Fine-scale spatial segregation in a pelagic seabird driven by differential use of tidewater glacier fronts
1.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
2.Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67 (2013).
Google Scholar
3.Bernstein, R. A. & Gobbel, M. Partitioning of space in communities of ants. J. Anim. Ecol. 48, 931–942 (1979).
Google Scholar
4.Jenkins, S. H. A size-distance relation in food selection by beavers. Ecology 61, 740–746 (2018).
Google Scholar
5.Grémillet, D. et al. Offshore diplomacy, or how seabirds mitigate intra-specific competition: A case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 268, 265–279 (2004).ADS
Google Scholar
6.Orians, G. H. & Pearson, N. E. On the theory of central place foraging. In Analysis of Ecological Systems (eds Horn, D. J. et al.) 154–177 (The Ohio State University Press, 1979).7.Schoener, T. W. Generality of the size-distance relation in models of optimal feeding. Am. Nat. 114, 902–914 (1979).MathSciNet
Google Scholar
8.Brown, M. J. F. & Gordon, D. M. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behav. Ecol. Sociobiol. 47, 195–203 (2000).
Google Scholar
9.Dawo, B., Kalko, E. K. V. & Dietz, M. Spatial organization reflects the social organization in Bechstein’s bats. Ann. Zool. Fennici 50, 356–370 (2013).
Google Scholar
10.Nordstrom, C. A., Battaile, B. C., Cotté, C. & Trites, A. W. Foraging habitats of lactating northern fur seals are structured by thermocline depths and submesoscale fronts in the eastern Bering Sea. Deep Res. Part II Top. Stud. Oceanogr. 88–89, 78–96 (2013).ADS
Google Scholar
11.Bolton, M., Conolly, G., Carroll, M., Wakefield, E. D. & Caldow, R. A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis (London 1859) 161, 241–259 (2019).
Google Scholar
12.Cairns, D. K. The regulation of seabird colony size: A hinterland model. Am. Nat. 134, 141–146 (1989).
Google Scholar
13.Wakefield, E. D. et al. Space partitioning without territoriality in gannets. Science (80-.) 341, 68–70 (2013).ADS
CAS
Google Scholar
14.Masello, J. F. et al. Diving seabirds share foraging space and time within and among species. Ecosphere 1, art19 (2010).
Google Scholar
15.Cecere, J. G. et al. Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor. Sci. Rep. 8, 11762 (2018).CAS
Google Scholar
16.Ainley, D. G., Ford, R. G., Brown, E. D., Suryan, R. M. & Irons, D. B. Prey resources, competition, and geographic structure of Kittiwake colonies in Prince William Sound. Ecology 84, 709–723 (2003).
Google Scholar
17.Ramos, R. et al. Meta-population feeding grounds of cory’s shearwater in the subtropical Atlantic ocean: Implications for the definition of marine protected areas based on tracking studies. Divers. Distrib. 19, 1284–1298 (2013).
Google Scholar
18.Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).ADS
CAS
Google Scholar
19.Hunt Jr., G. L. et al. Physical processes, prey abundance, and the foraging ecology of seabirds. In Proceedings of the 22nd International Ornithological Congress, Durban (eds Adams, N. J. & Slotow, R. H.) 2040–2056 (BirdLife South Africa, 1999).20.Weimerskirch, H. Are seabirds foraging for unpredictable resources? Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).ADS
Google Scholar
21.Benoit-Bird, K. J. et al. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLoS ONE 8, e53348 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
22.Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471 (2014).
Google Scholar
23.Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Coastal habitat use by ringed seals Pusa hispida following a regional sea-ice collapse: Importance of glacial refugia in a changing Arctic. Mar. Ecol. Prog. Ser. 545, 261–277 (2016).ADS
Google Scholar
24.Nishizawa, B. et al. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES J. Mar. Sci. 77, 711–720 (2020).
Google Scholar
25.Grémillet, D. et al. Arctic warming: Nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Change Biol. 21, 1116–1123 (2015).ADS
Google Scholar
26.Hamilton, C. D. et al. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol. Lett. 15, 20180834 (2019).PubMed
PubMed Central
Google Scholar
27.Hartley, C. H. & Fisher, J. The marine foods of birds in an inland fjord region in West Spitsbergen: Part 2. Birds. J. Anim. Ecol. 5, 370–389 (1936).
