Effects of competitive pressure and habitat heterogeneity on niche partitioning between Arctic and boreal congeners
1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
Google Scholar
2.Wethey, D. S. Biogeography, competition, and microclimate: The barnacle Chthamalus fragilis in New England. Integr. Comp. Biol. 42, 872–880 (2002).PubMed
Google Scholar
3.Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G. & Körber, J.-H. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob. Ecol. Biogeogr. 16, 754–763 (2007).
Google Scholar
4.Bøhn, T. & Amundsen, P.-A. The competitive edge of an invading specialist. Ecology 82, 2150–2163 (2001).
Google Scholar
5.Barger, C. P. & Kitaysky, A. S. Isotopic segregation between sympatric seabird species increases with nutritional stress. Biol. Lett. 8, 442–445 (2012).PubMed
Google Scholar
6.Gosselink, T. E., Deelen, T. R. V., Warner, R. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wildl. Manag. 67, 90 (2003).
Google Scholar
7.Odden, M., Wegge, P. & Fredriksen, T. Do tigers displace leopards? If so why?. Ecol. Res. 25, 875–881 (2010).
Google Scholar
8.Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate-induced sympatry occurs. Ecol. Evol. 8, 9764–9778 (2018).PubMed
PubMed Central
Google Scholar
9.Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e62897 (2013).CAS
PubMed
PubMed Central
ADS
Google Scholar
10.Reif, J., Reifová, R., Skoracka, A. & Kuczyński, L. Competition-driven niche segregation on a landscape scale: Evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J. Anim. Ecol. 87, 774–789 (2018).PubMed
Google Scholar
11.Trego, C. T., Merriam, E. R. & Petty, J. T. Non-native trout limit native brook trout access to space and thermal refugia in a restored large-river system. Restor. Ecol. 27, 892–900 (2019).
Google Scholar
12.Durant, S. M. Competition refuges and coexistence: An example from Serengeti carnivores. J. Anim. Ecol. 67, 370–386 (1998).
Google Scholar
13.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS
PubMed
ADS
Google Scholar
14.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
15.Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. 115, 11982–11987 (2018).CAS
PubMed
PubMed Central
Google Scholar
16.Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).CAS
PubMed
ADS
Google Scholar
17.Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: Climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36, 3 (2017).
Google Scholar
18.IPCC. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2014).19.Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450–453 (2011).CAS
PubMed
ADS
Google Scholar
20.Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).ADS
Google Scholar
21.Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago: Svalbard Norway. Glob. Change Biol. 23, 490–502 (2017).ADS
Google Scholar
22.Descamps, S., Strøm, H. & Steen, H. Decline of an arctic top predator: Synchrony in colony size fluctuations, risk of extinction and the subpolar gyre. Oecologia 173, 1271–1282 (2013).PubMed
ADS
Google Scholar
23.Garðarsson, A., Guðmundsson, G. A. & Lilliendahl, K. Svartfugl í íslenskum fuglabjörgum 2006–2008. Bliki 33, 35–46 (2019).
Google Scholar
24.Merkel, F. et al. Declining trends in the majority of Greenland’s thick-billed murre (Uria lomvia) colonies 1981–2011. Polar Biol. 37, 1061–1071 (2014).
Google Scholar
25.Fauchald, P. et al. The status and trends of seabirds breeding in Norway and Svalbard. 84 (2015).26.Williams, A. J. Site preferences and interspecific competition among guillemots Uria aalge (L.) and Uria lomvia (L.) on Bear Island. Ornis Scand. 5, 113 (1974).
Google Scholar
27.Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 83(1), 301–309. https://doi.org/10.1016/j.anbehav.2011.10.031 (2012).28.Luque, S. P. An Introduction to the diveMove Package. 56 (2007).29.Luque, S. P. & Fried, R. Recursive filtering for zero offset correction of diving depth time series with GNU R Package diveMove. PLoS ONE 6, e15850 (2011).CAS
PubMed
PubMed Central
ADS
Google Scholar
30.QGIS Development Team. QGIS Geographic Information System. (Open Source Geospatial Foundation Project. http://qgis.osgeo.org, 2018).31.Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the Utilization Distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
Google Scholar
32.Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
Google Scholar
33.Geange, S. W., Pledger, S., Burns, K. C. & Shima, J. S. A unified analysis of niche overlap incorporating data of different types. Methods Ecol. Evol. 2, 175–184 (2011).
