogue of Life China: 2021 Annual Checklist, Volume 2 Animals, Insect (VI), Diptera (3) (eds Yang, D. et al.) 845–1170 (The Biodiversity Committee of Chinese Academy of Sciences, 2021).60.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eds Wiley, J. & Ltd, S.) 1–10 (Wiley, 2010).
    Google Scholar 
    61.Zhang, J. T., Xu, B. & Li, M. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 33, 170–178 (2013).ADS 

    Google Scholar 
    62.Huang, Y. et al. The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 14, 1027–1039 (2015).
    Google Scholar 
    63.Eldegard, K., Totland, Ø. & Moe, S. R. Edge effects on plant communities along power line clearings. J. Appl. Ecol. 52, 871–880 (2015).
    Google Scholar 
    64.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    65.Harper, K. A. et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005).
    Google Scholar 
    66.Laurance, W. F. et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007).67.Stireman, J. O. III., Cerretti, P., Whitmore, D., Hardersen, S. & Gianelle, D. Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conserv. Divers. 5, 346–357 (2012).
    Google Scholar 
    68.Burington, Z. L. et al. Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): A review of the evidence. Insect Conserv. Divers. 13, 419–431 (2020).
    Google Scholar 
    69.Campbell, J. W., Hanula, J. L. & Waldrop, T. A. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol. Conserv. 134, 393–404 (2007).
    Google Scholar 
    70.Alfred, D. J. et al. A study on five sampling methods of parasitic hymenopterans in rice ecosystem. Biol. Control. 32, 187–192 (2018).
    Google Scholar 
    71.Wells, W. & Decker, T. A comparison of three types of insect traps for collecting non-Formicidae Hymenoptera on the Island of Dominica. Southwest. Entomol. 31, 59–68 (2006).
    Google Scholar  More

  • in

    Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula

    1.Hewitt, G. H. The genetic legacy of Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hewitt, G. H. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 

    Google Scholar 
    3.Hauswaldt, J. S. et al. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Mol. Phylogenetics Evol. 70, 1–12 (2014).
    Google Scholar 
    4.Gomez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
    Google Scholar 
    5.Hewitt, G. H. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority (eds Zachos, F. E. & Habel, J. C.) 123–148 (Springer, 2011).
    Google Scholar 
    6.Lanza, B. & Corti, C. Evolution of knowledge on the Italian herpetofauna during the 20th century. Boll. Mus. Civ. St. Nat. Verona 20, 373–436 (1996).
    Google Scholar 
    7.Sindaco, R., Eremčenko, V. K. & Venchi, A. Mediterranean reptiles: State of knowledge, hot spots, areas of endemism, conservation. In Abstracts of the VI Congress of the Societas Herpetologica Italica (eds Bologna, M.A., Capula, M., Carpaneto, G.M., Luiselli, L., Marangoni, C. & Venchi, A.), (Roma, September 27–October 1 2006), Stilgrafica, Roma, pp. 101–102 (2006).8.Borkin, L. J. Distribution of amphibians in North Africa, Europe, Western Asia and Former Soviet Union. In Patterns of Distribution of Amphibians. A Global Perspective (ed. Duellman, W. E.) 329–420 (Johns Hopkins University Press, 1999).
    Google Scholar 
    9.Speybroeck, J. et al. Species list of the European herpetofauna–2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41, 139–189 (2020).
    Google Scholar 
    10.Venczel, M. & Sanchíz, B. A fossil plethodontids salamander from the Middle Miocene of Slovakia (Caudata, Plethodontidae). Amphibia-Reptilia 26, 408–411 (2005).
    Google Scholar 
    11.Venczel, M. & Hír, J. Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontogr. Abt. A 300, 117–158 (2013).
    Google Scholar 
    12.Georgalis, G. L., Villa, A., Ivanov, M., Vasilyan, D. & Delfino, M. Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontol. Electron. 22, 1–99 (2019).
    Google Scholar 
    13.Macaluso, L. et al. A progressive extirpation: An overview of the fossil record of Salamandrina (Salamandridae, Urodela). Hist. Biol., 1–18 (2021).14.Delfino, M., Bailon, S. & Pitruzzella, G. The late pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas 33(2), 357–382 (2011).
    Google Scholar 
    15.Lanza, B. Salamandrina terdigitata (Lacépède, 1788): Emblem of the Unione Zoologica Italiana. Boll. Zool. 55, 1–4 (1988).
    Google Scholar 
    16.Agustí, J. et al. A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci. Rev. 52, 247–260 (2001).ADS 

