More stories

  • in

    Spatial and temporal patterns of genetic diversity in Bombus terrestris populations of the Iberian Peninsula and their conservation implications

    1.Sage, R. F. Global change biology: A primer. Glob. Change Biol. 26, 3–30 (2020).ADS 

    Google Scholar 
    2.Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2018).PubMed 

    Google Scholar 
    3.Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442 (2020).
    Google Scholar 
    4.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 1–10 (2016).
    Google Scholar 
    5.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed 

    Google Scholar 
    6.Ellis, J. S. et al. Introgression in native populations of Apis mellifera mellifera L: implications for conservation. J. Insect Conserv. 22, 377–390 (2018).
    Google Scholar 
    7.Hart, A. F., Maebe, K., Brown, G., Smagghe, G. & Ings, T. Winter activity unrelated to introgression in British bumblebee Bombus terrestris audax. Apidologie 52, 315–327 (2021).
    Google Scholar 
    8.Ings, T. C., Ward, N. L. & Chittka, L. Can commercially imported bumble bees out-compete their native conspecifics?. J. Appl. Ecol. 43, 940–948 (2006).
    Google Scholar 
    9.Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. Do managed bees drive parasite spread and emergence in wild bees?. IJP-PAW 5, 64–75 (2016).PubMed 

    Google Scholar 
    10.Chandler, D., Cooper, E. & Prince, G. Are there risks to wild European bumble bees from using commercial stocks of domesticated Bombus terrestris for crop pollination?. J. Apic. Res. 58, 1–17 (2019).
    Google Scholar 
    11.Velthuis, H. H. W. & Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451 (2006).
    Google Scholar 
    12.Trillo, A. et al. Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agric. Ecosyst. Environ. 272, 230–236 (2019).
    Google Scholar 
    13.Lecocq, T., Rasmont, P., Harpke, A. & Schweiger, O. Improving international trade regulation by considering intraspecific variation for invasion risk assessment of commercially traded species: The Bombus terrestris case. Conserv. Lett. 9, 281–289 (2015).
    Google Scholar 
    14.Martinet, B. et al. Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 35(5), 1507–1518 (2021).PubMed 

    Google Scholar 
    15.Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).PubMed 

    Google Scholar 
    16.Aizen, M. A. et al. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 56, 100–106 (2018).
    Google Scholar 
    17.Tsuchida, K., Yamaguchi, A., Kanbe, Y. & Goka, K. Reproductive interference in an introduced bumblebee: Polyandry may mitigate negative reproductive impact. Insects 10, 59 (2019).PubMed Central 

    Google Scholar 
    18.Rasmont, P., Coppée, A., Michez, D. & De Meulemeester, T. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Ann. Soc. Entomol. Fr. (N.S.) 44, 243–250 (2008).
    Google Scholar 
    19.Lecocq, T. et al. The alien’s identity: Consequences of taxonomic status for the international bumblebee trade regulations. Biol. Conserv. 195, 169–176 (2016).
    Google Scholar 
    20.Ornosa, C. & Ortiz-Sánchez, F. Hymenoptera: Apoidea I. In Fauna Ibérica Vol. 23 (eds Ramos, M. A. et al.) (Museo Nacional de Ciencias Naturales, CSIC, 2004).
    Google Scholar 
    21.Hewitt, G. M. Mediterranean Peninsulas: The Evolution of Hotspots. In Biodiversity Hotspots (eds Zachos, F. & Habel, J.) 123–147 (Springer-Verlag, 2011).
    Google Scholar 
    22.Ortiz-Sánchez, F. Introducción de Bombus terrestris terrestris (Linnaeus, 1758) en el Sur de España para la polinización de cultivos en invernadero (Hymenoptera, Apidae). Boln. Asoc. Esp. Ent. 16, 247–248 (1992).
    Google Scholar 
    23.Cejas, D., López-López, A., Muñoz, I., Ornosa, C. & De la Rúa, P. Unveiling introgression in bumblebee (Bombus terrestris) populations through mitogenome-based markers. Anim. Genet. 51, 70–77 (2020).CAS 
    PubMed 

    Google Scholar 
    24.Seabra, S. G. et al. Genomic signatures of introgression between commercial and native bumblebees, Bombus terrestris, in western Iberian Peninsula—Implications for conservation and trade regulation. Evol. Appl. 12, 1–13 (2019).
    Google Scholar 
    25.Bartomeus, I., Molina, F. P., Hidalgo-Galiana, A. & Ortego, J. Safeguarding the genetic integrity of native pollinators requires stronger regulations on commercial lines. Ecol. Solut. Evid. 1(1), e12012 (2020).
    Google Scholar 
    26.Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
    Google Scholar 
    27.Williams, P. H. et al. Genes suggest ancestral colour polymorphisms are shared across morphologically cryptic species in arctic bumblebees. PLoS ONE 10, e0144544 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Gosterit, A. Adverse effects of inbreeding on colony foundation success in bumblebees, Bombus terrestris (Hymenoptera: Apidae). Appl. Entomol. Zool. 51, 521–526 (2016).
    Google Scholar 
    29.Maebe, K., Karise, R., Meeus, I., Mänd, M. & Smagghe, G. Pattern of population structuring between Belgian and Estonian bumblebees. Sci. Rep. 9, 1–8 (2019).CAS 

    Google Scholar 
    30.Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).CAS 

    Google Scholar 
    31.Patten, M. M., Carioscia, S. A. & Linnen, C. R. Biased introgression of mitochondrial and nuclear genes: A comparison of diploid and haplodiploid systems. Mol. Ecol. 24, 5200–5210 (2015).CAS 
    PubMed 

    Google Scholar 
    32.Gosterit, A. & Baskar, V. C. Impacts of commercialization on the developmental characteristics of native Bombus terrestris (L.) colonies. Insectes Soc. 63, 609–614 (2016).
    Google Scholar 
    33.Moreira, A. S., Horgan, F. G., Murray, T. E. & Kakouli-Duarte, T. Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations. Mol. Ecol. 24, 3257–3268 (2015).PubMed 

