More stories

  • in

    Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

    1.Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Google Scholar 
    2.Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64.
    Google Scholar 
    3.Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367:eaba1223.CAS 
    PubMed 

    Google Scholar 
    4.Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.PubMed 
    PubMed Central 

    Google Scholar 
    5.Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Ke PJ, Miki T. Incorporating the soil environment and microbial community into plant competition theory. Front Microbiol. 2015;6:1066.PubMed 
    PubMed Central 

    Google Scholar 
    7.Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.CAS 
    PubMed 

    Google Scholar 
    8.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 

    Google Scholar 
    9.Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science. 2017;355:173–6.CAS 
    PubMed 

    Google Scholar 
    10.Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4:eaau4578.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–8.CAS 
    PubMed 

    Google Scholar 
    12.LaManna JA, Walton ML, Turner BL, Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett. 2016;19:657–67.PubMed 

    Google Scholar 
    13.Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol Evol. 2018;2:1403–7.PubMed 

    Google Scholar 
    14.Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.PubMed 

    Google Scholar 
    15.van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.PubMed 

    Google Scholar 
    16.Schroeder JW, Martin JT, Angulo DF, Razo IAD, Barbosa JM, Perea R, et al. Host plant phylogeny and abundance predict root‐associated fungal community composition and diversity of mutualists and pathogens. J Ecol. 2019;107:1557–66.
    Google Scholar 
    17.Jiang J, Karen CA, Mara B, Maarten BE, James AE, James DB. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am Nat. 2020;195:591–602.
    Google Scholar 
    18.Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun. 2020;11:2204.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen‐host range. Proc Natl Acad Sci USA. 2007;104:4979–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S. Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.PubMed 

    Google Scholar 
    21.Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology. 2015;96:562–74.PubMed 

    Google Scholar 
    22.Benítez MS, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol. 2013;28:705–11.PubMed 

    Google Scholar 
    23.Klironomos J, Zobel M, Tibbett M. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol. 2011;189:366–70.PubMed 

    Google Scholar 
    24.van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco Lett. 2008;11:296–310.
    Google Scholar 
    25.Wiegand T, Moloney KA. Rings, circles, and null‐models for point pattern analysis in ecology. Oikos. 2004;104:209–29.
    Google Scholar 
    26.Perry GL, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 2006;187:59–82.
    Google Scholar 
    27.Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CV, Gunatilleke IA. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009;97:616–28.
    Google Scholar 
    28.Liang M, Liu X, Parker IM, Johnson D, Zheng Y, Luo S, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci Adv. 2019;5:eaax5088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Chen Y, Jia P, Cadotte MW, Wang P, Liu X, Qi Y, et al. Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. J Ecol. 2019;107:1226–37.
    Google Scholar 
    30.Peters HA. Neighbour‐regulated mortality: the influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecol Lett. 2003;6:757–65.
    Google Scholar 
    31.Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–92.PubMed 

    Google Scholar 
    32.Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.PubMed Central 

    Google Scholar 
    33.Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–56.CAS 
    PubMed 

    Google Scholar 
    34.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    35.Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Jonathan R, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 2019;223:462–74.PubMed 

    Google Scholar 
    37.Zhao Z, Li X, Liu MF, Merckx VS, Saunders RM, Zhang D. Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants. ISME J. 2021;15:1614–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Barberán A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.PubMed 

    Google Scholar 
    40.LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat Ecol Evol. 2017;1:1107–15.PubMed 

    Google Scholar 
    41.Peh KS, Lewis SL, Lloyd J. Mechanisms of monodominance in diverse tropical tree‐dominated systems. J Ecol. 2011;99:891–8.
    Google Scholar 
    42.Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204.PubMed 

    Google Scholar 
    43.Waud M, Busschaert P, Lievens B, Jacquemyn H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016;20:155–65.
    Google Scholar 
    44.Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018;217:1230–9.PubMed 

    Google Scholar 
    45.Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
    Google Scholar 
    46.Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–73.
    Google Scholar 
    47.Bardgett RD, Wardle DA. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. New York: Oxford University Press; 2010.48.Kandlikar GS, Johnson CA, Yan X, Kraft NJ, Levine JM. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol Lett. 2019;22:1178–91.PubMed 

    Google Scholar 
    49.Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, et al. Tree co-occurrence and transcriptomic response to drought. Nat Commun. 2017;8:1996.PubMed 
    PubMed Central 

    Google Scholar 
    50.Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016;59:179–87.
    Google Scholar 
    51.Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Google Scholar 
    52.Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6.PubMed 

    Google Scholar 
    54.Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart MM. Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol. 2018;33:52–64.
    Google Scholar  More

  • in

    Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state

    1.Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    2.Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    3.Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.PubMed 

    Google Scholar 
    4.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.5.Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    6.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.7.Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1:492–501.CAS 
    PubMed 

    Google Scholar 
    8.Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125.9.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.10.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    11.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.CAS 
    PubMed 

    Google Scholar 
    12.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    13.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.PubMed 

    Google Scholar 
    14.Cassman N, Prieto-Davó A, Walsh K, Silva GGZ, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;14:3043–65.CAS 
    PubMed 

    Google Scholar 
    15.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.16.Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Tiano L, Garcia-Robledo E, Dalsgaard T, Devol AH, Ward BB, Ulloa O, et al. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep Res Part I Oceanogr Res Pap. 2014;94:173–83.CAS 

    Google Scholar 
    18.Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.CAS 
    PubMed 

    Google Scholar 
    19.Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 2009;80:113–28.
    Google Scholar 
    20.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 

    Google Scholar 
    21.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;1:723–9.22.Codispoti LA, Friedrich GE, Packard TT, Glover HE, Kelly PJ, Spinrad RW, et al. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science. 1986;233:1200 LP–1202.
    Google Scholar 
    23.Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010;330:1375–8.CAS 
    PubMed 

    Google Scholar 
    24.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci USA. 2014;111:10714 LP–10719.
    Google Scholar 
    25.Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep. 2010;2:728–38.CAS 
    PubMed 

    Google Scholar 
    27.Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci USA. 2012;109:15996–6003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol. 2004;70:2941–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Weinbauer MG, Brettar I, Höfle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    30.Heldal M, Bratbak G. Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser. 1991;72:205–12.
    Google Scholar 
    31.Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–62.
    Google Scholar 
    32.Brum JR, Morris J, Décima M, Stukel M. Mortality in the oceans: causes and consequences. In Eco-DAS IX Symposium Proceedings. Association for the Sciences of Limnology and Oceanography; 2014.33.Colombet J, Sime-Ngando T. Seasonal depth-related gradients in virioplankton: lytic activity and comparison with protistan grazing potential in Lake Pavin (France). Micro Ecol. 2012;64:67–78.
    Google Scholar 
    34.Colombet J, Sime-Ngando T, Cauchie HM, Fonty G, Hoffmann L, Demeure G. Depth-related gradients of viral activity in Lake Pavin. Appl Environ Microbiol. 2006;72:4440–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Brum J, Steward G, Jiang S, Jellison R. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Micro Ecol. 2005;41:247–60.
    Google Scholar 
    36.Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CAS 
    PubMed 

    Google Scholar 
    38.Székely AJ, Breitbart M. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett. 2016;363:27.
    Google Scholar 
    39.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: Mining viral signal from microbial genomic data. PeerJ. 2015;2015:e985.
    Google Scholar 
    40.Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Aldunate M, Henríquez-Castillo C, Ji Q, Lueders-Dumont J, Mulholland MR, Ward BB, et al. Nitrogen assimilation in picocyanobacteria inhabiting the oxygen-deficient waters of the eastern tropical North and South Pacific. Limnol Oceanogr. 2020;65:437–53.CAS 

    Google Scholar 
    42.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    43.Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012;14:2526–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 2015;9:2682–96.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Allen LZ, Allen EE, Badger JH, McCrow JP, Paulsen IT, Elbourne LD, et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 2012;6:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.47.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    48.Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 

    Google Scholar 
    49.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 

    Google Scholar 
    50.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;3:e3550.PubMed 
    PubMed Central 

    Google Scholar 
    52.Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.
    Google Scholar 
    54.Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol. 2017;8:2384.PubMed 
    PubMed Central 

    Google Scholar 
    56.Zhang Y, Pohlmann EL, Halbleib CM, Ludden PW, Roberts GP. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regula. J Bacteriol. 2001;183:1610–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tong W-H. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–5700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Py B, Barras F. Building Feg-S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.59.Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–6.CAS 
    PubMed 

    Google Scholar 
    60.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.61.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757 LP–760.
    Google Scholar 
    62.Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.PubMed 
    PubMed Central 

    Google Scholar 
    63.Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol. 2015;6:334.PubMed 
    PubMed Central 

    Google Scholar 
    64.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;1:2706–22.65.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    66.Lill R, Dutkiewicz R, Elsässer HP, Hausmann A, Netz DJA, Pierik AJ, et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta Mol Cell Res. 2006;1763:652–67.67.Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol. 2006;2:171–4.CAS 
    PubMed 

    Google Scholar 
    68.Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta Bioenerg. 2013;1827:455–69.CAS 

    Google Scholar 
    69.Xu XM, Møller SG. Iron-sulfur clusters: Biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal. 2011;15:271–307.PubMed 

    Google Scholar 
    70.Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics. 2015;7:943–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003;278:38352–9.CAS 
    PubMed 

