More stories

  • in

    Protect, manage and then restore lands for climate mitigation

    1.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).2.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 

    Google Scholar 
    3.Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. 3, 30 (2021).
    Google Scholar 
    4.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).
    Google Scholar 
    5.Griscom, B. W. et al. We need both natural and energy solutions to stabilize our climate. Glob. Change Biol. 25, 1889–1890 (2019).
    Google Scholar 
    6.Fargione, J. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
    Google Scholar 
    7.Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).CAS 

    Google Scholar 
    8.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 

    Google Scholar 
    9.Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).
    Google Scholar 
    10.Gregorio, N. et al. in Enhancing Food Security Through Forest Landscape Restoration: Lessons from Burkina Faso, Brazil, Guatemala, Viet Nam, Ghana, Ethiopia and Philippines (eds Kumar, C. et al.) 174–217 (IUCN, 2015).11.Meyer, J. M. Gifford Pinchot, John Muir, and the boundaries of politics in American thought. Polity 30, 267–284 (1997).
    Google Scholar 
    12.Standard on Biodiversity Offsets (BBOP, 2012).13.Performance Standard 6: Biodiversity Conservation and Sustainable Management of Natural Resources (IFC, 2012).14.Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).
    Google Scholar 
    15.Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020).16.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Phil. Trans. R. Soc. B 375, 20190120 (2020).
    Google Scholar 
    17.Ellis, P. W. et al. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. Ecol. Manag. 438, 255–266 (2019).
    Google Scholar 
    18.Martin, D. M. Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 25, 668–673 (2017).
    Google Scholar 
    19.Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).
    Google Scholar 
    20.Supporting Canadians and Fighting COVID-19 (Department of Finance Canada, 2020).21.Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).
    Google Scholar 
    22.Seddon, N. et al. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020 (IUCN, 2019).23.Carbon Removal Corporate Action Tracker (Institute for Carbon Removal Law and Policy, accessed 6 July 2021); https://research.american.edu/carbonremoval/2020/05/07/carbon-removal-corporate-action-tracker/24.Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    25.Goal 1 Assessment: Striving to End Natural Forest Loss (NYDF Progress Assessment Secretariat, 2020).26.Smith, B. One year later: The path to carbon negative—a progress report on our climate ‘moonshot’. Microsoft Blog (28 January 2021); https://blogs.microsoft.com/blog/2021/01/28/one-year-later-the-path-to-carbon-negative-a-progress-report-on-our-climate-moonshot/27.Ward, C. et al. Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra. Indonesia. Reg. Environ. Change 21, 1 (2020).
    Google Scholar 
    28.Jacobson, M. & Ham, C. The (un)broken promise of agroforestry: a case study of improved fallows in Zambia. Environ. Dev. Sustain. 22, 8247–8260 (2020).
    Google Scholar 
    29.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci USA 117, 24188–24194 (2020).CAS 

    Google Scholar 
    30.Cook-Patton, S. C. et al. Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth 3, 739–752 (2020).
    Google Scholar 
    31.Petersen, S. O., Højberg, O., Poulsen, M., Schwab, C. & Eriksen, J. Methanogenic community changes, and emissions of methane and other gases, during storage of acidified and untreated pig slurry. J. Appl. Microbiol. 117, 160–172 (2014).CAS 

    Google Scholar 
    32.Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).
    Google Scholar 
    33.Qin, Z. et al. Delayed impact of natural climate solutions. Glob. Change Biol. 27, 215–217 (2021).
    Google Scholar 
    34.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 

    Google Scholar 
    35.Pagiola, S., Honey-Rosés, J. & Freire-González, J. Assessing the permanence of land-use change induced by payments for environmental services: evidence from Nicaragua. Trop. Conserv. Sci. https://doi.org/10.1177/1940082920922676 (2020).36.Tseng, T.-W. J. et al. Influence of land tenure interventions on human well-being and environmental outcomes. Nat. Sustain. 4, 242–251 (2021).
    Google Scholar 
    37.Smith, P. et al. Impacts of land-based greenhouse gas removal options on ecosystem services and the United Nations Sustainable Development Goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).
    Google Scholar 
    38.Nunez, S., Verboom, J. & Alkemade, R. Assessing land-based mitigation implications for biodiversity. Environ. Sci. Policy 106, 68–76 (2020).
    Google Scholar 
    39.Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Change Biol. 26, 6134–6155 (2020).
    Google Scholar 
    40.Infield, M., Entwistle, A., Anthem, H., Mugisha, A. & Phillips, K. Reflections on cultural values approaches to conservation: lessons from 20 years of implementation. Oryx 52, 220–230 (2018).
    Google Scholar 
    41.Rosenstock, T. S. et al. A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1, 330–344 (2019).
    Google Scholar 
    42.Garrett, H. E. et al. Hardwood silvopasture management in North America. Agrofor. Syst. 61, 21–33 (2004).
    Google Scholar 
    43.Kroeger, T. et al. Returns on investment in watershed conservation: application of a best practices analytical framework to the Rio Camboriú Water Producer program, Santa Catarina, Brazil. Sci. Total Environ. 657, 1368–1381 (2019).CAS 

    Google Scholar 
    44.Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).CAS 

    Google Scholar 
    45.Ferreira, J. et al. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744–749 (2018).CAS 