    Google Scholar 
    34.Zayed, A. Bee genetics and conservation. Apidologie 40, 237–262 (2009).
    Google Scholar 
    35.Schenau, E. & Jha, S. High levels of male diploidy but low levels of genetic structure characterize Bombus vosnesenskii populations across the Western US. Conserv. Genet. 18, 597–605 (2017).
    Google Scholar 
    36.Van Wilgenburg, E., Driessen, G. & Beukeboom, L. W. Single locus complementary sex determination in Hymenoptera: An “unintelligent” design?. Front. Zool. 3, 1–15 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    37.Bogo, G. et al. No evidence for an inbreeding avoidance system in the bumble bee Bombus terrestris. Apidologie 49, 473–483 (2018).
    Google Scholar 
    38.Kent, C. F. et al. Conservation genomics of the declining North American bumblebee Bombus terricola reveals inbreeding and selection on immune genes. Front. Genet. 9, 316 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cejas, D., Ornosa, C., Muñoz, I. & De la Rúa, P. Searching for molecular markers to differentiate Bombus terrestris (Linnaeus) subspecies in the Iberian Peninsula. Sociobiology 65, 558–565 (2018).
    Google Scholar 
    40.Ministerio de Agricultura, Pesca y Alimentación de España. Encuesta sobre Superficies y Rendimientos de Cultivos (ESYRCE). https://cpage.mpr.gob.es N.I.P.O.: 001-19-051-9 (2021).41.Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
    Google Scholar 
    42.Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. PNAS 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Anderson, E. C. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos. Trans. R. Soc. B 363(1505), 2841–2850 (2008).
    Google Scholar 
    44.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    45.Facon, B. et al. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evol. Appl. 4, 71–88 (2011).PubMed 

    Google Scholar 
    46.Ornosa, C., Torres, F. & De la Rúa, P. Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. Zootaxa 4237, 41–77 (2017).
    Google Scholar 
    47.Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
    Google Scholar 
    48.Arnold, M. L. & Kunte, K. Adaptive genetic exchange: A tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).PubMed 

    Google Scholar 
    49.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed 

    Google Scholar 
    50.De la Rúa, P. et al. Conserving genetic diversity in the honeybee: Comments on Harpur et al. (2012). Mol. Ecol. 22, 3208–3210 (2013).PubMed 

    Google Scholar 
    51.Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J. & Scholl, A. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol. Ecol. 5, 19–31 (1996).CAS 
    PubMed 

    Google Scholar 
    52.Silva, S. E. et al. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biol. J. Linn. Soc. 129, 259–272 (2020).
    Google Scholar 
    53.Ayabe, T., Hoshiba, H. & Ono, M. Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris. Chromosome Res. 12, 215–223 (2004).CAS 
    PubMed 

    Google Scholar 
    54.Takahashi, J., Ayabe, T., Mitsuhata, M., Shimizu, I. & Ono, M. Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae). Insectes Soc. 55, 43–50 (2008).
    Google Scholar 
    55.Darvill, B., Ellis, J. S., Lye, G. C. & Goulson, D. Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol. Ecol. 15, 601–611 (2006).CAS 
    PubMed 

    Google Scholar 
    56.Gerloff, C. U. & Schmid-Hempel, P. Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae). Oikos 111, 67–80 (2005).
    Google Scholar 
    57.Kraus, F. B., Wolf, S. & Moritz, R. F. A. Male flight distance and population substructure in the bumblebee Bombus terrestris. J. Anim. Ecol. 78, 247–252 (2009).CAS 
    PubMed 

    Google Scholar 
    58.Ivanova, N., Dewaard, J. & Herbert, D. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).CAS 

    Google Scholar 
    59.Wandeler, P., Hoeck, P. E. & Keller, L. F. Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    60.Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Bioinform. Methods Protoc. 132, 365–386 (2000).CAS 

    Google Scholar 
    61.Hines, H., Cameron, S. & Williams, P. Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower-level analysis. Invertebr. Syst. 20, 289–303 (2006).CAS 

    Google Scholar 
    62.Estoup, A., Scholl, A., Pouvreau, A. & Solignac, M. Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol. Ecol. 4, 89–94 (1995).CAS 
    PubMed 

    Google Scholar 
    63.Cejas, D., Ornosa, C., Muñoz, I. & De la Rúa, P. Preliminary report on cross-species microsatellite amplification for bumblebee biodiversity and conservation studies. Arch. de Zootec. 68, 422–426 (2019).
    Google Scholar 
    64.Wang, J. Computationally efficent sibship and parentage assignment from multilocus marker data. Genetics 191, 183–194 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Piry, S. et al. Geneclass2: A software for genetic assignment and first generation migrant detection. Heredity 95(6), 536–539 (2004).CAS 

    Google Scholar 
    66.Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Peakall, R. & Smouse, P. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Google Scholar 
    69.Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    70.Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 

    Google Scholar 
    71.Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).
    Google Scholar 
    72.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org (2008).73.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    75.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Google Scholar 
    77.Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 24, 1403–1405 (2011).
    Google Scholar  More

  • in

    Temperature effects on carbon storage are controlled by soil stabilisation capacities

