More stories

  • in

    Whales’ gigantic appetites, climate fears — the week in infographics

    NEWS
    05 November 2021

    Whales’ gigantic appetites, climate fears — the week in infographics

    Nature highlights three key infographics from the week in science and research.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Climate scientists are scepticalThe momentous COP26 climate summit now under way in Glasgow, UK, represents one final opportunity for the governments of the world to craft a plan to meet their most ambitious goals for curbing climate change. Pledges are already flowing in, but the meeting has another week to run and much is still to be decided. Ahead of the summit, Nature conducted an anonymous survey of the 233 living authors of a climate-science report published in August by the Intergovernmental Panel on Climate Change, and received responses from 92 scientists — about 40% of the group. Their answers suggest strong scepticism that governments will markedly slow the pace of global warming, despite political promises made by international leaders as part of the landmark 2015 Paris climate agreement. Six in ten of the respondents, for example, said that they expect the world to warm by at least 3 °C by the end of the century, compared with conditions before the Industrial Revolution. That is far beyond the Paris agreement’s goal to limit warming to 1.5–2 °C.

    Source: Nature analysis

    Africa’s clinical trialsA shocking lack of COVID-19 vaccines in Africa, and the cost of existing treatments, means the continent really needs affordable, readily available COVID-19 drugs. These could reduce COVID-19 symptoms, lower the burden of disease on health-care systems and reduce deaths. The pandemic has given clinical research in Africa a boost: the Pan African Clinical Trials Registry recorded more clinical trials in 2020 than in 2019, and the number for 2021 is also on track to exceed 2019. But trials of COVID-19 drugs are still lacking in Africa, where they face infrastructure and recruitment challenges. One solution could be to establish a body to coordinate treatment trials on the continent.

    Source: https://pactr.samrc.ac.za

    The gluttony of whalesHow much do baleen whales, the largest known animals that have ever lived, eat? Three times as much as previously thought, report researchers who used cameras to study seven species of baleen whale. Writing in Nature, the researchers also suggest a feeding cycle involving iron and whale poo that could explain how such gluttony is possible. When whales eat iron-rich prey such as krill, they use the prey’s protein to make blubber — and defecate the iron-rich remains. Whale faeces might then provide a source of iron for microscopic marine algae called phytoplankton, and drive blooms of a type of plankton called diatoms. Diatoms, in turn, can move iron along the food chain when they are eaten by krill, which also excrete iron. Whales can further aid iron availability by mixing ocean waters through their vigorous tail movements.

    doi: https://doi.org/10.1038/d41586-021-03066-5

    Related Articles

    African scientists race to test COVID drugs — but face major hurdles

    Top climate scientists are sceptical that nations will rein in global warming

    A whale of an appetite revealed by analysis of prey consumption

    Subjects

    Ecology

    Climate change

    Public health

    Latest on:

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    A seagrass harbours a nitrogen-fixing bacterial partner
    News & Views 03 NOV 21

    Climate change

    Scientists cheer India’s ambitious carbon-zero climate pledge
    News 05 NOV 21

    Carbon emissions rapidly rebounded following COVID pandemic dip
    News 04 NOV 21

    Glass is the hidden gem in a carbon-neutral future
    Editorial 03 NOV 21

    Public health

    When are masks most useful? COVID cases offer hints
    News 04 NOV 21

    Why scientists worldwide are watching UK COVID infections
    News Explainer 02 NOV 21

    A reconstruction of early cryptic COVID spread
    News & Views 01 NOV 21

    Jobs

    Associate or Senior Editor (Genome engineering), Nature Communications

    Springer Nature
    London, Greater London, United Kingdom

    Senior Research Associate / Senior Scientist / Clinical Epidemiologist /Epidemiologist