    Google Scholar 
    46.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 

    Google Scholar 
    47.Wilson, S. J., Schelhas, J., Grau, R., Nanni, A. S. & Sloan, S. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22, 38 (2017).
    Google Scholar 
    48.Funk, J. M. et al. Securing the climate benefits of stable forests. Clim. Policy 19, 845–860 (2019).
    Google Scholar 
    49.Keith, H. et al. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341 (2021).CAS 

    Google Scholar 
    50.Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).
    Google Scholar 
    51.Hiraishi, T. et al. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (WMO, 2013).52.Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).CAS 

    Google Scholar 
    53.Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Phil. Trans. R. Soc. B 375, 20190126 (2020).CAS 

    Google Scholar 
    54.Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).CAS 

    Google Scholar 
    55.Vargas Zeppetello, L. R. et al. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 15, 84012 (2020).
    Google Scholar 
    56.Spalding, M. D. et al. The role of ecosystems in coastal protection: adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).
    Google Scholar 
    57.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 
    58.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).59.Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 

    Google Scholar 
    60.Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).
    Google Scholar 
    61.Brancalion, P. H. S. et al. The cost of restoring carbon stocks in Brazil’s Atlantic Forest. Land Degrad. Dev. 32, 830–841 (2021).
    Google Scholar 
    62.Bustamante-Sánchez, M. A. & Armesto, J. J. Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. J. Appl. Ecol. 49, 1103–1112 (2012).
    Google Scholar 
    63.Koch, A., Brierley, C. & Lewis, S. L. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18, 2627–2647 (2021).CAS 

    Google Scholar 
    64.Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).CAS 

    Google Scholar 
    65.Johnson, K. A. et al. A benefit–cost analysis of floodplain land acquisition for US flood damage reduction. Nat. Sustain. 3, 56–62 (2020).
    Google Scholar 
    66.Nolte, C. High-resolution land value maps reveal underestimation of conservation costs in the United States. Proc. Natl Acad. Sci. USA 117, 29577–29583 (2020).CAS 

    Google Scholar 
    67.Reetz, H., Heffer, P. & Bruulsema, T. in Managing Water and Fertilizer for Sustainable Agricultural Intensification (eds Drechsel, P. et al.) 65–86 (IFA, IWMI, IPNI and IPI, 2015).68.Sharma, P. et al. The role of cover crops towards sustainable soil health and agriculture—a review paper. Am. J. Plant Sci. 09, 1935–1951 (2018).CAS 

    Google Scholar 
    69.Bergeron, M. et al. Reduced soil nutrient leaching following the establishment of tree-based intercropping systems in eastern Canada. Agrofor. Syst. 83, 321–330 (2011).
    Google Scholar 
    70.Moore, A. A. & Palmer, M. A. Invertebrate biodiveristy in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15, 1169–1177 (2005).
    Google Scholar 
    71.Martin, M. P. et al. People plant trees for utility more often than for biodiversity or carbon. Biol. Conserv. 261, 109224 (2021).
    Google Scholar 
    72.Mendes, T. P., de Assis Montag, L. F., Alvarado, S. T. & Juen, L. Assessing habitat quality on alpha and beta diversity of Odonata larvae (Insect) in logging areas in Amazon forest. Hydrobiologia 848, 1147–1161 (2021).
    Google Scholar 
    73.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
    Google Scholar 
    74.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).
    Google Scholar 
    75.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
    Google Scholar 
    76.Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).
    Google Scholar 
    77.Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).
    Google Scholar 
    78.Xu, S., Liu, X., Li, X. & Tian, C. Soil organic carbon changes following wetland restoration: a global meta-analysis. Geoderma 353, 89–96 (2019).CAS 

    Google Scholar 
    79.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 

    Google Scholar 
    80.Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P. & Wang, L. Where the people are: current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. cities. Landsc. Urban Plan. 177, 277–240 (2018).
    Google Scholar 
    81.McDonald, R. I., Kroeger, T., Zhang, P. & Hamel, P. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23, 137–150 (2020).
    Google Scholar 
    82.Heris, M. et al. Piloting urban ecosystem accounting for the United States. Ecosyst. Serv. 48, 101226 (2021).
    Google Scholar 
    83.Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).
    Google Scholar 
    84.Li, R. et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 7, eabf8650 (2021).
    Google Scholar 
    85.Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).
    Google Scholar 
    86.Griscom, B. W., Goodman, R. C., Burivalova, Z. & Putz, F. E. Carbon and biodiversity impacts of intensive versus extensive tropical forestry. Conserv. Lett. 11, e12362 (2018).
    Google Scholar 
    87.Gabon’s Proposed National RED+ Forest Reference Level (Gabonese Republic, 2021).88.Umunay, P., Gregoire, T., Gopalakrishna, T., Ellis, P. & Putz, F. Selective logging emissions and potential emission reductions from reduced-impact logging in the Congo Basin. Ecol. Manag. 437, 360–371 (2019).
    Google Scholar 
    89.Natural Climate Solutions World Atlas (Nature4Climate, accessed 9 December 2020); https://nature4climate.org/n4c-mapper/90.Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019); https://doi.org/10.2305/IUCN.CH.2019.06.en91.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
    Google Scholar 
    92.Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).
    Google Scholar 
    93.Kronenberg, J. & Mieszkowicz, J. Planting trees for publicity—how much are they worth? Sustainability 3, 1022–1034 (2011).
    Google Scholar 
    94.Microsoft Carbon Removal: Lessons from an Early Corporate Purchase (Microsoft, 2021).95.Toor, I. A., Smith, E. G., Whalen, J. K. & Naseem, A. Tree-based intercropping in southern Ontario, Canada. Can. J. Agric. Econ. 60, 141–154 (2012).
    Google Scholar 
    96.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS 