    Google Scholar 
    73.Outten FW, Wood MJ, Muñoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003;278:45713–9.CAS 
    PubMed 

    Google Scholar 
    74.Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72:110–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Shepard EM, Boyd ES, Broderick JB, Peters JW. Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol. 2011;15:319–27.76.Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–8.CAS 
    PubMed 

    Google Scholar 
    77.Seidler A, Jaschkowitz K, Wollenberg M. Incorporation of iron-sulphur clusters in membrane-bound proteins. Biochem Soc Trans. 2001;29:418–21.CAS 
    PubMed 

    Google Scholar 
    78.Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot J-P. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res. 2002;73:215–22.CAS 
    PubMed 

    Google Scholar 
    79.Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61:564–72.CAS 
    PubMed 

    Google Scholar 
    80.Resnekov O, Driks A, Losick R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J Bacteriol. 1995;177:5628–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Sonenshein AL. Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol. 2006;16:R14–R16.82.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 

    Google Scholar 
    83.Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMed 
    PubMed Central 

    Google Scholar 
    84.Mobberley J, Nathan Authement R, Segall AM, Edwards RA, Slepecky RA, Paul JH. Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico. Appl Environ Microbiol. 2010;76:829–42.CAS 
    PubMed 

    Google Scholar 
    85.Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMed 
    PubMed Central 

    Google Scholar 
    86.Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system /: functional mechanism of toxin and inactivation by 2 2 complex formation. Proc Natl Acad Sci. 2003;100:1661–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett. 2013;340:73–85.88.Kawano M. Divergently overlapping cis -encoded antisense RNA regulating toxin-antitoxin systems from E. coli. RNA Biol. 2012;9:1520–7.CAS 
    PubMed 

    Google Scholar 
    89.Smith MA, Bidochka MJ. Bacterial fitness and plasmid-loss: the importance of culture conditions and plasmid size. Can J Microbiol. 1998;44:351–5.CAS 
    PubMed 

    Google Scholar 
    90.Summers DK. The kinetics of plasmid loss. Trends Biotechnol. 1991;9: 273–8.91.Persad AK, Williams ML, LeJeune JT. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7. AIMS Microbiol. 2017;3:872–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499:219–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Hargreaves KR, Kropinski AM, Clokie MR. Bacteriophage behavioral ecology. Bacteriophage. 2014;4:e29866.PubMed 
    PubMed Central 

    Google Scholar 
    94.Naught LE, Gilbert S, Imhoff R, Snook C, Beamer L, Tipton P. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Biochemistry. 2002;41:9637–45.CAS 
    PubMed 

    Google Scholar 
    95.Dong C, Flecks S, Unversucht S, Haupt C, van Pee K-H, Naismith JH. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science. 2005;309:2216–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Fouces R, Mellado E, Diez B, Barredo JL. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology. 1999;145:855–68.CAS 
    PubMed 

    Google Scholar 
    97.Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Poonsuk K, Bluhm AP, Cabanas D, et al. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol. 2018;109:401–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kurtov D, Kinghorn JR, Unkles SE. The Aspergillus nidulans panB gene encodes ketopantoate hydroxymethyltransferase, required for biosynthesis of pantothenate and Coenzyme A. Mol Gen Genet. 1999;262:115–20.CAS 
    PubMed 

    Google Scholar 
    99.Huisjes R, Card DJ. Methods for assessment of pantothenic acid (Vitamin B5). In: Harrington D, editor. Laboratory assessment of vitamin status. London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK : Elsevier Inc.; 2019. p. 265–299. https://doi.org/10.1038/s41396-021-01143-1.100.Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2:2.101.Begley TP, Kinsland C, Strauss E. The biosynthesis of coenzyme a in bacteria. Vitam Horm. 2001;61:157–71.CAS 
    PubMed 

    Google Scholar 
    102.Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez MC, Rigault S, et al. Genetic and sequence analyses of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol. 1991;173:6058–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 2015;9:461–71.CAS 
    PubMed 

    Google Scholar 
    104.Heal KR, Qin W, Amin SA, Devol AH, Moffett JW, Armbrust EV, et al. Accumulation of NO2-cobalamin in nutrient-stressed ammonia-oxidizing archaea and in the oxygen deficient zone of the eastern tropical North Pacific. Environ Microbiol Rep. 2018;10:453–7.CAS 
    PubMed 

    Google Scholar 
    105.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    106.Streisinger G, Emrich J, Stahl MM. Chromosome structure in phage T4, III. Terminal redundancy and length determination. Proc Natl Acad Sci USA. 1967;57:292–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci USA. 2017;114:E4324–E4333.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Brum J. 5m intervals of CTD profiles from R/V New Horizon cruise NH1315 in the Eastern Tropical North Pacific (ETNP) during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-08-31 (2020). https://doi.org/10.26008/1912/bco-dmo.822818.1.109.Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Micro Ecol. 1998;14:113–8.
    Google Scholar 
    110.Brum J. Estimated abundances of viruses and bacteria determined in samples collected in the Eastern Tropical North Pacific (ETNP) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823094.1.111.Binder B. Reconsidering the relationship between vitally induced bacterial mortality and frequency of infected cells. Aquat Micro Ecol. 1999;18:207–15.
    Google Scholar 
    112.Brum J. Estimated frequency of lytic viral infection from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-01 (2020). https://doi.org/10.26008/1912/bco-dmo.822914.1.113.Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004;11:36–42.114.Brum J. Morphotypes, capsid widths, and tail lengths of viruses from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823131.1.115.John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Duhaime MB, Sullivan MB. Ocean viruses: Rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.CAS 
    PubMed 

    Google Scholar 
    117.Brum J. Accession numbers of viral metagenomes from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-04 (2020) https://doi.org/10.26008/1912/bco-dmo.823295.1.118.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    119.Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinforma. 2003; Chapter 10: Unit 10.3.120.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230.121.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:1002195.
    Google Scholar 
    122.Team RCR. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.123.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York: 2016.124.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community Ecology Package. R package version 2.5-2. 2013 http://RForge.R-project.org/projects/vegan/.125.Wilkinson L. venneuler: Venn and Euler diagrams. R package version 1.1-0. 2011 https://CRAN.Rproject.org/package=venneuler.126.Harrell FE, With contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R package version 4.3-0. 2019 https://CRAN.R-project.org/package=Hmisc.127.Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available from https://github.com/taiyun/corrplot.128.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang H Bin, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.129.Sturges HA. The choice of a class interval. J Am Stat Assoc. 1926;21:65–66.130.Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CAS 
    PubMed 

    Google Scholar  More

  • in

    Marine phytoplankton functional types exhibit diverse responses to thermal change

    1.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and cceanic components. Science 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    5.Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).Article 
    CAS 

    Google Scholar 
    8.Vallina, S. M., Cermeno, P., Dutkiewicz, S., Loreau, M. & Montoya, J. M. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol. Modell. 361, 184–196 (2017).Article 

    Google Scholar 
    9.Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Laufkotter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).ADS 
    Article 

    Google Scholar 
    11.Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, 1–14 (2005).Article 
    CAS 

    Google Scholar 
    12.Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Thomas, M. K. & Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369 (2016).Article 

    Google Scholar 
    15.Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).ADS 
    Article 

    Google Scholar 
    16.Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).ADS 
    Article 

    Google Scholar 
    17.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    18.Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).Article 

    Google Scholar 
    20.Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 4–11 (2015).
    Google Scholar 
    22.Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24, 1–19 (2010).Article 
    CAS 

    Google Scholar 
    23.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Boyd, P. W. & Hutchins, D. A. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 
    Article 

    Google Scholar 
    25.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 
    Article 

    Google Scholar 
    26.Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).Article 

    Google Scholar 
    27.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).28.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    29.Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).ADS 
    Article 

    Google Scholar 
    30.Prowe, A. E. F., Pahlow, M., Dutkiewicz, S. & Oschlies, A. How important is diversity for capturing environmental-change responses in ecosystem models? Biogeosciences 11, 3397–3407 (2014).ADS 
    Article 

    Google Scholar 
    31.Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Barton, S. & Yvon‐Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).ADS 
    Article 

    Google Scholar 
    33.Sherman, E., Moore, J. K., Primeau, F. & Tanouye, D. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30, 550–559 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Calvo, E., Pelejero, C., Pena, L. D., Cacho, I. & Logan, G. A. Eastern Equatorial Pacific productivity and related-CO2 changes since the last glacial period. Proc. Natl Acad. Sci. USA 108, 5537–5541 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10,366–10,376 (2016).Article 

    Google Scholar 
    38.Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 1–20 (2019).CAS 
    Article 

    Google Scholar 
    39.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    40.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).MathSciNet 
    Article 

    Google Scholar 
    41.Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).CAS 
    Article 

    Google Scholar 
    42.Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. The single, ancient origin of chromist plastids. Proc. Natl Acad. Sci. USA 99, 15507–15512 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Jönsson, B. F. & Watson, J. R. The timescales of global surface-ocean connectivity. Nat. Commun. 7, 1–6 (2016).Article 
    CAS 

    Google Scholar 
    46.Doblin, M. A. & van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Whittaker, K. & Rynearson, T. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc. Natl Acad. Sci. USA 114, 2651–2656 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ward, B. A., Cael, B. B., Collins, S. & Robert Young, C. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).
    Google Scholar 
    49.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    50.Collins, M. et al. in Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).51.Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Ward, B. A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS ONE 10, 1–15 (2015).
    Google Scholar 
    53.Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).CAS 
    Article 

