More stories

  • in

    Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard

    1.Perini, L., Gostinčar, C. & Gunde-Cimerman, N. Fungal and bacterial diversity of Svalbard subglacial ice. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. Sci. Rep. 27, 20230. https://doi.org/10.1038/s41598-019-56290-5 (2019).CAS 
    Article 

    Google Scholar 
    2.Margesin, R., Schinner, F. Cold-adapted organisms. In Ecology, Physiology, Enzymology and Molecular Biology (eds. Margesin, R. & Schinner, F) (Springer, 1999).3.Mueller, D. R. & Pollard, W. H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 27, 66–74 (2004).Article 

    Google Scholar 
    4.Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).Article 

    Google Scholar 
    5.Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282. https://doi.org/10.1111/jpy.12952 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Kol, E. & Eurola, S. Red snow algae from Spitsbergen. Astarte. J. Arct. Biol. 7, 61–66 (1974).
    Google Scholar 
    7.Stibal, M., Elster, J., Sabacká, M. & Kastovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).CAS 
    Article 

    Google Scholar 
    8.Kviderová, J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2, 8–19 (2012).Article 

    Google Scholar 
    9.Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments, and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).CAS 
    Article 

    Google Scholar 
    10.Takeuchi, N. et al. Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00004 (2019).Article 

    Google Scholar 
    11.Leya, T., Müller, T., Ling, H. U., Fuhr, G. Snow algae from north-western Spitsbergen (Svalbard). In The Coastal Ecosystem of Kongsfjorden, Svalbard. Synopsis of Biological Research Performed at the Koldewey Station in the Years 1991–2003. Ber. (ed. Wiencke, C.) 46–54 (Polarforsch. Meeresforsch, 2004).12.Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskioeldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic). Polar Biol. 35, 899–908 (2011).Article 

    Google Scholar 
    13.Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 4, 71–80 (2010).ADS 
    Article 

    Google Scholar 
    14.Takeuchi, N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459 (2001).ADS 
    Article 

    Google Scholar 
    15.Takeuchi, N. & Kohshima, S. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99 (2004).Article 

    Google Scholar 
    16.Yoshimura, Y., Kohshima, S. & Ohtani, S. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arct. Antarct. Alp. Res. 29, 126–137 (1997).Article 

    Google Scholar 
    17.Komárek, O. & Komárek, J. Contribution to the taxonomy and ecology of cryosestic algae in the summer season 1995–96 at King George Island, S. Shetland Islands. Nova Hedwig. Beih. 123, 121–140 (2001).
    Google Scholar 
    18.Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).Article 

    Google Scholar 
    19.Gromov, B. V., Pljusch, A. V. & Mamkaeva, K. A. Morphology and possible host range of Rhyizophydium algavorum sp. nov. (Chytridiales) – An obligate parasite of algae. Protistology 1, 62–65 (1999).
    Google Scholar 
    20.Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).CAS 
    Article 

    Google Scholar 
    21.Hassett, B. T. et al. Arctic marine fungi: Biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).CAS 
    Article 

    Google Scholar 
    22.Rämä, T. et al. Fungi sailing the Arctic Ocean: Speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb. Ecol. 72, 295–304 (2016).Article 

    Google Scholar 
    23.Rämä, T., Hassett, B. T. & Bubnova, E. Arctic marine fungi: From filaments and flagella to operational taxonomic units and beyond. Bot. Mar. 60, 433–452 (2017).Article 

    Google Scholar 
    24.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5, 14524. https://doi.org/10.1038/srep14524 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity, and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic): aquatic fungi in the Arctic. Microb. Ecol. 71, 543–554 (2016).Article 

    Google Scholar 
    26.Remy, W., Taylor, T. N. & Hass, H. Early Devonian fungi: A Blastocladalean fungus with sexual reproduction. Am. J. Bot. 81, 690–702 (1994).Article 

    Google Scholar 
    27.Senanayake, I. C. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754 (2020).Article 

    Google Scholar 
    28.Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep. 10, 19167. https://doi.org/10.1038/s41598-020-76215-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med. 108, 616–618 (1984).CAS 
    PubMed 

    Google Scholar 
    30.Semedo, M. C., Karmali, A. & Fonseca, L. A high throughput colorimetric assay of β-1,3-d-glucans by Congo red dye. J. Microbiol. Methods. 10, 140–148 (2015).Article 

    Google Scholar 
    31.Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio Protoc. 6, 1969. https://doi.org/10.21769/BioProtoc.1969 (2016).Article 

    Google Scholar 
    32.Müller, U. & Sengbusch, P. Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch. Hydrobiol. 97, 471–485 (1983).
    Google Scholar 
    33.Yang, Y., Xiang, Y. & Xu, M. From red to green: The propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci. Rep. 5, 18583. https://doi.org/10.1038/srep18583 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Luo, Z. et al. Preparation and properties of enzyme-modified cassava starch−zinc complexes. Agric. Food Chem. 61, 4631–4638 (2013).CAS 
    Article 

    Google Scholar 
    35.Beamson, G., Briggs, D. High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database (Wiley Interscience, 1992).36.Miller, D. J., Biesinger, M. C. & McIntyre, N. S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination?. Surf. Interface Anal. 33, 299–305 (2002).CAS 
    Article 

    Google Scholar 
    37.Payne, B. P., Biesinger, M. C. & McIntyre, N. S. The study of polycrystalline nickel metal oxidation by water vapour. J. Electron Spectros. Relat. Phenom. 184, 29–37 (2011).CAS 
    Article 

    Google Scholar 
    38.Oh, Y. J. et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrachem. Acta. 116, 118–128 (2014).CAS 
    Article 

    Google Scholar 
    39.Procházková, L., Leya, T., Křížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz064 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms. https://doi.org/10.3390/microorganisms9051103 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Müller, T., Bleiss, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).Article 

    Google Scholar 
    42.Domozych, D. et al. The cell walls of green algae: A journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).Article 

    Google Scholar 
    44.Rad-Menéndez, C. et al. Rediscovering Zygorhizidium affluenscanter: molecular taxonomy, infectious cycle, and cryopreservation of a chytrid infecting the bloom-forming diatom Asterionella formosa. Appl. Environ. Microbiol. 84, e01826-e1918. https://doi.org/10.1128/AEM.01826-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Canter-Lund, H., Lund, J.G. Freshwater Algae: Their Microscopic World Explored. (ed. Canter-Lund, H.). 21–93. (Biopress, 1995).46.Kol, E. Kryobiologie. Biologie und Limnologie des Schneesund Eises. I. Kryovegetation. Die Binnengewa¨sser, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1968).47.Stein, J. R. & Amundsen, C. C. Studies on snow algae and fungi from the front range of Colorado. Can. J. Bot. 45, 2033–2045 (1967).Article 

    Google Scholar 
    48.Hoham, R. W., Laursen, A. E., Clive, S. O., Duval, B. Snow algae and other microbes in several alpine areas in New England. in Proceedings of the 61st Annual Western Snow Conference, Quebec City, Canada. 165–173 (1993).49.Brown, P. S., Olson, B. J. S. C. & Jumpponen, A. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?. Arct. Antarct. Alp. Res. 47, 729–749 (2015).Article 

    Google Scholar 
    50.Jumpponen, A., Egerton-Warburton, L. Mycorrhizal fungi in successional environments—A community assembly model incorporating host plant, environmental and biotic filters. In Dighton (ed. White, J. & Oudemans, P.) 139–180 (CRC Press, 2005).51.Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high elevation soils. PNAS 106, 18315–18320 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Sime-Ngando, T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00361 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Powell, M. J. Looking at mycology with a Janus face. A glimpse at Chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).Article 

    Google Scholar 
    54.Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453 (2004).Article 

    Google Scholar 
    55.Scholz, B., Küpper, F. C., Vyverman, W., Ólafsson, H. G. & Karsten, U. Chytridiomycosis of marine diatoms—The role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs. 15, 26. https://doi.org/10.3390/md15020026 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    56.Müehlstein, L. K., Amon, J. P. & Leffler, D. L. Chemotaxis in the marine fungus Rhizophydium littoreum. Appl. Environ. Microbiol. 54, 1668–1672 (1988).ADS 
    Article 

    Google Scholar 
    57.Moss, A. S., Reddy, N. S., Dortaj, I. M. & San Francisco, M. J. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100, 1–5 (2008).CAS 
    Article 

    Google Scholar 
    58.Powell, M. J. Production, and modifications of extracellular structures during development of Chytridiomycetes. Protoplasma 181, 123–141 (1994).Article 

    Google Scholar 
    59.Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977. https://doi.org/10.1038/s41598-020-60274-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bruning, K. Effects of temperature and light on the population-dynamics of the Asterionella-Rhizophydium association. J. Plankton Res. 13, 707–719 (1991).Article 

    Google Scholar  More

  • in

    Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum

    1.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    2.Hewitt, G. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).Article 
    CAS 

    Google Scholar 
    3.Ehlers, J. & Gibbard, P. Quaternary Glaciations-Extent and Chronology: Part I: Europe Vol. 2 (Elsevier, New York, 2004).
    Google Scholar 
    4.Call, A. et al. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): Integrative evidence from phylogeography, population demographic history, and species distribution modeling. J. Syst. Evol. 54, 136–151. https://doi.org/10.1111/jse.12171 (2016).Article 

    Google Scholar 
    5.Jackson, S. et al. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quatern. Sci. Rev. 19, 489–508. https://doi.org/10.1016/S0277-3791(99)00093-1 (2000).ADS 
    Article 

    Google Scholar 
    6.Nadeau, S. et al. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: A comparison between eastern and western North American postglacial colonization histories. Am. J. Bot. 102, 1342–1355. https://doi.org/10.3732/ajb.1500160 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    7.Beaulieu, J. & Simon, J. Genetic structure and variability in Pinus strobus in Quebec. Can. J. For. Res. 24, 1726–1733. https://doi.org/10.1139/x94-223 (1994).Article 