    Effects of temperature on C storage in soils with contrasting stabilisation capacitiesUsing a space-for-time approach, we defined the effect of temperature on C storage as the proportional reduction in C storage for each 10 oC increase in mean annual temperature. In this context, a value of 1 indicates no change in C storage with temperature, values less than 1 indicate C stocks increase with temperature and values greater than 1 indicate C stocks decline with temperature, with, for example, a value of 2 indicating that C stocks halve for every 10 oC increase in temperature. C storage in the top 50 cm of mineral soil declined strongly with increasing temperature, declining by a factor of ~1.4 per 10 oC (Fig. 1b). Critically, the nature of this relationship was modified by soil clay content; C storage in fine-textured soils with greater stabilisation capacities was affected much less by temperature than C storage in coarse-textured soils (Fig. 2a and Supplementary Fig. 1; factors of up to 1.9 per 10 oC for coarse-textured soils versus factors below 1.2 per 10 oC for finer-textured soils). We also demonstrate that the lower effect of temperature on C storage in fine-textured soils was retained after accounting for potentially confounding variation in precipitation, aridity (actual minus potential evapotranspiration), plant productivity, soil pH and cation exchange capacity (CEXC) (Fig. 2b). While we focus on the top 50 cm, due to the potential for vertical profiles of soil C to be affected by temperature22, very similar results were observed for the top 20 cm (Supplementary Fig. 2). In addition, the negative relationship between clay content and the effect of temperature on C storage was observed independently both above and below 15 oC (Fig. 3b, c).Fig. 2: Texture effects on temperature–soil carbon storage relationships.The effect of texture on the relationships between C storage in the top 50 cm of mineral soil and mean annual temperature in the raw data (a), and after accounting for potential confounding variables (b). The y-axes display the proportional reduction in C storage for each 10 oC increase in mean annual temperature, with higher values indicating greater reductions in soil C with temperature. In panel a, the slopes of the relationships (solid line), together with their 95% confidence intervals (dark grey shaded area), are presented for each of the textural categories, with the slope and 95% confidence interval for the full dataset (dotted line and light grey shaded areas) also presented across the graph for comparison. In panel b, the relationship between soil C storage and temperature after accounting for variation in annual precipitation (light blue), gross primary productivity (GPP; dark green), soil pH (purple), aridity (ET/PET; evapotranspiration minus potential evapotranspiration; navy blue), and cation exchange capacity (CEXC, light green) are shown. The slopes of these relationships (solid lines) together with their 95% confidence intervals (shaded area) are presented for each of the textural categories.Full size imageFig. 3: Comparison between soil profile data and JULES model output.The effect of texture on the relationships between C storage in the top 50 cm of mineral soil in the empirical data (solid lines) and JULES output (dashed lines). The slopes of these relationships (solid lines) together with their 95% confidence intervals (shaded area) are presented for each of the textural categories. Results for the full mean annual temperate range (a), as well as for subsets of the data for sites with mean annual temperatures below 15 oC (b, blue) and above 15 oC (c, red) are shown.Full size imageThe lower effect of temperature on soil C storage in fine-textured soils with greater stabilisation capacities was unexpected given the evidence of the high-temperature sensitivity associated with the decomposition of more protected SOM pools13,14,15. However, the findings from our global analysis are in agreement with a recent Europe-wide synthesis23, which, by compiling data from soil physical fractionation studies, demonstrated that mineral-associated C stocks varied less with temperate than freer particulate pools. Therefore, there is growing evidence that the effect of temperature on soil C storage is higher in soils containing a greater proportion of unprotected C.In the literature, there are apparently contradictory conclusions in terms of how C storage varies across fine-scale climate gradients, in which variation in other factors has been minimised. However, these may potentially be resolved by considering differences in the likely extent of SOM stabilisation. For example, on poorly weathered, relatively coarse-textured, silt loam soils in Alaska, mineral soil C stocks declined strongly with temperature24. In contrast, in Hawaiian forests growing on fine-textured soils with high concentrations of Al and Fe oxides, very little change in soil C storage was observed across a gradient of 5 oC in MAT. This was despite the fact that, in these Hawaiian forests, C storage in unprotected pools on the forest floor was found to decline strongly with temperature5. We suggest that differences in the extent of physicochemical protection in the Alaskan versus Hawaiian soils may explain the contrasting results. Thus, apparently contradictory findings may be resolvable within a single framework in which the relative effect of temperature on C storage in mineral soils declines as the soil’s physicochemical stabilisation capacity, and the proportion of C in protected pools, increase.Overall, our analysis identified C stored in high-latitude soils with limited capacities for stabilising organic matter as likely to be most vulnerable to the impacts of climate change. Such stores, therefore, may require particular attention given the high rates of warming taking place in cooler regions. In contrast, the particularly low effect of temperature on C storage in fine-textured soils in warm climates suggests (Fig. 3c) that the C stocks in many tropical soils may be less vulnerable to climate warming. While a soil warming study in a less weathered tropical soil identified the potential for high rates of C release25, our results are consistent with a recent large-scale analysis that concluded that the temperature sensitivity of soil respiration is generally lowest in tropical environments26. However, because C storage in tropical soils has been shown to be potentially vulnerable to drought27, it should not be concluded that C storage in tropical soils will be unaffected by climate change. Our results do, though, suggest that C stocks in coarse-textured soils at high latitudes are likely to be especially vulnerable to warming (Fig. 3b). Finally, while the dataset contains soil profile information for sites across the full mean annual temperature range investigated (0–30 oC), and there were data on a minimum of 500 profiles in every 5 oC temperature increment, increasing the amount of data available for sites with mean annual temperatures below 5 oC and greater than 20 oC would add further confidence to the findings.Because of their greater stabilisation capacities, fine-textured soils store more soil organic matter18. Therefore, fine and coarse-textured soils could contain similar absolute quantities of highly vulnerable C, and the lower effect of temperature in fine-textured soils could reflect the presence of greater quantities of low-vulnerability organic matter4. Therefore, it is likely to be very important to quantify stocks of unprotected pools, such as free particulate C, in soils with contrasting stabilisation capacities, and to investigate how such stocks vary with climate23. This may make it possible to identify whether there are still important stocks of unprotected organic matter that are vulnerable to climate warming in fine-textured soils with high stabilisation capacities2.Predicting and modelling future rates of C releaseAccurately predicting the response of soil C storage to global warming remains a major challenge. While spatial datasets, such as the ones analysed in this paper, add confidence to the prediction that C will be lost overall and help identify the most vulnerable stocks, they provide limited information on the likely rates or dynamics of C release. In this context, long-term surveys can be extremely valuable. For example, a recent study in Chinese grasslands was able to detect warming-induced soil C losses since the 1960s and, consistent with the global analysis presented here, coarser-textured soils lost far greater amounts of SOM28. Experimental soil warming studies also offer opportunities for further determining the factors controlling soil C storage and predicting rates of C release, although recent syntheses have produced conflicting overall findings29,30. Revisiting the networks of warming studies and considering the findings in the context of soil stabilisation capacities and changes in pools of protected and unprotected SOM may allow for a greater understanding of the observed patterns. For example, C losses from subsoils in response to 5 years of whole profile warming were shown to be dominated by the free particulate C pool31. Therefore, understanding the responses of different pools to warming may offer the potential to generate mechanistic understanding, even where changes in total C storage have been difficult to identify. It should though be recognised that there are major challenges in accurately quantifying relatively short-term changes in soil C stocks, and there are many other variables that differ between soil warming studies, including contrasting changes in plant productivity and rates of C input driven by interactions between C and nutrient cycling32. For these reasons, it may not always be possible to determine the role of soil stabilisation capacities in controlling soil C storage responses to experimental warming30, and observations collected across space and time will likely remain important for contextualising experimental results.Soil texture is included as a factor modifying decomposition rates in the terrestrial C cycle modules of a number of Earth systems models (ESMs), including the United Kingdom ESM (UKESM), whose land surface scheme (the Joint UK Land Environment Simulator (JULES)33) is based around the Rothamsted C model34. Therefore, we investigated whether JULES was already able to represent the patterns that we had observed in the empirical data. In direct contrast to the empirical data, JULES predicted very little variation in soil C with temperature in cooler regions (below 15 oC; Fig. 3b), but predicted a strong effect of temperature on C storage across all textural classes above 15 oC (Fig. 3c). The pattern across the full dataset was confounded by the model simulating only a small number of fine-textured soils at high latitudes (Fig. 3a), and the fact that the relationship between temperature and soil C storage differed so strongly above and below 15 oC. However, crucially, JULES failed to reproduce the greater effect of temperature on C storage in coarse-textured soils and overestimated the effect of temperature on C storage in fine-textured soils in warmer regions. These findings question whether JULES is identifying accurately which soil C stocks are most vulnerable to the effects of climate warming. This is important given the considerable geographical variation in (1) rates of climate warming and (2) the amounts of C stored in mineral soil horizons. In recent years, there have been major efforts made towards developing models that include physicochemical stabilisation mechanisms and yet can potentially be run at the global scale35,36,37. Testing whether such models can better simulate the observed spatial patterns of C storage in soils with contrasting stabilisation capacities would increase confidence in projections of future changes in soil C stocks38.Limitations and future perspectivesAs well as influencing rates of key biological processes, climatic variables also control pedogenesis, rates of mineral weathering and therefore influence the reactivity of soil surfaces26,27,39. Directly determining the binding affinity of mineral surfaces is challenging and would require detailed information on the type of clay minerals present, as well as the abundance of key metal oxides35,36,40, but there is, currently, insufficient data to assess these more detailed variables at the global scale35. However, it has been argued that, at broad spatial scales, soil pH may explain an important proportion of variation in mineral-binding affinities35,41. Furthermore, cation exchange capacity (CEXC) varies with the type of clay minerals present and the binding efficiencies of the mineral surfaces42. In global analyses, texture, pH and CEXC tend to be the three edaphic factors that correlate most strongly with soil C storage18,20. For these reasons, we also accounted for variation in both pH and CEXC, and evaluated whether the relationship between soil texture and the effect of temperature on C storage was retained. We found that it was (Fig. 2b). Thus, we conclude, that within this large dataset, clay content remains a strong predictor of soil stabilisation capacities, both overall, and after accounting for factors that potentially control SOM binding affinities.While we consider that our analysis of how SOM stabilisation capacities determine the effects of temperature on soil C storage is robust, it is also high level. Thus, there is considerable opportunity to further investigate different vulnerabilities of specific pools of SOM, contrasting the roles of mineral protection versus occlusion in aggregates7, determining the importance of SOM binding affinities40, and linking protection mechanisms with the sources of the organic matter (e.g. microbial versus plant derived43). A debate has often revolved around whether climatic versus edaphic factors are more important in controlling patterns of soil C storage. Rather, than focusing on which is more important, for predicting future rates of soil C release, we suggest that a key priority should be on identifying how key edaphic factors determine the vulnerability of contrasting soil C stocks to climate warming. In this context, a recent meta-analysis demonstrated the importance of soil properties in controlling the temperature sensitivity of soil respiration, emphasising how responses to global warming will likely vary substantially between different types of soils in contrasting geoclimatic zones26.Using a large global database, we observed declining C storage with temperature in mineral soils, suggesting that there is the potential for strong positive feedback to climate warming. Critically, however, this overall relationship masked differences between soils with contrasting C stabilisation capacities, as indicated by their textural properties. The data suggest that there are stabilised pools of SOM in fine-textured soils that may be relatively insensitive to the impacts of climate change, but that unprotected pools may be substantially more vulnerable to climate warming than currently predicted. Finally, because at least one major ESM was unable to reflect the observed patterns, we argue that ESMs should be evaluated against their ability to simulate the differences in the effects of temperature on C storage in soils with contrasting textural properties in order to reduce uncertainties in projections of the effect of climate change on future soil C storage. More