    Google Scholar 
    54.Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences Discuss. 7, 979–1005 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Ocean. 120, 2813–2825 (2015).Article 

    Google Scholar 
    57.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).ADS 
    Article 

    Google Scholar 
    59.Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Baker, K. G. et al. Thermal niche evolution of functional traits in a tropical marine phototroph. J. Phycol. 54, 799–810 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.O’Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322, 85–97 (2006).ADS 
    Article 

    Google Scholar 
    65.Arizona Software Inc. GraphClick 3.0.2. http://www.arizona-software.ch/graphclick/ (2010).66.Norberg, J. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol. Oceanogr. 49, 1269–1277 (2004).ADS 
    Article 

    Google Scholar 
    67.Bolker, B. & Team, R. D. C. bbmle: Tools for general maximum likelihood estimation. https://github.com/bbolker/bbmle (2017).68.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).69.Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Koenker, R. quantreg: Quantile regression. https://cran.r-project.org/package=quantreg (2019).71.Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62, 806–817 (2017).ADS 
    Article 

    Google Scholar 
    72.Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).ADS 
    Article 

    Google Scholar 
    73.Koenker, R. Quantile Regression, https://doi.org/10.1017/CBO9780511754098 (Cambridge University Press, 2005).74.Tomas, C. R. et al. Identifying Marine Phytoplankton. (Academic Press, 1997).75.He, X. & Hu, F. Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    76.Rynearson, T. A. Literature compilation of thermal growth rates from four phytoplankton functional types. Biological and Chemical Oceanography Data Management Office (BCO-DMO), (2021). https://doi.org/10.26008/1912/bco-dmo.839696.177.Rynearson, T. A. Estimated thermal capacities for phytoplankton strains. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839713.1 (2021).78.Rynearson, T. A. Estimated thermal traits for phytoplankton. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839689.1 (2021).79.Anderson, S. I. sianderson/PFT_thermal_response: Marine Phytoplankton Functional Types Exhibit Diverse Responses to Thermal Change. zenodo. https://doi.org/10.5281/zenodo.5507532 (2021).80.Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).ADS 
    Article 

    Google Scholar 
    81.Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).Article 

    Google Scholar  More

  • in

    Fungal infections lead to shifts in thermal tolerance and voluntary exposure to extreme temperatures in both prey and predator insects

    Field trialsField trials were conducted in three raised beds (1 × 2 × 0.6 m) on the Penn State University campus from July to August 2020. The raised beds were separated by at least 8 m to avoid treatment cross-contamination. Faba bean (Vicia faba L.) seeds were planted at a density of 20 seeds/ m2 (50 plants per bed), and each bed was caged using a metal-framed tent. “Noseeum” nylon mesh (Outdoor Wilderness Fabric s, Inc., Caldwell, ID) was draped over the frame and the edges buried in the soil of the bed. The sides of the cages were fastened closed with zippers to allow access.InsectsAphid and predator beetle colonies were raised separately on faba bean plants in cages (BugDorm 20 cm × 40 cm × 20 cm, BioQuip Products, Inc., Rancho Dominguez, CA) in the field. Larvae and adults of predator beetles were fed with a combination of A. pisum and Rhopalosiphum padi every other day (Supplementary information Fig. S1). Trials involving plants, insects, and entomopathogenic fungi were conducted according to institutional, national, and international guidelines and legislation.Fungal inoculations (Beavueria bassiana)We released first instar aphid nymphs on each faba bean plant on the raised beds (~ 1100 aphids) by gently shaking plastic containers with groups of 20 nymphs and placing them on the plants using a paintbrush. They were allowed to grow and reproduce for fifteen days. During the night, we sprayed spore suspension of the Beauveria strain GHA (BotaniGard ®, MT, USA) at 1.4 × 106 and 1.4 × 1012 spore ha−1, low and high load respectively. Two days after inoculation, we collected adult aphids (~ 4–5 days old) from the experimental plots and measured physiological parameters (see details below). Next, we released 300 adult beetles inside each aphid–fungal inoculated cage, allowed them to feed for 2–3 days in our experimental cages, and then collected beetles for physiological measurement.Identification of critical thermal limits (CTMax and CTMin) of healthy and infected insectsTo determine critical thermal maximum for locomotion (CTMax) of healthy and infected individuals of each species, we employed a protocol modified from Ribeiro et al.25, using a hotplate with a programmable heating rate controlled by a computer interface (Sable Systems, LV, USA). The temperature was monitored by independent thermocouple channels connected to a Hobo 4-channel data logger. One thermocouple was attached to the surface of the hotplate, and the other sensor was attached inside the glass tube plugged by a cotton ball in which we placed an individual insect. This equipment was located inside an automated thermal chamber (interior dimensions: width 40.5 cm × 35 cm length × 40 cm height). We transferred an adult aphid (4-day-old) into the glass tube and exposed it to increasing temperatures at a rate of 0.3 °C min−1 until its locomotion stopped. CTMax was recorded when the insect turned upside down and could no longer return to the upright position within 5 s. The insect was returned to a faba bean leaf for recovery (n = 10 individuals per treatment).To measure the critical thermal minimum for locomotion (CTMin) of healthy and infected individuals of each species (n = 10 individuals per treatment), we used an insulated incubator where the temperature was monitored by independent thermocouple channels connected to a Hobo 4-channel data logger. The sensors were attached inside three glass tubes, each tube with an adult (3 to 4-day-old), and plugged by a cotton ball. The glass tube was exposed to decreasing temperature at a rate of 0.3 °C min−1 until its locomotion stopped. CTMin was recorded when no movement was recorded within 5 s. The insect was returned to an aphid-infested faba bean leaf for recovery. Data were only considered valid if the insect displayed normal activity 2 h after a CTMax or CTMin test.Impacts of infection on voluntary exposure aphids and predator beetles to extreme thermal zonesTo examine how voluntary exposure to ETZ was affected by fungal infection, we collected aphids and predator beetles (3 to 5 day-old) from our field plots and transferred them to a dark plastic bottle. Next, a bottle containing the insects was attached to a choice test arena following a modified protocol from Navas et al.24. This experimental arena allows insects to freely move across extreme temperatures to access food in containers located at each end of the device. To reach food, individuals had to cross an ETZ, either warm or cold. The location of each insect was recorded after 60 min, and it was classified as: exploration for individuals that left the initial black bottle, warm or cold ETZ crossings. The experiment was replicated ten times for each species and treatment condition [aphid: healthy, infected (low and high spore load); predator beetle: healthy, infected (low and high spore load)].Effects of fungal infection and thermal conditions (critical thermal limits and voluntary exposure to ETZs) on longevity of aphids and predator beetlesTo examine whether fungal infection and thermal conditions alter longevity in aphids and beetles, we isolated three individuals from each factor combination (low, high fungal load, CTMin, CTMax, behavior: crosses to ETZ cold, warm, and no cross) from previous experiments, and counted the number of days the adults survived after the exposure to the thermal condition (n = 3 factor combination).Energetic cost associated with fungal infection of aphid and predator beetles under critical thermal limits and voluntary exposure to ETIntracellular ATP content was determined in neutralized perchloric acid extracts and by a spectrophotometric coupled enzyme assay, based on modified protocol from Churchill and Storey26 content (n = 3 per treatment condition). An insect was ground to powder using a mortar and pestle cooled in liquid nitrogen, and then weighed into 1.5 mL microcentrifuge tubes (Eppendorf). Powder was dissolved with 0.1 mL ice-cold TE buffer (50 mM Tris–HCl, pH 7.5 plus 1 mM EGTA) and homogenized by sonication (15 s, three times), using a Q500 Sonicator system (QSonica, Newtown, CT, USA). An aliquot (10 µL) of the well-mixed homogenate was removed for protein determination. Cells were lysed by adding 6% (v/v) ice-cold perchloric acid, strongly vortexed for 2 min and incubated at 4 °C for 10 min. Next, the cell homogenate was centrifuged at 14,462 rpm and 4 °C for 5 min. The resulting supernatant was neutralized by adding KOH/Tris (3 M/0.1 M) and centrifuged again to discard the perchlorate salts. Extracts were kept at 4 °C for their immediate utilization. ATP content was determined spectrophotometrically by following the production of NADPH at 340 nm (ε = 6.22 mM−1 cm−1) and using CARY WinUV-Vis Spectrophotometer (Agilent, Santa Clara, CA, USA). The following reagents were used for the spectrophotometric coupled enzyme assay: 5 U Hexokinase, 10 U Glucose 6-phosphate dehydrogenase, 1 mM NADP + , 5 mM MgCl2 and 10 mM Glucose in HE buffer (100 mM Hepes-HCl plus 1 mM EGTA, pH 7.0) at 25 °C. Chemicals were purchased from Roche (Manheim, Germany) and Sigma (St Louis, MO, USA).Infection statusWe used two different protocols to confirm fungal infection: (1) placing each individual in wet towel paper inside a Ziploc bag to observe hyphal growth27. (2) For insects used in ATP measurements, we followed a modified protocol from Wraight and Ramos28 and Castrillo et al.29. Insect were washed using a serial dilution technique, vortexed for 10 s, and mounted in a drop of lactophenol blue, diluted with distilled water. We then preserved insect body parts (i.e., legs and abdomen terga) at − 80 °C for 12 months and placed in Petri dishes containing potato dextrose agar (PDA HiMedia-GM096) medium (pH 6.8), and incubated for ten days. To confirm infection by B. bassiana, we observed plates every 3 days, identified fungal growth (dense white mycelia), then randomly chose three samples, collected mycelia, and DNA was extracted using PureLink Genomic DNA Kit (Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA), according to manufacturer’s protocol. Next, we used PCR essays (25 µL) contained 1 × Q5 Hot Start High-Fidelity Master Mix (New England BioLabs), following a protocol modified from Castrillo et al.29 using primers GHTqF1 (5′-TTTTCATCGAAAGGTTGTTTCTCG) and GHTq R1 (5′-CTGTGCTGGGTACTGACGTG) amplified a 96-bp region of the SCAR fragment. The PCR protocol was initial denaturation at 98 °C, followed by 30 cycles at 98 °C for 1 min, annealing at 58 °C for 1 min; and extension at 72 °C for 1 min. PCR products were visualized in a 1.0% (wt/vol) agarose gel stained with ethidium bromide.Data analysisAll data were tested for statistical test assumptions using a qqplot, Levene’s homogeneity test and the Shapiro–Wilk normality test at alpha = 0.05 significance level. For critical thermal limits (CTMax and CTMin) experiments, the data sets were non-normal and transformation did not normalize the residuals, so we used nonparametric ANOVAs (Kruskal–Wallis) followed by post-hoc nonparametric multiple comparisons. For voluntary exposure to ETZs, we used a generalized linear model with treatment (healthy, low and high spore load) with Poisson distribution, followed by comparisons within each treatment group. For healthy insects, we used a t-test to compare crosses between warm or cold ETZs; for infected insects, we conducted ANOVAS for comparisons among 23 °C, warm or cold ETZs.ATP data: Data for CTMax of A. pisum were non-normal, and transformation did not normalize the residuals, nonparametric ANOVAs (Kruskal–Wallis) were then used and followed by post-hoc nonparametric pairwise comparisons with Wilcoxon tests. ATP data sets from voluntary exposure to ETZs were analyzed following the same protocol as described previously for in crosses analysis of ETZ experiment. Longevity was analyzed using a two-way ANOVA with fungal load and thermal condition (critical temperature and behavior) as factors. Analyses were performed in the R programming environment (v. 3.4.3., CRAN project)30 and JMP-Pro version 15 (SAS Institute 2020). More