    Google Scholar 
    8.Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).Article 
    PubMed 

    Google Scholar 
    9.Soltis, D., Morris, A., McLachlan, J., Manos, P. & Soltis, P. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x (2006).Article 
    PubMed 

    Google Scholar 
    10.Mee, J. & Moore, J. The ecological and evolutionary implications of microrefugia. J. Biogeogr. 41, 837–841. https://doi.org/10.1111/jbi.12254 (2014).Article 

    Google Scholar 
    11.Hoban, S. et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19, 4876–4891. https://doi.org/10.1111/j.1365-294X.2010.04834.x (2010).Article 
    PubMed 

    Google Scholar 
    12.Hampe, A. & Petit, R. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    13.Excoffier, L., Foll, M. & Petit, R. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 (2009).Article 

    Google Scholar 
    14.McLachlan, J., Clark, J. & Manos, P. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098. https://doi.org/10.1890/04-1036 (2005).Article 

    Google Scholar 
    15.Bemmels, J. & Dick, C. Genomic evidence of a widespread southern distribution during the Last Glacial Maximum for two eastern North American hickory species. J. Biogeogr. 45, 1739–1750. https://doi.org/10.1111/jbi.13358 (2018).Article 

    Google Scholar 
    16.Jaramillo-Correa, J., Beaulieu, J., Khasa, D. & Bousquet, J. Inferring the past from the present phylogeographic structure of North American forest trees: Seeing the forest for the genes. Can. J. For. Res. 39, 286–307. https://doi.org/10.1139/X08-181 (2009).Article 

    Google Scholar 
    17.Eckert, C., Samis, K. & Lougheed, S. Genetic variation across species’ geographical ranges: The central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    18.Foll, M. & Gaggiotti, O. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891. https://doi.org/10.1534/genetics.106.059451 (2006).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    19.Loveless, M. & Hamrick, J. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65–95. https://doi.org/10.1146/annurev.es.15.110184.000433 (1984).Article 

    Google Scholar 
    20.Roberts, D., Werner, D., Wadl, P. & Trigiano, R. Inheritance and allelism of morphological traits in eastern redbud (Cercis canadensis L.). Hortic. Res. 2, 1–11 (2015).Article 

    Google Scholar 
    21.Couvillon, G. Cercis canadensis L. seed size influences germination rate, seedling dry matter, and seedling leaf area. HortScience 37, 206–207 (2002).Article 

    Google Scholar 
    22.Li, S. et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds. Seed Sci. Technol. 41, 27–35 (2013).Article 

    Google Scholar 
    23.Cheong, E. & Pooler, M. Micropropagation of Chinese redbud (Cercis yunnanensis) through axillary bud breaking and induction of adventitious shoots from leaf pieces. In Vitro Cell. Dev. Biol. Plant 39, 455–458 (2003).Article 

    Google Scholar 
    24.Pooler, M., Jacobs, K. & Kramer, M. Differential resistance to Botryosphaeria ribis among Cercis taxa. Plant Dis. 86, 880–882. https://doi.org/10.1094/PDIS.2002.86.8.880 (2002).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Trigiano, R., Beaty, R. & Graham, E. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7, 148–150. https://doi.org/10.1007/BF00270127 (1988).Article 
    PubMed 
    CAS 

    Google Scholar 
    26.Wadl, P., Trigiano, R., Werner, D., Pooler, M. & Rinehart, T. Simple sequence repeat markers from Cercis canadensis show wide cross-species transfer and use in genetic studies. J. Am. Soc. Hortic. Sci. 137, 189–201. https://doi.org/10.21273/JASHS.137.3.189 (2012).Article 

    Google Scholar 
    27.Ony, M. et al. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol. Evol. 10, 3655–3670. https://doi.org/10.1002/ece3.6141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Resour. 7, 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2007).Article 
    CAS 

    Google Scholar 
    29.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).30.Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kamvar, Z., Brooks, J. & Grünwald, N. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Tsui, C. et al. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol. Ecol. 21, 71–86. https://doi.org/10.1111/j.1365-294X.2011.05366.x (2012).Article 
    PubMed 

    Google Scholar 
    33.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).Article 
    CAS 

    Google Scholar 
    34.Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27, 379–423 (1948).MathSciNet 
    Article 

    Google Scholar 
    35.Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    36.Hurlbert, S. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586. https://doi.org/10.2307/1934145 (1971).Article 

    Google Scholar 
    37.El Mousadik, A. & Petit, R. High level of genetic differentiation for allelic richness among populations of the Argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839. https://doi.org/10.1007/BF00221895 (1996).Article 
    PubMed 

    Google Scholar 
    38.Bird, C., Karl, S., Smouse, P. & Toonen, R. In Phylogeography and Population Genetics in Crustacea Vol. 19 (eds Held Christoph, Koenemann Stefan, & Schubart Christoph) pp. 31–55 (Boca Raton, FL: CRC Press, 2011).39.Meirmans, P. & Hedrick, P. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).Article 
    PubMed 

    Google Scholar 
    40.Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    41.Earl, D. & Bridgett, V. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    42.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 

    Google Scholar 
    43.Francis, R. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    44.Becker, R. & Wilks, A. MAPS: An R Package to Drae Geographical Maps (Version package 3.3.0, 2018).45.Lemon, J. Plotrix: An R Package for Various Plotting Functions (Version R package 3.8–1, 2006).46.Bruvo, R., Michiels, N., D’souza, T. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106. https://doi.org/10.1111/j.1365-294X.2004.02209.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Grünwald, N., Everhart, S., Knaus, B. & Kamvar, Z. Best practices for population genetic analyses. Phytopathology 107, 1000–1010. https://doi.org/10.1094/PHYTO-12-16-0425-RVW (2017).Article 
    PubMed 

    Google Scholar 
    48.Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3072. https://doi.org/10.1093/bioinformatics/btr521 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    49.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 9. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 

    Google Scholar 
    50.Cullingham, C., Cooke, J. & Coltman, D. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: Lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana). Genome 56, 577–585. https://doi.org/10.1139/gen-2013-0071 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    51.Diniz-Filho, J. et al. Mantel test in population genetics. Genet. Mol. Biol. 36, 475–485. https://doi.org/10.1590/S1415-47572013000400002 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).CAS 

    Google Scholar 
    53.Vegan: Community ecology package v. R package version 2.5–3 (R package version 2.5–3). (2018).54.Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 

    Google Scholar 
    55.Cornuet, J., Ravigné, V. & Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform. 11, 401–411. https://doi.org/10.1186/1471-2105-11-401 (2010).Article 
    CAS 

    Google Scholar 
    56.Cornuet, J. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    57.Dickson, J. In Silvics of North America Vol. 2 (eds Burns, R. & Honkala, B.) 266–269 (United States Department of Agriculture-Forest Service, 1990).58.Thomson, A., Dick, C. & Dayanandan, S. A similar phylogeographical structure among sympatric North American birches (Betula) is better explained by introgression than by shared biogeographical history. J. Biogeogr. 42, 339–350. https://doi.org/10.1111/jbi.12394 (2015).Article 

    Google Scholar 
    59.Petit, R. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    60.David, R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B Biol. Sci. 282, 20142903. https://doi.org/10.1098/rspb.2014.2903 (2015).Article 

    Google Scholar 
    61.Lumibao, C., Hoban, S. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468. https://doi.org/10.1111/ele.12853 (2017).Article 
    PubMed 

    Google Scholar 
    62.Bialozyt, R., Ziegenhagen, B. & Petit, R. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20. https://doi.org/10.1111/j.1420-9101.2005.00995.x (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Petit, R. Early insights into the genetic consequences of range expansions. Heredity 106, 203–204. https://doi.org/10.1038/hdy.2010.60 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    64.Dubreuil, M. et al. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 97, 303–310. https://doi.org/10.3732/ajb.0900148 (2010).Article 
    PubMed 

    Google Scholar 
    65.Hamrick, J., Godt, M. & Sherman-Broyles, S. In Population Genetics of Forest Trees Vol. 42 (eds Adams, W., Strauss, S., Copes, D. & Griffin, A) 95–124 (Springer, Dordrecht, 1992).66.Hamrick, J. & Godt, M. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1291–1298 (1996).ADS 
    Article 

    Google Scholar 
    67.Spaulding, H. & Rieske, L. The aftermath of an invasion: Structure and composition of central appalachian hemlock forests following establishment of the hemlock woolly adelgid, Aelges tsugae. Biol. Invasions 12, 3135–3143. https://doi.org/10.1007/s10530-010-9704-0 (2010).Article 

    Google Scholar 
    68.Hadziabdic, D. et al. Analysis of genetic diversity in flowering dogwood natural stands using microsatellites: The effects of dogwood anthracnose. Genetica 138, 1047–1057. https://doi.org/10.1007/s10709-010-9490-8 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Marquardt, P., Echt, C., Epperson, B. & Pubanz, D. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 37, 2652–2662 (2007).Article 
    CAS 

    Google Scholar 
    70.Potter, K. et al. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv. Genet. 13, 475–498. https://doi.org/10.1007/s10592-011-0301-2 (2012).Article 

    Google Scholar 
    71.Thammina, C., Kidwell-Slak, D., Lura, S. & Pooler, M. SSR markers reveal the genetic diversity of asian Cercis taxa at the US National Arboretum. HortScience 52, 498–502. https://doi.org/10.21273/hortsci11441-16 (2017).Article 

    Google Scholar 
    72.Chang, C., Bongarten, B. & Hamrick, J. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. J. Plant Res. 111, 17–24. https://doi.org/10.1007/BF02507146.pdf (1998).Article 

    Google Scholar 
    73.Marquardt, P. & Epperson, B. Spatial and population genetic structure of microsatellites in white pine. Mol. Ecol. 13, 3305–3315. https://doi.org/10.1111/j.1365-294X.2004.02341.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    74.Victory, E., Glaubitz, J., Rhodes-Jr, O. & Woeste, K. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 93, 118–126. https://doi.org/10.3732/ajb.93.1.118 (2006).Article 
    CAS 