    Google Scholar 
    97.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).
    Google Scholar 
    98.Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015). More

  • in

    Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms

    1.The State of Food Insecurity in the World—How Does International Price Volatility Affect Domestic Economies and Food Security? (FAO, 2011).2.Catchpoole, D. W. & Blair, G. Forage tree legumes I. Productivity and N economy of leucaena, gliricidia, calliandra and sesbania and tree/green panic mixtures. Aust. J. Agric. Res 41, 521–530 (1990).CAS 
    Article 

    Google Scholar 
    3.Xu, Z. H., Saffigna, P. G., Myers, R. J. K. & Chapman, A. L. Nitrogen cycling in leucaena (Leucaena lecuocephala) alley cropping in semiarid tropics. 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148, 63–72 (1993).CAS 
    Article 

    Google Scholar 
    4.Beer, J., Muschler, R., Kass, D. & Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 38, 139–164 (1998).Article 

    Google Scholar 
    5.Snoeck, D., Zapata, F. & Domenach, A.-M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol. Agron. Soc. Environ. 4, 95–100 (2000).CAS 

    Google Scholar 
    6.Sierra, J. & Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 38, 1893–1903 (2006).CAS 
    Article 

    Google Scholar 
    7.He, X. H., Critchley, C. & Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531–567 (2003).Article 

    Google Scholar 
    8.Jalonen, R., Nygren, P. & Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 32, 1366–1376 (2009).CAS 
    Article 

    Google Scholar 
    9.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).Article 

    Google Scholar 
    10.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).11.Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164, 175–181 (2004).Article 

    Google Scholar 
    12.Newman, E. I. & Ritz, K. Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol. 104, 77–87 (1986).CAS 
    Article 

    Google Scholar 
    13.Mikkelsen, B. L., Rosendahl, S. & Jakobsen, I. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol. 4, 890–898 (2008).Article 

    Google Scholar 
    14.Saka, A. R., Bunderson, W. T., Itimu, O. A., Phombeya, H. S. K. & Mbekeani, Y. The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For. Ecol. Manage. 64, 217–230 (1994).Article 

    Google Scholar 
    15.Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor. Syst. 29, 133–145 (1995).Article 

    Google Scholar 
    16.Sileshi, G. W. et al. in Encyclopedia of Agriculture and Food Systems (ed. van Alfen, N.) 222–234 (Elsevier, 2014).17.Yengwe, J., Gebremikael, M. T., Buchan, D., Lungu, O. & De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 92, 349–363 (2018).
    Google Scholar 
    18.Yengwe, J., Amalia, O., Lungu, O. I. & De Neve, S. Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. Eur. J. Agron. 99, 148–155 (2018).CAS 
    Article 

    Google Scholar 
    19.Sida, T. S., Baudron, F., Ndoli, A., Tirfessa, D. & Giller, K. E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 453, 173–188 (2020).CAS 
    Article 

    Google Scholar 
    20.Umar, B. B., Aune, J. B. & Lungu, O. I. Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr. J. Agric. Res. 8, 173–183 (2013).
    Google Scholar 
    21.Hadgu, K. M., Kooistra, L., Rossing, W. A. H. & van Bruggen, A. H. C. Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security 1, 337–350 (2009).Article 

    Google Scholar 
    22.Dalpé, Y., Diop, T. A., Plenchette, C. & Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10, 125–129 (2000).Article 

    Google Scholar 
    23.Boddey, R. M., Peoples, M. B., Palmer, B. & Dart, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 57, 235–270 (2000).Article 

    Google Scholar 
    24.Oberson, A. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007).CAS 
    Article 

    Google Scholar 
    25.Snapp, S., Borden, H. & Rohrbach, D. Improving nitrogen efficiency: lessons from Malawi and Michigan. Sci. World 1, 42–48 (2001).
    Google Scholar 
    26.Akinnifesi, F. K., Wakumba, W. & Kwesiga, F. R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 42, 441–457 (2006).Article 

    Google Scholar 
    27.Tovihoudji, P. G., Irenikatché Akponikpè, P. B., Agbossou, E. K., Bertin, P. & Bielders, C. L. Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Res. 213, 130–142 (2017).Article 

    Google Scholar 
    28.Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).Article 

    Google Scholar 
    29.Bueno de Mesquita, C. P. et al. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 36, 63–74 (2018).Article 

    Google Scholar 
    30.Alexandre, D. Y. & Ouedraogo, S. J. in Faidherbia albida in the West African Semi-arid Tropics: Proceedings of a Workshop (ed. Vandenbeldt, R. J.) 107–110 (International Centre for Research in Agroforestry, 1992).31.Jones, A. et al. Soil Atlas of Africa (European Commission, 2013).32.Dierks, J. et al. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 318, 107487 (2021).CAS 
    Article 

    Google Scholar 
    33.Mungai, L. M. et al. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01720 (2016).34.Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).CAS 
    Article 

    Google Scholar 
    35.Marschner, H. & Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994).CAS 
    Article 

    Google Scholar 
    36.Gryndler, M. et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450 (2018).Article 

    Google Scholar 
    37.Rillig, M. C. et al. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308, 267–275 (2008).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T. & Li, M. Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol. 111, 35–44 (1989).Article 

    Google Scholar 
    39.Fitter, A. H. & Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 110, 201–206 (1988).CAS 
    Article 