  • in

    The response of potato tuber yield, nitrogen uptake, soil nitrate nitrogen to different nitrogen rates in red soil

    Tuber yieldPotato tuber yield increased gradually under 0 to 150 kg ha−1 of applied nitrogen (Fig. 1). Compared with the yield in N0, the yields in N60, N120 and N150 were greater by 16.1%, 21.5% and 67.9%, respectively, in 2017 and 18.2%, 27.4% and 44.9%, respectively, in 2018. However, at nitrogen rates of more than 150 kg ha−1, yield did not significantly differ. Furthermore, the fitted parabolic equation of each dataset from 2017 and 2018 showed maximum tuber yields of 19.7 and 20.4 t ha−1, respectively, where the nitrogen rates were 191 and 227 kg ha−1, respectively.Figure 1Potato tuber yield in treatments with different nitrogen fertilizer rates. Different letters indicate significant differences (P  More

  • in

    Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics

    1.Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21, 1211–1223 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).CAS 
    PubMed 

    Google Scholar 
    3.Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Cragg, G. M., Kingston, D. G. & Newman, D. J. Anticancer Agents from Natural Products. (CRC press, 2011).5.Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochimica et. Biophysica Acta 1830, 3670–3695 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Singh, R., Kumar, M., Mittal, A. & Mehta, P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7, 15 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008).CAS 
    PubMed 

    Google Scholar 
    8.Kang, A. & Lee, T. S. Biotechnology for Biofuel Production and Optimization 35–71 (Elsevier, 2016).9.Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020).
    Google Scholar 
    10.Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).CAS 
    PubMed 

    Google Scholar 
    11.Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. Mbio. 11, 1–17 (2020).
    Google Scholar 
    12.Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 1–9 (2019).CAS 

    Google Scholar 
    13.Haro-Moreno, J. M., López-Pérez, M. & Rodriguez-Valera, F. Enhanced recovery of microbial genes and genomes from a marine water column using long-read metagenomics. Front Microbiol. 2410, 1–15 (2021).
    Google Scholar 
    14.Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 16, 60–68 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    15.Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, 1–11 (2019).
    Google Scholar 
    16.Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).CAS 
    PubMed 

    Google Scholar 
    17.Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).CAS 
    PubMed 

    Google Scholar 
    18.Amos, G. C. et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl Acad. Sci. USA 114, E11121–E11130 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).CAS 

    Google Scholar 
    20.Reddy, B. V. B. et al. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Starkenburg, S. R. et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J. Bacteriol. 193, 4569–4570 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Belnap, J., Weber, B. & Büdel, B. Biological Soil Crusts: an Organizing Principle in Drylands 3–13 (Springer, 2016).23.Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 1–10 (2018).CAS 

    Google Scholar 
    24.Adamek, M., Spohn, M., Stegmann, E. & Ziemert, N. Antibiotics 23–47 (Springer, 2017).25.Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 1–7 (2016).
    Google Scholar 
    26.Martins, T. P. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat. Prod. Rep. 36, 1437–1461 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. & Corbett, T. H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Products 64, 907–910 (2001).CAS 

    Google Scholar 
    28.Chrapusta, E. et al. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 101, 35–40 (2015).CAS 
    PubMed 