    Google Scholar 
    75.Hadziabdic, D. et al. Genetic diversity of flowering dogwood in the Great Smoky Mountains National Park. Tree Genet. Genomes 8, 855–871. https://doi.org/10.1007/s11295-012-0471-1 (2012).Article 

    Google Scholar 
    76.Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    77.Donselman, H. Variation in native populations of eastern redbud (Cercis canadensis L.) as influenced by geographic location [USA]. In Proceedings, of the Florida State Horticulture Society Vol. 89. 370–373 (1976).78.Dirr, M. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses (Stipes Publishing Co, Champaign, 1990).
    Google Scholar 
    79.Fritsch, P., Schiller, A. & Larson, K. Taxonomic implications of morphological variation in Cercis canadensis (Fabaceae) from Mexico and adjacent parts of Texas. Syst. Bot. 34, 510–520. https://doi.org/10.1600/036364409789271254 (2009).Article 

    Google Scholar 
    80.Nevo, E. et al. Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at evolution canyon, Israel. Israel J. Plant Sci. 48, 33–46 (2000).
    Google Scholar 
    81.Fritsch, P. et al. Leaf adaptations and species boundaries in North American Cercis: Implications for the evolution of dry floras. Am. J. Bot. 105, 1577–1594. https://doi.org/10.1002/ajb2.1155 (2018).Article 
    PubMed 

    Google Scholar 
    82.Raulston, J. Redbud. Am. Nurseryman 171, 39–51 (1990).
    Google Scholar 
    83.Robertson, K. Cercis: The redbuds. Arnoldia 36, 37–49 (1976).
    Google Scholar 
    84.Davis, C., Fritsch, P., Li, J. & Donoghue, M. Phylogeny and biogeography of Cercis (Fabaceae): Evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst. Bot. 27, 289–302. https://doi.org/10.1043/0363-6445-27.2.289 (2002).Article 

    Google Scholar 
    85.Hopkins, M. In Rhodora Vol. 44 (eds M Fernald, C Eatherby, L Griscom, & S Marris) 193–211 (New England Botanical Club, Inc., 1942).86.Griffin, J., Ranney, T. & Pharr, D. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Am. Soc. Hortic. Sci. 129, 497–502. https://doi.org/10.21273/JASHS.129.4.0497 (2004).Article 
    CAS 

    Google Scholar 
    87.Fritsch, P. & Cruz, B. Phylogeny of Cercis based on DNA sequences of nuclear ITS and four plastid regions: Implications for transatlantic historical biogeography. Mol. Phylogenet. Evol. 62, 816–825. https://doi.org/10.1016/j.ympev.2011.11.016 (2012).Article 
    PubMed 

    Google Scholar 
    88.Chung, M., Chung, M., Oh, G. & Epperson, B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85, 490–497. https://doi.org/10.1046/j.1365-2540.2000.00781.x (2000).Article 
    PubMed 

    Google Scholar 
    89.Dean, D. et al. Analysis of genetic diversity and population structure for the native tree Viburnum rufidulum occurring in Kentucky and Tennessee. J. Am. Soc. Hortic. Sci. 140, 523–531. https://doi.org/10.21273/JASHS.140.6.523 (2015).Article 
    CAS 

    Google Scholar 
    90.Hagler, J., Mueller, S., Teuber, L., Machtley, S. & Van-Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144. https://doi.org/10.1673/031.011.14401 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Pasquet, R. et al. Long-distance pollesn flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. 105, 13456–13461 (2008).ADS 
    Article 

    Google Scholar 
    92.Hayden, W. Redbud seedpods hold surprises. Bull. Virginia Native Plant Soc. 32, 1–6 (2013).
    Google Scholar 
    93.Schnabel, A., Laushman, R. & Hamrick, J. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67, 357–364. https://doi.org/10.1038/hdy.1991.99 (1991).Article 

    Google Scholar 
    94.Nakanishi, A., Tomaru, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. Effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Heredity 102, 182–189. https://doi.org/10.1038/hdy.2008.101 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    95.Vekemans, X. & Hardy, O. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    96.Gonzales, E., Hamrick, J., Smouse, P., Trapnell, D. & Peakall, R. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J. Hered. 101, 133–143. https://doi.org/10.1093/jhered/esp101 (2009).Article 
    PubMed 
    CAS 

    Google Scholar 
    97.Post, D. Change in nutrient content of foods stored by eastern woodrats (Neotoma floridana). J. Mammal. 73, 835–839 (1992).Article 

    Google Scholar 
    98.Surrency, D. & Owsley, C. (ed. Natural Resources Conservation Service United States Department of Agriculture) 146 (United States Department of Agriculture, Natural Resources Conservation Service, 2001).99.Wakeland, B. & Swihart, R. Ratings of white-tailed deer preferences for woody browse in Indiana. Proceedings of the Indiana Academy of Science 118, 96–101 (2009).
    Google Scholar 
    100.Wright, V., Fleming, E. & Post, D. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae) on fruits and seeds collected from woodrat nests in Kansas. J. Kansas Entomol. Soc. 63, 344–347 (1990).
    Google Scholar 
    101.Sullivan, J. (ed. Forest Service U.S. Department of Agriculture, Rocky Mountain Research Station) (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fire Sciences Laboratory, 1994).102.Weir, B. & Ott, J. Genetic data analysis II. Trends Genet. 13, 379 (1997).Article 

    Google Scholar 
    103.Magni, C., Ducousso, A., Caron, H., Petit, R. & Kremer, A. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14, 513–524. https://doi.org/10.1111/j.1365-294X.2005.02400.x (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    104.Peterson, B. & Graves, W. Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the Last Glacial Maximum in eastern North America. Journal of Biogeography 43, 314–327, doi:https://doi.org/10.1111/jbi.12621 (2016).105.Shaw, J. & Small, R. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92, 2011–2030. https://doi.org/10.3732/ajb.92.12.2011 (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    106.Rowe, K., Heske, E., Brown, P. & Paige, K. Surviving the ice: Northern refugia and postglacial colonization. Proc. Natl. Acad. Sci. 101, 10355–10359 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    107.Graignic, N., Tremblay, F. & Bergeron, Y. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall). Ecol. Evol. 8, 2766–2780. https://doi.org/10.1002/ece3.3906 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Bemmels, J., Knowles, L. & Dick, C. Genomic evidence of survival near ice sheet margins for some, but not all, North American trees. Proc. Natl. Acad. Sci. 116, 8431–8436. https://doi.org/10.7302/Z2JS9NNG (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    109.Jia, H. & Steven, R. Fossil leaves and fruits of Cercis L. (Leguminosae) from the Eocene of western North America. International Journal of Plant Sciences 175, 601–612, doi:https://doi.org/10.1086/675693 (2014).110.Kraemer, M. & Favi, F. Emergence phenology of Osmia lignaria subsp lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis. Environ. Entomol. 39, 351–358. https://doi.org/10.1603/en09242 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    111.USDA. Census of horticultural specialties. Volume 3 AC-12-SS-3, Washington, DC (2014). More

  • in

    ‘I have to use a torch and watch my step’: netting seabirds at night

    Download PDF

    Netting seabirds is great fun. And it’s crucial for science and conservation.In this photo, taken in July, I’m heading out to capture birds on Inishtrahull, Ireland’s northernmost island. Lying about 10 kilometres northeast of the mainland, the island is home to thousands of seabirds during the summer nesting season, including storm petrels (Hydrobates pelagicus), Manx shearwaters (Puffinus puffinus) and fulmars (Fulmarus glacialis). The fulmars are experiencing a population crash, which I’m investigating.Migratory birds are protected here, but we need to know where they go when they leave their nests. I attach an identification band and a light-level geolocator — a sensor that helps to estimate location from day length — to every bird I catch. A few birds get GPS monitors, but we dole those out carefully, because each costs about £1,000 (US$1,368).The birds tend to nest on cliffs, and on a bad day I’ll catch just three. Some days I get as many as 12. Shearwaters are a challenge, because they nest only at night: I have to use a torch and watch my step.The birds don’t enjoy getting caught, but the stress is only temporary. The data they provide help us to understand their migration patterns. Fulmars spend almost their entire lives at sea. I’m interested in finding out how often they share waters with long-line fishers, which would be a potentially fatal scenario for the birds. That’s not the only threat: a study has found that more than half of beached North Sea fulmars have large amounts of plastic in their stomachs (see go.nature.com/3cosy8j).The lighthouse behind me is now home to the Inishtrahull Bird Observatory, a base for birdwatchers. I’m the founding chairman, but the observatory, part of a network of monitoring spots stretching 1,200 kilometres from Scotland to southern Ireland, will outlive me. It will be a centre for science and education for years to come.