    Google Scholar 
    40.Cavagnaro, T. R., Smith, F. A. & Smith, S. E. Interactions between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato: does a noninfective fungus alter the ability of an infective fungus to colonise the roots—and vice versa? New Phytol. 164, 485–491 (2004).Article 

    Google Scholar 
    41.Carey, P. D., Fitter, A. H. & Watkinson, A. R. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90, 550–555 (1992).Article 

    Google Scholar 
    42.Merryweather, J. & Fitter, A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132, 307–311 (1996).CAS 
    Article 

    Google Scholar 
    43.Shinners, K. J. & Binversie, B. N. Fractional yield and moisture of corn stover biomass produced in northern US Corn Belt. Biomass Bioenergy 31, 576–584 (2007).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/45.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002). More

  • in

    Mapping classes of carbon

    This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). More

  • in

    Hot and cold water

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate

    Acrylic and polydimethylsiloxane (PDMS) molds preparationThe incubating device for the porous microplate was designed using a CAD software (Solidworks, Dassault Systèmes) and the exported drawing files were used to laser cut 1/4” and 1/8” acrylic sheet (Universal Laser Systems; Supplementary Fig. S2). After washing the cut acrylic parts with deionized water, they were attached by acrylic (Weld-On) and epoxy (3 M) adhesives that were followed by a curing process for ~18 h. Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was cast onto the acrylic mold and cured at 80 °C for at least 3 h. The PDMS mold was carefully detached from the acrylic surface by dispensing isopropyl alcohol (VWR) into the area between the PDMS and the acrylic molds (Fig. 2a).Fig. 2: Synthesis and characterization of porous microplate.a Procedure to build a porous microplate using polydimethylsiloxane (PDMS) and acrylic molds. b Image of the microplate with an array of culture wells (wall thickness: 0.9 mm). c Scanning electron microscopy image of nanoporous copolymer HEMA–EDMA.Full size imagePorous microplate preparationSynthesis of copolymer HEMA–EDMA was based on previously described protocols [30, 31] and details are given as follows. Prepolymer solution HEMA − EDMA was prepared by mixing 2-hydroxyethyl methacrylate (HEMA; monomer, 24 wt.%, Sigma-Aldrich), ethylene glycol dimethacrylate (EDMA; crosslinker, 16 wt.%, Sigma-Aldrich), 1-decanol (porogen, 12 wt.%, Sigma-Aldrich), cyclohexanol (porogen, 48 wt.%, Sigma-Aldrich) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP; photoinitiator, 1 wt.%). The solution was stored at room temperature without light exposure until further use. Glass slides (75 × 50 mm2, VWR) were chemically cleaned by sequentially soaking in 1 M hydrochloric acid and 1 M sodium hydroxide for one hour, followed by rinsing with deionized water and air drying. The prepolymer solution was cast onto the PDMS mold and a glass slide was placed on the mold. The solution was then polymerized under ultraviolet light with a wavelength 365 nm for 15 min by using a commercial UV lamp (VWR). The photopolymerized device was detached from the PDMS mold and stored in a jar containing methanol (VWR) until further use (Fig. 2a). The jar was refilled with new methanol twice in order to remove the remaining porogen and uncrosslinked monomers from the hydrogel.Upon each incubation experiment with the porous microplate, each device was decontaminated by replacing the solvent with 70% alcohol (VWR) and storing it for 24 h. They were immersed in a pre-autoclaved jar for two weeks with f/2 medium with omitted silicate, where the jar was refilled once with a new sterile medium to adjust its pH for the algal culture and remove any solvent remaining in the hydrogel. Before inoculating microbial cells, each microplate was taken out from the jar and the media remaining on the top surface was removed by absorbing it with a pre-sterilized wipe to minimize the chance for cross-contamination between wells (Fig. 2b).Scanning electron microscopyPhotopolymerized HEMA − EDMA was removed from methanol and dried in air for at least one week to evaporate the excess solvent. A ~5 × 5 mm2 specimen was collected from the dried copolymer and attached to a pin stub. The stub was loaded on a scanning electron microscope (SEM; MERLIN, Carl Zeiss), and the specimen was characterized with imaging software (SmartSEM, Carl Zeiss) with 16,270X magnification and an operating voltage of 1 kV. The SEM imaging was performed at the Electron Microscopy Facility in the MIT Materials Research Science and Engineering Centers (MRSEC; Fig. 2c).Strains and culturing conditionsAxenic P. tricornutum CCMP 2561 was acquired from the National Center for Marine Algae and Microbiota (NCMA) and shown to be axenic via epifluorescence microscopy and sequencing of the 16 S rRNA gene [11]. P. tricornutum was maintained in f/2 medium with 20 g L−1 commercially available sea salts (Instant Ocean, Blacksburg) and with omitted silicate, which we will refer to as f/2-Si [11, 16]. Batch cultures were grown at 20 °C with a 12 h light/12 h dark diurnal cycle and a light intensity of 200 μmol photons m−2 s−1 (Exlenvce). Every 2–3 weeks, axenic cultures were monitored for bacterial contamination by streaking culture samples on marine broth agar [33], that tests for contamination by bacteria that can grow on agar media and is not definitive. Every 6–12 months, every axenic and bacterial co-culture of P. tricornutum was inspected for the absence/presence of bacteria by staining the cellular DNA with 0.1% v/v SYTO BC Green Fluorescent Acid Stain (Thermofisher, Supplementary Fig. S1).Bacterial community samples (referred to as “phycosphere enrichments”) were obtained from mesocosms of P. tricornutum and maintained as previously described [11, 16]. Briefly, an outdoor P. tricornutum mesocosm sample in natural seawater was collected in Corpus Christi, TX and filtered with 0.6–1 µm pores to remove larger algal cells. The bacterial filtrates were inoculated to an axenic algal culture, maintained in f/2-Si media for ~3 months, and washed with a sterile medium to enrich for phycosphere-associated bacteria. These enriched communities were subsequently co-cultured with P. tricornutum in f/2-Si media for ~4 years prior to the start of the experiments.Two bacterial strains, Marinobacter sp. 3-2 and Algoriphagus sp. ARW1R1, were isolated from the phycosphere enrichment samples (Supplementary Table S1). The isolates were either maintained by growing on marine broth agar plates at 30 °C or by co-culturing with P. tricornutum through inoculation of a single colony into the axenic culture.
    P. tricornutum culture in porous microplateThree baseline experiments were designed to study how the alga P. tricornutum interacts with its associated bacteria in the porous microplate (Fig. 1). For experiments assessing the algal growth in the microplate, axenic P. tricornutum was acclimated to a copolymer environment in advance by inoculating a stationary phase-culture to a separate microplate. After acclimation for 4 days, the culture was diluted to ~1 × 106 cells ml−1 and transferred to the experimental microplate. Three replicated microplates were placed in a single transparent covered container (128 × 85 × 10 mm3, VWR) which was filled with ~25 ml f/2-Si medium to keep the microplate hydrated throughout the incubation period of 20 days with an initial culture volume of 75 µl (Fig. 1a). The procedures were conducted under a biosafety cabinet to prevent any biological contamination. The cells were incubated under the same conditions as described above for the batch cultures (temperature, light intensity, diurnal cycle).Growth of P. tricornutum was measured by counting cells using a hemocytometer (Electron Microscopy Sciences) or flow cytometry (described later). Specific growth rates were calculated from the natural log of the cell densities in triplicate sampled during an exponential growth phase (day 3 for the batch culture, day 5 for the porous microplate system; Fig. 3a).Fig. 3: Cultivation of P. tricornutum in the porous microplate.a Schematic of a microplate for algal cultivation. b Growth curve and maximal growth rate (inset) comparing the porous microplate with flask culture. Error bars, standard deviation of triplicates. c Cell abundance at center (n = 3) and surrounding (n = 18) wells after incubation. Asterisks denote statistical differences with following levels (two-tailed t-test): ***P  More