Google Scholar
28.Everett, A. et al. Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals. Sci. Rep. 8, 13467 (2018).ADS
PubMed
PubMed Central
Google Scholar
29.Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 2169–2185 (2015).ADS
Google Scholar
30.Urbański, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for seabirds in tidewater glacier bays. Sci. Rep. 7, 43999 (2017).ADS
PubMed
PubMed Central
Google Scholar
31.Stempniewicz, L. et al. Marine birds and mammals foraging in the rapidly deglaciating Arctic fjord—Numbers, distribution and habitat preferences. Clim. Change 140, 533–548 (2017).ADS
Article
Google Scholar
32.Stempniewicz, L. et al. Advection of Atlantic water masses influences seabird community foraging in a high-Arctic fjord. Prog. Oceanogr. 193, 102549 (2021).
Google Scholar
33.Dragańska-Deja, K., Błaszczyk, M., Deja, K., Wesławski, J. M. & Rodak, J. Tidewater glaciers as feeding spots for the Black-legged kittiwake (Rissa tridactyla): A citizen science approach. Polish Polar Res. 41, 69–93 (2020).
Google Scholar
34.Bertrand, P. et al. Feeding at the front line: interannual variation in the use of glacier fronts by foraging black-legged kittiwakes. Mar. Ecol. Prog. Ser. 677, 197–208 (2021).35.Walsh, P. M. et al. Seabird Monitoring Handbook for Britain and Ireland. A Compilation of Methods for Survey and Monitoring of Breeding Seabirds (JNCC/RSPB/ITE/Seabird Group, 1995).
Google Scholar
36.Anker-Nilssen, T. et al. Key-Site Monitoring in Norway 2018, Including Svalbard and Jan Mayen (SEAPOP, 2020).
Google Scholar
37.Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).Article
PubMed
Google Scholar
38.Coulson, J. C. Sexing black-legged kittiwakes by measurement. Ringing Migr. 24, 233–239 (2009).ADS
Google Scholar
39.Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).ADS
Google Scholar
40.Christensen-Dalsgaard, S., May, R. & Lorentsen, S. H. Taking a trip to the shelf: Behavioral decisions are mediated by the proximity to foraging habitats in the black-legged kittiwake. Ecol. Evol. 8, 866–878 (2018).PubMed
Google Scholar
41.Coulson, J. C. & Macdonald, A. Recent changes in the habits of the Kittiwake. Br. Birds 55, 171–177 (1962).
Google Scholar
42.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.43.Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).
Google Scholar
44.Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS
PubMed
Google Scholar
45.Fleming, C. H. & Calabrese, J. M. ctmm: Continuous-time movement modeling. R package version 0.5.10. https://cran.r-project.org/package=ctmm (2020).46.Dong, X., Fleming, C. H., Noonan, M. J. & Calabrese, J. M. ctmmweb: A Shiny web app for the ctmm movement analysis package. https://github.com/ctmm-initiative/ctmmweb. (2018).47.Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).
Google Scholar
48.Noonan, M. J. et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol. Monogr. 89, 1–21 (2019).
Google Scholar
49.Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154–E167 (2014).PubMed
Google Scholar
50.Calabrese, J. M., Fleming, C. H. & Gurarie, E. Ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).
Google Scholar
51.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).MATH
Google Scholar
52.Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).
Google Scholar
53.Beal, M. et al. BirdLifeInternational/track2kba: First Release (Version 0.5.0). Zenodo. https://doi.org/10.5281/zenodo.3823902 (2020).54.Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).
Google Scholar
55.Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
Google Scholar
56.Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).MathSciNet
MATH
Google Scholar
57.Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–109 (1943).MathSciNet
MATH
Google Scholar
58.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
Google Scholar
59.Carneiro, A. P. B. et al. Consistency in migration strategies and habitat preferences of brown skuas over two winters, a decade apart. Mar. Ecol. Prog. Ser. 553, 267–281 (2016).ADS
Google Scholar
60.Dehnhard, N. et al. High inter-and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? J. Anim. Ecol. 89, 104–119 (2020).PubMed
Google Scholar
61.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet
MATH
Google Scholar
62.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet
MATH
Google Scholar
63.Oksanen, J. et al. vegan: Community Ecology Package (2019). R package version 2.5-7. https://CRAN.R-project.org/package=vegan64.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).MATH
Google Scholar
65.Pebesma, E. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2). https://cran.r-project.org/doc/Rnews/ (2005).66.Paredes, R. et al. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf. PLoS ONE 9, e92520 (2014).ADS
PubMed
PubMed Central
Google Scholar
67.Hartig, F. Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa (2020).68.Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: A permutational regression approach. Evolution 48, 1487–1499 (1994).