    Google Scholar 
    29.Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 10, 1–15 (2019).
    Google Scholar 
    30.Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).CAS 
    PubMed 

    Google Scholar 
    31.Bowker, M. A., Reed, S. C., Maestre, F. T. & Eldridge, D. J. Biocrusts: the living skin of the earth. (Springer, 2018).32.Büdel, B., Dulić, T., Darienko, T., Rybalka, N. & Friedl, T. Biological Soil Crusts: an Organizing Principle in Drylands 55–80 (Springer, 2016).33.Giraldo‐Silva, A., Nelson, C., Barger, N. N. & Garcia‐Pichel, F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor. Ecol. 27, 793–803 (2019).
    Google Scholar 
    34.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).CAS 
    PubMed 

    Google Scholar 
    36.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016).CAS 
    PubMed 

    Google Scholar 
    38.Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Frank, J. A. et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    40.Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    41.Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574–1577 (2013).CAS 
    PubMed 

    Google Scholar 
    43.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 

    Google Scholar 
    44.Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 499–509 (2020).45.Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002).CAS 
    PubMed 

    Google Scholar 
    46.Ciemniecki, J. A. & Newman, D. K. The potential for redox-active metabolites to enhance or unlock anaerobic survival metabolisms in aerobes. J. Bacteriol. 202, 1–14 (2020).
    Google Scholar 
    47.Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7, 2178–2191 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Nunes da Rocha, U. et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6, 277 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    49.Felde, V. J. M. N. L., Peth, S., Uteau-Puschmann, D., Drahorad, S. & Felix-Henningsen, P. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv. 23, 1687–1708 (2014).
    Google Scholar 
    50.Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States), 2014).51.Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem. 12, 1230–1236 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
    Google Scholar 
    53.Couradeau, E., Giraldo-Silva, A., De Martini, F. & Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7, 1–12 (2019).
    Google Scholar 
    54.Magne, F. et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).CAS 
    PubMed Central 

    Google Scholar 
    55.Baran, R. et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6, 8289 (2015).CAS 
    PubMed 

    Google Scholar 
    56.Kupriyanova, E. V. et al. Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. B: Biol. 103, 78–86 (2011).CAS 

    Google Scholar 
    57.Hernandez, M. & Newman, D. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001).CAS 
    PubMed 

    Google Scholar 
    58.Karaoz, U. et al. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. MBio. 9, e01366–01316 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. MSystems. 3, 1–9 (2018).
    Google Scholar 
    60.Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 

    Google Scholar 
    61.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    63.Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genom. 18, 1–13 (2017).
    Google Scholar 
    65.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
    Google Scholar 
    66.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).PubMed 

    Google Scholar 
    69.von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019).
    Google Scholar 
    70.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    71.Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    72.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A newly discovered behavior (‘tail-belting’) among wild rodents in sub zero conditions

    1.Simeonovska-Nikolova, D. M. Interspecific social interactions and behavioral responses of Apodemus agrarius and Apodemus flavicollis to conspecific and heterospecific odors. J. Ethol. 25(1), 41–48 (2007).
    Google Scholar 
    2.Yoon, M.-H. & Han, C.-W. A study on daily torpor in the Korean striped field mouse (Apodemus agrarius). J. Life Sci. 16(4), 618–625 (2006).
    Google Scholar 
    3.Stryjek, R. et al. A methodological review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J. Neurosci. Methods 362, 109303 (2021).PubMed 

    Google Scholar 
    4.Stryjek, R. et al. Wild Norway rats do not avoid predator scents when collecting food in a familiar habitat: A field study. Sci. Rep. 8(1), 9475 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Parsons, M. H. et al. Differential responses by city rats (Rattus norvegicus) toward male or female-produced pheromones in sheltered and high-risk presentations. J. Urban Ecol. 5, juz009 (2019).
    Google Scholar 
    6.Vukicevic-Radic, O. et al. Spatial distribution of Apodemus flavicollis and A. agrarius in a forest community quercetum-petraea on Mt. Avala (Serbia). Biotechnol. Biotechnol. Equip. 20(1), 57–60 (2006).
    Google Scholar 
    7.Filippucci, M. G., Macholan, M. & Michaux, J. R. Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biol. J. Lin. Soc. 75(3), 395–419 (2002).
    Google Scholar 
    8.Hille, A. et al. Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence. Acta Theriol. 47(4), 389–416 (2002).
    Google Scholar 
    9.Rubtsov, N. et al. Comparative analysis of DNA homology in pericentric regions of chromosomes of wood mice from genera Apodemus and Sylvaemus. Russ. J. Genet. 51(12), 1233–1242 (2015).CAS 

    Google Scholar 
    10.Suzuki, H. et al. Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol. J. Lin. Soc. 80(3), 469–481 (2003).
    Google Scholar 
    11.Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Lagomorphs and Rodents I (Lynx, 2016).
    Google Scholar 
    12.Ge, D. et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool. J. Linn. Soc. 187(2), 518–534 (2019).
    Google Scholar 
    13.Knitlová, M. & Horáček, I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in central Europe. PLoS ONE 12(3), e0173668 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    14.Bronson, F. & Pryor, S. Ambient temperature and reproductive success in rodents living at different latitudes. Biol. Reprod. 29(1), 72–80 (1983).CAS 
    PubMed 

    Google Scholar 
    15.Kay, E. H. & Hoekstra, H. E. Rodents. Curr. Biol. 18(10), R406–R410 (2008).CAS 
    PubMed 

    Google Scholar 
    16.Auffray, J.-C., Renaud, S. & Claude, J. Rodent biodiversity in changing environments. Agric. Nat. Resour. 43(1), 83–93 (2009).
    Google Scholar 
    17.Atopkin, D., Bogdanov, A. & Chelomina, G. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 43(6), 665–676 (2007).CAS 

    Google Scholar 
    18.Zhigileva, O. Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia. Russ. J. Genet. 50(8), 838–845 (2014).CAS 

    Google Scholar 
    19.Khlyap, L. A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR. Biodivers. Data J. 9, e69159 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    20.Klaus, S., Heldmaier, G. & Ricquier, D. Seasonal acclimation of bank voles and wood mice: Nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B. 158(2), 157–164 (1988).CAS 
    PubMed 

    Google Scholar 
    21.Haim, A., McDevitt, R. & Speakman, J. Daily variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J. Exp. Biol. 198(2), 561–565 (1995).CAS 
    PubMed 

    Google Scholar 
    22.Boratyński, J. S. & Szafrańska, P. A. Does basal metabolism set the limit for metabolic downregulation during torpor?. Physiol. Biochem. Zool. 91(5), 1057–1067 (2018).PubMed 