    Blind Veterans UK
    London, United Kingdom

    Department Manager in the area of Microbial Physiology/Microbial Systems Biology

    Chr. Hansen A/S
    Hørsholm, Denmark

    Senior Scientist / Discovery project Leader, infectious diseases

    Vaccibody AS
    Oslo, Norway More

  • in

    Applications of unmanned aerial vehicles in Antarctic environmental research

    Identification and characterization of biotic and abiotic components in a penguin colony using RGB and multispectral camerasFigure 1 shows two image mosaics of a Chinstrap penguin (Pygoscelis antarcticus) colony, composed of 3800 pictures taken during a 29-min flight at 100 m altitude with a multispectral camera (MicaSense RedEdge-MX) using RGB bands (i.e., Red-668, Green-560 and Blue-475) (Fig. 1A) and the 10 wavelength bands covering the spectrum from visible to near-infrared light (Fig. 1B). With a resolution of 6 cm/pixel, penguin nests are clearly visible in the RGB mosaic, which are characterized by the absence of vegetation and with a predominant pink/brown color due to the abundance of guano deposition. The RGB mosaic also shows snow patches (white color), moss beds (green color) and one small lagoon with a bloom of red-pigmented greenalgae (Chlorophyceae) (Fig. 1A, upper right corner). Red algae (Chlamydomonas nivalis) patches on snow and ice are visible by zooming into a region of ice (Fig. 1A). More detailed information is obtained when the light spectrum from visible to near-infrared is used. Using the 10 wavelength bands, a thematic map was generated with the QGIS software and using a non-supervised classification method (Fig. 1B). Here it is possible to distinguish up to four species of mosses and three types of penguin guano that was verified with field observations.Figure 1Photomosaics of Vapour Col Chinstrap penguin colony on Deception Island composed of 3800 pictures taken at 100 m altitude with a 10 bands multispectral camera onboard a hexacopter, achieving 6 cm/pixel size. Panel (A): visible RGB mosaic (Red-668, Green-560 and Blue-475) with a zoom capture showing red snow patch; Panel (B): thematic map generated through non-supervised classification method.Full size imageDeception Island harbors up to 54 species of mosses, of which 13 species (including two endemics) have not been recorded elsewhere in the Antarctic. This, together with eight species of liverwort and 75 species of lichen, makes Deception Island an exceptional and unique place in Antarctica with legal protection under the Antarctic Treaty3. The use of a multispectral sensor onboard the UAV provides unique information to detect, classify and monitor moss beds without anthropogenic impacts. Antarctic moss bed health has already been assessed using multispectral sensors onboard UAVs12. Taxonomic identification would be feasible by indentifying previously each species in the field and later assigning the spectral signature using the UAV, as recently suggested by Miranda et al. (2020), who monitored lichens and mosses in the Antarctic using a combination of satellite imagery and UAVs13.Penguin guano has been suggested to be an important source of bioactive metals (e.g. Cu, Fe, Mn, Zn) for the sea surface waters, potentially fueling primary production of the Southern Ocean14. It has been suggested that the penguin species that feed mainly on Antarctic krill (Euphausia superba) (i.e., Chinstrap: Pygoscelis antarcticus, Adélie: Pygoscelis adeliae and Gentoo: Pygoscelis papua) excrete the highest concentrations of these bioactive metals15. Guano from these three congeneric penguin species has revealed the presence of microplastics across the Antarctic5. However, in order to estimate the magnitude of penguin fecal products that reach the sea, it is necessary to quantify the amount of guano excreted by the penguin colonies on land. This is possible with the multispectral reflectance data obtained from the UAV, which not only identify the guano coverage but also distinguishes different types of guano. Guano color is the result of diet, which, in turn, is related to the phase of the breeding cycle; therefore, a diet rich in krill is characterized by an excretion of pink guano, while a diet predominantly based on fish implies white guano16. Dark guano is the result of the mixture of guano with the soils that produce mud during wet precipitation.It is increasingly common in the Arctic and Antarctic to find well-developed algae blooms as highly visible red patches on the snow surface caused by red-pigmented green algae (Chlorophyceae), and that produce the phenomenon commonly-known as red snow17. These algal blooms play a crucial role in decreasing the snow-surface albedo and, consequently, accelerating the melt rate, as well as in nutrient and carbon cycling18,19. Mapping and monitoring the extent