  • in

    Harmonizing climate-smart and sustainable agriculture

    1.Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (in the press); https://www.ipcc.ch/srccl/chapter/chapter-5/2.Jägermeyr, J. et al. Nat. Food https://doi.org/10.1038/s43016-021-00400-y (2021).3.Rosenzweig, C. et al. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Fischer, T., Byerlee, D. & Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158 (Australian Centre for International Agricultural Research, 2014).5.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Part A (Cambridge Univ. Press, 2014).6.Dang, H. L., Li, E., Nuberg, I. & Bruwer, J. Clim. Dev. 11, 765–774 (2019).Article 

    Google Scholar 
    7.Peng, B. et al. Nat. Plants 6, 338–348 (2020).Article 

    Google Scholar 
    8.Song, X.-P. et al. Nat. Sustain. 4, 784–792 (2021).Article 

    Google Scholar 
    9.Rosenzweig, C. & Tubiello, F. N. Mitig. Adapt. Strat. Glob. Chang. 12, 855–873 (2007).Article 

    Google Scholar 
    10.Smith, P. & Olesen, J. E. J. Agric. Sci. 148, 543–552 (2010).CAS 
    Article 

    Google Scholar 
    11.Lobell, D. B., Baldos, U. L. C. & Hertel, T. W. Environ. Res. Lett. 8, 015012 (2013).ADS 
    Article 

    Google Scholar 
    12.Springmann, M. et al. Nature 562, 519–525 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Gerten, D. et al. Nat. Sustain. 3, 200–208 (2020).Article 

    Google Scholar 
    14.Chang, J. et al. Nat. Food 2, 700–711 (2021).Article 

    Google Scholar 
    15.Ruane, A. C. et al. Environ. Res. Lett. 12, 125003 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Field metabolic rates of giant pandas reveal energetic adaptations

    1.Li, B. V. & Pimm, S. L. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv. Biol. 30, 329–339 (2016).PubMed 

    Google Scholar 
    2.Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Google Scholar 
    3.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).
    Google Scholar 
    4.Nowak, R. M. Walker’s Mammals of the World Vol. II (Johns Hopkins University Press, 1991).
    Google Scholar 
    5.Nelson, R. A., Wahner, H. W., Jones, J. D., Ellefson, R. D. & Zollman, P. E. Metabolism of bears before, during, and after winter sleep. Am. J. Physiol. 224, 491–496 (1973).CAS 
    PubMed 

    Google Scholar 
    6.Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 
    7.Watts, P. D., Øritsland, N. A. & Hurst, R. J. Standard metabolic rate of polar bears under simulated denning conditions. Physiol. Zool. 60, 687–691 (1987).
    Google Scholar 
    8.Watts, P. & Cuyler, C. Metabolism of the black bear under simulated denning conditions. Acta Physiol. Scand. 134, 149–152 (1988).CAS 
    PubMed 