    Google Scholar 
    17.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. P. Roy. Soc. B-Biol. Sci. 277, 661–671 (2010).
    Google Scholar 
    18.Baselga, A., Lobo, J. M., Svenning, J. C. & Araujo, M. B. Global patterns in the shape of species geographical ranges reveal range determinants. J. Biogeogr. 39, 760–771 (2012).
    Google Scholar 
    19.Iannella, M., D’Alessandro, P. & Biondi, M. Evidences for a shared history for spectacled salamanders, haplotypes and climate. Sci. Rep. 8(1), 1–11 (2018).CAS 

    Google Scholar 
    20.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).
    Google Scholar 
    21.Ficetola, G. F. et al. Knowing the past to predict the future: Land-use change and the distribution of invasive bullfrogs. Glob. Change Biol. 16(2), 528–537 (2010).ADS 

    Google Scholar 
    22.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).
    Google Scholar 
    23.Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10(1), 1–14 (2019).CAS 

    Google Scholar 
    24.Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Moss, R. et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), pp. 132 (2008).26.Wayne, G. P. The beginner’s guide to representative Concentration pathways. Skeptical science Version 1.0 (2013).27.GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.as6sk2.28.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nat. Sci. Data 5, 180254 (2018).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/.30.Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H, & Zimmermann, N. E. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss., 1–27 (2021).31.Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Hill, D. J. The non-analogue nature of Pliocene temperature gradients. EPSL 425, 232–241 (2015).ADS 
    CAS 

    Google Scholar 
    33.Dolan, A. M. et al. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Glob. Planet. Change 128, 47–60 (2015).ADS 

    Google Scholar 
    34.Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2), 213–226 (2021).
    Google Scholar 
    35.Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modelling. R package version 3.1–64 (2014). http://CRAN.R-project.org/package=biomod2.36.McCullagh, P. & Nelder, J. A. Generalized Linear Models 511 (Chapman and Hall, 1989).MATH 

    Google Scholar 
    37.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    38.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An opensource release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    39.QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.40.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).
    Google Scholar 
    41.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    42.Weiss, S. & Ferrand, N. Phylogeography of Southern European Refugia Evolutionary Perspectives on the Origins and Conservation of European Biodiversity 377 (Springer, 2007).
    Google Scholar 
    43.Martinetto, E. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot. 41(2), 299–319 (2001).
    Google Scholar 
    44.Martinetto, E. et al. Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity”(HUTEA) in southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 211–231 (2017).
    Google Scholar 
    45.Villa, A. & Delfino, M. Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: An overview. Swiss J. Palaeontol. 138, 177–211 (2019).
    Google Scholar 
    46.Montuire, S., Maridet, O. & Legendre, S. Late Miocene–early Pliocene temperature estimates in Europe using rodents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238(1–4), 247–262 (2006).
    Google Scholar 
    47.Velitzelos, D., Bouchal, J. M. & Denk, T. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palyno. 204, 56–117 (2014).
    Google Scholar 
    48.Martinetto, E. & Vieira, M. New Pliocene records of plant fossil-taxa from NW Portugal and their relevance for the assessment of diversity loss patterns in the late Cenozoic of Europe. Rev. Palaeobot. Palyno. 104286 (2020).49.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    50.Jylhä, K. et al. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Soc. 2(2), 148–167 (2010).
    Google Scholar 
    51.Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213 (2011).ADS 
    CAS 

    Google Scholar 
    52.Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 85(1), 23–33 (2011).CAS 

    Google Scholar 
    53.Hausfather, Z. & Peters, G. Emissions: The “business as usual” story is misleading. Nature 577(7792), 618–620 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Delfino, M. Letters to the Editor: The past and future of extant amphibians. Science 308, 49–50 (2005).CAS 
    PubMed 

    Google Scholar 
    55.Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Fauna d’Italia, Vol. XLII, Amphibia. Calderini, Bologna, XI + 537 pp (2007).56.Martínez-Monzón, A., Cuenca-Bescós, G., Bisbal-Chinesta, J.-F. & Blain, H.-A. One million years of diversity shifts in amphibians and reptiles in a Mediterranean landscape: Resilience rules the Quaternary. Palaeontology https://doi.org/10.1111/pala.12547 (2021).Article 