  • in

    Molecular species delimitation refines the taxonomy of native and nonnative physinine snails in North America

    1.Mayr, E. The species concept: Semantics versus semantics. Evolution 3, 371–372 (1949).Article 

    Google Scholar 
    2.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    3.Mace, G. M. The role of taxonomy in species conservation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 711–719 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Gustafson, K. D., Kensinger, B. J., Bolek, M. G. & Luttbeg, B. Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions. Evol. Ecol. Res. 16, 77–89 (2014).
    Google Scholar 
    5.Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 1–7 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Liu, H. P. & Hershler, R. A new species and range extensions for three other species of pebblesnails (Lithoglyphidae, Fluminicola) from the upper Klamath basin, California-Oregon. ZooKeys 812, 47–67 (2019).Article 

    Google Scholar 
    7.Alda, P. et al. Systematics and geographical distribution of Galba species, a group of cryptic and worldwide freshwater snails. Mol. Phylogenet. Evol. 157, 107035 (2021).PubMed 
    Article 

    Google Scholar 
    8.Taylor, D. W. Introduction to Physidae (Gastropoda: Hygrophila); biogeography, classification, morphology. Rev. Biol. Trop. 51(Supplement 1), 1–287 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Wethington, A. R. & Lydeard, C. A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences. J. Molluscan Stud. 73, 241–257 (2007).Article 

    Google Scholar 
    10.Ng, T. H. et al. Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade. PLoS ONE 11, e0161130 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Saito, T., Prozorova, L., Hirano, T., Fukuda, H. & Chiba, S. Endangered freshwater limpets in Japan are actually alien invasive species. Conserv. Genet. 19, 947–958 (2018).Article 

    Google Scholar 
    12.Lydeard, C., Campbell, D. & Golz, M. Physa acuta Draparnaud, 1805 should be treated as a native of North America, not Europe. Malacologia 59, 347–350 (2016).Article 

    Google Scholar 
    13.Albrecht, C., Kroll, O., Terrazas, E. M. & Wilke, T. Invasion of ancient Lake Titicaca by the globally invasive Physa acuta (Gastropoda: Pulmonata: Hygrophila). Biol. Invasions 11, 1821–1826 (2009).Article 

    Google Scholar 
    14.Ng, T. H., Tan, S. K. & Yeo, D. C. Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore. BioInvasions Rec. 4, 189–194 (2015).Article 

    Google Scholar 
    15.Collado, G. A. Unraveling cryptic invasion of a freshwater snail in Chile based on molecular and morphological data. Biodivers. Conserv. 26, 567–578 (2017).Article 

    Google Scholar 
    16.Johnson, P. D. et al. Conservation status of freshwater gastropods of Canada and the United States. Fisheries 38, 247–282 (2013).Article 

    Google Scholar 
    17.Strong, E. E. & Whelan, N. V. Assessing the diversity of western North American Juga (Semisulcospiridae, Gastropoda). Mol. Phylogenet. Evol. 136, 87–103 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270(supplement 1), S96-99 (2003).CAS 

    Google Scholar 
    19.Stöger, I. & Schrödl, M. Mitogenomics does not resolve deep molluscan relationships (yet?). Mol. Phylogenet. Evol. 69, 376–392 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Cunha, T. J. & Giribet, G. A congruent topology for deep gastropod relationships. Proc. R. Soc. B 286, 20182776 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Varney, R. M. et al. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. BMC Ecol. Evol. 21, 6 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Remigio, E. A. & Hebert, P. D. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol. Phylogenet. Evol. 29, 641–647 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Collins, R. A. & Cruickshank, R. H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 13, 969–975 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Whelan, N. V. & Strong, E. E. Morphology, molecules and taxonomy: Extreme incongruence in pleurocerids (Gastropoda, Cerithioidea, Pleuroceridae). Zoolog. Scr. 45, 62–87 (2016).Article 

    Google Scholar 
    26.Razkin, O., Gómez-Moliner, B. J., Vardinoyannis, K., Martínez-Ortí, A. & Madeira, M. J. Species delimitation for cryptic species complexes: Case study of Pyramidula (Gastropoda, Pulmonata). Zool. Scr. 46, 55–72 (2017).Article 

    Google Scholar 
    27.Liu, H. P., Hershler, R. & Hovingh, P. Molecular evidence enables further resolution of the western North American Pyrgulopsis kolobensis complex (Caenogastropoda: Hydrobiidae). J. Molluscan Stud. 84, 103–107 (2018).Article 

    Google Scholar 
    28.Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Saadi, A. J., Davison, A. & Wade, C. M. Molecular phylogeny of freshwater snails and limpets (Panpulmonata: Hygrophila). Zool. J. Linn. Soc. 190, 518–531 (2020).Article 

    Google Scholar 
    30.Frest, T. J. & Johannes, E. J. An annotated checklist of Idaho land and freshwater mollusks. J. Idaho Acad. Sci. 36(2), 1–51 (2000).
    Google Scholar 
    31.Pip, E. & Franck, J. P. Molecular phylogenetics of central Canadian Physidae (Pulmonata: Basommatophora). Can. J. Zool. 86, 10–16 (2008).CAS 
    Article 

    Google Scholar 
    32.Tariel, J., Plénet, S. & Luquet, É. Transgenerational plasticity of inducible defences: Combined effects of grand-parental, parental and current environments. Ecol. Evol. 10, 2367–2376 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Perrin, N. The life history parameters of Physa acuta (Gastropoda, Mollusca) in experimental conditions. Revue Suisse Zoologique 93, 725–736 (1986).Article 

    Google Scholar 
    34.Taylor, D. W. New species of Physa (Gastropoda: Hygrophila) from the western United States. Malacol. Rev. 21, 43–79 (1988).
    Google Scholar 
    35.U.S. Fish and Wildlife Service. Determination of endangered or threatened status for five aquatic snails in south central Idaho. Fed. Reg. 57, 59242–59257 (1992).
    Google Scholar 
    36.Rogers, D. C. & Wethington, A. R. Physa natricina Taylor 1988, junior synonym of Physa acuta Draparnaud, 1805 (Pulmonata: Physidae). Zootaxa 1662, 45–51 (2007).
    Google Scholar 
    37.Gates, K. K., Kerans, B. L., Keebaugh, J. L., Kalinowski, S. & Vu, N. Taxonomic identity of the endangered Snake River physa, Physa natricina (Pulmonata: Physidae) combining traditional and molecular techniques. Conserv. Genet. 14, 159–169 (2013).Article 

    Google Scholar 
    38.Moore, A. C., Burch, J. B. & Duda, T. F. Recognition of a highly restricted freshwater snail lineage (Physidae: Physella) in southeastern Oregon: Convergent evolution, historical context, and conservation considerations. Conserv. Genet. 16, 113–123 (2015).Article 