    Google Scholar 
    23.Bligh, J. et al. Thermoreception and Temperature Regulation (Springer, 1990).
    Google Scholar 
    24.Ijzerman, H. et al. Social thermoregulation: A meta-analysis. Psyarxiv https://doi.org/10.31234/osf.io/fc6yq (2021).Article 

    Google Scholar 
    25.Tertil, R. The effect of behavioural thermoregulation on the daily metabolism of Apodemus agrarius (Pallas, 1771). Acta Theriol. 17(22), 295–313 (1972).
    Google Scholar 
    26.Hester, P. et al. Effect of partial comb and wattle trim on pullet behavior and thermoregulation. Poult. Sci. 94(5), 860–866 (2015).CAS 
    PubMed 

    Google Scholar 
    27.Arad, Z., Midtgård, U. & Bernstein, M. H. Thermoregulation in turkey vultures: Vascular anatomy, arteriovenous heat exchange, and behavior. The Condor 91(3), 505–514 (1989).
    Google Scholar 
    28.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325(5939), 468–470 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Raman, E. R., Roberts, M. F. & Vanhuyse, V. J. Body temperature control of rat tail blood flow. Am. J. Physiol. 245(3), R426–R432 (1983).CAS 
    PubMed 

    Google Scholar 
    30.Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92(6), 2667–2679 (2002).PubMed 

    Google Scholar 
    31.O’Leary, D. S., Johnson, J. M. & Taylor, W. F. Mode of neural control mediating rat tail vasodilation during heating. J. Appl. Physiol. 59(5), 1533–1538 (1985).CAS 
    PubMed 

    Google Scholar 
    32.Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98(1), 31–48 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Scholander, P. & Krog, J. Countercurrent heat exchange and vascular bundles in sloths. J. Appl. Physiol. 10(3), 405–411 (1957).CAS 
    PubMed 

    Google Scholar 
    34.Heyning, J. E. Thermoregulation in feeding baleen whales: Morphological and physiological evidence. Aquat. Mamm. 27(3), 284–288 (2001).
    Google Scholar 
    35.Davenport, J. et al. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down. Biol. Lett. 11(10), 20150592 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    36.Dawson, N. & Keber, A. Physiology of heat loss from an extremity: The tail of the rat. Clin. Exp. Pharmacol. Physiol. 6(1), 69–80 (1979).CAS 
    PubMed 

    Google Scholar 
    37.Young, A. & Dawson, N. Evidence for on–off control of heat dissipation from the tail of the rat. Can. J. Physiol. Pharmacol. 60(3), 392–398 (1982).CAS 
    PubMed 

    Google Scholar 
    38.Škop, V. et al. Mouse thermoregulation: Introducing the concept of the thermoneutral point. Cell Rep. 31(2), 107501 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Bozinovic, F. et al. Time and energy use under thermoregulatory constraints in a diurnal rodent. J. Therm. Biol 25(3), 251–256 (2000).
    Google Scholar 
    40.Sears, M. W. et al. Out in the cold: Physiological capacity influences behaviour in deer mice. Funct. Ecol. 23(4), 774–783 (2009).
    Google Scholar 
    41.Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk?. J. Mammal. 76(3), 900–905 (1995).
    Google Scholar 
    42.Murray, I. W. & Smith, F. A. Estimating the influence of the thermal environment on activity patterns of the desert woodrat (Neotoma lepida) using temperature chronologies. Can. J. Zool. 90(9), 1171–1180 (2012).
    Google Scholar 
    43.Hoogenboom, I. et al. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31 (1984).ADS 
    CAS 
    PubMed 

    Google Scholar 
    44.Bennie, J. J. et al. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 111(38), 13727–13732 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5), 520–530 (2012).
    Google Scholar 
    46.Pigeon, K. E. et al. Staying cool in a changing landscape: The influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181(4), 1101–1116 (2016).ADS 
    PubMed 

    Google Scholar 
    47.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16(4), 1428–1444 (2011).
    Google Scholar 
    48.Morrison, P. R. & Tietz, W. J. Cooling and thermal conductivity in three small Alaskan mammals. J. Mammal. 38(1), 78–86 (1957).
    Google Scholar 
    49.Gosling, L. The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J. Zool. 187(3), 341–367 (1979).
    Google Scholar 
    50.Moinard, C., Doncaster, C. P. & Barré, H. Indirect calorimetry measurements of behavioral thermoregulation in a semiaquatic social rodent, Myocastor coypus. Can. J. Zool. 70(5), 907–911 (1992).
    Google Scholar 
    51.Scholander, P. F. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
    Google Scholar 
    52.Prestrud, P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic 44, 132–138 (1991).
    Google Scholar 
    53.Weihong, J., Veitch, C. & Craig, J. L. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 1999(23), 45–51 (1999).
    Google Scholar 
    54.Jackson, M., Hartley, S. & Linklater, W. Better food-based baits and lures for invasive rats Rattus spp. and the brushtail possum Trichosurus vulpecula: A bioassay on wild, free-ranging animals. J. Pest Sci. 89(2), 479–488 (2016).
    Google Scholar 
    55.Stryjek, R., Kalinowski, A. & Parsons, M. H, Unbiased sampling for rodents and other small mammals: How to overcome neophobia through use of an electronic-triggered live trap: A preliminary test. Front. Ecol. Evol. 7, 11 (2019).
    Google Scholar 
    56.Kilkenny, C. et al. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8(6), e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    57.Hardy, J. D. Physiology of temperature regulation. Physiol. Rev. 41(3), 521–606 (1961).CAS 
    PubMed 

    Google Scholar 
    58.Follmann, E. Behavioral thermoregulation of arctic foxes in winter. Biotelemetry 5, 36 (1978).
    Google Scholar 
    59.Rieger, I. Tail functions in ounces, Uncia uncia. Intl. Ped. Book Snow Leopards 4, 85–97 (1984).
    Google Scholar 
    60.Sokolov, V. Adaptations of mammal skin to the environment. In Mammal Skin 573–630 (University of California Press, 1993).
    Google Scholar 
    61.Donati, G. et al. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthropol. 144(3), 355–364 (2011).PubMed 

    Google Scholar 
    62.Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: A study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54(3), 285–296 (1981).
    Google Scholar 
    63.Mai, T. C. et al. Low-level radiofrequency exposure induces vasoconstriction in rats. Bioelectromagnetics 42, 455–463 (2021).CAS 
    PubMed 