of snow algal blooms have so far been focused on satellite remote sensing; however, the spectral, temporal and spatial resolution of multi-spectral satellite imagery limits the study of most snow and ice algae18. Images taken from our UAV can enable the detection of patches of red snow on the surface snow with centimetric resolution (Fig. 1A). In addition, the image mosaic reveals the existence of a red snow bloom in a small pond located in a valley inside the colony (Supplementary Fig. S1). To the best of our knowledge, the existence of this bloom has not been previously reported and its monitoring could provide relevant information about the formation and proliferation of this bloom and its impact on cryospheric environments.As a whole, the image mosaic of the Chinstrap penguin colony in Vapour Col (the second largest breeding colony in the island with about 12,000 pairs of penguins20) may provide unique information about the different ecological niches linked to a penguin colony and their interactions. For example, the distribution and type of guano as nutrient and metal sources could be influencing the distribution and speciation of the flora in the area.3D geological formation using RGB cameraDeception Island is a complex volcanic system formed as a result of the explosive eruption of basaltic-to-andesitic magmas21. Among its multiple structures and stratigraphy, we surveyed the Murature formation, a consolidated andesitic lapilli tuff22. Using the quadcopter with a RGB camera and the software Pix4D we created a 3D photogrammetry of the Murature formation (Fig. 2; Supplementary Movie S1). The software uses a Structure from Motion photogrammetry algorithm, where obtained 3D points are interpolated to form a triangulated irregular network in order to obtain digital Surface model (DSM). This DSM is then used to project every image pixel and to calculate the georeferenced orthomosaic. For the Murature formation, the photogrammetry was generated with 843 pictures obtained from three 20-min flights at an altitude of 40 meters, taking pictures from two different angles to obtain the heights of the features (60° and 90°). With 1.4 cm/pixel resolution the resulting mosaic provides a unique view of the geological formation that will support the study of how the rocks were formed and its evolution in relation to the various geological processes that occurred on the island. 3D photogrammetry is also useful in geomorphological research. Specifically, in Deception Island morphometrics studies of landform (e.g. Crater and cone diameters, depths, slopes, heights, etc.) are useful to estimate the eruptive recurrence of the island, and in turn, for advising volcanic hazards23.Figure 23D photogrammetry of the Murature formation built with 843 RGB pictures taken from the RGB Hasselblad camera quadcopter DJI Mavic 2 Zoom at 40-m altitude, achieving 1.4 cm/pixel size.Full size imageThermal imagery to estimate animal abundance and to detect thermal anomaliesThe combination of UAV technology with a thermal-imaging camera is very useful for studying and monitoring wildlife and thermal anomalies on Deception Island. Chinstrap penguin and fur seal (Arctocephalus gazella) heat signatures were detected at Vapour Col and Baily Head, respectively (Fig. 3A, E). Figure 3A shows a mosaic from a Vapour Col section composed of 336 images taken with a thermal camera (FLIR Vue Pro R) onboard the hexacopter during a 29-min flight at 100 m altitude, whereas Fig. 3C shows one thermal picture of fur seals at Baily Head. Penguins and fur seals, with a thermal signature of 15 °C and 26 °C, respectively, are clearly identified. Penguins are highly sensitive to climate change and are considered “marine sentinels” for quantifying environmental change in the Southern Ocean24. However, the distribution and population dynamics of species such as the Chinstrap penguin are not well understood, mainly because they nest in remote and rugged areas, on-the-ground census work is difficult and sporadic25. As demonstrated for Adelia penguins26 the use of thermal imagery would allow reliable population estimates of Chinstrap penguins. Even, the use of RGB aerial images for animal counting would be far more accurate than from land-based surveys. Nevertheless, the scientific challenge is to develop a machine learning algorithm that can distinguish between animal species, based on their morphology and unique thermal fingerprint, which is only feasible using the high resolution provided by UAVs.Figure 3Thermal imagery. Panel (A): thermal mosaic of a section of Vapour Col (8.5 cm/pixel). Penguins are distinguished throughout the colony as small dots around 15 °C; Panel (B) and (D): RGB (Red-668, Green-560 and Blue-475 bands) and thermal picture of fumarole at Fumarole Bay (5.4 cm/pixel), respectively; Panel (C) and (E): RGB and Thermal image of Fur seals at Baily Head (5.4 cm/pixel), respectively.Full size imageOther useful application of thermal cameras onboard UAVs on Deception Island is the easy and precise detection and monitoring of thermal anomalies. Figure 3B–D shows a thermal picture of one of the multiple fumaroles on the island, reaching temperatures above 90 °C. Seismic monitoring of volcanos on Deception Island has being ongoing since 1986, including many recorded volcano-tectonic earthquakes, long-period events and volcanic tremor27. There have been six documented volcanic eruptions on the island between 1841 and 197128, nowadays volcanic and geothermal activities are limited to fumaroles and hot sands. Monitoring of these fumaroles using UAVs can provide a key in surveillance for early warming systems alerting of volcano activity on the island. UAVs not only accurately detect changes in temperature but also allow the increase in monitoring frequency when required.Surface water samplingUAVs provide unique opportunities for remote sample collection from surface waters, particularly in harsh or dangerous environments. Using a surface water sampling device described in the sampling and method sections we collected filtered fresh and saline surface waters at: (1) Three locations in Crater Lake (Fig. 4A). Crater Lake is part of the Antarctic Specially Protected Area (ASPA 140) due to its exceptional botanic and ecological value3. The use of drones for water sampling avoids human disturbance through the transportation and use of infrastructure, such as inflatable boats, and the risk that they pose to the natural ecological system. (2) One and six coastal locations in the Vapour Col and Baily Head penguin colonies, respectively (Fig. 4B, C). Access to the coastal zone inhabited by penguins requires approaches by boat (often assisted by an oceanographic vessel). The approaches do not only disturb the penguins that enter and exit the colony but, due to the coastal orography and waves, also dangerously hinders such an operation. The surface water sampling device onboard the UAV allowed in-situ water collection, minimizing the risk of impact on flora and fauna, limiting water disturbance and preventing contamination in the trace metal analysis. Attached to the sampling system we included a small multiparametric instrument referenced with time and GPS position to measure ancillary parameters, such as conductivity, temperature and depth (CastAway-CTD®) (Fig. 4D). The aerial water sampling has been validated for trace metal analysis using ICP-MS by comparing metal concentrations of samples collected in a saline pond with the surface water sampling device onboard the UAV (i.e. average ± SD, n = 3; Ti: 0.20 ± 0.09; V: 1.92 ± 0.07; Cr: 1.5 ± 0.1; Mn: 19.4 ± 0.4; Fe: 11.6 ± 0.5; Cu: 1.9 ± 0.2; Zn: 0.5 ± 0.3; all values in ppb) and the traditional peristaltic pump system used from land or on boats29 (i.e. average ± SD, n = 3; Ti: 0.20 ± 0.06; V: 1.93 ± 0.09; Cr: 1.3 ± 0.1; Mn: 19.1 ± 0.3; Fe: 11.8 ± 0.3; Cu: 2.1 ± 0.4; Zn: 0.4 ± 0.3; all values in ppb).Figure 4Locations of surface water samples collected in Crater lake (A), Vapour Col (B), and Baily Head (C) using aerial water sampling device, and picture of the UAV (hexacopter) carrying, at 100 m altitude, the water sampling device and the multiparametric instrument (D). Stations at Crater lake are plotted on a mosaic composed of 3096 pictures taken during three flights of 14 min each at 120 m altitude using a quadcopter with an integrated RGB camera and a multispectral camera array with 5 bands, achieving 6.5 cm/pixel size.Full size imageDeception Island is an example of the complexity of Antarctic environments, where environmental research studies need to deal with the inter- and multi-disciplinary analysis of processes, such as volcanic and geothermal activities, limnological process from its multiple lakes and ponds, sparse and exceptional flora and diverse fauna, among other. UAV surveys on Deception Island have demonstrated that this technology may substantially contribute to the progress in environmental biological, geological and chemical studies. UAVs permit researchers to study environmental processes at smaller spatial and temporal scales compared to other remote platforms (e.g. satellites), in a more cost-effective and safer way than on foot studies. Furthermore, they are less invasive and less disturbing to wildlife and the ecosystem. The simultaneous use of multi-sensors for multiple applications and the development of algorithms based on images obtained from the drone to detect, classify and count animals in real time are the new challenges that would significantly contribute to the study of the functioning of the Antarctic ecosystem and its ongoing environmental processes. More