    Google Scholar 
    39.Dillon, R. T., Robinson, J. D. & Wethington, A. R. Empirical estimates of reproductive isolation among the freshwater pulmonate snails Physa acuta, P. pomilia, and P. hendersoni. Malacologia 49, 283–292 (2007).Article 

    Google Scholar 
    40.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America. Geological Survey of Canada Open File 1574 (2003).42.Wethington, A. R., Wise, J. & Dillon, R. T. Jr. Genetic and morphological characterization of the Physidae of South Carolina (Gastropoda: Pulmonata: Basommatophora), with description of a new species. Nautilus 123, 282–292 (2009).
    Google Scholar 
    43.Ebbs, E. T., Loker, E. S. & Brant, S. V. Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evol. Biol. 18, 1–7 (2018).Article 

    Google Scholar 
    44.Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).Article 

    Google Scholar 
    45.Van Leeuwen, C. H. et al. How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshw. Biol. 58, 88–99 (2013).Article 

    Google Scholar 
    46.Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).Article 

    Google Scholar 
    47.Bony, Y. K. et al. Ecological conditions for spread of the invasive snail Physa marmorata (Pulmonata: Physidae) in the Ivory Coast. Afr. Zool. 43, 53–60 (2008).Article 

    Google Scholar 
    48.Pierce, K. L. & Morgan, L. A. Is the track of the Yellowstone hotspot driven by a deep mantle plume?—Review of volcanism, faulting, and uplift in light of new data. J. Volcanol. Geotherm. Res. 188, 1–25 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Smith, G. R. et al. Biogeography and timing of evolutionary events among Great Basin fishes. In Great Basin Aquatic Systems History. Smithsonian Contributions to the Earth Sciences Vol. 33 (eds Hershler, R. et al.) 175–234 (Smithsonian Institution Press, 2002).
    Google Scholar 
    50.Oviatt, C. G. Chronology of Lake Bonneville, 30,000 to 10,000 yr BP. Quatern. Sci. Rev. 110, 166–171 (2015).Article 

    Google Scholar 
    51.Safran, E. B. et al. Plugs or flood-makers? The unstable landslide dams of eastern Oregon. Geomorphology 248, 237–251 (2015).ADS 
    Article 

    Google Scholar 
    52.Ely, L. L. et al. Owyhee River intracanyon lava flows: Does the river give a dam?. GSA Bull. 124, 1667–1687 (2012).Article 

    Google Scholar 
    53.Matthews, J. et al. Rapid range expansion of the invasive quagga mussel in relation to zebra mussel presence in the Netherlands and western Europe. Biol. Invasions 16, 23–42 (2014).Article 

    Google Scholar 
    54.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechol. 3, 294–299 (1994).CAS 

    Google Scholar 
    55.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Uit de Weerd, D. R. & Gittenberger, E. Phylogeny of the land snail family Clausiliidae (Gastropoda: Pulmonata). Mol. Phylogenet. Evol. 67, 201–216 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Nixon, K. C. & Wheeler, Q. D. An amplification of the phylogenetic species concept. Cladistics 6, 211–223 (1990).Article 

    Google Scholar 
    59.Galtier, N. Delineating species in the speciation continuum: A proposal. Evol. Appl. 12, 657–663 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.DeSalle, R., Egan, M. G. & Siddall, M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. B Biol. Sci. 360, 1905–1916 (2005).CAS 
    Article 

    Google Scholar 
    61.Bouchet, P. et al. Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61, 1–526 (2017).Article 

    Google Scholar 
    62.Wethington, A. R. & Guralnick, R. Are populations of physids from different hot springs distinctive lineages?. Am. Malacol. Bull. 19, 135–144 (2004).
    Google Scholar 
    63.Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    65.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Delicado, D., Arconada, B., Aguado, A. & Ramos, M. A. Multilocus phylogeny, species delimitation and biogeography of Iberian valvatiform springsnails (Caenogastropoda: Hydrobiidae), with the description of a new genus. Zool. J. Linn. Soc. 186, 892–914 (2019).Article 

    Google Scholar 
    68.Kapli, T. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2016).
    Google Scholar 
    69.Clement, M., Posada, D. C. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Hart, M. W. & Sunday, J. Things fall apart: Biological species form unconnected parsimony networks. Biol. Lett. 3, 509–512 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Meier, R., Zhang, G. & Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book 

    Google Scholar 
    76.Dinapoli, A., Tamer, C., Franssen, S., Naduvilezhath, L. & Klussmann-Kolb, A. Utility of H3-gene sequences for phylogenetic reconstruction—a case study of heterobranch Gastropoda. Bonner Zoologische Beiträge 55(3/4), 191–202 (2006).
    Google Scholar 
    77.Ayyagari, V. S. & Sreerama, K. Molecular phylogenetic analysis of Pulmonata (Mollusca: Gastropoda) on the basis of histone-3 gene. Beni-Suef Univ. J. Basic Appl. Sci. 8, 1–8 (2019).Article 

    Google Scholar  More

  • in

    Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees

    Here we show, for the first time, that the toxicity of a pesticide formulation to bees is caused exclusively by a co-formulant (alcohol ethoxylates), rather than the active ingredient. A 0.8 µL acute oral dose of the agricultural fungicide formulation Amistar® caused a range of damage to bees: both lethal, with 23% mortality, and sublethal, with 45% reduced sucrose consumption, 3.8% drop in body weight (whereas the negative control gained 4.8%), and a 302% increase in gut melanisation. For all metrics tested, the Amistar® and alcohol ethoxylates treatments were not statistically different, demonstrating conclusively that the toxicity of the formulation, Amistar®, to bumble bees is driven by the alcohol ethoxylates. These results demonstrate gaps in the regulatory system and highlight the need for a greater research focus on co-formulants.The mortality in the Amistar® treatment, and treatments containing alcohol ethoxylates reached 32% at its highest, which is substantial given that bees are likely to have a high level of exposure to Amistar® and alcohol ethoxylates. The mechanism by which the alcohol ethoxylates cause mortality has not been explicitly isolated, but our results suggest two potential, possibly related, causes. We recorded a 302% increase in the melanised area of bee midguts in the alcohol ethoxylates treatment. A similar effect was observed in Melipona scutellaris exposed to the pure fungicide active ingredient pyraclostrobin alongside a similar reduction in survival37. We suggest that the alcohol ethoxylates are disrupting the structure of the midgut, which the bee immune system is reacting to with melanisation44 (see Fig. 5). In parallel with this gut damage, alcohol ethoxylate treatment drove a 54% reduction in sugar consumption, which persisted throughout the experiment. Supplementary Fig. S3 shows a plot comparing sugar consumption against gut melanisation, with increasing gut melanisation correlated to reduced sugar consumption in the Amistar®, co-formulant mixture and alcohol ethoxylates treatments. Consequently, we propose that mortality was driven by energy depletion due to reduced consumption, which in turn may have been driven by damage to the gut.Figure 5(Left) Bumble bee midgut in the negative control treatment. (Right) Bumble bee midgut in the co-formulant mixture treatment, which contains alcohol ethoxylates. The dark brown patches are areas of melanisation, indicative of damage to the gut. Both bees survived the full 120 h.Full size imageLikely as a consequence of the reduced consumption of sucrose, bumble bees in the alcohol ethoxylates treatment lost 8.4% of their original weight, in stark contrast to the negative control where bees gained 4.8% over the five-day period. This indicates the alcohol ethoxylate treated bees were expending more energy than they were consuming, and thus exhibiting a negative energy balance. This weight loss, while considerable as a percentage of the bee’s total body mass, is also similar in scale to the weight of the sucrose bees consume in one sitting (EA Straw pers. obs.), for which rigorous data do not exist. As such it is possible that a portion of the weight loss is attributable to the reduced sucrose consumption of the bees, meaning they would have less sucrose in their guts at the time of weighing. Sucrose consumption does not, however, explain the failure of alcohol ethoxylate treated bees to gain weight, which was observed in the control treatment. The weight loss, and lack of weight gain, are concerning because they are likely to indicate a reduction in fat reserves, although this has not been experimentally confirmed. Bee fat reserves are important physiologically, in particular in responding to immune threats45,46. Fat reserves allow bees the energetic resources to buffer against challenges, and thus their depletion could expose bees to greater risk from future threats47.The reduced appetite and negative energy balance in alcohol ethoxylates treated bees could have broader effects in the natural environment. Bees pollinate flowers as they forage for nectar and pollen, so a reduction in their appetite could subsequently have effects on ecosystem services. In our experiment, bumble bee appetite was reduced immediately after ingesting a single dose of alcohol ethoxylates or Amistar®. This effect persisted for five days after exposure, indicating a persistent change in consumption behaviour. While nectar-foraging in bumble bees is driven by the needs of the colony48, a reduction in appetite would reduce overall colony nectar consumption, and thus the number of foraging trips made for nectar. Fewer visits to flowers for nectar may lead to reduced pollination, which would be detrimental to crop yields and farm profits. Further studies of how the impacts we have found map onto foraging and pollination are clearly needed. Importantly, the reduction in appetite recorded in our experiment is a sublethal effect, which standard lower tier testing would not detect. When Amistar® is tested on bumble bees for the 2025 renewal of azoxystrobin, this sublethal effect will be missed by regulatory testing, despite the impact it may have on the pollination services such testing is designed to protect. We suggest that a simple modification to the regulatory protocol OECD 247 would be to weigh the sucrose syringes at the start and end of the trials to calculate sucrose consumption, which would allow measurement of this sublethal effect with minimal additional workload.Our results show a slightly, but not significantly, higher level of mortality in the alcohol ethoxylates treatment (30%) than the Amistar® treatment (23%). If this is a real biological difference, one explanation might be that the concentration of alcohol ethoxylates in the Amistar® formulation was lower than that used in the alcohol ethoxylates treatment solution. This is possible because the Amistar® material safety data sheet lists concentrations as a range (10–20% for alcohol ethoxylates), and here we used the upper end of the range. The co-formulant mixture treatment in all metrics was statistically indistinguishable from the alcohol ethoxylates treatment, showing that the toxicity of alcohol ethoxylates is not a result of synergism with other co-formulants.We believe that the implications of our results are not limited to a laboratory setting and a single species, as other published and unpublished research supports our findings. Semi-field flight cage experiments, where Amistar® was applied to a crop, found effects on full bumble bee colonies (Bombus terrestris). Amistar® caused a reduction in average bee weight and a reduction in foraging activity, as our results predict49. This demonstrates that the effects observed in our laboratory testing scale up to effects at a field realistic level. Additionally, in honeybees (Apis mellifera) Amistar® has been found to cause mortality in laboratory experiments at a range of doses50,51, demonstrating the mortality effect found in our experiment is not species specific. However, no mortality was seen in trials on the red mason bee Osmia bicornis (Hellström and Paxton, unpublished data). Additionally, a similar compound, C11 and lower alcohol ethoxylates, has been found in small scale laboratory testing to cause 100% mortality after contact exposure in honeybees31.To measure the exposure of bees to PPP’s, the EU mandates trials that measure chemical residues in pollen and nectar after crops have been sprayed with either active ingredients or formulations34. However, these residue analysis studies only measure active ingredient concentrations, not the co-formulants. As such, we have no systematic data on the exposure of bees to co-formulants7,8,9. This dearth of data means that the exposure of bees to co-formulants is very poorly characterised. To estimate exposure to alcohol ethoxylates, residue data for Amistar®’s active ingredient azoxystrobin could be used as a proxy18,52. However, the chemical properties of alcohol ethoxylates, specifically their surfactant action, make it unlikely that they have an equivalent environmental fate to azoxystrobin, so this would not be appropriate.While we have very little data to quantify bee exposure to alcohol ethoxylates, we know Amistar® can be applied to crops, such as strawberries, during flowering while bees are foraging on them. The Environmental Information Sheet for Amistar® states “[For bees] no risk management is necessary. Amistar® is of low risk to honey bees”53,54,55. In addition, we would note that exposure of bees to alcohol ethoxylates, and related substances, is not exclusively from Amistar®. For example, a cursory search of the Syngenta website56 immediately identified alcohol ethoxylates in five other Syngenta products. Worryingly, the chemical group alcohol ethoxylates sit in, alkoxylated alcohols, are also widely used in adjuvants, which are products which can be added to tank mixtures to modify the action of the agrichemical6. 89 adjuvant products licenced in the UK contain alkoxylated alcohols as the primary ingredient15. To our knowledge, these adjuvants have never been toxicity tested on bees and have no bee exposure mitigation measures in place whatsoever.To complement measures to promote academic research, moving regulatory research beyond its mortality and active ingredient-centric approach to toxicity testing would better reflect the risks pesticides, as used in the field, pose. For regulatory systems to accurately characterise risk they need to estimate the scale of sublethal effects, regardless of initial mortality results33. The results presented here demonstrate that even substances assessed by regulators as ‘bee safe’ can pose a serious hazard to bee health. To reflect potential sublethal differences caused by co-formulation composition, all formulations could undergo a much more rigorous set of lower tier testing or be automatically entered for higher tier testing.In the face of declining bee populations we advocate that a precautionary approach minimising the exposure of bees to potential stressors, where possible, would be prudent. The current legislation allowing application of PPPs directly onto bees and flowering plants does not align with the emerging evidence that co-formulants, adjuvants, herbicides and fungicides can be hazardous to bees8,57. The wealth of untested and undisclosed co-formulants used abundantly in agriculture is a serious and pressing concern for the health of pollinators worldwide. More

