Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth
1.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUVIG). Nat Biotechnol 2019;37:29–37.PubMed
Google Scholar
2.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.PubMed
Google Scholar
3.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23.PubMed
PubMed Central
Google Scholar
4.Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 2019;7:1–15.
Google Scholar
5.Schulz F, Alteio L, Goudeau D, Ryan EM, Yu FB, Malmstrom RR, et al. Hidden diversity of soil giant viruses. Nat Commun 2018;9:1–9.
Google Scholar
6.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 2018;3:e00076–18.PubMed
PubMed Central
Google Scholar
7.Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ, Sutton TDS, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653–664.e6.PubMed
Google Scholar
8.Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ, Martínez JM, et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 2017;8:1–13.
Google Scholar
9.Aguirre de Cárcer D, Angly FE, Alcamí A. Evaluation of viral genome assembly and diversity estimation in deep metagenomes. BMC Genomics. 2014;15:1–12.
Google Scholar
10.Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ. 2017;5:e3817.PubMed
PubMed Central
Google Scholar
11.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature. 2011;474:604–8.PubMed
Google Scholar
12.Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009;7:828–36.PubMed
Google Scholar
13.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA 2012;109:4544–9.PubMed
PubMed Central
Google Scholar
14.Enav H, Kirzner S, Lindell D, Mandel-Gutfreund Y, Béjà O. Adapt sub-Optim hosts is a Driv viral Diversif ocean Nat Comm 2018;9:1–11.
Google Scholar
15.Boon M, Holtappels D, Lood C, van Noort V, Lavigne R. Host range expansion of pseudomonas virus LUZ7 is driven by a conserved tail fiber mutation. PHAGE. 2020;1:87–90.
Google Scholar
16.Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2020;18:113–9.PubMed
Google Scholar
17.Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol 1989;207:365–77.PubMed
Google Scholar
18.Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 1984;180:549–76.PubMed
Google Scholar
19.Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell. 2015;59:744–54.PubMed
PubMed Central
Google Scholar
20.Plotkin JB, Kudla G. Synonymous but not the same: The causes and consequences of codon bias. Nat Rev Genet 2011;12:32–42.PubMed
Google Scholar
21.Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19:359.PubMed
PubMed Central
Google Scholar
22.Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–5.PubMed
Google Scholar
23.Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 2019;4:1727–36.PubMed
PubMed Central
Google Scholar
24.Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat. Microbiol. 2019;5:1–7.25.Coutinho FH, Rosselli R, Rodríguez-Valera F. Trends of microdiversity reveal depth-dependent evolutionary strategies of viruses in the Mediterranean. mSystems. 2019;4:1–17.
Google Scholar
26.Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.PubMed
PubMed Central
Google Scholar
27.Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.PubMed
Google Scholar
28.McMullen A, Martinez‐Hernandez F, Martinez‐Garcia M. Absolute quantification of infecting viral particles by chip‐based digital polymerase chain reaction. Environ Microbiol Rep. 2019;11:855–60.PubMed
Google Scholar
29.Marston MF, Amrich CG. Recombination and microdiversity in coastal marine cyanophages. Environ Microbiol. 2009;11:2893–903.PubMed
Google Scholar
30.Marston MF, Martiny JBH. Genomic diversification of marine cyanophages into stable ecotypes. Environ Microbiol 2016;18:4240–53.PubMed
Google Scholar
31.Cordero OX. Endemic cyanophages and the puzzle of phage-bacteria coevolution. Environ Microbiol 2017;19:420–2.PubMed
Google Scholar
32.Shannon CE. The mathematical theory of communication. 1963. MD Comput. 1997;14:306–17.PubMed
Google Scholar
33.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.PubMed
Google Scholar
34.Bobay L-M, Ochman H. Biological species in the viral world. Proc Natl Acad Sci USA 2018;115:6040–5.PubMed
PubMed Central
Google Scholar
35.Henson MW, Lanclos VC, Faircloth BC, Thrash JC. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 2018;12:1846–60.PubMed
PubMed Central
Google Scholar
36.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D686.PubMed
Google Scholar
37.Brum JR, Ignacio-Espinoza JC, Kim E-H, Trubl G, Jones RM, Roux S, et al. Illuminating structural proteins in viral ‘dark matter’ with metaproteomics. Proc Natl Acad Sci USA 2016;113:2436–41.PubMed
PubMed Central
Google Scholar
38.Sakowski EG, Arora-Williams K, Tian F, Zayed AA, Zablocki O, Sullivan MB, et al. Interaction dynamics and virus–host range for estuarine actinophages captured by epicPCR. Nat. Microbiol. 2021;6:1–13.39.Alonso-Sáez L, Morán XAG, Clokie MR. Low activity of lytic pelagiphages in coastal marine waters. ISME J. 2018;12:2100–2.PubMed
PubMed Central
Google Scholar