  • in

    Modelling the growth, development and yield of Triticum durum Desf under the changes of climatic conditions in north-eastern Europe

    Climatic conditions and phenologyThe growth and development of T. durum plants was moderately differentiated by weather conditions in the analyzed years (Table 1).Table 1 The duration of growing seasons (Days), sum of temperatures (Temp.) and sum of precipitation (Prec.) during the growth and development of T. durum Desf. in the analyzed years.Full size tableThe growing seasons of 2015, 2016 and 2017 lasted 136, 132 and 145 days, respectively; the sum of temperatures was determined at 2011.3, 1895.6 and 2069.9 °C, respectively, and the sum of precipitation was determined at 366.7, 360.1 and 350.5 mm, respectively. However, a comparison of cumulative temperatures and precipitation in the phenological phases of T. durum in each year of the study indicates that temperature and precipitation could have influenced the duration of the examined phases and plant growth indicators (Fig. 1). Weather conditions were generally favorable for the growth and development of T. durum in 2015 and 2016. Cumulative temperatures and precipitation were quite similar in 2015 and 2016 up to the booting stage, but precipitation levels in successive stages were higher in 2016 than in 2015. The growing season was shortest in 2016 and longest in 2017, mainly due to low temperatures during sowing and seed germination, and high precipitation during tillering, grain formation and ripening.Figure 1Cumulative temperatures and precipitation in the phenological phases of T. durum in 2015–2017.Full size imageBiophysical parameters: LAI and SPADThe LAI denotes the area of photosynthetic tissue per unit ground surface area (m2 m−2). The LAI is directly associated with plant canopy, and it is an indicator of net primary production, water and nutrient use, and the carbon balance. SPAD is a measure of leaf greenness that is directly associated with chlorophyll content and nitrogen sufficiency.The main effects of LAI and SPAD were analyzed separately in the framework of the Zadoks scale to reveal the significant effects of years, nitrogen rates and sowing density, and an absence of significant effects associated with the application of the growth regulator (see Tables 1.1–1.6 in the Supplementary Information). In the analyzed years, LAI and SPAD were similar in the 2nd node detectable stage (Z32), but they differed in the stem elongation stage (Z45) and the ear emergence and heading stage (Z59), when LAI values were higher and leaf greenness values were lower in 2016 and 2017 than in 2015. These findings can be attributed to moderate temperatures and precipitation in 2015, and high precipitation in the critical growth stages in the remaining years. The general trend associated with the nitrogen rate was similar across the examined growth stages, i.e. a significant increase in LAI and SPAD values with nearly identical effects were noted in treatments with nitrogen rates of 80 and 120 kg ha−1. A similar trend was observed in sowing density. In treatments with a sowing density of 450 and 550 germinating seeds per m2, LAI values continued to increase, whereas SPAD values were below those noted in the treatment with a sowing density of 350 germinating seeds per m2. The only significant interaction was observed between years and nitrogen rates.The average values of LAI continued to increase in successive growth stages and were determined at 1.30 at Z32, 1.75 at Z45, and 1.99 at Z59. In turn, leaf greenness was significantly lower in the stem elongation stage (Z45) than in the preceding (Z32) and subsequent (Z59) stages.The significant effect of the years × growth stages interaction for LAI and SPAD values resulted from similar means in stage Z32 in all years, as well as higher LAI values and lower SPAD values in subsequent growth stages in 2016 and 2017 than in 2015. In 2015, the increase in the nitrogen rate induced only a rising trend in LAI and SPAD values, whereas significant differences were observed in 2016 and 2017. To summarize, it should be noted that in successive Zadoks growth stages, the interactions between years, nitrogen rates and sowing density exerted significant effects on LAI and SPAD values, whereas the effects of year × nitrogen rate interactions were significant only in selected growth stages.Contribution of different sources of variation to physiological and biophysical parameters of plant growthThe calculated eta-squares η2 provide information about the contribution of different sources of variation to physiological variables (Table 2). The experimental years and agronomic factors (33.1% and 38.6%), growth stages, and interactions with other factors (32.5% and 39.3%) and random factors (34.4% and 22.1%) made similar contributions to the variation in the LAI and chlorophyll content. The variation in the net photosynthetic rate was related mostly to variations across years (32.6%) and the interactions between growth stages and other factors (24.3%). The variation in the transpiration rate was attributed mostly to the main effects of growth stages (45.8%) and the year × growth stage interaction (16.1%). Instantaneous WUE was strongly determined by variation in agronomic factors and growth stages (22.3% and 21.1%, respectively).Table 2 Eta-square (η2) values for the sources of variation in the leaf area index (LAI), chlorophyll content (SPAD), net photosynthetic ratio (Pn), transpiration rate (E) and instantaneous water use efficiency (WUE).Full size tableIt is worth noting that the variation in agronomic factors made a considerable contribution to the total variation in LAI (22.3%) and SPAD (11.8%), but only a marginal contribution to the net photosynthetic rate (0.4%) and transpiration (2.0%).Photosynthetic indicators— net photosynthetic rate, transpiration rate, and instantaneous water use efficiencyThe