  • in

    The rumen microbiome inhibits methane formation through dietary choline supplementation

    1.Cubasch, U. et al. Climate Change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol 1 (eds Stocker, T. F. et al.) 119–158 (Cambridge University Press, 2013).
    Google Scholar 
    2.Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9ed2 (2020).Article 

    Google Scholar 
    3.Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 (2020).ADS 
    Article 

    Google Scholar 
    4.Hobson, P. N. & Stewart, C. S. The rumen Microbial Ecosystem (Blackie Academic & Professional, 1997).Book 

    Google Scholar 
    5.Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567. https://doi.org/10.1038/srep14567 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Li, Y. et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand. Genom. Sci. 11, 59. https://doi.org/10.1186/s40793-016-0183-5 (2016).Article 

    Google Scholar 
    7.Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352. https://doi.org/10.1128/AEM.03389-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Hoehler, T., Losey, N. A., Gunsalus, R. P. & McInerney, M. J. In Biogenesis of Hydrocarbons (eds Stams, A. & Sousa, D.) 1–26 (Springer, 2018).
    Google Scholar 
    9.Neill, A. R., Grime, D. W. & Dawson, R. M. C. Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J. 170, 529–535. https://doi.org/10.1042/bj1700529 (1978).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Erdman, R. A. & Sharma, B. K. Effect of dietary rumen-protected choline in lactating dairy cows. J. Dairy Sci. 74, 1641–1647. https://doi.org/10.3168/jds.S0022-0302(91)78326-4 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Sharma, B. K. & Erdman, R. A. Effects of dietary and abomasally infused choline on milk production responses of lactating dairy cows. J. Nutr. 119, 248–254. https://doi.org/10.1093/jn/119.2.248 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Soliva, C. & Hess, H. In Measuring Methane Production from Ruminants: Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques (eds Makkar, H. P. & Vercoe, P. E.) 15–31 (Springer, 2007).Chapter 

    Google Scholar 
    13.Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109, 21307–21312. https://doi.org/10.1073/pnas.1215689109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jameson, E. et al. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ. Microbiol. 18, 2886–2898. https://doi.org/10.1111/1462-2920.13059 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J. Bacteriol. 200, e00764-e817. https://doi.org/10.1128/JB.00764-17 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.EFSA. Scientific Opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA J. 9, 2353 (2011).
    Google Scholar 
    17.Lewis, D. J. Ammonia toxicity in the ruminant. J. Agric. Sci. 55, 111–117 (1960).CAS 
    Article 

    Google Scholar 
    18.Hogan, J. P. Absorption of ammonia through rumen of sheep. Aust. J. Biol. Sci. 14, 448–450. https://doi.org/10.1071/Bi9610448 (1961).CAS 
    Article 

    Google Scholar 
    19.Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358–363 (1986).CAS 
    Article 

    Google Scholar 
    20.Lewis, D. Ammonia toxicity in the ruminant. J. Agric. Sci. 55(1), 111–117 (1960).CAS 
    Article 

    Google Scholar 
    21.Ungerfeld, E. M., Rust, S. R. & Burnett, R. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can. J. Microbiol. 53, 496–503. https://doi.org/10.1139/W07-008 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Lundgren, B. R., Sarwar, Z., Pinto, A., Ganley, J. G. & Nomura, C. T. Ethanolamine catabolism in Pseudomonas aeruginosa PAO1 is regulated by the enhancer-binding protein EatR (PA4021) and the alternative sigma factor RpoN. J. Bacteriol. 198, 2318–2329. https://doi.org/10.1128/JB.00357-16 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Rychlik, J. L., LaVera, R. & Russell, J. B. Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr. Microbiol. 45, 340–345. https://doi.org/10.1007/s00284-002-3743-4 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Park, K. & Lee, H. Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol. 62, 52–57. https://doi.org/10.5187/jast.2020.62.1.52 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Hobson, P. N., Summers, R., Postgate, J. R. & Ware, D. A. Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 77, 225–226. https://doi.org/10.1099/00221287-77-1-225 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Harada, N., Nishiyama, M. & Matsumoto, S. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231–238. https://doi.org/10.1111/j.1574-6941.2001.tb00808.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Haaker, H. & Klugkist, J. The bioenergetics of electron transport to nitrogenase. J FEMS Microbiol. Lett. 46, 57–71 (1987).CAS 
    Article 

    Google Scholar 
    28.Edgren, T. & Nordlund, S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060 (2004).CAS 
    Article 

    Google Scholar 
    29.Igai, K. et al. Nitrogen fixation and nifH diversity in human gut microbiota. Sci. Rep. 6, 31942. https://doi.org/10.1038/srep31942 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Ungerfeld, E. M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 6, 37. https://doi.org/10.3389/fmicb.2015.00037 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Leahy, S. C. et al. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand. Genom. Sci. 8, 215–227. https://doi.org/10.4056/sigs.3977691 (2013).CAS 
    Article 