40.Martinez‐Hernandez F, Luo E, Tominaga K, Ogata H, Yoshida T, DeLong EF, et al. Diel cycling of the cosmopolitan abundant Pelagibacter virus 37‐F6: one of the most abundant viruses in Earth. Environ Microbiol Rep. 2020;12:214–21941.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.PubMed
Google Scholar
42.de Avila e Silva S, Echeverrigaray S, Gerhardt GJL. BacPP: bacterial promoter prediction-A tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol 2011;287:92–99.PubMed
Google Scholar
43.Sampaio M, Rocha M, Oliveira H, Dias O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics. 2019;35:5301–2.PubMed
Google Scholar
44.Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010;402:905–18.PubMed
PubMed Central
Google Scholar
45.Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, et al. Role of mRNA stability during bacterial adaptation. PLoS ONE 2013;8:e59059.PubMed
PubMed Central
Google Scholar
46.Deana A, Belasco JG. Lost in translation: The influence of ribosomes on bacterial mRNA decay. Genes Dev. 2005;19:2526–33.PubMed
Google Scholar
47.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.PubMed
Google Scholar
48.Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, et al. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020;1462-2920:15272.
Google Scholar
49.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.50.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol 2020;5:1011–5.PubMed
PubMed Central
Google Scholar
51.Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond, B, Biol Sci 2006;361:1929–40.
Google Scholar
52.Rosselló-Mora R. Updating prokaryotic taxonomy. J Bacteriol. 2005;187:6255–7.PubMed
PubMed Central
Google Scholar
53.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2:1533–42.PubMed
Google Scholar
54.Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009;106:19126–31.PubMed
PubMed Central
Google Scholar
55.Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015;4:e06416.PubMed
PubMed Central
Google Scholar
56.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC genomics. 2016;17:930.PubMed
PubMed Central
Google Scholar
57.Martinez-Hernandez F, Garcia-Heredia I, Lluesma Gomez M, Maestre-Carballa L, Martínez Martínez J, Martinez-Garcia M. Droplet digital PCR for estimating absolute abundances of widespread Pelagibacter viruses. Front Microbiol 2019;10:1226.PubMed
PubMed Central
Google Scholar
58.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed
PubMed Central
Google Scholar
59.Beaulaurier J, Luo E, Eppley JM, Uyl P Den, Dai X, Burger A, et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 2020;30:437–46.PubMed
PubMed Central
Google Scholar
60.Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience 2020;9:giaa146.61.Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 2019;37:1155–62.PubMed
PubMed Central
Google Scholar
62.Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18:705–16.PubMed
Google Scholar
63.Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed
PubMed Central
Google Scholar
64.Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet. 2013;9:e1003987.PubMed
PubMed Central
Google Scholar
65.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.PubMed
PubMed Central
Google Scholar
66.Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13:134.
Google Scholar
67.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.PubMed
PubMed Central
Google Scholar
68.Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.PubMed
Google Scholar
69.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.PubMed
PubMed Central
Google Scholar
70.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed
PubMed Central
Google Scholar
71.Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
Google Scholar
72.Bobay L-M, Ellis BS-H, Ochman H. ConSpeciFix: classifying prokaryotic species based on gene flow. Bioinformatics. 2018;34:3738–40.PubMed
PubMed Central
Google Scholar
73.Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.PubMed Central
Google Scholar
74.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
Google Scholar
75.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.PubMed
PubMed Central
Google Scholar
76.Harris CD, Torrance EL, Raymann K, Bobay L-M. CoreCruncher: Fast and robust construction of core genomes in large prokaryotic data sets. Mol. Biol. Evol. 2020;38:727–734.77.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed
PubMed Central
Google Scholar
78.Rice P, Longden L, Bleasby A EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000. Elsevier Ltd., 16: 276–779.Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol 2019;4:2192–203.PubMed
Google Scholar
80.Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed
PubMed Central
Google Scholar
81.Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed
PubMed Central
Google Scholar
82.Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a california hypersaline lake, the Salton Sea. Appl Environ Microbiol 2010;76:757–68.PubMed
Google Scholar
83.Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol 2018;3:62–72.PubMed
Google Scholar More