    Google Scholar 
    9.Watts, P. D. & Jonkel, C. Energetic cost of winter dormancy in grizzly bear. J. Wildl. Manag. 52, 654–656 (1988).
    Google Scholar 
    10.Tøien, Ø. et al. Hibernation in black bears: Independence of metabolic suppression from body temperature. Science 331, 906–909 (2011).ADS 
    PubMed 

    Google Scholar 
    11.McNab, B. K. Rate of metabolism in the termite-eating sloth bear (Ursus ursinus). J. Mammal. 73, 168–172 (1992).
    Google Scholar 
    12.Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?. J. Exp. Biol. 221, jeb175372 (2018).PubMed 

    Google Scholar 
    13.Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhang, Y., Mathewson, P. D., Zhang, Q., Porter, W. P. & Ran, J. An ecophysiological perspective on likely giant panda habitat responses to climate change. Glob. Change Biol. 24, 1804–1816 (2018).ADS 

    Google Scholar 
    15.Fei, Y. et al. Metabolic rates of giant pandas inform conservation strategies. Sci. Rep. 6, 27248. https://doi.org/10.1038/srep27248 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Sieg, A. E. et al. Mammalian metabolic allometry: Do intraspecific variation, phylogeny, and regression models matter?. Am. Nat. 174, 720–733 (2009).PubMed 

    Google Scholar 
    17.Nie, Y. et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349, 171–174 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Acquarone, M., Born, E. W. & Speakman, J. R. Field metabolic rates of walrus (Odobenus rosmarus) measured by the doubly labeled water method. Aquat. Mamm. 32, 363–369 (2006).
    Google Scholar 
    19.Nagy, K. & Montgomery, G. Field metabolic rate, water flux, and food consumption in three-toed sloths (Bradypus variegatus). J. Mammal. 61, 465–472 (1980).
    Google Scholar 
    20.Mautz, W. & Nagy, K. Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol. Zool. 60, 640–658 (1987).
    Google Scholar 
    21.Anava, A., Kam, M., Shkolnik, A. & Degen, A. Effect of group size on field metabolic rate of Arabian babblers provisioning nestlings. Condor 103, 376–380 (2001).
    Google Scholar 
    22.Fyhn, M. et al. Individual variation in field metabolic rate of kittiwakes (Rissa tridactyla) during the chick-rearing period. Physiol. Biochem. Zool. 74, 343–355 (2001).CAS 
    PubMed 

    Google Scholar 
    23.Møller, A. P. Relative longevity and field metabolic rate in birds. J. Evol. Biol. 21, 1379–1386 (2008).PubMed 

    Google Scholar 
    24.Riek, A. Relationship between field metabolic rate and body weight in mammals: Effect of the study. J. Zool. 276, 187–194 (2008).
    Google Scholar 
    25.Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L. & Speakman, J. R. Estimating field metabolic rates of pinnipeds: Doubly labelled water gets the seal of approval. Funct. Ecol. 22, 245–254 (2008).
    Google Scholar 
    26.Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    27.Munn, A. J. et al. Field metabolic rate, movement distance, and grazing pressures by western grey kangaroos (Macropus fuliginosus melanops) and Merino sheep (Ovis aries) in semi-arid Australia. Mamm. Biol. 81, 423–430 (2016).
    Google Scholar 
    28.Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus) in New Directions in Lemur Studies (eds. Rakotosamimanana, B., Rasamimanana H., Ganzhorn, J. U., & Goodman S. M.) 83–91 (1999).29.Kilham, B. & Gray, E. Among the Bears: Raising Orphan Cubs in the Wild (Henry Holt, 2002).
    Google Scholar 
    30.Xu, W., Ouyang, Z., Jiang, Z., Zheng, H. & Liu, J. Assessment of giant panda habitat in the Daxiangling Mountain Range, Sichuan, China. Biodivers. Sci. 14, 223 (2006).CAS 

    Google Scholar 
    31.Zhao, C. et al. Relationship between human disturbance and endangered giant panda Ailuropoda melanoleuca habitat use in the Daxiangling Mountains. Oryx 51, 146–152 (2017).
    Google Scholar 
    32.Wysowski, D. K. & Pollock, M. L. Reports of death with use of propofol (Diprivan) for nonprocedural (long-term) sedation and literature review. J. Am. Soc. Anesthesiol. 105, 1047–1051 (2006).
    Google Scholar 
    33.Mistraletti, G., Donatelli, F. & Carli, F. Metabolic and endocrine effects of sleep deprivation. Essent. Psychopharmacol. 6, 312–317 (2005).
    Google Scholar 
    34.Champagne, C. D., Houser, D. S., Costa, D. P. & Crocker, D. E. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in Northern elephant seals. PLoS ONE 7, e38442. https://doi.org/10.1371/journal.pone.0038442 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Fahlman, Å. Anaesthesia of wild carnivores and primates. Licentiate Thesis (Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005).36.Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113 (2006).
    Google Scholar 
    37.West, G., Heard, D. & Caulkett, N. Zoo Animal and Wildlife Immobilization and Anesthesia 2nd edn. (John Wiley & Sons, 2014).
    Google Scholar 
    38.Speakman, J. R. Doubly Labelled Water: Theory and Practice (Springer, 1997).
    Google Scholar 
    39.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Prosser, C. L. & Brown, F. A. Jr. Comparative Animal Physiology, Environmental and Metabolic Animal Physiology 260–261 (W. B. Saunders, 1991).
    Google Scholar 
    41.Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258 (1950).CAS 
    PubMed 