    Google Scholar 
    57.Basile, M. et al. Seasonality and microhabitat selection in a forest-dwelling salamander. Sci. Nat. 104(9–10), 80 (2017).
    Google Scholar 
    58.Macaluso, L. et al. Osteology of the Italian endemic spectacled salamanders, Salamandrina spp. (Amphibia, Urodela, Salamandridae): Selected skeletal elements for palaeontological investigations. J. Morph. 281(11), 1391–1410 (2020).PubMed 

    Google Scholar 
    59.Sanchiz, B. On the presence of zogosphene-zigantrum vertebral articulations in salamandrids. Acta Zool. Cracov. 31(6), 493–504 (1988).
    Google Scholar 
    60.Utzeri, C., Antonelli, D. & Angelini, C. Note on the behavior of the Spectacled Salamander Salamandrina terdigitata (Lacépede, 1788). Herpetozoa 18, 182–185 (2005).
    Google Scholar 
    61.Weitzman, M. L. The Noah’s Ark Problem. Econometrica 66, 1279–1298 (1998).MathSciNet 
    MATH 

    Google Scholar 
    62.Erwin, D. H. Extinction as the loss of evolutionary history. PNAS 105(1), 11520–11527 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    64.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. PNAS 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds

    1.Thieltges, D. W., Mouritsen, K. N. & Poulin, R. in Mudflat Ecology (ed Beninger, P.) (Springer International Publishing, 2018).2.Tyler-Walters, H. Cerastoderma edule Common cockle. Marine Life Information Network: Biology and Sensitivity Key Information Reviews (2007).3.Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577 (2012).4.Magalhaes, L., Freitas, R., Dairain, A. & De Montaudouin, X. Can host density attenuate parasitism?. J. Mar. Biol. Assoc. U. K. 97, 497–505 (2017).
    Google Scholar 
    5.Carss, D. N. et al. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931 (2020).CAS 
    PubMed 

    Google Scholar 
    6.Lassalle, G., de Montaudouin, X., Soudant, P. & Paillard, C. Parasite co-infection of two sympatric bivalves, the Manila clam (Ruditapes philippinarum) and the cockle (Cerastoderma edule) along a latitudinal gradient. Aquat. Living Resour. 20, 33–42 (2007).
    Google Scholar 
    7.Hoberg, E. P. Faunal diversity among avian parasite assemblages: the interaction of history, ecology and biogeography in marine systems. Bull. Scand. Soc. Parasitol. 6, 65–89 (1996).
    Google Scholar 
    8.Muzaffar, S. B. & Jones, I. L. Parasites and diseases of auks (Alcidae) of the world and their ecology-A review. Mar. Ornithol. 32, 121–146 (2004).
    Google Scholar 
    9.Lafferty, K. D., Dobson, A. P. & Kuris, A. M. Parasites dominate food web links. Proc. Natl. Acad. Sci. U. S. A. 103, 11211–11216 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    11.Johnson, P. T. J. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).PubMed 

    Google Scholar 
    12.Zannella, C. et al. Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense. Mar. Drugs 15, 182 (2017).PubMed Central 

    Google Scholar 
    13.Fermer, J., Culloty, S. C., Kelly, T. C. & O’riordan, R. M. Parasitological survey of the edible cockle Cerastoderma edule (Bivalvia) on the south coast of Ireland. J. Mar. Biol. Assoc. U. K. 91, 923–928 (2011).
    Google Scholar 
    14.Longshaw, M. & Malham, S. K. A review of the infectious agents, parasites, pathogens and commensals of European cockles (Cerastoderma edule and C. glaucum) (vol 93, pg 227, 2013). J. Mar. Biol. Assoc. U. K. 93, 1141 (2013).15.Newman, S. H. et al. Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar. Ecol. Prog. Ser. 352, 299–309 (2007).ADS 

    Google Scholar 
    16.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. U. S. A. 113, E5062–E5071 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, e00333-e418 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Romalde, J. L., Dieguez, A. L., Lasa, A. & Balboa, S. New Vibrio species associated to molluscan microbiota: A review. Front. Microbiol. 4, 413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    19.Allam, B., Paillard, C. & Ford, S. Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).
    Google Scholar 
    20.Waechter, M., Le Roux, F., Nicolas, J., Marissal, E. & Berthe, F. Characterisation of Crassostrea gigas spat pathogenic bacteria. C.R. Biol. 325, 231–238 (2002).CAS 
    PubMed 