    Nature 599, 340 (2021)
    doi: https://doi.org/10.1038/d41586-021-03055-8

    Related Articles

    Tracking Chernobyl’s effects on wildlife

    Preserving pieces of history in eggshells and birds’ nests

    Subjects

    Careers

    Ecology

    Ocean sciences

    Latest on:

    Careers

    Tips for managing an industry move without your academic supervisor’s support
    Career Feature 02 NOV 21

    When you recommend someone for an opportunity, follow through
    Career Column 29 OCT 21

    Cassyni aims to make online seminars more findable and citable
    Career News 28 OCT 21

    Ecology

    Whales’ gigantic appetites, climate fears — the week in infographics
    News 05 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    Ocean sciences

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    Pliocene decoupling of equatorial Pacific temperature and pH gradients
    Article 20 OCT 21

    Mercury stable isotopes constrain atmospheric sources to the ocean
    Article 29 SEP 21

    Jobs

    Staff Scientist – RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States More

  • in

    Genomic characterization between strains selected for death-feigning duration for avoiding attack of a beetle

    The present study compared DNA sequences in a whole genome between the long strain and standard genome samples as references or the short strain and standard ones in T. castaneum. The results of resequencing analysis showed variations of DNA sequence from the reference sequence in both long and short strains, and the variations were detected more frequently in the long strain in a whole genome. Small nucleotide variants (SNV), multi-nucleotide variants (MNV), deletion, insertion, and replacement were detected in a whole genome in long and short strains. The same DNA sequence variants sharing between long and short strains were removed for the analyses. The numbers of small variants in total were larger in long strains than short strains (Fig. 1, Tables S1 and S2). The most frequent type of small variants was SNV, and the proportions of SNV were 82.7% (93,233/112,783) in long strains and 82.8% (13,817/16,697) in short strains, respectively (Fig. 1A). The SNVs compared with the reference nucleotide occurred frequently between adenine and guanine or cytosine and thymine in both long and short strains (Fig. 1B), and the frequencies were up to three times as large as other base combinations, indicating more frequent transition and fewer transversion variants. Deletion and insertion ranged from one to nine bases in both long and short strains, with one base was frequently deleted or inserted (Fig. 1C). Homozygosity presented more frequently than heterozygosity in all linkage groups, but the rate of homozygosity to heterozygosity depended on the linkage groups (Fig. 1D). Homozygosity of variants was more frequent in linkage groups 3 (LG3), 5 (LG5) and 7 (LG7) than other linkage groups in both strains. The ratios of homozygosity to heterozygosity were the largest in LGX and LG2 in long and short strains, respectively.Figure 1Analytical results of small variants of DNA sequence in a whole genome level in long and short strains. Proportion of small variants as SNV, MNV, deletion, insertion, and replacement in long and short strains (A). The numbers of small variants are indicated as the diameter of a pie graph. Frequencies of the SNVs in both long and short strains were compared with the reference nucleotide (B). Insertion and deletion ranged from one to nine bases in both long and short strains (C). Frequency of homozygosity or heterozygosity and its ratio in all linkage groups in long and short strains (D).Full size imageThe variants distributed in cording and non-cording regions. Figure 2A shows the results of narrowing down the variants in genic region from the variants in a whole genome in the long and short strains, and then aggregating the variants information in the exon, intron, URT and other regions. In all genic region, numbers of variants were larger in long strain than short strain. Then, genes containing these variants were counted in each strain (Fig. 2B). In exon region, genes with nonsynonymous variants were more numerous in the long strain (3243) than the short strain (844), and 464 common genes containing different DNA sequence variants between the strains were detected (Fig. 2B). In the genes with synonymous variants or the genes with variants in intron or UTR, the numbers of genes in long strain were constantly larger than those in short strain (Fig. 2B). The functions of long-unique, short-unique and common genes with variants were sorted into four categories by enrichment analyses as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) ongoloty (KO) terms (Fig. 2C, Table S3). In the biological process, cellular component, and molecular function, and KEGG pathway, characteristics of nonsynonymous variants in long-unique, short-unique and common genes did not basically overlap among them, indicating specific selection of gene characteristics for each strain. Characteristics of synonymous variants were also sorted, but the synonymous variants may not influence the amino acid sequence of the gene and structure of the protein translated, rather these characteristics may be necessary to maintain the strain and preserved under artificial selection. Variants in intron and UTR may have potential effects on the gene expression, but should be investigated in detail in future study. Analyses of cis-regulatory elements might be important to understand regulation of gene expression, but the information on this region in T. castaneum is not available, therefore, the variants in cis-regulatory elements could not be analyzed.Figure 2Analytical results of the position of small variants in a whole genome in long and short strains (A) Numbers of variants in genic region including exon region, intron, UTR and other non-cording regions were indicated. As shown in parentheses, some ncRNAs and tRNAs were contained in exon, intron, and UTR regions. In short strain, there were five regions where two different genes overlap in 5′-UTR and 3′-UTR, respectively. Numbers of genes with variants in exon, intron and UTR regions in long and short strains (B). Numbers of long-unique, short-unique and common genes were shown by Venn diagrams. Common genes contain variants with different DNA sequences between long and short strains. Enrichment analyses of the function of genes with variants sorted into four categories (biological process, cellular component, molecular function, and KEGG pathway) (C). The heatmap is generated using the R package “gplots” (version 3.1.1, https://cran.r-project.org/web/packages/gplots/index.html). The list of each ontology shows the ID and term. The KO id is shown by a three- or four-letter organism code, the first-letter of the genus name and the first two- or three-letters of the species name of the scientific name of the organism, with pathway number. For example, Neuroactive ligand-receptor interaction of Tribolium castaneum is shown as “tca04080”.Full size imageTo explore the position of genes with variants associated with duration of death feigning in linkage groups, bulk segregant analysis was carried out (Fig. 3). The red approximate lines of the plot data crossed over the green threshold lines (P  More

  • in

    An injured pachypleurosaur (Diapsida: Sauropterygia) from the Middle Triassic Luoping Biota indicating predation pressure in the Mesozoic