Google Scholar
34.Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).CAS
PubMed
PubMed Central
ADS
Google Scholar
35.Linnebjerg, J. F. et al. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS ONE 8, e72987 (2013).CAS
PubMed
PubMed Central
ADS
Google Scholar
36.McFarlane Tranquilla, L. A. et al. Multiple-colony winter habitat use by murres Uria spp. in the Northwest Atlantic Ocean: Implications for marine risk assessment. Mar. Ecol. Prog. Ser. 472, 287–303 (2013).ADS
Google Scholar
37.Pratte, I., Robertson, G. & Mallory, M. Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar. Ecol. Prog. Ser. 572, 243–254 (2017).ADS
Google Scholar
38.Kokubun, N. et al. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea. Biogeosciences 13, 2579–2591 (2016).ADS
Google Scholar
39.Barger, C. P., Young, R. C., Will, A., Ito, M. & Kitaysky, A. S. Resource partitioning between sympatric seabird species increases during chick-rearing. Ecosphere 7, e01447 (2016).
Google Scholar
40.Huffeldt, N. P. & Merkel, F. R. Sex-specific, inverted rhythms of breeding-site attendance in an Arctic seabird. Biol. Lett. 12, 20160289 (2016).PubMed
PubMed Central
Google Scholar
41.Kappes, M. A. et al. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species. Mov. Ecol. 3, 34 (2015).PubMed
PubMed Central
Google Scholar
42.Benvenuti, S., Bonadonna, F., Dall’Antonia, L. & Gudmundsson, G. A. Foraging flights of breeding thick-billed murres (Uria lomvia) as revealed by bird-borne direction recorders. Auk 115, 57–66 (1998).
Google Scholar
43.Hunt, G. L., Bakken, V. & Mehlum, F. Marine birds in the Marginal Ice Zone of the Barents Sea in late winter and spring. Arctic 49, 53–61 (1996).
Google Scholar
44.Hein, C., Öhlund, G. & Englund, G. Future distribution of Arctic Char Salvelinus alpinus in Sweden under climate change: Effects of temperature, lake size and species interactions. Ambio 41(Suppl 3), 303–312 (2012).PubMed
PubMed Central
Google Scholar
45.Mehlum, F., Watanuki, Y. & Takahashi, A. Diving behaviour and foraging habitats of Brünnich’s guillemots (Uria lomvia) breeding in the High-Arctic. J. Zool. 255, 413–423 (2001).
Google Scholar
46.Frederiksen, M. et al. Seabird baseline studies in Baffin Bay, 2008–2013. Colony-based fieldwork at Kippaku and Apparsuit, NW Greenland. Report No. 110. (Aarhus University, DCE – Danish Centre for Environment and Energy, Roskilde, Denmark., 2014).47.Spagnolo, M. & Clark, C. D. A geomorphological overview of glacial landforms on the Icelandic continental shelf. J. Maps 5, 37–52 (2009).
Google Scholar
48.Meier, W. N. et al. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).ADS
Google Scholar
49.Gaston, A. J., Smith, P. A. & Provencher, J. F. Discontinuous change in ice cover in Hudson Bay in the 1990s and some consequences for marine birds and their prey. ICES J. Mar. Sci. 69, 1218–1225 (2012).
Google Scholar
50.Grémillet, D. et al. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).ADS
Google Scholar
51.Valdimarsson, H., Astthorsson, O. S. & Palsson, J. Hydrographic variability in Icelandic waters during recent decades and related changes in distribution of some fish species. ICES J. Mar. Sci. 69, 816–825 (2012).
Google Scholar More