    Google Scholar 
    42.Hart, J. S. Rodents in Comparative Physiology of Thermoregulation, Volume II Mammals (ed Whittow, G. C.) 1–149 (Academic Press, 1971).43.McNab, B. K. The Physiological Ecology of Vertebrates: A View From Energetics (Cornell University Press, 2002).
    Google Scholar 
    44.Schaller, G. B., Hu, J. C., Pan, W. S. & Zhu, J. Giant Pandas of Wolong (The University of Chicago Press, 1985).
    Google Scholar 
    45.Taylor, C., Heglund, N. & Maloiy, G. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. exp. Biol. 97, 1–21 (1982).CAS 
    PubMed 

    Google Scholar 
    46.Pagano, A. M. Polar bear (Ursus maritimus) behavior and energetics: New metrics for examining the physiological impact of a changing Arctic environment. Ph.D. Dissertation (University of California Santa Cruz, CA, 2018).47.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Google Scholar 
    48.Hu, J. C. Research on the Giant Panda (Shanghai Publishing House of Science and Technology, 2001).
    Google Scholar 
    49.Liu, G., Guan, T., Dai, Q., Li, H. & Gong, M. Impacts of temperature on giant panda habitat in the north Minshan Mountains. Ecol. Evol. 6, 987–996 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    50.Hull, V. et al. Impact of livestock on giant pandas and their habitat. J. Nat. Conserv. 22, 256–264 (2014).
    Google Scholar 
    51.Hull, V. et al. Habitat use and selection by giant pandas. PLoS ONE 11(9), e0162266 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Li, B. V., Pimm, S. L., Li, S., Zhao, L. & Luo, C. Free-ranging livestock threaten the long-term survival of giant pandas. Biol. Cons. 216, 18–25 (2017).
    Google Scholar 
    53.Pan, W. et al. A Chance for Lasting Survival: Ecology and Behavior of Wild Giant Pandas (Smithsonian Institution Press, 2014).
    Google Scholar 
    54.Hayes, J. P. Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at lowand high altitudes. Physiol. Zool. 62, 732–744 (1989).
    Google Scholar 
    55.Bi, W. Physiological ecology of soft-release giant pandas (Ailuropoda melanoleuca). PhD Dissertation. (Drexel University, Philadelphia, PA, 2020) More