    Geological backgroundThe Luoping Biota from quarries near Daaozi Village, Luoping County, Yunnan Province, China, includes diverse arthropods, conodonts, foraminifers, molluscs, echinoderms, brachiopods, fishes, marine reptiles, plants, and trace fossils8,10,11,12,13. The fossil beds occur in Member II of the Guanling Formation which in the Daaozi section comprises approximately 16 m of dark-coloured micritic limestone, thin to moderately thickly bedded, indicating a semi-enclosed intraplatform setting10,11. The co-occurring conodont assemblages, primarily consisting of Cratognathodus sp. and Nicoraella kockeli, indicate that the Luoping Biota belongs to the Pelsonian Substage of the middle Anisian, and the U–Pb age, which is 246.6 ± 1.4 Ma, of the volcanic tuff at the bottom of Member I confirms this age10,14.Systematic palaeontologySuperorder Sauropterygia Owen, 186015.Order Eosauropterygia Rieppel, 199416.Family Incertae Sedis.Genus Diandongosaurus Shang, Wu & Li, 2011.Type speciesDiandongosaurus acutidentatus Shang, Wu & Li, 2011.Revised diagnosisSmall-to-medium-sized eosauropterygian with the following unique combination of characters: premaxilla with long, fang-shaped teeth; maxilla with single enlarged fang alongside smaller teeth; parietal foramen about level with anterior margin of supratemporal fenestra; supratemporal smaller than orbit; interorbital bridge broad; frontal excluded from orbit; posterolateral processes of frontal extending over anterior margin of supratemporal fenestra; postorbital excluded from infratemporal fenestra by contact between jugal and squamosal; ectopterygoid present; vertebral column consisting of about 38 presacral, 3 sacral, and more than 30 caudal vertebrae; anterior caudal ribs elongate without tapering distal end; clavicle with distinct anterior processes laterally; entepicondylar foramen absent; acetabular process of pubis strongly offset from the main body.Diandongosaurus cf. acutidentatus.MaterialWIGM SPC V 1105, a nearly complete skeleton exposed ventrally (Fig. 1).Figure 1Full skeleton of WIGM SPC V 1105, viewed from above. Note the missing left foot. Scale bar = 10 cm.Full size imageLocality and horizonDaaozi Village, Luoping County, Yunnan Province, China; Member II of the Guanling Formation, Anisian, Middle Triassic.DescriptionWIGM SPC V 1105 is a large pachypleurosaur with a length of 88.6 cm from the tip of the snout to the end of the caudal vertebral column (Fig. 1). The specimen is exposed in ventral view, with the cranium exposed both ventrally and dorsally. In the holotype, the cranium comprises 7.8% of the total length, neck 22.9%, trunk 32.4%, and tail 36.9% (Table 1).Table 1 Selected measurements (in mm) of WIGM SPC V 1105.Full size tableSkullThe skull of WIGM SPC V 1105 is exposed in both dorsal and ventral views and is dorsoventrally compressed (Fig. 2). The external naris and the supratemporal fenestra are oval-shaped, while the orbit is nearly circular.Figure 2Photograph and interpretative drawing of the skull of WIGM SPC V 1105. (a, b) In dorsal view; (c, d) In ventral view. ang. Angular, at.c atlantal centrum, at.nar atlantal neural arch, ax.c axial centrum, ax.nar axial neural arch, bo basioccipital, d dentary, ec ectopterygoid, eo-op exoccipital-opisthotic, f frontal, hd hyoid, j jugal, m maxilla, n nasal, p parietal, pat proatlas, pl palatine, pm premaxilla, pob postorbital, pof postfrontal, prf prefrontal, pt pterygoid, q quadrate, qrp quadrate ramus of pterygoid, rap retroarticular process, sang surangular, so supraoccipital, sp splenial, sq squamosal, vo vomer. Scale divisions in (a) = 1 mm. Scale bar in (b–d) = 2 cm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imageIn dorsal view (Fig. 2a,b), the premaxillary portion of the rostrum protrudes, defined by snout constriction at the anterior maxilla, different from the reported specimens of D. acutidentatus17,18. The premaxilla forms the anterior and the medial margins of the external naris. The nasal process extends and narrows posteriorly alongside the nasal posteromedially, reaching the anterior margin of the orbit, and contacting the anterior frontal with a cuspidal border line. The premaxilla contacts the maxilla lateral to the external naris.The maxilla is elongate, with a laterally broad anterior portion and tapering posterior process. Its anteromedial margin forms the posterolateral border of the external naris and is overlapped by the posterior premaxilla laterally. The anterior snout constriction is mostly defined by strong medial curvature of the anterolateral maxilla margin. Medially the maxilla contacts the nasal immediately posterior to the external naris, and the prefrontal posterior to that; the nasal contact is likely the longer. Posteriorly, the maxilla borders the anterolateral margin of the orbit. The posterior process of the maxilla contacts the jugal lateral to the orbit. The nasals are broken. They are separated medially by the premaxilla and make a small contribution to the posterior external naris. The external naris is subcircular.The prefrontal is an arch-shaped bone, fused with the lacrimal. Its dorsal portion expands posteriorly, with its ventral portion forming the anterodorsal margin of the orbit. Posteriorly, the prefrontal overlaps the postfrontal obliquely at the midpoint of the dorsal border of the orbit. The postfrontal is a small trapezoid-shaped bone that forms the posterodorsal margin of the orbit, and is more extensive than in Dianopachysaurus dingi19. Posteriorly, it meets the postorbital anterior to the supratemporal fenestra and has a small medial contact with the parietal, separating the postfrontal from the supratemporal fenestra. Both the prefrontal and postfrontal contact the frontal dorsally, preventing it from entering the orbit.The frontals are fused medially into a butterfly shape in dorsal view, expanding obliquely in four directions. Anteriorly the contacts with the nasals are uncertain but were likely to have been broad. The median contact with the premaxilla is narrow and irregular. The frontal meets the prefrontal and the postfrontal laterally along the arc of the dorsal orbital margin, preventing it from entering the orbit, as in Diandongsosaurus acutidentatus17, but unlike both Keichousaurus hui and Dianopachysaurus dingi19,20. The frontal does not enter the supratemporal fenestra either, being narrowly excluded by the parietal and the postorbital as in D. acutidentatus17. In Dianopachysaurus dingi19, contact between the postfrontal and parietal excludes the frontal from the supratemporal fenestra. Posteriorly, the frontal expands slightly, laterally towards the supratemporal fenestrae, and diverges into a narrow fork around the anterior processes of the parietals, separating them from the postfrontal.The parietals are partly fused, showing a suture only anterior to the pineal foramen. The anterior processes insert between the posterior frontal margins with an arch-shaped border. Laterally, the parietal extends a short process to meet the postorbital in a narrow contact at the anterior margin of the supratemporal fenestra, posterior to the postfrontal. This differs from K. hui and Dianopachysaurus dingi19,20, in which the parietal contacts the postfrontal anterolaterally. The bone forms the medial margin of the supratemporal fenestra. The narrow posterolateral processes are inserted by the dorsal processes of the squamosal. The pineal foramen is sub-circular and aligns with the anterior margin of the supratemporal fenestra, more anterior than in K. hui20 and not elongate as in Dianopachysaurus dingi19.The postorbital is roughly triradiate, developing three processes: anteroventral, anteromedial, and posterior. The anteroventral process outlines the posterior border of the orbital, overlapped by the jugal laterally. The narrow anteromedial process extends dorsally, forming the anterior margin of the supratemporal fenestra, and meeting the postfrontal and the parietal anterior to the supratemporal fenestra, unlike in the reported specimens of D. acutidentatus, K. hui, and Dianopachysaurus dingi17,19,20, and more like nothosaurs21,22. It is broadly overlapped by the postfrontal. The posterior process is triangular and extends nearly to the posterolateral margin of the supratemporal fenestra, forming the border of most of its lateral portion. Posteriorly, the tip of the process inserts into the squamosal.The jugal is boomerang-shaped, forming most of the lateral border of the orbit. It contacts the maxilla at the anteroventral margin of the orbital, dorsally overlapping it. Posteriorly, the jugal forms the anterior border of the infratemporal fenestra. Its posterior process is anteroposteriorly broad and extends dorsally, overlapping the postorbital at the posteroventral margin of the orbital. As in D. acutidentatus17, the posterior process of the jugal has a small contact dorsally with the anterior process of the squamosal.The squamosal is a large bone expanded in four directions. The anterior process forms most of the upper temporal bar, extending anterior to the level of the anterior margin of the supratemporal fenestra and partially overlapped medially by the postorbital, except where the squamosal holds the posteriormost point of the postorbital. Anteriormost on the squamosal, there is a small lateral contact with the posterior process of the jugal. The medial process of the squamosal forms almost the whole posterior margin of the supratemporal fenestra, inserting into the posterolateral process of the parietal medially. The posterolateral descending process is robust and expands ventrally, forming a sheet at the posterior margin of the cranium and contacting the lateral portion of the quadrate on its posteromedial face. However, the posterior process, the shortest of these four processes, is not as obvious as in the reported specimens of Dianopachysaurus. acutidentatus or K. hui17,20. The supratemporal fenestra is rounded and smaller than the orbit, with a straighter lateral margin. It is less elongate than in Dianopachysaurus dingi and K. hui19,20.The quadratojugal is not exposed. The supraoccipital is a rhomboid bone inserted ventral to the parietal but is substantially broken; it forms the dorsal margin of the foramen magnum. The exoccipital-opisthotic forms the lateral margin of the foramen magnum, while the basioccipital forms the ventral; these elements are also broken.In ventral view (Fig. 2c,d), the internal choana is roughly circular. The vomer is a long bone with a bifurcating posterior portion along the midline of the palate and forms the medial margin of the internal choana. Anteriorly, the bone meets the palatal portion of the premaxilla and contacts the maxilla anterolaterally. Posteriorly, the posteromedial processes of the two vomers are separated by the anterior process of the pterygoid and the posterior contact with the palatine is small, as in D. acutidentatus18,22 but unlike in K. hui20.The palatine is a strap-like bone. It forms the posterolateral margin of the internal choanae. Anterolaterally, it contacts the maxilla, and meets the vomer on its medial side. Posteromedially, there is a highly irregular, oblique suture line between the palatine and the pterygoid.The pterygoid is one of the largest bones of the skull, forming most of the palate posteriorly. The two pterygoids are fused along the midline leaving a straight groove anteriorly that becomes more irregular posteriorly. Unlike D. acutidentatus, it has neither central opening, nor posterior vacuity18. The tapering anterior process of the pterygoid inserts between the two vomers, whereas it is overlapped in K. hui20, and anterolaterally the pterygoid has a large oblique contact with the palatine. Laterally, the transverse process of the pterygoid expands ventral and posterior to the posterior margin of the ectopterygoid. The pterygoid forms almost the entirety of the subtemporal fenestra margin anteriorly, medially, and posteriorly. The elongate quadrate ramus of the pterygoid extends posterolaterally to the posterior margin of the quadrate, making a long contact with the pterygoid ramus of the quadrate.The ectopterygoid is roughly a small square bone, suturing to the transverse process of the pterygoid. It is not as prominent as in nothosaurs (e.g. Nothosaurus21, Lariosaurus22), but is relatively larger than in the reported specimens of D. acutidentatus18,23, whereas the presence of an ectopterygoid is uncertain in K. hui and Dianopachysaurus dingi19,20. The ectopterygoid contacts the palatine anteriorly, excluding the palatine from the subtemporal fenestra. Posteriorly it makes a small contribution to the subtemporal fenestra margin lateral to the transverse process of the pterygoid. The quadrate is exposed partly, contacting the quadrate ramus of the pterygoid with its pterygoid ramus. Two rod-like hyoids are ossified and well preserved, lying beneath the pterygoid. They are elongate and slightly expanded at each end.MandibleThe mandible is exposed mainly in ventral view and partly in dorsal (Fig. 2). The dentary is a long bone, occupying over one-half of the ramus as a counterpart to the premaxilla, with a laterally broader symphyseal portion than in D. acutidentatus or K. hui18,20,23. The surangular is partly exposed in dorsal view along the dorsal margin of the mandible, extending ventral to the squamosal. The angular is a long strap-shaped bone that meets the dentary anteriorly and the retroarticular process posteriorly. The articular is sutured dorsal to the angular, with a distinct retroarticular process that extends posteriorly with a tapering end.DentitionIn ventral view (Fig. 2c,d), nine premaxillary teeth and seven lower teeth are visible, which are procumbent, fang-like and with apicobasal striations. The 2nd and 3rd right and the 1st, 3rd and 5th left premaxillary teeth are fully grown, elongate and less curved compared to the other teeth. However, the reported specimens of D. acutidentatus and the nothosauroids Lariosaurus and Nothosaurus