Google Scholar
69.Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
Google Scholar
70.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).
Google Scholar
71.Zaccarelli, N., Mancinelli, G. & Bolnick, D. I. RInSp: An R package for the analysis of individual specialisation in resource use. Methods Ecol. Evol. 4, 1018–1023 (2013).
Google Scholar
72.Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).ADS
CAS
PubMed
Google Scholar
73.Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).ADS
Google Scholar
74.Fauchald, P. Spatial interaction between seabirds and prey: Review and synthesis. Mar. Ecol. Prog. Ser. 391, 139–151 (2009).ADS
Google Scholar
75.MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Google Scholar
76.Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).
Google Scholar
77.Carroll, D. et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).ADS
Google Scholar
78.Halbach, L. et al. Tidewater glaciers and bedrock characteristics control the phytoplankton growth environment in a fjord in the Arctic. Front. Mar. Sci. 6, 254 (2019).
Google Scholar
79.Pramanik, A. et al. Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard. Cryosph. Discuss. [preprint]. https://doi.org/10.5194/tc-2020-197.Article
Google Scholar
80.Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).ADS
CAS
PubMed
PubMed Central
Google Scholar
81.Arimitsu, M. L., Piatt, J. F. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).ADS
Google Scholar
82.Haney, J. Seabird segregation at Gulf Stream frontal eddies. Mar. Ecol. Prog. Ser. 28, 279–285 (1986).ADS
Google Scholar
83.Hyrenbach, K. D., Veit, R. R., Weimerskirch, H. & Hunt, G. L. Jr. Seabird associations with mesoscale eddies: The subtropical Indian Ocean. Mar. Ecol. Prog. Ser. 324, 271–279 (2006).ADS
Google Scholar
84.Cox, S. L. et al. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots. R. Soc. Open Sci. 3, 160317 (2016).ADS
MathSciNet
CAS
PubMed
PubMed Central
Google Scholar
85.Schneider, D. C. Seabirds and fronts: A brief overview. Polar Res. 8, 17–21 (1990).CAS
Google Scholar
86.Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).
Google Scholar
87.Durazo, R., Harrison, N. M. & Hill, A. E. Seabird observations at a tidal mixing front in the Irish Sea. Estuar. Coast. Shelf Sci. 47, 153–164 (1998).ADS
Google Scholar
88.Wakefield, E. D., Phillips, R. A. & Matthiopoulos, J. Quantifying habitat use and preferences of pelagic seabirds using individual movement data: A review. Mar. Ecol. Prog. Ser. 391, 165–182 (2009).ADS
Google Scholar
89.How, P. et al. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere 11, 2691–2710 (2017).ADS
Google Scholar
90.Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS
CAS
Google Scholar
91.Irons, D. B. Foraging area fidelity of individual seabirds in relation to tidal cycles and flock feeding. Ecology 79, 647–655 (1998).
Google Scholar
92.Piatt, J. F. et al. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: Implications for conservation. Deep Res. Part II Top. Stud. Oceanogr. 53, 387–398 (2006).ADS
Google Scholar
93.Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis (London 1859) 115, 517–534 (1973).
Google Scholar
94.Weimerskirch, H., Bertrand, S., Silva, J., Marques, J. C. & Goya, E. Use of social information in seabirds: Compass rafts indicate the heading of food patches. PLoS ONE 5, e9928 (2010).ADS
PubMed
PubMed Central
Google Scholar
95.Ainley, D. G. et al. Geographic structure of Adélie penguin populations: Overlap in colony-specific foraging areas. Ecol. Monogr. 74, 159–178 (2004).
Google Scholar
96.Fretwell, S. D. & Lucas, H. L. J. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1970).
Google Scholar More