  • in

    Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic

    Mixed layer depth and phytoplankton accumulation dynamics in the North AtlanticThe NAAMES expeditions intensively measured biological, chemical, and physical properties from 4 to 7 locations, or stations, in each bloom phase during November (Winter Transition), March−April (Accumulation), May (Climax; same as Climax Transition22), and September (Decline)22. Stations spanned a broad range in latitude (~37 °N to ~55 °N, Fig. 1a), sub-regional classifications (Gulf Stream and Sargasso Sea, Subtropical, Temperate and Subpolar)24, and MLDs (tens to hundreds of meters) (Fig. 1b and Supplementary Fig. 1). MLDs were calculated using a density difference threshold of 0.03 kg m−3 from the top 10 m25. Field data and associated analyses are derived from phytoplankton 1–20 µm in diameter and their associated communities sampled within the photic zone (40, 20, 1% surface irradiance) and within the mixed layer, unless otherwise noted.Fig. 1: Mixed layer depth and phytoplankton accumulation dynamics.a Locations of sampled stations within subregions of the Northwest Atlantic during the NAAMES expeditions (color coded and shaped by the bloom phase; W. Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline; See key in Panel B). Black rectangle represents the study area of NAAMES and this research. b Mixed layer depths within the NAAMES campaigns (black box in Fig. 1a), calculated from CTD casts at each of the station locations (colored symbols) and Bio-ARGO profiling floats that were deployed at stations and sampled continuously (small circles with separate grey lines for each float). The latter provided a history of mixed layer depths before, during, and after occupation. c Bloom phase distribution of accumulation rates for in situ phytoplankton populations sampled several times per day at 5 m. Each point represents the median accumulation rate of each station. d Bloom phase distribution of phytoplankton cell accumulation rates derived from on-deck incubations of phytoplankton populations at simulated in situ light and temperature conditions (see ‘Methods’). Each point represents a biological replicate. Data in panels (c) and (d) are based on cell concentrations and contoured with ridgeline smoothing to represent the distribution of accumulation rates across stations within a given bloom phase. The size of contour peaks is driven by frequency of observations. e Phytoplankton concentration (taken from 5 m) as a function of water column stratification (expressed as buoyancy frequency; s−1). Higher buoyancy frequencies to the right of the plot represent more stratification. A LOESS line of best fit (shaded area = 95% confidence interval) for data shows the general trend of phytoplankton concentration across all seasonal phases. Different letters denote statistically significant groups (p  0.05, Kruskal−Wallis) between populations collected from 5 m in-line sampling throughout the day (in situ) and contemporaneous incubations of the same phytoplankton populations under simulated in situ irradiance and temperature (incubations; see ‘Methods’) (Fig. 1c, d). Accumulation rates using incubations calculated via cell concentration or via biovolume were not statistically different (Supplementary Fig. 2b).Phytoplankton cell concentration and biovolume generally increased with water column stability (stratification), during the Winter Transition, Accumulation, and Climax phases (Fig. 1e and Supplementary Fig. 2c). Stratification was quantified by the buoyancy frequency averaged over the upper 300 m of the water column (see ‘Methods’). Higher values of buoyancy frequency indicate a more stratified water column where exchange with nutrient-rich water below the surface is reduced. Strongly stratified water columns (buoyancy frequencies above 2 × 10−5 s−1) during the Decline phase were associated with lower cell concentrations (Fig. 1e), consistent with enhanced phytoplankton loss or reduced accumulation. Phytoplankton biovolume and cell size distribution within 1–20 µm-sized phytoplankton cells increased during the Decline phase (Supplementary Fig. 2c–e). These higher biovolumes could have been a result of changes in community composition. They could have also been attributed to aggregation caused by virus infection20,21,28, as virus concentrations were highest during this season (discussed below), or by light stress27, as mixed layer populations were more consistently exposed to daily higher irradiance levels characteristic of shallow mixed layers (Fig. 1e).In situ phytoplankton cell concentrations increased from Winter Transition until the Climax phase, from ~1 × 106 to 2.5 × 107 cells L−1 (Fig. 2a, c, gray boxes). On-deck incubations showed similar trends but had higher overall cell concentrations (Fig. 2a, c, white boxes). The Decline phase was characterized by a 4-fold reduction in median phytoplankton cell concentrations from the peak abundances observed during Climax phase (Fig. 2a, c). The stress markers utilized in this study provided a unique view into the physiological status of communities across these annual bloom phases (Supplementary Table 1). Our ROS and compromised cell membranes biomarkers specifically targeted eukaryotic phytoplankton, given the conditions used for flow cytometry analysis (see ‘Methods’). PCD-related proteases and lipids were extracted from biomass collected onto 1.2 and 0.2 µm diameter membrane filters, respectively. Consequently, these biomarkers could also include eukaryotic heterotrophs and bacteria in the system. Induction of caspase and metacaspase activities have been found in diverse phytoplankton, such as coccolithophores, diatoms, chlorophytes, nitrogen-fixing cyanobacteria, and dinoflagellates cells undergoing stress, senescence, and death29. They have also been reported in stressed or dying grazers30, although no marine species has been explicitly studied. TAGs are found mainly in marine eukaryotic phytoplankton31,33,33 and grazers34. The highly unsaturated fatty acids in the PC and OxPCs detected in our measurements are also indicative of eukaryotic organisms, and not marine cyanobacteria32 or heterotrophic bacteria35.Fig. 2: Seasonal phases have distinct physiological state signatures.a, c Concentration of phytoplankton cells sampled within the mixed layer at depths associated with 40, 20, or 1% surface irradiance during different seasonal phases (W.Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline). Data are shown for in situ water (grey bars) and on-deck incubations (open bars). Population-wide levels of a, b cellular reactive oxygen species (colored by fluorescence fold change from unstained; median per population) and c, d cell death (colored by % compromised membrane). Plots (b) and (d) are contoured with ridgeline smoothing to represent the relative in situ distribution of biomarker levels within each phase. The size of contour peaks is driven by frequency of observations. e, f In situ inventories of live (e; green) and dead (f; red) cells within the mixed layer through the different phases. Individual circles denote biological replicates. Box plots in (a), (c), (e) and (f) represent the median value bounded by the upper and lower quartiles with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  5 µM; PO4  > 0.4 µM). Notably, nutrient concentrations during the Climax phase were similar or higher than those observed for Accumulation phase samples, which had lower ROS signatures (Fig. 2b).Phytoplankton cells in the Decline and Winter Transition phases had a higher percentage of compromised cell membranes, reaching levels as high as 80% (Fig. 2c, d). Both late stage viral infection and PCD have been linked to high levels of compromised membranes13,29. The percentage of phytoplankton cells with compromised membranes was used to calculate concentrations of live and dead cells within the mixed layer across the bloom phases. Living phytoplankton cell concentrations generally increased from the Winter Transition through the Climax phase (Fig. 2e). The variability of dead cells was highest in the Decline phase, which also had the largest variation in total, living, and dead cell concentrations (Fig. 2c, e, f).Targeted analysis of OxPC, and TAGs in resident phytoplankton communities provided further context of changes in physiological states due to their relevance in cellular stress and loss processes. The seasonal bloom phases were characterized by distinct levels of these lipids (Fig. 3 and Supplementary Fig. 4). OxPC levels were highest in the Climax phase (Fig. 3a), where mixed layers had recently shallowed (Fig. 1b) and were concomitant with high intracellular ROS levels (Fig. 2b). Subcellular environments lacking in adequate antioxidant capacity are expected to accumulate OxPC40 particularly when a shallow mixed-layer enhances UV exposure15. Chlorophyll-normalized TAG was highest in the Decline phase (Fig. 3b), which also had the lowest accumulation rates (Fig. 1c, d). High cellular TAG levels have been observed in senescent41,42 or nutrient limited9 diatoms, and virus infected haptophytes43.Fig. 3: Seasonal phases are characterized by distinct lipid profiles and cell death-associated proteolytic activity.a Oxidized phosphatidylcholine (OxPC40:10, OxPC42:11, OxPC44:12) normalized to total phosphatidylcholine (PC40:10, PC42:11, PC44:12). b Triacylglycerol (TAG; pmol L−1), normalized to ChlA (peak area/L). c (top) The proportion of in situ samples with positive caspase activity (cleavage of IETD-AFC; color shading). (bottom) Caspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. d (top) The proportion of in situ samples with positive metacaspase activity (cleavage of VRPR-AMC; color shading). (bottom) Metacaspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. All box plots represent the median value bounded by the upper and lower quartiles, with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  More