    Google Scholar 
    32.Hoedt, E. C. et al. Differences down-under: Alcohol-fueled methanogenesis by archaea present in Australian macropodids. ISME J. 10, 2376–2388. https://doi.org/10.1038/ismej.2016.41 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ungerfeld, E. M. & Kohn, R. A. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (eds Sejrsen, K. et al.) 55–85 (Wageningen Academic Publishers, 2006).
    Google Scholar 
    34.van Zijderveld, S. M. et al. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856–5866. https://doi.org/10.3168/jds.2010-3281 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Lan, W. & Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270–1283. https://doi.org/10.1016/j.scitotenv.2018.11.180 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L. & Faou, A. E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107–112. https://doi.org/10.1111/j.1574-6941.2002.tb00942.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Gould, D. H., Cummings, B. A. & Hamar, D. W. In vivo indicators of pathologic ruminal sulphide production in steers with diet-induced polioencephalomalacia. J. Vet. Diagn. Invest. 9, 72–76. https://doi.org/10.1177/104063879700900113 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int. J. Syst. Evol. Microbiol. 50(Pt 2), 633–638. https://doi.org/10.1099/00207713-50-2-633 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Anderson, R. C. et al. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro. Front. Vet. Sci. 3, 62. https://doi.org/10.3389/fvets.2016.00062 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Zhang, Z. W. et al. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed Sci. Tech. 236, 107–114. https://doi.org/10.1016/j.anifeedsci.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    41.Marounek, M., Fliegrova, K. & Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573. https://doi.org/10.1128/AEM.55.6.1570-1573.1989 (1989).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Hackmann, T. J., Ngugi, D. K., Firkins, J. L. & Tao, J. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683. https://doi.org/10.1111/1462-2920.13929 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002 (2010).CAS 
    Article 

    Google Scholar 
    44.Greening, C. et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. https://doi.org/10.1038/s41396-019-0464-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Gilmour, M., Flint, H. J. & Mitchell, W. J. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium. Microbiol. 140(Pt 8), 2077–2084. https://doi.org/10.1099/13500872-140-8-2077 (1994).CAS 
    Article 

    Google Scholar 
    46.Chowdhury, N. P., Kahnt, J. & Buckel, W. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. FEBS J. 282, 3149–3160. https://doi.org/10.1111/febs.13308 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Weghoff, M. C., Bertsch, J. & Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17, 670–677. https://doi.org/10.1111/1462-2920.12493 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Hernandez, J., Benedito, J. L., Abuelo, A. & Castillo, C. Ruminal acidosis in feedlot: from aetiology to prevention. Sci. World J. 2014, 702572. https://doi.org/10.1155/2014/702572 (2014).Article 

    Google Scholar 
    49.Vuotto, C., Barbanti, F., Mastrantonio, P. & Donelli, G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 20, 668–674. https://doi.org/10.1111/odi.12186 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.van Lingen, H. J. et al. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS One 11, e0161362. https://doi.org/10.1371/journal.pone.0161362 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Ungerfeld, E. M., Aedo, M. F., Martinez, E. D. & Saldivia, M. Inhibiting methanogenesis in rumen batch cultures did not increase the recovery of metabolic hydrogen in microbial amino acids. Microorganisms 7, 155. https://doi.org/10.3390/microorganisms7050115 (2019).CAS 
    Article 

    Google Scholar 
    52.Ng, F. et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ. Microbiol. 18, 3010–3021. https://doi.org/10.1111/1462-2920.13155 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Soliva, C. R., Amelchanka, S. L., Duval, S. M. & Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Brit. J. Nutr. 106, 114–122. https://doi.org/10.1017/S0007114510005684 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Terranova, M. et al. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Anim. Feed Sci. Technol. 276, 114796. https://doi.org/10.1016/j.anifeedsci.2020.114790 (2021).CAS 
    Article 

    Google Scholar 
    55.Ehrlich, G. G., Goerlitz, D. F., Bourell, J. H., Eisen, G. V. & Godsy, E. M. Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl. Environ. Microbiol. 42, 878–885 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Bica, R. et al. Nuclear magnetic resonance to detect rumen metabolites associated with enteric methane emissions from beef cattle. Sci. Rep. 10, 5578. https://doi.org/10.1038/s41598-020-62485-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Henderson, G. et al. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8, e74787. https://doi.org/10.1371/journal.pone.0074787 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879. https://doi.org/10.1371/journal.pone.0047879 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Comm. 10, 1014. https://doi.org/10.1038/s41467-019-08844-4 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Paoli, L. et al. Uncharted biosynthetic potential of the ocean microbiome. bioRxiv https://doi.org/10.1101/2021.03.24.436479 (2021).Article 

    Google Scholar 
    61.Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA, USA). https://www.osti.gov/servlets/purl/1241166 (2014).62.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834. https://doi.org/10.1101/gr.213959.116 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359. https://doi.org/10.7717/peerj.7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. https://doi.org/10.1101/gr.186072.114 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367. https://doi.org/10.1038/nbt.4110 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961. https://doi.org/10.1038/s41587-019-0202-3 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119. https://doi.org/10.1186/1471-2105-11-119 (2010).CAS 
    Article 

    Google Scholar 
    69.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. https://doi.org/10.1101/gr.1224503 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Allen, B., Drake, M., Harris, N. & Sullivan, T. Using KBase to assemble and annotate prokaryotic genomes. Curr. Protoc. Microbiol. 46, 1E 13 11-11E 13 18. https://doi.org/10.1002/cpmc.37 (2017).Article 

    Google Scholar 
    74.RStudio Team. R Studio: Integrated development environment for R. Version 1.4.1106 (2021).75.Oksanen, J. et al. The vegan package. Community Ecol. Pack. 10, 631–637 (2007).
    Google Scholar 
    76.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Insecticide resistance by a host-symbiont reciprocal detoxification