effects of the net photosynthetic rate (Pn), transpiration rate (E) and instantaneous WUE were highly differentiated in successive growth stages, and relatively small differences were noted for agronomic factors (see Tables 2.1–2.9 in the Supplementary Information). At the same time, the analyzed photosynthetic indicators differed in successive stages of growth. The net photosynthetic rate was similar in the 2nd node detectable stage (Z32) and the stem elongation stage (Z45) at 29.7 μmol CO2 m–2 s–1, and it was 15% higher at the end of the heading stage (Z59) than in the preceding stages. The transpiration rate continued to increase by 60% on average in successive stages of growth and development, from 1.59 H2O m–2 s–1 in stage Z32, to 2.52 mmol H2O m–2 s–1 in stage Z45, and 4.06 mmol H2O m–2 s–1 in stage Z59.An analysis of the results noted in different growth stages across years revealed significant year × growth stage and growth regulator × growth stage interactions (Fig. 2).Figure 2Mean values and standard error of photosynthesis indicators for year × growth stage (upper) and growth regulator × growth stage interactions (GR 0—without growth regulator, GR 1—with growth regulator).Full size imageThe year × growth stage interaction resulted from differences in the rates of photosynthesis and transpiration in the analyzed growth stages across years. In 2015, the net photosynthetic rate was similar in the first two growth stages, and it increased by around 30% at the end of the heading stage (Z59). In 2016, the photosynthetic rate continued to increase in successive growth stages. In 2017, the net photosynthetic rate was around 10% higher in the 2nd node detectable stage (Z32) than in the stem elongation stage (Z45) and at the end of the heading stage (Z59). The transpiration rate increased significantly in successive stages of plant growth and development, and the only exception was noted in 2015, when the analyzed parameter was similar in stages Z32 and Z45. The WUE index was highest in stage Z32, and a significant interaction was noted due to the correlation between the net photosynthetic rate and the transpiration rate in the remaining stages. Water use efficiency was similar in stages Z32 and Z45 in 2015, and in stages Z45 and Z59 in 2016, whereas significantly lower values in successive stages of plant growth were noted in 2017.The growth regulator was the only agronomic factor that induced significant differences in the net photosynthetic rate across the examined growth stages. Photosynthesis indicators were similar regardless of the application of the growth regulator, and significant interactions resulted mainly from varied disproportions between the end of heading and the stem elongation stage in treatments with and without the application of the growth regulator.It should be noted that the interactions between growth stages and nitrogen rates and sowing density were not significant, which implies that the effects of the interactions between increasing nitrogen rates and sowing density on photosynthetic indicators in successive growth stages were similar to the average values of photosynthetic indicators in the corresponding growth stages (Supplementary Information).Agronomic traitsThe means for yield components and yield are presented in Tables 3.1–3.8 of the Supplementary Information. Stem length was differentiated by the nitrogen rate and nitrogen rate × year interaction. Nitrogen rates of 80 and 120 kg N per ha increased stem length by 11% and 13%, respectively, relative to the unfertilized control. The significant year × nitrogen rate interaction resulted from the fact that the nitrogen-induced increase in stem length was smaller in 2015 (0.07 cm per 1 kg of nitrogen) than in 2016 and 2017 (0.09 cm per 1 kg of nitrogen). In 2015, ear length was similar to that noted in the remaining years, and only in 2017, ear length was 7% higher than in 2016. Ear length and the number of kernels per ear increased with a rise in nitrogen rate and decreased with a rise in sowing density.Grain weight per ear and 1000 kernel weight were highest in 2015 and significantly lower in the following years. Grain weight per ear increased only in response to the nitrogen rate of 120 kg ha−1, but 1000 kernel weight was not affected. Both traits decreased with a rise in sowing density. The significant year × nitrogen rate and year × sowing density interactions for both traits can be largely attributed to the magnitude of differences between years, rather than an increase or a decrease in this trend.The biological yield (grain and straw) differed across years and nitrogen rates. In 2016, the biological yield was similar to that noted in 2015 and significantly higher (by 30%) than that noted in 2017. The biological yield increased by 28% and 35% in response to nitrogen rates of 80 and 120 kg ha−1, respectively, relative to the unfertilized control. The significant year × nitrogen rate interaction was associated with variations in nitrogen use efficiency, and the difference between maximal biological yield was determined at 0.5 t ha−1 in 2015, 2.3 t ha−1 in 2016, and 2.8 t ha−1 in 2017.Grain yield was similar in 2015 (4.94 t ha−1) and 2016 (5.38 t ha−1), and it was significantly lowest in 2017 (3.87 t ha−1). Straw yield was highest in 2016 (2.86 t ha−1), and it exceeded the values noted in the remaining years by 16%. The harvest index was similar in 2015 and 2016, and it was 9% lower in 2017. Grain yield increased by 30% and 36%, whereas straw yield increased by 20% and 35% in response to the nitrogen rates of 80 and 120 kg ha−1, respectively. A minor increase in grain yield (3%) was observed in treatments with a sowing density of 550 seeds m−2 relative to the remaining sowing densities.Path modellingA simple correlation analysis of manifest variables in all phenological stages revealed significant correlations between the LAI and leaf greenness (SPAD) only in stage Z32, as well as a very strong correlation between the net photosynthetic rate and the transpiration rate, which was positive in stages Z32 and Z45 and negative in stage Z59. No simple correlations were noted between the indicators of physiological processes (Pn, E, WUE) and biophysical parameters (LAI, SPAD). AAll correlations between the manifest variables of yield components and biological yield were statistically significant, excluding the correlation between stem length and ear length (Supplementary information).All correlations between the manifest variables of yield components and biological yield were statistically significant, excluding the correlation between stem length and ear length (Supplementary Information). The outer and inner PLS-PM models well fit the data, and their goodness of fit was determined at 0.973 and 0.786, respectively. The outer weights provide information about the relative importance of a manifest variable for the corresponding latent variable (for details please see the Supplementary Information). Outer weights that exceed 0.3 are considered meaningful. By the same token, loading estimates represent the correlations between a latent variable and the corresponding manifest variables. Loadings higher than 0.7 capture more than 50% of the variability contributed by a latent variable to the corresponding manifest variable. In general, both indicators in the outer model, i.e. outer weights and loadings, exceeded the thresholds, which indicates that manifest variables were strongly related with latent variables. Growth regulators (({w}_{GR}) = − 0.007) and the length of the growing season (({w}_{DAYS})=0.197) provided the only evidence for the low explanatory value of latent variable A (agronomic factors).In the inner model, all equations that regressed latent variables well fit the data and were statistically significant (Table 3). The latent variables expressed by the value of R2 increased in successive stages of T. durum growth and development, from 0.218 in physiological processes in stage Z32 (Table 3, Eq. 1) to 0.698 and 0.708 in yield components and Biological Yield, respectively (Table 3, Eqs. 7 and 8). It is worth noting that in successive stages of growth, the value of physiological processes was relatively lower in comparison with biophysical parameters.Table 3 Parameters of regression models for latent variables.Full size tableThe analysis of path coefficients (βi) revealed that agronomic factors (A) and climate conditions (CC) in stages Z32, Z45 and Z59 exerted a specific influence on physiological processes (PP) and biophysical parameters (BP) of T. durum plants. Agronomic factors directly determined physiological processes in all stages and biophysical parameters in stages Z32 and Z59. At the same time, climate conditions did not exert a direct influence on physiological processes in any stage, but directly affected biophysical parameters in all stages. All of the modeled parameters, i.e. agronomic factors, climate conditions and physiological processes, significantly influenced biophysical parameters in stages Z32 and Z59, but not Z45. Consequently, it can be stated that agronomic factors were the main determinant of variability in physiological processes (photosynthesis, transpiration) in a model evaluating the impact of agricultural practices on yield and the manifest variables associated with T. durum growth and development. At the same time, physiological processes made a significant but negative contribution to biophysical parameters. A one unit increase in photosynthesis processes with constant values of agronomic factors and climate conditions implies a decrease of − 0.382, − 0.065 and − 0.395 in biophysical parameters in stages Z32, Z45 and Z59, respectively.The performance of every preceding latent variable in terms of its total impact on the target latent variable, i.e. the biological yield of T. durum (IPMA – Importance-Performance Map Analysis), was analyzed to highlight latent variables associated with agricultural practices that improve biological yield. The total effect (importance) of preceding latent variables (A, CC32, PP32, BP32, CC45, PP45, BP45, CC59, PP59, BP59, YC and CC) on the anticipated performance of the specific target (Biological Yield) is presented in Fig. 3.Figure 3Importance-Performance Map Analysis presenting the impact of latent variables on biological yield (A—agronomic factors, YC—yield components, CC32, CC45, CC59—climate conditions in growth stages, PP32, PP45, PP59—physiological processes, BP32, BP45, BP59—biophysical parameters in the phenological stages of plant growth and development Z32, Z45 and Z59, CC—climate conditions for the entire growing season).Full size imageThe importance and performance of latent variables that influenced the biological yield of T. durum varied. The biological yield of T. durum was affected mostly by agronomic factors (A), followed by yield components (YC) and biophysical parameters (BP) in growth stages Z59 (BP59) and Z32 (BP32), climate conditions in stage Z59 (CC59), and climate conditions in stage Z32 (CC32). A one unit increase in the above latent variables led to an increase of 0.575, 0.422, 0.234, 0.203 and 0.109 units in biological yield, respectively. At the same time, the performance scores of these latent variables were determined at 53.1, 53.5, 67.1, 59.6 and 61.8, respectively (scores closer to 100 denote higher performance). The remaining latent variables, in particular climate conditions for the entire growing season and physiological processes in stage Z32, were characterized by low importance and exerted a relatively small effect on biological yield performance.The results of the importance-performance analysis clearly indicate that latent variables have considerable potential to optimize the agricultural conditions for the growth and development of T. durum plants. More