    Google Scholar 
    21.Gay, M., Renault, T., Pons, A. & Le Roux, F. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: Taxonomy and host alterations. Dis. Aquat. Org. 62, 65–74 (2004).
    Google Scholar 
    22.Paillard, C., Le Roux, F. & Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498 (2004).
    Google Scholar 
    23.Prado, S., Romalde, J., Montes, J. & Barja, J. Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis. Aquat. Org. 67, 209–215 (2005).CAS 

    Google Scholar 
    24.Garnier, M., Labreuche, Y. & Nicolas, J. Molecular and phenotypic characterization of Vibrio aestuarianus subsp francensis subsp nov., a pathogen of the oyster Crassostrea gigas. Syst. Appl. Microbiol. 31, 358–365 (2008).CAS 
    PubMed 

    Google Scholar 
    25.Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).PubMed 

    Google Scholar 
    27.Vezzulli, L. et al. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus. Environ. Microbiol. 17, 1065–1080 (2015).CAS 
    PubMed 

    Google Scholar 
    28.Azandegbe, A. et al. Occurrence and seasonality of Vibrio aestuarianus in sediment and Crassostrea gigas haemolymph at two oyster farms in France. Dis. Aquat. Org. 91, 213–221 (2010).
    Google Scholar 
    29.Burreson, E. & Ford, S. A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquat. Living Resour. 17, 499–517 (2004).
    Google Scholar 
    30.Engelsma, M. Y. et al. Digenean trematodes and haplosporidian protozoans associated with summer mortality of cockles Cerastoderma edule in the Oosterschelde, The Netherlands. (European Association of Fish Pathologists Conference, Split, Croatia., 2011).31.Arzul, I. & Carnegie, R. B. New perspective on the haplosporidian parasites of molluscs. J. Invertebr. Pathol. 131, 32–42 (2015).PubMed 

    Google Scholar 
    32.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Philos. Trans. R. Soc. B-Biol. Sci. 371, 20150215 (2016).
    Google Scholar 
    33.Ramilo, A., Abollo, E., Villalba, A. & Carballal, M. J. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). J. Fish Dis. 41, 41–48 (2018).CAS 
    PubMed 

    Google Scholar 
    34.Lynch, S. A. et al. Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 147, 584–592 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Albuixech-Marti, S., Lynch, S. A. & Culloty, S. C. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J. Invertebr. Pathol. 174, 107425 (2020).CAS 
    PubMed 

    Google Scholar 
    36.Azevedo, C., Conchas, R. & Montes, J. Description of Haplosporidium edule n. sp (Phylum Haplosporidia), a parasite of Cerastoderma edule (Mollusca, Bivalvia) with complex spore ornamentation. Eur. J. Protistol. 39, 161–167 (2003).
    Google Scholar 
    37.Carballal, M., Diaz, S. & Villalba, A. Urosporidium sp hyperparasite of the turbellarian Paravortex cardii in the cockle Cerastoderma edule. J. Invertebr. Pathol. 90, 104–107 (2005).PubMed 

    Google Scholar 
    38.Daoust, P., Conboy, G., McBurney, S. & Burgess, N. Interactive mortality factors in common loons from Maritime Canada. J. Wildl. Dis. 34, 524–531 (1998).CAS 
    PubMed 

    Google Scholar 
    39.Converse, K. & Kidd, G. Duck plague epizootics in the United States, 1967–1995. J. Wildl. Dis. 37, 347–357 (2001).CAS 
    PubMed 

    Google Scholar 
    40.Friend, M., McLean, R. & Dein, F. Disease emergence in birds: Challenges for the twenty-first century. Auk 118, 290–303 (2001).
    Google Scholar 
    41.Hubalek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004).PubMed 

    Google Scholar 
    42.Quesada, R. J. et al. Detection and phylogenetic characterization of a novel herpesvirus from the trachea of two stranded common loons (Gavia immer). J. Wildl. Dis. 47, 233–239 (2011).PubMed 

    Google Scholar 
    43.Niemeyer, C. et al. Genetically diverse herpesviruses in South American Atlantic coast seabirds. PLoS ONE 12, e0178811 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Bookelaar, B., Lynch, S. A. & Culloty, S. C. Host plasticity supports spread of an aquaculture introduced virus to an ecosystem engineer. Parasit. Vectors 13, 498 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Honjo, M. N., Minamoto, T. & Kawabata, Z. Reservoirs of Cyprinid herpesvirus 3 (CyHV-3) DNA in sediments of natural lakes and ponds. Vet. Microbiol. 155, 183–190 (2012).CAS 
    PubMed 