carry five teeth on each premaxilla17. The space between the 2nd and 3rd right premaxillary teeth suggests that there might be one or two missing teeth. There is one fang-like tooth on each maxilla, surrounded by small tapering teeth, and there are five to six corresponding teeth in the lower jaw. The caniniform teeth also have apicobasal striations like the premaxillary teeth. The row of dentary teeth is restricted to a level anterior to the posterior margin of the orbit.Vertebrae and ribsThere are 38 presacral vertebrae, 3 sacral and 33 caudal (Fig. 1); these counts are roughly the same in coeval Eosauropterygia19,24,25. The atlas and axis are dorsally exposed (Fig. 2a,b). The atlas leans anteriorly, and its neural spine does not meet its counterpart. The proatlas is a pentagonal bone, disarticulated from the atlas. The axis has been rotated laterally, but still articulates with the atlas.There are 19 cervical vertebrae, compared to 20/21 in Dianopachysaurus dingi19. The centra cylinders are rhomboidal in ventral view, increase in length posteriorly and the vertebrae articulate with one another compactly. The parapophyseal articulation on the cervical rib (CR), visible in ventral view, is robust and offset about 90° from the long axis of the rib, defined between the main body and a prominent anterior process. These posterior and anterior extensions are approximately equal in length until about CR14, where the posterior extension starts to lengthen strongly. The anterior process becomes strongly reduced from CR16 onwards.There are approximately 19 thoracolumbar vertebrae, most of which are covered by the gastralia (18 in Dianmeisaurus gracilis25); the count estimated from two gastralial rows corresponding to one vertebra. The intercentral articulation is less compact than in the cervical vertebrae. The transverse processes face posteriorly. The dorsal ribs are single-headed arch-shaped bones with slightly expanded proximal flat ends, but otherwise retain constant diameter along their whole length, ending distally in a flattened stub. Dorsal ribs DR1–6 are exposed ventrally, while the rest are mostly overlain by the gastralia. There are 24 rows of gastralia, suggesting 12 more dorsal vertebrae covered, each gastralium consisting of one medial element and four lateral elements (Fig. 4a).Three sacral vertebrae can be recognized in dorsal view (Fig. 4b), the same as in Dianmeisaurus gracilis, Dianmeisaurus dingi and K. hui19,24,26. The sacral ribs are elongate and cylindrical with thickened distal ends, and closely articulate with the centrum and possibly overlap the rib posterior to each proximally. Distally the sacral rib is expanded posteriorly into a small triangular process that overlaps the next sacral rib posteriorly. Sacral ribs SR2 and SR3 likely articulate with the ilium, while the others are overlain by pubis and ischium (Fig. 3c,d).Figure 3Photographs and interpretative drawings of the pectoral girdle, forelimb, pelvic girdle and hindlimb of WIGM SPC V 1105 in ventral view. (a, b) Pectoral girdle and forelimb. (c, d) Pelvic girdle and hindlimb. as astragalus, cal calcaneum, cl clavicle, co coracoid, cr1 caudal rib 1, cr19 cervical rib 19, cv1 caudal vertebra 1, cv19 cervical vertebra 19, dc2 distal carpal 2, dc3 distal carpal 3, dc4 distal carpal 4, dr2 dorsal rib 2, dv2 dorsal vertebra 2, dr19 dorsal rib 19, dv19 dorsal vertebra 19, f femur, fi fibular, hu humerus, icl interclavicle, il Ilium, in intermedium, is ischium, mc1 metacarpal 1, mc5 metacarpal 5, mt1 metatarsal 1, mt5 metatarsal 5, pu pubis, ra radius, sc scapula, sr1 sacral rib 1, ti tibia, ul ulna, uln ulnare. Scale bar in (a, b, d) = 2 cm. Scale divisions in (a) = 1 mm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imageThere are 33 rhomboidal caudal vertebrae that decrease in size gradually towards the posterior end of the tail. Caudal vertebrae CV13–21 have strap-shaped neural spines. Caudal ribs are present in CV1–11. They are flat, arch-shaped bones directed slightly posteriorly. The size of the ribs remains roughly the same from CR1–5, but this decreases suddenly from CR6–11 (Fig. 4c). The distal ends of CR3–8 are flat, while more posterior ribs have pointed ends.Figure 4Selected postcranial parts of WIGM SPC V 1105. (a) gastralia near the sacral region in ventral view, the arrow indicating each gastralium consists of one medial element and four lateral elements; (b) sacral region in dorsal view; (c) part of the caudal region in ventral view. cr5 caudal rib 5, cv5 caudal vertebra 5, cv15 caudal vertebra 15, dr19 dorsal rib 19, dv16 dorsal vertebra 16, dv17 dorsal vertebra 17, dv19 dorsal vertebra 19, il ilium, pu pubis, sr1 sacral rib 1, sr2 sacral rib 2, sr3 sacral rib 3, sv1 sacral vertebra 1, sv2 sacral vertebra 2, sv3 sacral vertebra 3. Scale bar = 5 cm. The figure is generated using CorelDRAW X7 (https://www.coreldraw.com/en/pages/coreldraw-x7/).Full size imagePectoral girdle and forelimbThe pectoral girdle is exposed in ventral view (Fig. 3a,b). The interclavicle is an arrowhead-shaped bone with a strongly concave posterior border and two posterolaterally directed lateral processes, unlike the more diamond shape of D. gracilis24. Its tip points anteriorly but does not reach the anterior margin of the pectoral girdle between the clavicles. The clavicle is an L-shaped, strap-like bone with a characteristic prominence anterolaterally, as in D. acutidentatus and larger than in D. gracilis17,24. The clavicle develops a tiny posterolateral process, overlying the dorsal surface of the scapula. The tapering medial process expands to meet its counterpart, forming the anterior margin of the pectoral girdle. The scapula is exposed in ventral view, so the dorsal blade is covered. In this view it is sub-rectangular, with a rounded anterior margin and two posterior facets for the clavicle and humerus, angled obliquely and separated by a small ridge. The coracoid is a strap-shaped bone with proximal and distal ends widened, and the largest element in the pectoral girdle. Its anteromedial margin is more strongly concave than the posteromedial margin. Proximally, the coracoid is flattened and meets the contralateral element in a straight median facet. Distally the coracoid is more robust and expanded anteriorly into a broad rounded process on the anterior margin. The distal margin is straight and articulates with the scapula anteriorly and has a smaller articulation with the humerus posteriorly on a smaller, triangular posterodistal process. There is a small foramen exposed near the anterodistal margin along the scapular facet, larger than in Dianmeisaurus gracilis24.Both forelimbs are nearly complete, ventrally exposed, about 13.7% of the body length (Fig. 3a,b). The humerus is strongly curved (40°) and shorter than the femur (Table 1). The proximal articular surface is rounded, with a larger facet for the scapula than the coracoid, while the articular surface of the distal end is convex, contacting the radius and the ulna with two straight, oblique facets. These facets are more strongly offset than in D. acutidentatus17. There is no evidence for an entepicondylar foramen20,24. The ulna and the radius are nearly equal in length and relatively gracile compared to the humerus (Table 1). The two ends of the ulna are equally widened, while the ends of the radius expand less obviously and are directed slightly medially.There are more than four elements in the carpus, all round and flat in ventral view. The intermedium is slightly larger than the ulnare (Table 1), unlike in D. acutidentatus17, and articulates mediodistally to the ulna, medially to the ulnare. Distal carpal 2 is the largest of the distal carpals and articulates distally between the intermedium and ulnare. Distal carpals 3 and 4 are present but extremely reduced. The metacarpals are elongate and strongly hourglass shaped. Metacarpal 1 is the shortest of the five while metacarpals 2–4 are almost equal in length, and metacarpal 5 is slightly shorter. All the digits are directed towards the ulnar side of the limb. The interosseous space between metacarpals 4 and 5 is the widest. The phalangeal elements are well preserved, but digit 5 of the right manus demonstrates unusual preservation, which will be discussed further in the Discussion. The ungual phalanges of digits 4 and 5 on the left are small and round, while the ungual phalanx of digit 5 on the right is missing. Given that, the forelimb is likely to have had a phalangeal formula of 2–3–4–4–3.Pelvic girdle and hindlimbThe pelvic girdle is exposed ventrally (Fig. 3c,d). The pubis is a large plate-like bone. Both the anterior and posterior margins of the bone are concave near the distal end (about one-third of the whole length), forming a ‘waisted’ shape that is narrower than in Dianmeisaurus gracilis24. The ischium is large and irregularly shaped. Medially it is expanded into a large, squared, plate-like portion that meets the contralateral element along a straight median symphysis. Anterodistally, the ischium is waisted, separating the large, robust anterodistal process with a broad, rounded end that contacts the distal pubis and ilium to form the acetabulum. The anterodistal process is narrower and more strongly offset from the main body than in Dianmeisaurus gracilis24. Posterodistally there is a further broad extension. The thyroid fenestra is large and rectangular and is bounded by the posterior pubis and anterior ischium on both sides. The ilium is covered by the pubis and the ischium in ventral view.The left hindlimb is well preserved and exposed in ventral view (Fig. 3c,d), and the amputated right femur is discussed below. The femur is long and rounded with a slightly waisted epiphysis; it is larger and slenderer than the humerus (Table 1). The proximal end is wider than the distal but is damaged in this specimen. The tibia and the fibula are similarly elongate bones, with the tibia somewhat more robust but more similar in size than in the holotype of D. acutidentatus17. Both have slightly expanded proximal and distal ends, but the proximal end of the fibula is hidden beneath the distal femur. The stronger waist on the fibula gives it a more strongly curved appearance and creates a large interosseous fenestra.The astragalus and calcaneum are the only elements of the tarsus. The astragalus is larger than the calcaneum and located between the distal tibia and fibula with a pointed proximal margin (Table 1). The facets of the astragalus contacting the tibia and the fibula are straight. The calcaneum is subcircular. Length increases from metatarsals 1–4, then decreases in metatarsal 5; metatarsal 1 is the shortest. All the metatarsals have an elongate hourglass shape. The pes is not so well preserved, as digits 1 and 2 are crushed together. The phalanges are less elongate than the metatarsals and shaped like waisted cylinders, except for the ungual phalanx of digit 5; consequently, there may be some missing ungual phalanges from the other digits. The pedal phalangeal formula cannot be determined due to the preservation.Phylogenetic analysisWe added WIGM SPC V 1105 to the cladistic matrix of Lin et al.27 and replicated their analytical methods in PAUP* version 4a169. Our cladistic analysis produced four most parsimonious trees (tree length = 485 steps, CI 0.388, RI 0.622). Strict consensus of these trees (Fig. 5) matches the result of former studies, in that Diandongosaurus share a close relationship with Dianmeisaurus24.Figure 5Strict consensus tree of four most parsimonious tree (TL = 485 steps, CI = 0.388, RI = 0.622), demonstrating the phylogenetic position of WIGM SPC V 1105. Bootstrap support values ≥ 50% (1000 replicates) are labelled. The figure is generated using Adobe Illustrator 2021 (https://www.adobe.com/products/illustrator.html).Full size imageDiandongosaurus shows some similarities with Keichousaurus and Dianopachysaurus18,19, but many morphological differences exist. Keichousaurus and Dianopachysaurus have small tapering teeth19,20, while Diandongosaurus has serried long fang-shaped teeth. The supratemporal fenestra of Diandongosaurus is oval-shaped and larger than in the other two taxa considering the size of the orbit. The caudal ribs of Dianopachysaurus develop a tapering distal end, different from Diandongosaurus, whose caudal ribs have a flat distal end17,20.Diandongosaurus also differs from other Triassic eosauropterygians. The strongly procumbent anterior teeth discriminate it from the pistosauroids, which have upright anterior teeth. The size of the supratemporal fenestra is noticeably larger than in Qianxisaurus28, while the characteristic tapering snout of Wumengosaurus29 differs from the blunt snout of Diandongosaurus. Its clavicle develops an anterior process, which does not exist in European pachypleurosaurs. Diandongosaurus has a smaller supratemporal fenestra than in Lariosaurus and Nothosaurus, in some species of which it is nearly twice the size of the orbit.WIGM SPC V 1105 broadly resembles D. acutidentatus but differs in several features, including being considerably larger and the constricted snout of WIGM SPC V 1105 is a novelty in pachypleurosaur. These morphological distinctions between WIGM SPC V 1105 and D. acutidentatus could be regarded as evidence for establishing a new species. Alternatively, WIGM SPC V 1105 lacks the pterygoid opening in the two referred specimens (specimen NMNS-000933-F03498 and BGPDB-R0001) of D. acutidentatus18,23, and other differences, like the larger size and the rounded ends of humerus and femur, could have been caused by ontogenetic variation or even preservational issues. Based on previous documented specimens, interspecific variation of phalangeal formula exists in D. acutidentatus, as the pedal formular counts 2–3–4–5–4 in the holotype, but 2–3–4–6–4 in the referred specimen BGPDB-R000123. In this case, WIGM SPC V 1105 could be an adult of D. acutidentatus. Given these considerations, we assigned WIGM SPC V 1105 as a conformis (cf.) of D. acutidentatus. More