    Google Scholar 
    64.Grant, R. Vasodilatation and body warming in the rat. J. Physiol. 167(2), 311 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Steen, I. & Steen, J. Thermoregulatory importance of the beaver’s tail. Comp. Biochem. Physiol. 15(2), 267–270 (1965).CAS 
    PubMed 

    Google Scholar 
    66.Mohler, F. S. & Heath, J. E. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna. Am. J. Physiol. 254(2), R389–R395 (1988).CAS 
    PubMed 

    Google Scholar 
    67.Klir, J. J., Heath, J. E. & Bennani, N. An infrared thermographic study of surface temperature in relation to external thermal stress in the Mongolian gerbil, Meriones unguiculatus. Comp. Biochem. Physiol. A 96(1), 141–146 (1990).CAS 
    PubMed 

    Google Scholar 
    68.Vejmělka, F. et al. Heat dissipation in subterranean rodents: the role of body region and social organisation. Sci. Rep. 11(1), 1–17 (2021).
    Google Scholar 
    69.Heisig, M. et al. Frostbite protection in mice expressing an antifreeze glycoprotein. PLoS ONE 10(2), e0116562 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    70.Cilulko, J. et al. Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013).
    Google Scholar 
    71.Auerbach, L. J. et al. A novel mouse model for frostbite injury. Wilderness Environ. Med. 24(2), 94–104 (2013).MathSciNet 
    PubMed 

    Google Scholar 
    72.Phifer-Rixey, M. & Nachman, M. W. The Natural History of Model Organisms: Insights into mammalian biology from the wild house mouse Mus musculus. Elife 4, e05959 (2015).PubMed Central 

    Google Scholar  More

  • in

    Effects of species and geo-information on the 137Cs concentrations in edible wild mushrooms and plants collected by residents after the Fukushima nuclear accident

    Site informationWe collected radioactivity data of wild mushrooms and wild edible plants from inspection results of specimens brought in by residents in Kawauchi Village, which is located 12–30 km away from the FDNPP (Fig. 1). Kawauchi Village is considered small, with an area of 197.4 km2, and a population of about 2500 (2820 in 2010 and 2518 in 2021)48. It is located in the middle of the Abukuma Highlands, where the elevation ranges from 270 to 1,192 m above the sea level. It has a forest coverage of 89.0%, which is higher than the average for Fukushima Prefecture (71%) and Japan as a whole (69%)49. 137Cs deposition in the village ranged from 42 to 960 kBq/m2 in 2011, estimated from an aircraft monitoring28. Before the accident, its residents were accustomed to gathering wild foods, such as wild edible mushrooms, plants, mammals, and wild honey50; many have been brought in for inspection. Information on collection areas of sub-village levels, called “Ko-aza” in Japanese, is also recorded. For these reasons, we thought that the data of the brought in inspection in Kawauchi Village would possess high value as data for inter-species and inter-region analysis on the wild mushrooms and edible plants’ radioactivity concentrations.Radioactivity data of mushrooms and wild plantsFukushima Prefecture sets up a system for each municipality to inspect radioactivity in vegetables and mushrooms consumed by residents, and Kawauchi Village started its inspection program in May 2012. Simple inspection machines are set up at public facilities, and inspections are conducted upon application by residents. In Kawauchi Village, the location of samples inspected was requested at the sub-village level. The inspection results were regularly reported in the village newsletter, along with the inspection date, inspected food, and collection location. The data compiled from May 2012 to March 2020 was provided to us through the village officials. Orita et al. analyzed the same inspection data of agricultural products in Kawauchi Village24. They used 7668 food data from April 2013 to December 2014, including 1986 wild plants and mushrooms data for internal radiation exposure assessment. Some of their data overlap with the data used in our analyses.System of monitoring radioactivity in Kawauchi VillageKawauchi Village started the brought in inspection in May 2012, and there is a maximum of eight inspection stations and currently three stations managed by residents. In the inspection sites, there are four types of NaI (Tl) or CsI (Tl) scintillation detectors. The machine names are Triathler Becquerel Finder (Hidex, Oy, Finland), Captus-3000A (Capintec, NJ), CAN-OSP-NAI (Hitachi Aloka, Tokyo, Japan), and FD-08Cs1000-1 (X-Ray Technology, Osaka, Japan). Table S4 shows the specifications of the machines51,52,53. All instruments have been confirmed to meet the radiocesium screening method requirements for food53. Among these machines, FD-08Cs1000-1 can measure radioactivity non-destructively, and the others conduct destructive measurements. The sample weight is approximately 500 g, and the counting time is 30 min. FD-08Cs1000-1 outputs the summed concentration of the two radiocesium nuclides (134Cs and 137Cs), and its detection limit is 10 Bq/kg (for total 134Cs + 137Cs). Each of the other three machines separately outputs the concentrations of 134Cs and 137Cs, and the detection limit is 10 Bq/kg for each radionuclide. Energy calibrations and background checks were performed daily, and the accuracy was periodically verified with brown rice whose radiocesium concentration was verified by calibrated high-purity Germanium (HPGe) detectors installed in the Fukushima Nuclear Center49. Table S4 shows the results of quality control using brown rice.Data preparation of radioactivity of samplesFrom the radioactivity data of wild mushrooms and plants, we picked up data that met the following criteria;

    Data have information of sampling location at sub-village levels

    Items that are not confirmed to be cooked products such as “boiled” or “dried.”

    Species with more than ten samples in which radiocesium was detected.