    Google Scholar 
    46.Evans, O., Paul-Pont, I. & Whittington, R. J. Detection of ostreid herpesvirus 1 microvariant DNA in aquatic invertebrate species, sediment and other samples collected from the Georges River estuary, New South Wales, Australia. Dis. Aquat. Org. 122, 247–255 (2017).CAS 

    Google Scholar 
    47.Slodkowicz-Kowalska, A. et al. Microsporidian species known to infect humans are present in aquatic birds: Implications for transmission via water?. Appl. Environ. Microbiol. 72, 4540–4544 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Malcekova, B., Valencakova, A., Molnar, L. & Kocisova, A. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17 (2013).CAS 
    PubMed 

    Google Scholar 
    49.Fermer, J., Culloty, S. C., Kelly, T. C. & O’Riordan, R. M. Intrapopulational distribution of Meiogymnophallus minutus (Digenea, Gymnophallidae) infections in its first and second intermediate host. Parasitol. Res. 105, 1231–1238 (2009).PubMed 

    Google Scholar 
    50.Yun, Y. et al. Phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in South Korea and migratory bird routes between China, South Korea, and Japan. Am. J. Trop. Med. Hyg. 93, 468–474 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Xu, Y., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008).CAS 
    PubMed 

    Google Scholar 
    53.Harper, G. et al. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 14, 819–827 (2005).CAS 
    PubMed 

    Google Scholar 
    54.Martin, D. L., Ross, R. M., Quetin, L. B. & Murray, A. E. Molecular approach (PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 319, 155–165 (2006).ADS 
    CAS 

    Google Scholar 
    55.Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M. & Symondson, W. O. C. Molecular detection of predation by soil micro-arthropods on nematodes. Mol. Ecol. 15, 1963–1972 (2006).CAS 
    PubMed 

    Google Scholar 
    56.Harwood, J. D. et al. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Mol. Ecol. 16, 4390–4400 (2007).CAS 
    PubMed 

    Google Scholar 
    57.Albuixech-Martí, S., Culloty, S. C. & Lynch, S. A. Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast. Parasitology, 1–15 (2021).58.Lewis, L. J. & Tierney, T. D. Low tide waterbird surveys: Survey methods and guidance notes. Irish Wildlife Manuals 80 (2014).59.Garcia, C. et al. Vibrio aestuarianus subsp. cardii subsp. nov., pathogenic to the edible cockles Cerastoderma edule in France, and establishment of Vibrio aestuarianus subsp. aestuarianus subsp. nov. and Vibrio aestuarianus subsp. francensis subsp. nov. Int. J. Syst. Evol. Microbiol. 71, 004654 (2021).60.Lacoste, A. et al. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 46, 139–145 (2001).CAS 

    Google Scholar 
    61.Le Roux, F. et al. Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat. Living Resour. 15, 251–258 (2002).
    Google Scholar 
    62.Garnier, M., Labreuche, Y., Garcia, C., Robert, A. & Nicolas, J. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53, 187–196 (2007).CAS 
    PubMed 

    Google Scholar 
    63.McCleary, S. & Henshilwood, K. Novel quantitative TaqMan (R) MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. Dis. Aquat. Org. 114, 239–248 (2015).CAS 

    Google Scholar 
    64.Halpern, M., Senderovich, Y. & Izhaki, I. Waterfowl-The missing link in epidemic and pandemic cholera dissemination?. PLoS Pathog. 4, e1000173 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    65.Rodríguez, J., López, P., Muñoz, J. & Rodríguez, N. Detection of Vibrio cholerae no toxigenico in migratory and resident birds (Charadriiformes) in a coastal lagoon from northeastern Venezuela. Saber 22, 122–126 (2010).
    Google Scholar 
    66.Fernandez-Delgado, M. et al. Prevalence and distribution of Vibrio spp. in wild aquatic birds of the Southern Caribbean Sea, Venezuela, 2011–12. J. Wildl. Dis. 52, 621–626 (2016).67.Laviad-Shitrit, S., Izhaki, I. & Halpern, M. Accumulating evidence suggests that some waterbird species are potential vectors of Vibrio cholerae. PLoS Pathog. 15, e1007814 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Buck, J. D. Isolation of Candida-albicans and halophilic Vibrio spp. from aquatic birds in Connecticut and Florida. Appl. Environ. Microbiol. 56, 826–828 (1990).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Miyasaka, J. et al. Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiol. Infect. 134, 780–785 (2006).CAS 
    PubMed 