    Insects and bacteriaBean bugs were reared in petri dishes (90 mm in diameter and 20-mm high) at 25 °C under a long-day regimen (16-h light, 8-h dark) and fed with soybean seeds and distilled water containing 0.05% ascorbic acid (DWA). Burkholderia symbiont strain SFA119, a MEP-degrading strain conferring MEP resistant in the bean bug, and its GFP-(green fluorescent protein) labeled derivative, strain SJ586, were used in this study. The symbiont was cultured at 30 °C on YG medium (0.5% yeast extract, 0.4% glucose, and 0.1% NaCl). The GFP-labeled strain was constructed by the Tn7 mini-transposon system, as previously described31.Genome sequencingDNA was extracted from cultured cells of strain SFA1 by the phenol–chloroform extraction as previously described32. The DNA library for Illumina short reads (the mean insert size: 500 bp) was constructed by using the Covaris S2 ultrasonicator (Covaris) and the KAPA HyperPrep Kit (Kapa Biosystems). For the library construction for Nanopore long reads, Native Barcoding Expansion (EXP-NBD104, Oxford Nanopore Technologies) and the Ligation Sequencing Kit (SQK-LSK109, Oxford Nanopore Technologies) were used. The genome sequencing was performed with NextSeq using the 2 × 151-bp protocol (Illumina) and GridION using an R9.4.1 flow cell (Oxford Nanopore Technologies). The Illumina short reads were processed by using Sickle Ver 1.33 (available at https://github.com/najoshi/sickle) for removing the low-quality and shorter reads. After processing the Nanopore long-reads with Porechop Ver 0.2.3 (available at https://github.com/rrwick/Porechop) and Filtlong Ver 0.2.0 (available at https://github.com/rrwick/Filtlong), error correction was performed by using Canu Ver 1.833. These processed short- and long reads were assembled by using Unicycler Ver 0.4.734, resulting in the eight circular replicons (Supplementary Fig. 1). The assembled genome was annotated by DFAST Ver 1.1.035. After the homology searches of the protein sequences by blastp 2.5.0 + 36 against the COG database (PMID: 25428365), circular replicons were visualized with circos v 0.69-837. The chromosomes and plasmids were assigned according to the genome of Caballeronia (Burkholderia) cordobensis strain YI2338.Phylogenetic analysisNucleotide sequences of 16 S rRNA gene of representative Burkholderia spp. and outgroup species were aligned by using SINA v1.2.1139. Protein sequences of MEP-degrading genes (mpd, pnpB, and mhqA) and a plasmid-transfer gene (traH) on plasmid 2 were subjected to the blastp search against the nr database (downloaded in Jul. 2019) and top ~30 hit sequences were retrieved for each gene. Multiple sequencing alignments of each gene were constructed with L-INS-I of mafft v7.40740. Gap-including and ambiguous sites in the alignments were then removed. Unrooted maximum-likelihood (ML) phylogenetic trees were reconstructed with RAxML v8.2.341 using the GTR + Γ model (for 16 S rRNA gene) or the LG + Γ model42 (for other genes). The bootstrap values of 1000 replicates for all internal branches were calculated with a rapid bootstrapping algorithm43.Preparation of SFA1 cultures for RNA-seqBurkholderia symbiont SFA1 was precultured in minimal medium (20 mM phosphate buffer [pH 7.0], 0.01% yeast, 0.1% (NH4)2SO4, 0.02% NaCl, 0.01% MgSO4⋅7H2O, 0.005% CaCl2⋅2H2O, 0.00025% FeSO4⋅7H2O, and 0.00033% EDTA⋅2Na) containing 1.0 mM of MEP on a gyratory shaker (210 rpm) at 30 °C overnight, and subcultured in newly prepared MEP-containing minimal medium under the same conditions for 5 h. As a control, SFA1 was precultured in minimal medium containing 0.1% citrate overnight, and then the overnighter was subcultured in a newly prepared citrate-containing minimal medium under the same conditions for 10 h. The culture was mixed with an equal amount of RNAprotect Bacteria Regent (Qiagen, Valencia, CA, USA), then centrifuged to harvest the cells for the RNA-seq analysis.Preparation of midgut symbiont cells for RNA-seqThe oral administration of the symbiont strain SFA1 was performed as described19,44. The symbiont was inoculated to 2nd instar nymphs, and three days after molting to the 3rd instar, nymphs were transdermally administered with 1 µl of 0.2 µM or 20 µM of MEP (dissolved in acetone). One- or three days after the treatment, insects were dissected and the crypt-bearing symbiotic gut region was subjected to the RNA extraction and RNA-seq analysis. As a control, untreated insects were analyzed.RNA-seq analysisTotal RNA was extracted from triplicate samples from cultures by the hot-phenol method as previously described45 or from the midgut symbiont cells by using RNAiso Plus (Takara Bi, Kusatsu, Shiga, Japan) and the RNeasy mini kit (Qiagen). The extracted total RNA was purified by phenol–chloroform extraction and digestion by DNase (RQ1 RNase-Free DNase, Promega, Fitchburg, WI, USA) and repurified by using a RNeasy Mini Kit. The mRNA in the samples was further enriched by the RiboMinus Transcriptome Isolation Kit bacteria (Thermo Fisher Scientific, Waltham, MA, USA) and the RiboMinus Eukaryote Kit for RNA-Seq (Thermo Fisher Scientific), and purified by using an AMPure XP kit (Beckman Coulter, Brea, CA, USA). The cDNA libraries were constructed from approximately 100 ng of rRNA-depleted RNA samples by the use of a NextUltraRNA library prep kit (New England Biolabs, Ipswich, MA, USA). Size selection of cDNA (200–300 bp) and determination of the size distribution and concentration of the purified cDNA samples were performed as described previously46. In total, 21 cDNA libraries were constructed and sequenced by MiSeq (Illumina, Inc., San Diego, CA, USA). To ensure high sequence quality, the remaining sequencing adapters and the reads with a cutoff Phred score of 15 (for leading and tailing sequences, Phred score of >20) and a length of less than 80 bp in the obtained RNA-seq data were removed by the program Trimmomatic v0.30 using Illumina TruSeq3 adapter sequences for the clipping47. The remaining paired reads were analyzed by FastQC version 0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality control, and Bowtie2 ver. 2.2.248 for mapping on the symbiont genome (DDBJ/EMBL/GenBank accession: AP022305–AP022312). After the conversion of the output BAM files to BED files using the bamtobed program in BEDTools ver. 2.14.349, gene expression levels were calculated in TPM (transcripts per kilobase million) values by using in-house scripts46.Gene deletion and complementationMEP-degrading genes (mpd, pnpA1, and pnpA2) were deleted by the homologous-recombination-based deletion method using pK18mobsacB or pUC18, as previously described50,51. Primers used for the mutagenesis are listed in Supplementary Table 1. For mpd gene deletion, pK18mobsacB was used to construct a markerless mutant. For single deletion of pnpA1 and pnpA2 genes, pUC18 was used to substitute each gene locus with a kanamycin-resistance gene cassette. The double deletion of pnpA1 and pnpA2 genes was performed by substituting pnpA2 gene locus with a tetracycline-resistance gene cassette in the pnpA1-deletion mutant. Gene complementation of mpd was also performed by homologous recombination using plasmid pUC18 with primers listed in Supplementary Table 1. To investigate growth profiles of the wild-type SFA1, the gene-deletion mutants (Δmpd, ΔpnpA1, ΔpnpA2, and ΔpnpA1/ΔpnpA2), and the mph-complement mutant (Δmpd/mpd+) in the MEP-containing minimal medium, the strains were precultured in minimal medium containing 1.0 mM MEP on a gyratory shaker (210 rpm) at 30 °C overnight, and then cultured in newly prepared MEP-containing minimal medium under the same condition. The growth of cultures was estimated by OD600 measurements. To confirm the basic growth abilities of the mutants, these bacterial strains were pre- and subcultured in minimal medium containing 0.1% glucose under the same conditions. These symbiont strains and mutants were inoculated to the bean bug as described above.Quantitative PCRSymbiont titers in the midgut crypts were evaluated by quantitative PCR (qPCR) of bacterial dnaA gene copies. The qPCR was performed by using a KAPA SYBR Fast qPCR Master Mix (Kapa Biosystems) and the LightCycler 96 System (Roche Applied Science) with the following primers: BSdnaA–F (5′-AGC GCG AGA TCA GAC GGT CGT CGA T-3′) and BSdnaA–R (5′-TCC GGC AAG TCG CGC ACG CA-3′).MEP treatment of insectsMEP treatment of R. pedestris was performed as previously described19. Soybean seeds were dipped in 0.2 mM MEP for 5 s and dried at room temperature. In each clean plastic container, 15 individuals of 3rd-instar nymphs were reared on three seeds of the MEP-treated soybean and DWA at 25 °C under the long-day regime, and the number of dead insects was counted 24 h after the treatments. The survival rate of the insects was analyzed under Fisher’s exact test by use of the program R ver. 3.6.3 (available at https://www.R-project.org/). Multiple comparisons were corrected by the Bonferroni method.Bactericidal activities of MEP and its degradation product 3M4NTo measure bactericidal activities of MEP and 3M4N on cultured cells of SFA1, 104 cells of log-phase growing bacteria were mixed with a defined concentration of MEP or 3M4N, and spotted on a YG agar plate. To measure the bactericidal activity against midgut crypt-colonizing cells, the symbiotic organs infected with SFA1 were dissected from 3rd-instar insects, homogenized in PBS, and purified by a 5-µm-size pore Syringe filter to harvest colonizing symbiont cells50. MEP or 3M4N was added to approximately 104 cells of the harvested cells and spotted on a YG agar plate. Bactericidal activities of the chemical compounds were then checked in 24 h after incubation at 30 °C.HPLC detection of in vitro and in vivo MEP-degrading activities of the symbiontTo determine in vitro MEP-degradation activity, cultured cells of SFA1 were prepared as above, and 106 cells were incubated at 25 °C in 200 µl of MEP solution (2 mM MEP in Tris-Hcl [pH 8.5] with 0.1% Triton X-100) in a 1.5-ml microtube. To determine in vivo MEP-degradation activity, the midgut of a 5th-instar insect infected with SFA1 was dissected, the posterior and anterior parts of the crypt-bearing symbiotic region were closed with 0.2-mm polyethylene fishline (Supplementary Fig. 6a), and incubated at 25 °C in 200 µl of the MEP solution. For the in vivo determination, 250 mM of trehalose, known as a major sugar source of insects’ hemolymph52, was added to the MEP solution to keep the tissue fresh. After incubation for different times, the reaction was stopped by adding 400 µl of methanol. After centrifugation, supernatants were subjected to high-performance liquid chromatography (HPLC) analyses to detect MEP and 3M4N, as previously reported21, and precipitated cells and tissues were subjected to DNA extraction and qPCR to estimate symbiont-cell numbers of each reaction.LC–ESI–MS detection of 3M4N in feces from 3M4N-fed insectsAn insect-rearing system for feeding 3M4N and collecting feces is shown in Supplementary Fig. 7. Insects were fed with DW or DW containing 10 mM 3M4N in a plastic container, in which the solution supplier was covered by 0.5-mm mesh, so that insects were able to drink the solution by probing with their proboscis, but did not directly touch the solution by their legs or body. Twenty insects were reared per container and their feces were accumulated on the bottom of the container for five days. The collected feces (DW- or 3M4N-treated) were suspended in 1 ml of MilliQ water, and the water-soluble fractions were extracted by thorough vortexing. Solids and insoluble fractions were removed from the suspension by centrifugation and subsequent filtration using a cellulose-acetate membrane (Φ, 0.20 μm, ADVANTEC, Tokyo, Japan). The resultant fraction was diluted 10-fold by MilliQ water and analyzed by liquid chromatography–electrospray-ionization mass spectrometry (LC–ESI–MS) according to a previous report53,54,55. HPLC was performed using the Nexera X2 system (Shimadzu, Kyoto, Japan) composed of LC-30AD pump, SPD-M30A photodiode-array detector, and SIL-30AC autosampler. Develosil HB ODS-UG column (ID 2.0 mm × L 75 mm, Nomura Chemical Co., Ltd, Aichi, Japan) was employed with a flow rate of 0.2 mL/min. The following gradient system was used for analysis of metabolites: MilliQ water (solvent A) and methanol (solvent B), 90% A and 10% B at 0–5 min, linear gradient from 90% A and 10% B to 20% A and 80% B at 5–15 min, 20% A and 80% B at 15–20 min, and 90% A and 10% B at 20–25 min. Retention time of 3M4N standard reagent was 14.2 min. Electrospray-ionization mass spectrometry (ESI–MS) in positive and negative ion modes was simultaneously performed using amaZon SL (Bruker, Billerica, MA, USA). 3M4N (MW = 153.14) standard showed a clear peak in negative mode at m/z of 151.53.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More