  • in

    First thorough assessment of de novo oocyte recruitment in a teleost serial spawner, the Northeast Atlantic mackerel (Scomber scombrus) case

    Oocyte size frequency distributionThe OSFD, based on wholemount analysis (formalin-preserved diameter measurements), did not show any hiatus between the assumingly largest PVOs and the smallest VO (Supplementary, Fig. S1). The corresponding mean threshold value, determined statistically by the Gamma/Gaussian method (see technical details below), was 192 µm (95% CI: 187–196 µm) (Supplementary, Fig. S1). Based on histology, this value was, however, at ~ 230 µm, i.e. the formalin-preserved oocyte diameter of PVO4c (Supplementary, Figs. S2B, S3, Table S1).Spawning progressAddressing firstly “the population (wholemount) data set” of 1561 individuals (Table S2), the relative frequency of early-spawning (ORC1), mid-spawning (ORC2), and late-spawning (ORC3) females changed significantly as the spawning season progressed, although with dissimilarity between 2018 and 2019 (Supplementary, Fig. S4). Overall, a significant difference was found among the ORCs frequencies between the two field-sampling years (two-way ANOVA; p = 0.003). In June 2018, over 60% of the females caught were very late spawners or spent (ORC4), this relative frequency increased to almost 90% in July 2018 (Supplementary, Fig. S4A). For 2019, the ORC4 in June was about 50% (Supplementary, Fig. S4B). Combining these 2018 and 2019 data sets, the subsequent comparison showed that July 2018 clearly differed in terms of ORC (a posteriori Tukey test; Supplementary, Fig. S5). More females in mid-spawning were recorded in May and June 2019 compared to the same months in 2018, though this noted difference was statistically insignificant (Supplementary, Fig. S5). Altogether, these outlined variations in ORC (Fig. 1) may be related to survey coverage, i.e. in 2018 these samples were collected in Nordic waters, while in 2019 exclusively within the main spawning area (Fig. 2).Figure 1Wholemount counts of previtellogenic (PVO) versus developing oocytes (VO and FOM) used within the ultrametric method to categorize the “stage of spawning” represented by the oocyte ratio category (ORC). The resulting ORC category (ORC1-4) is showed above each panel. VOs includes cortical alveoli oocytes.Full size imageFigure 2Map with location and number of all mackerel female samples collected from May 2018 to June 2019. The map was created using R v4.0.4 (https://www.r-project.org/) (see details at “Material and methods” section).Full size imagePopulation-level ORC and biometrics appeared linked, the latter represented either by total length (TL)-based gonadosomatic index (GSITL) or relative condition (Kn) (Fig. 3). The 2018 results showed that Kn was higher (p  More

  • in

    Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

    1.Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Google Scholar 
    2.Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64.
    Google Scholar 
    3.Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367:eaba1223.CAS 
    PubMed 

    Google Scholar 
    4.Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.PubMed 
    PubMed Central 

    Google Scholar 
    5.Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Ke PJ, Miki T. Incorporating the soil environment and microbial community into plant competition theory. Front Microbiol. 2015;6:1066.PubMed 
    PubMed Central 

    Google Scholar 
    7.Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.CAS 
    PubMed 

    Google Scholar 
    8.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 

    Google Scholar 
    9.Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science. 2017;355:173–6.CAS 
    PubMed 

    Google Scholar 
    10.Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4:eaau4578.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–8.CAS 
    PubMed 

    Google Scholar 
    12.LaManna JA, Walton ML, Turner BL, Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett. 2016;19:657–67.PubMed 

    Google Scholar 
    13.Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol Evol. 2018;2:1403–7.PubMed 

    Google Scholar 
    14.Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.PubMed 

    Google Scholar 
    15.van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.PubMed 

    Google Scholar 
    16.Schroeder JW, Martin JT, Angulo DF, Razo IAD, Barbosa JM, Perea R, et al. Host plant phylogeny and abundance predict root‐associated fungal community composition and diversity of mutualists and pathogens. J Ecol. 2019;107:1557–66.
    Google Scholar 
    17.Jiang J, Karen CA, Mara B, Maarten BE, James AE, James DB. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am Nat. 2020;195:591–602.
    Google Scholar 
    18.Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun. 2020;11:2204.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen‐host range. Proc Natl Acad Sci USA. 2007;104:4979–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S. Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.PubMed 

    Google Scholar 
    21.Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology. 2015;96:562–74.PubMed 

    Google Scholar 
    22.Benítez MS, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol. 2013;28:705–11.PubMed 

    Google Scholar 
    23.Klironomos J, Zobel M, Tibbett M. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol. 2011;189:366–70.PubMed 

    Google Scholar 
    24.van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco Lett. 2008;11:296–310.
    Google Scholar 
    25.Wiegand T, Moloney KA. Rings, circles, and null‐models for point pattern analysis in ecology. Oikos. 2004;104:209–29.
    Google Scholar 
    26.Perry GL, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 2006;187:59–82.
    Google Scholar 
    27.Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CV, Gunatilleke IA. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009;97:616–28.
    Google Scholar 
    28.Liang M, Liu X, Parker IM, Johnson D, Zheng Y, Luo S, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci Adv. 2019;5:eaax5088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Chen Y, Jia P, Cadotte MW, Wang P, Liu X, Qi Y, et al. Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. J Ecol. 2019;107:1226–37.
    Google Scholar 
    30.Peters HA. Neighbour‐regulated mortality: the influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecol Lett. 2003;6:757–65.
    Google Scholar 
    31.Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–92.PubMed 

    Google Scholar 
    32.Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.PubMed Central 

    Google Scholar 
    33.Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–56.CAS 
    PubMed 

    Google Scholar 
    34.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    35.Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Jonathan R, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 2019;223:462–74.PubMed 

    Google Scholar 
    37.Zhao Z, Li X, Liu MF, Merckx VS, Saunders RM, Zhang D. Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants. ISME J. 2021;15:1614–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Barberán A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.PubMed 

    Google Scholar 
    40.LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat Ecol Evol. 2017;1:1107–15.PubMed 

    Google Scholar 
    41.Peh KS, Lewis SL, Lloyd J. Mechanisms of monodominance in diverse tropical tree‐dominated systems. J Ecol. 2011;99:891–8.
    Google Scholar 
    42.Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204.PubMed 

    Google Scholar 
    43.Waud M, Busschaert P, Lievens B, Jacquemyn H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016;20:155–65.
    Google Scholar 
    44.Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018;217:1230–9.PubMed 

    Google Scholar 
    45.Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
    Google Scholar 
    46.Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–73.
    Google Scholar 
    47.Bardgett RD, Wardle DA. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. New York: Oxford University Press; 2010.48.Kandlikar GS, Johnson CA, Yan X, Kraft NJ, Levine JM. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol Lett. 2019;22:1178–91.PubMed 

    Google Scholar 
    49.Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, et al. Tree co-occurrence and transcriptomic response to drought. Nat Commun. 2017;8:1996.PubMed 
    PubMed Central 

    Google Scholar 
    50.Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016;59:179–87.
    Google Scholar 
    51.Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Google Scholar 
    52.Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6.PubMed 

    Google Scholar 
    54.Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart MM. Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol. 2018;33:52–64.
    Google Scholar  More

  • in

    Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state

    1.Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    2.Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    3.Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.PubMed 

    Google Scholar 
    4.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.5.Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    6.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.7.Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1:492–501.CAS 
    PubMed 

    Google Scholar 
    8.Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125.9.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.10.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    11.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.CAS 
    PubMed 

    Google Scholar 
    12.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    13.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.PubMed 

    Google Scholar 
    14.Cassman N, Prieto-Davó A, Walsh K, Silva GGZ, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;14:3043–65.CAS 
    PubMed 

    Google Scholar 
    15.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.16.Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Tiano L, Garcia-Robledo E, Dalsgaard T, Devol AH, Ward BB, Ulloa O, et al. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep Res Part I Oceanogr Res Pap. 2014;94:173–83.CAS 

    Google Scholar 
    18.Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.CAS 
    PubMed 

    Google Scholar 
    19.Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 2009;80:113–28.
    Google Scholar 
    20.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 

    Google Scholar 
    21.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;1:723–9.22.Codispoti LA, Friedrich GE, Packard TT, Glover HE, Kelly PJ, Spinrad RW, et al. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science. 1986;233:1200 LP–1202.
    Google Scholar 
    23.Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010;330:1375–8.CAS 
    PubMed 

    Google Scholar 
    24.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci USA. 2014;111:10714 LP–10719.
    Google Scholar 
    25.Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep. 2010;2:728–38.CAS 
    PubMed 