    Google Scholar 
    70.Fu, S. et al. Long-distance transmission of pathogenic Vibrio species by migratory waterbirds: A potential threat to the public health. Sci. Rep. 9, 16303 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Senderovich, Y., Izhaki, I. & Halpern, M. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5, e8607 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Laviad-Shitrit, S. et al. Great cormorants (Phalacrocorax carbo) as potential vectors for the dispersal of Vibrio cholerae. Sci. Rep. 7, 7973 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Hossain, Z. Z., Farhana, I., Tulsiani’, S. M., Beguml, A. & Jensen, P. K. M. Transmission and toxigenic potential of Vibrio cholerae in hilsha fish (Tenualosa ilisha) for human consumption in Bangladesh. Front. Microbiol. 9, 222 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    74.Bryant, D. M. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar. Coast. Mar. Sci. 9, 369–384 (1979).ADS 

    Google Scholar 
    75.Hicklin, P. W. & Smith, P. C. Selection of foraging sites and invertebrate prey by migrant semipalmated sandpipers, Calidris-pusilla (Pallas), in Minas Basin, Bay of Fundy. Can. J. Zool. 62, 2201–2210 (1984).
    Google Scholar 
    76.Colwell, M. A. & Landrum, S. L. Nonrandom shorebird distribution and fine-scale variation in prey abundance. Condor 95, 94–103 (1993).
    Google Scholar 
    77.Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D. A. & Bushek, D. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131, 155–176 (2015).PubMed 

    Google Scholar 
    78.Pruzzo, C., Vezzulli, L. & Colwell, R. R. Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 10, 1400–1410 (2008).CAS 
    PubMed 

    Google Scholar 
    79.Vezzulli, L., Pruzzo, C., Huq, A. & Colwell, R. R. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 27–33 (2010).PubMed 

    Google Scholar 
    80.Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. 14, 230–244 (2020).PubMed 

    Google Scholar 
    81.Vezzulli, L. et al. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 58, 808–818 (2009).CAS 
    PubMed 

    Google Scholar 
    82.Piersma, T., Degoeij, P. & Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective – Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 31, 503–512 (1993).
    Google Scholar 
    83.Hervas, A., Tully, O., Hickey, J., O’Keefe, E. & Kelly, K. Assessment, monitoring and management of the Dundalk Bay and Waterford Cockle (Cerastoderma edule) Fisheries in 2007. BIM Fisheries Resource Series 7 (2008).84.Martins, R. C., Catry, T., Santos, C. D., Palmeirim, J. M. & Granadeiro, J. P. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European Estuary: Improved feeding conditions for northward migrants. PLoS ONE 8, e81174 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).CAS 
    PubMed 

    Google Scholar 
    86.Lynch, S. A., Mulcahy, M. F. & Culloty, S. C. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281, 17–21 (2008).
    Google Scholar 
    87.Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 
    PubMed 

    Google Scholar 
    88.Freire, R., Arias, A., Mendez, J. & Insua, A. Identification of European commercial cockles (Cerastoderma edule and C. glaucum) by species-specific PCR amplification of the ribosomal DNA ITS region. Eur. Food Res. Technol. 232, 83–86 (2011).89.Thompson, J. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Vezzulli, L. et al. Long-term effects of ocean warming on the prokaryotic community: Evidence from the vibrios. ISME J. 6, 21–30 (2012).PubMed 

    Google Scholar 
    91.Renault, T. et al. Haplosporidiosis in the pacific oyster Crassostrea gigas from the French Atlantic coast. Dis. Aquat. Org. 42, 207–214 (2000).CAS 

    Google Scholar 
    92.Molloy, D. P., Giamberini, L., Stokes, N. A., Burreson, E. M. & Ovcharenko, M. A. Haplosporidium raabei n. sp (Haplosporidia): A parasite of zebra mussels, Dreissena polymorpha (Pallas, 1771). Parasitology 139, 463–477 (2012).93.Lynch, S. A., Dillane, E., Carlsson, J. & Culloty, S. C. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. J. Shellfish Res. 32, 657–664 (2013).
    Google Scholar  More