    In cases where mushrooms and wild plants were given in dialects, we confirmed the species’ names with residents. The names of the species were determined from the Japanese names of the items, but in some cases, it was not possible to distinguish between Cortinarius salor (“Murasakiaburashimejimodoki” in Japanese) and C. iodes (“Murasakiaburashimeji”), considered to be closely related species, so the two were mixed for analysis. The leaf stalk and scape of Petasites japonicus (Japanese butterbur) are called “Fuki” and “Fukinotou” in Japanese, respectively, and are registered separately. Therefore, despite being the same species, they were distinguished in the analysis. In this data, there were not sampling date but measurement date. Therefore, the date of measurement and sample collection were assumed to be the same.The 137Cs concentration results were used in the model analysis. The reason for not using the134Cs concentration among the measured values is explained in the subsection of “Bayesian estimation”. 137Cs concentrations were decay-corrected to March 11th, 2011 for comparison with Komatsu et al. (2019). Based on the assumption that the 134Cs/137Cs ratio at the time of the accident was one54, the summed concentration of 134Cs and 137Cs concentration taken by FD08-Cs1000-1 was converted to a 137Cs concentration, which was decay-corrected to March 11th, 2011, using the following equation;$${}^{137}C{s}_{2011/03/11}=tC{s}_{mathrm{sampling}_mathrm{day}}*frac{{0.5}^{dy/30.17}}{{0.5}^{dy/2.065}+{0.5}^{dy/30.17}}$$In this equation, dy indicates the period from March 11th, 2011, to the date of measuring, and it is expressed by decimal years.Sub-village (“Ko-aza”) boundary map of Kawauchi VillageKawauchi Village comprises eight administrative communities (called “Oh-aza” in Japanese), which are further subdivided into small administrative units known as “Ko-aza”. Here, we refer to these small administrative units as sub-villages. We obtained a sub-village map from the administrative office. The printed map was originally drawn by hand and had been used for village administration. To create a polygon shapefile of the map, we digitized it by scanning, geo-rectifying, and digitizing using GIS software in TNTmips v2014 (MicroImages, Inc, NE) and ArcGIS 10.3 (Esri, Inc, CA). We used this map to associate land names with monthly radioactivity data from samples and to estimate sample collection locations.Deposition dataFor the 137Cs deposition data of this area, we used 250 m grid deposition data measured by the Ministry of Education, Culture, Sports, Science and Technology28,55 and then corrected by Kato and Onda26. We computed the geometric mean value of 137Cs deposition within each sub-village polygon. The 137Cs deposition is also decay-corrected to March 11th, 2011.Bayesian estimationWe constructed a Bayesian model partially modified from Komatsu et al.22 to estimate 137Cs concentration (137Cssample). The model is based on the Gonze and Calmon’s concept of normalized concentration (NC) as expressed by:$$NC= frac{Cs}{D}$$where D indicates the radiocesium deposition amount based on the aircraft monitoring. Then the above equation is transformed and logarithmized to yield;$$mathrm{log}Cs=mathrm{log}NC+mathrm{log}D$$In this expression of the model equation, we further assumed that the logartihm of NC encompassed the summed effects of species identity, collection date, and collection site, and that the logarithm of NC was normally distributed around the estimated mean as per the following equations;$$begin{array}{l}{text{log}}_{10}{hspace{0.17em}}^{137}C{s}_{mathrm{sample}} sim Normal({mu }_{mathrm{sample}},sigma )\ {mu }_{mathrm{sample}} ={text{log}}_{10}N{C}_{mathrm{sp}}+{lambda }_{mathrm{sp}}Y+{text{log}}_{10}{D}_{mathrm{loc}}+{r}_{mathrm{loc}}\ {text{log}}_{10}N{C}_{mathrm{sp}} sim Normal({mu }_{mathrm{sp}},{sigma }_{mathrm{sp}})\ {lambda }_{mathrm{sp}} sim Normal({mu }_{mathrm{lambda sp}},{sigma }_{mathrm{lambda sp}})\ {r}_{mathrm{loc}} sim Normal(0,{sigma }_{mathrm{loc}})end{array}$$where NCsp, λsp, Dloc and rloc indicate characteristics of concentration of species, temporal trends of species, 137Cs deposition of each sub-village area and effects of sub-village on concentration, respectively. rloc is a parameter with zero mean that represents the deviation of the concentration effect from the expected value based on the deposition (Dloc) value at the point of collection. These parameters except Dloc were obtained from hierarchically sampled from normal distribution with hierarchical parameters (μsp, σsp, μλsp, σλsp, σloc). Additionally, rloc was sampled using the Intrinsic Conditional Auto-Regressive (Intrinsic CAR) model56, which is one of the models considering spatial auto-correlation. For samples whose measured radiocesium concentrations were below the detection limit, radiocesium concentration values were estimated by a censoring distribution in which the detection limit was treated as the upper bound57. This model was defined as the “sub-village model” for this research. This model is similar to model 6 in Komatsu et al.22 but differs in that their previous model takes into account 134Cs values and differences between 134 and 137Cs values. Komatsu et al. evaluated the regional trend in the difference between134Cs and 137Cs concentrations across eastern Japan because 137Cs originating from nuclear bomb tests before the FDNPP accident was detected in wild mushrooms sampled in the northern and southern parts of eastern Japan, which are far from the FDNPP and received less deposition from the accident ( More

  • in

    Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

    1.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).CAS 
    PubMed 

    Google Scholar 
    2.Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    3.Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    PubMed 

    Google Scholar 
    5.Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).6.de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    7.Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).CAS 

    Google Scholar 
    10.Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).PubMed 
    ADS 

    Google Scholar 
    12.Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    13.Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).Article 
    PubMed 

    Google Scholar 
    15.Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    PubMed 

    Google Scholar 
    16.Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).PubMed 

    Google Scholar 
    17.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).
    Google Scholar 
    20.O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    22.Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 

    Google Scholar 
    23.Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    24.Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).PubMed 

    Google Scholar 
    25.Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).
    Google Scholar 
    26.Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    27.Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).CAS 
    PubMed 

    Google Scholar 
    29.McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    30.Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
    Google Scholar 
    31.Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    33.Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).
    Google Scholar 
    35.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 

    Google Scholar 
    36.Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).ADS 

    Google Scholar 
    37.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).
    Google Scholar 
    39.Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).PubMed 

    Google Scholar 
    40.Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).PubMed Central 

    Google Scholar 
    41.Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).
    Google Scholar 
    42.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).
    Google Scholar 
    44.Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 

    Google Scholar 
    46.Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).
    Google Scholar 
    47.Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).
    Google Scholar 
    48.Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).
    Google Scholar 
    49.Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    51.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar  More

  • in

    Shallow-emerged coral may warn of deep-sea coral response to thermal stress

    1.Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).Article 

    Google Scholar 
    2.Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).3.Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).Article 

    Google Scholar 
    4.Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).Article 

    Google Scholar 
    5.Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).6.Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).7.Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).8.Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).MathSciNet 
    Article 

    Google Scholar 
    9.Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).10.Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).11.Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).13.Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).Article 

    Google Scholar 
    14.Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).
    Google Scholar 
    15.Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. A, John Wiley and Sons Ltd, UK (1999).16.National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).17.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    18.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    19.Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).
    Google Scholar 
    20.Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).Article 

    Google Scholar 
    22.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    23.Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).Article 

    Google Scholar 
    24.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).26.Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    28.Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).ADS 
    Article 

    Google Scholar 
    33.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    34.Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).ADS 
    Article 

    Google Scholar 
    35.Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).Article 

    Google Scholar 
    37.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    38.Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).Article 

    Google Scholar 
    39.Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).Article 

    Google Scholar 
    40.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).Article 

    Google Scholar 
    41.Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).Article 

    Google Scholar 
    42.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).Article 

    Google Scholar 
    45.Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).Article 

    Google Scholar 
    47.IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.48.Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).Article 

    Google Scholar 
    49.Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More