    Google Scholar 
    27.Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci USA. 2012;109:15996–6003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol. 2004;70:2941–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Weinbauer MG, Brettar I, Höfle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    30.Heldal M, Bratbak G. Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser. 1991;72:205–12.
    Google Scholar 
    31.Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–62.
    Google Scholar 
    32.Brum JR, Morris J, Décima M, Stukel M. Mortality in the oceans: causes and consequences. In Eco-DAS IX Symposium Proceedings. Association for the Sciences of Limnology and Oceanography; 2014.33.Colombet J, Sime-Ngando T. Seasonal depth-related gradients in virioplankton: lytic activity and comparison with protistan grazing potential in Lake Pavin (France). Micro Ecol. 2012;64:67–78.
    Google Scholar 
    34.Colombet J, Sime-Ngando T, Cauchie HM, Fonty G, Hoffmann L, Demeure G. Depth-related gradients of viral activity in Lake Pavin. Appl Environ Microbiol. 2006;72:4440–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Brum J, Steward G, Jiang S, Jellison R. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Micro Ecol. 2005;41:247–60.
    Google Scholar 
    36.Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CAS 
    PubMed 

    Google Scholar 
    38.Székely AJ, Breitbart M. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett. 2016;363:27.
    Google Scholar 
    39.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: Mining viral signal from microbial genomic data. PeerJ. 2015;2015:e985.
    Google Scholar 
    40.Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Aldunate M, Henríquez-Castillo C, Ji Q, Lueders-Dumont J, Mulholland MR, Ward BB, et al. Nitrogen assimilation in picocyanobacteria inhabiting the oxygen-deficient waters of the eastern tropical North and South Pacific. Limnol Oceanogr. 2020;65:437–53.CAS 

    Google Scholar 
    42.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    43.Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012;14:2526–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 2015;9:2682–96.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Allen LZ, Allen EE, Badger JH, McCrow JP, Paulsen IT, Elbourne LD, et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 2012;6:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.47.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    48.Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 

    Google Scholar 
    49.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 

    Google Scholar 
    50.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;3:e3550.PubMed 
    PubMed Central 

    Google Scholar 
    52.Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.
    Google Scholar 
    54.Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol. 2017;8:2384.PubMed 
    PubMed Central 

    Google Scholar 
    56.Zhang Y, Pohlmann EL, Halbleib CM, Ludden PW, Roberts GP. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regula. J Bacteriol. 2001;183:1610–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tong W-H. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–5700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Py B, Barras F. Building Feg-S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.59.Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–6.CAS 
    PubMed 

    Google Scholar 
    60.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.61.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757 LP–760.
    Google Scholar 
    62.Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.PubMed 
    PubMed Central 

    Google Scholar 
    63.Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol. 2015;6:334.PubMed 
    PubMed Central 

    Google Scholar 
    64.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;1:2706–22.65.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    66.Lill R, Dutkiewicz R, Elsässer HP, Hausmann A, Netz DJA, Pierik AJ, et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta Mol Cell Res. 2006;1763:652–67.67.Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol. 2006;2:171–4.CAS 
    PubMed 

    Google Scholar 
    68.Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta Bioenerg. 2013;1827:455–69.CAS 

    Google Scholar 
    69.Xu XM, Møller SG. Iron-sulfur clusters: Biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal. 2011;15:271–307.PubMed 

    Google Scholar 
    70.Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics. 2015;7:943–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003;278:38352–9.CAS 
    PubMed 

    Google Scholar 
    73.Outten FW, Wood MJ, Muñoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003;278:45713–9.CAS 
    PubMed 

    Google Scholar 
    74.Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72:110–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Shepard EM, Boyd ES, Broderick JB, Peters JW. Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol. 2011;15:319–27.76.Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–8.CAS 
    PubMed 

    Google Scholar 
    77.Seidler A, Jaschkowitz K, Wollenberg M. Incorporation of iron-sulphur clusters in membrane-bound proteins. Biochem Soc Trans. 2001;29:418–21.CAS 
    PubMed 

    Google Scholar 
    78.Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot J-P. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res. 2002;73:215–22.CAS 
    PubMed 

    Google Scholar 
    79.Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61:564–72.CAS 
    PubMed 

    Google Scholar 
    80.Resnekov O, Driks A, Losick R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J Bacteriol. 1995;177:5628–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Sonenshein AL. Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol. 2006;16:R14–R16.82.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 

    Google Scholar 
    83.Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMed 
    PubMed Central 

    Google Scholar 
    84.Mobberley J, Nathan Authement R, Segall AM, Edwards RA, Slepecky RA, Paul JH. Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico. Appl Environ Microbiol. 2010;76:829–42.CAS 
    PubMed 

    Google Scholar 
    85.Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMed 
    PubMed Central 

    Google Scholar 
    86.Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system /: functional mechanism of toxin and inactivation by 2 2 complex formation. Proc Natl Acad Sci. 2003;100:1661–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett. 2013;340:73–85.88.Kawano M. Divergently overlapping cis -encoded antisense RNA regulating toxin-antitoxin systems from E. coli. RNA Biol. 2012;9:1520–7.CAS 
    PubMed 

    Google Scholar 
    89.Smith MA, Bidochka MJ. Bacterial fitness and plasmid-loss: the importance of culture conditions and plasmid size. Can J Microbiol. 1998;44:351–5.CAS 
    PubMed 

    Google Scholar 
    90.Summers DK. The kinetics of plasmid loss. Trends Biotechnol. 1991;9: 273–8.91.Persad AK, Williams ML, LeJeune JT. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7. AIMS Microbiol. 2017;3:872–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499:219–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Hargreaves KR, Kropinski AM, Clokie MR. Bacteriophage behavioral ecology. Bacteriophage. 2014;4:e29866.PubMed 
    PubMed Central 

    Google Scholar 
    94.Naught LE, Gilbert S, Imhoff R, Snook C, Beamer L, Tipton P. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Biochemistry. 2002;41:9637–45.CAS 
    PubMed 

    Google Scholar 
    95.Dong C, Flecks S, Unversucht S, Haupt C, van Pee K-H, Naismith JH. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science. 2005;309:2216–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Fouces R, Mellado E, Diez B, Barredo JL. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology. 1999;145:855–68.CAS 
    PubMed 

    Google Scholar 
    97.Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Poonsuk K, Bluhm AP, Cabanas D, et al. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol. 2018;109:401–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kurtov D, Kinghorn JR, Unkles SE. The Aspergillus nidulans panB gene encodes ketopantoate hydroxymethyltransferase, required for biosynthesis of pantothenate and Coenzyme A. Mol Gen Genet. 1999;262:115–20.CAS 
    PubMed 

    Google Scholar 
    99.Huisjes R, Card DJ. Methods for assessment of pantothenic acid (Vitamin B5). In: Harrington D, editor. Laboratory assessment of vitamin status. London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK : Elsevier Inc.; 2019. p. 265–299. https://doi.org/10.1038/s41396-021-01143-1.100.Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2:2.101.Begley TP, Kinsland C, Strauss E. The biosynthesis of coenzyme a in bacteria. Vitam Horm. 2001;61:157–71.CAS 
    PubMed 

    Google Scholar 
    102.Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez MC, Rigault S, et al. Genetic and sequence analyses of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol. 1991;173:6058–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 2015;9:461–71.CAS 
    PubMed 

    Google Scholar 
    104.Heal KR, Qin W, Amin SA, Devol AH, Moffett JW, Armbrust EV, et al. Accumulation of NO2-cobalamin in nutrient-stressed ammonia-oxidizing archaea and in the oxygen deficient zone of the eastern tropical North Pacific. Environ Microbiol Rep. 2018;10:453–7.CAS 
    PubMed 

    Google Scholar 
    105.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    106.Streisinger G, Emrich J, Stahl MM. Chromosome structure in phage T4, III. Terminal redundancy and length determination. Proc Natl Acad Sci USA. 1967;57:292–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci USA. 2017;114:E4324–E4333.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Brum J. 5m intervals of CTD profiles from R/V New Horizon cruise NH1315 in the Eastern Tropical North Pacific (ETNP) during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-08-31 (2020). https://doi.org/10.26008/1912/bco-dmo.822818.1.109.Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Micro Ecol. 1998;14:113–8.
    Google Scholar 
    110.Brum J. Estimated abundances of viruses and bacteria determined in samples collected in the Eastern Tropical North Pacific (ETNP) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823094.1.111.Binder B. Reconsidering the relationship between vitally induced bacterial mortality and frequency of infected cells. Aquat Micro Ecol. 1999;18:207–15.
    Google Scholar 
    112.Brum J. Estimated frequency of lytic viral infection from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-01 (2020). https://doi.org/10.26008/1912/bco-dmo.822914.1.113.Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004;11:36–42.114.Brum J. Morphotypes, capsid widths, and tail lengths of viruses from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823131.1.115.John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Duhaime MB, Sullivan MB. Ocean viruses: Rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.CAS 
    PubMed 

    Google Scholar 
    117.Brum J. Accession numbers of viral metagenomes from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-04 (2020) https://doi.org/10.26008/1912/bco-dmo.823295.1.118.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    119.Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinforma. 2003; Chapter 10: Unit 10.3.120.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230.121.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:1002195.
    Google Scholar 
    122.Team RCR. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.123.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York: 2016.124.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community Ecology Package. R package version 2.5-2. 2013 http://RForge.R-project.org/projects/vegan/.125.Wilkinson L. venneuler: Venn and Euler diagrams. R package version 1.1-0. 2011 https://CRAN.Rproject.org/package=venneuler.126.Harrell FE, With contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R package version 4.3-0. 2019 https://CRAN.R-project.org/package=Hmisc.127.Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available from https://github.com/taiyun/corrplot.128.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang H Bin, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.129.Sturges HA. The choice of a class interval. J Am Stat Assoc. 1926;21:65–66.130.Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CAS 
    PubMed 

    Google Scholar  More