  • in

    Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Japanese spiny lobster Panulirus japonicus

    Direct nucleotide sequencingReadable electropherograms were obtained from both direction in COI fragments of all three individuals of the Japanese spiny lobster. COI sequences determined by direct nucleotide sequencing ranged from 807 to 864 bp and have been deposited in International Nucleotide Sequence Database Collection (INSDC) under accession numbers of LC571524‒LC571526. No stop codon was observed in these sequences (designated by PJK1-direct, PJK2-direct, and PJK3-direct). No indel was observed between these sequences. All nucleotide substitutions at 19 variable sites observed between these sequences were transition at the 3rd position of a codon, and all substitutions were synonymous. The mean Kimura two parameter (K2P) distance between these three haplotypes was 1.510 ± 0.352% SE and that between these sequences and a reference sequence of P. japonicus (NC_004251) was 1.087 ± 0.270%, which were all well within the range reported for Japanese spiny lobster samples collected in Japan and Taiwan9,10.Electropherograms obtained by forward primer for 12S fragments were not readable, while those by reverse primer were readable in all individuals. 12S sequences determined by direct nucleotide sequencing using reverse primer alone ranged from 551 to 570 bp and have been deposited in INSDC under accession numbers of LC605705‒LC605707. Of nine variable sites, eight were transition and one was indel. The mean K2P distance between these three haplotypes (designated by PJK1-12Sdirect, PJK2-12Sdirect, and PJK3-12Sdirect) was 0.970 ± 0.338%, and that between these sequences and a reference sequence of P. japonicus was 0.835 ± 0.282%.Electropherograms obtained by both primers for Dloop fragments were readable only in one individual (PJK2). This Dloop sequence determined by direct nucleotide sequencing was 762 bp and deposited in INSDC under accession number of LC605749. K2P distance between this haplotype (designated by PJK2-Dloopdirect) and a reference sequence of P. japonicus was 3.666%. No indel was observed between the two sequences, and 25 of 27 variable sites were transition.Phylogenetic analysis of clones, heteroplasmy and NUMTsAmong the 36–42 positive COI clones examined per individual, sequences (809–892 bp) of 22–31 clones per individual (75 clones in total) were successfully determined. After alignment, both ends of all sequences were trimmed to fit the shortest sequence obtained by direct nucleotide sequencing, yielding 774–810 bp sequences. Eleven clones of PJK1 were identical to PJK1-direct, as well as seven of PJK2 to PJK2-direct and three of PJK3 to PJK3-direct. These dominant haplotypes (807 bp) were determined to be genuine COI haplotypes of each individual, and representative sequences of these three genuine haplotypes were deposited in INSDC (LC 571527, LC571533 and LC571538). Nucleotide sequences of the remaining 54 clones were all different one another, in which 20 haplotypes were observed in PJK1, 14 in PJK2, and 20 in PJK3 (LC571541–LC571577, OK429332–OK429343, LC654683-LC654687).Phylogenetic tree constructed using three genuine COI haplotypes, 57 unique haplotypes and eight sequences of reference lobster species is shown in Fig. 1. Haplotypes detected from P. japonicus were segregated into four groups (designated by A, B, C and D). Among the outgroup species used, Australian rock lobster (P. cygnus) that morphologically and genetically belongs to the P. japonicus group11,12, appeared to be the closest kin to all haplotypes detected from P. japonicus. All haplotypes in group A were of the same length (807 bp), and no indel was observed. Three distinct clades (designated by c-I to c-III) were observed in group A, in which 14 haplotypes from PJK1, 11 from PJK2 and 11 from PJK3 were cohesively clustered together with their corresponding genuine haplotypes (bold italic). PJK1-C25 was outlier, having 10 nucleotide differences from the genuine COI sequence. The numbers of variable nucleotide sites between haplotypes within c-I, c-II and c-III were 20, 15 and 26, respectively, of which nonsynonymous nucleotide substitutions were observed at 11, 13 and 10 sites. Stop codon was observed only in one haplotype (PJK3-C1). The mean K2P distance between different haplotypes within these clades ranged from 0.320 ± 0.075 to 0.561 ± 0.103%. The mean K2P distances between three clades ranged from 1.343 ± 0.339 to 2.178 ± 0.464%. Although group A must be composed of sequences containing those caused by Taq polymerase error or true heteroplasmic sequences as well as genuine haplotypes, it is difficult to determine the former two categories. All of the non-genuine haplotypes in group A had singleton difference one another, supporting the occurrence of Taq polymerase error. We determined haplotypes (marked with dagger in Fig. 1) differed by less than two substitutions from the genuine haplotype to be due to Taq polymerase error. This criterion may be reasonable, since Taq polymerase-mediated errors were estimated to occur approximately at a frequency of 7.2 × 10−5 per bp per cycle13 to one mutation per 10,000 nucleotides per cycle14. When Taq polymerase error is taken into account, these K2P distances within and between clades and number of haplotypes are likely to be somewhat overestimated. PJK1-C25, two (PJK1-C5 and PJK1-C60) in c-I clade, one (PJK2-C26) in c-II, and five (PJK3-C1, PJK3-C5, PJK3-C26, PJK3-C31, PJK3-C34) in c-III differed by 3 to 10 nucleotides from their genuine haplotypes, which were determined to be heteroplasmic haplotypes.Figure 1Neighbor-joining phylogenetic (NJ) tree showing relationships among 57 different haplotypes of cytochrome oxidase subunit I (COI) or COI-like sequences obtained from the Japanese spiny lobster (Panulirus japonicus), and COI sequences of eight congeneric species derived from the GenBank database. Haplotypes detected from the same individual of the Japanese spiny lobster share the same color. Genuine mtDNA haplotype is shown in bold italic and number of clones examined is shown in parenthesis. Stop codons were observed in haplotypes carrying asterisk. Haplotypes carrying dagger differ from the corresponding genuine mtDNA haplotype by less than two nucleotides (including indel). The bootstrap values greater than 60% (out of 1000 replicates) are shown at the nodes.Full size imageSequence size of haplotypes in groups B to D ranged from 774 to 810 bp. K2P distance between haplotypes of groups A and B ranged from 7.169 to 8.177% with a mean of 7.754 ± 0.973%, that between A and C ranged from 12.073 to 17.392% with a mean of 14.521 ± 1.151%, and that between A and D ranged from 17.472 to 23.880% with a mean of 21.042 ± 1.600%. Multiple stop codons were observed in a haplotype of group B, in five of eight haplotypes of group C, and all haplotypes of group D. Three haplotypes in group C had no stop codon but differed in four to 10 deduced amino acids from the genuine haplotypes. BLAST homology search revealed no identical sequence for haplotypes in groups B to D but indicated that the closest species were P. japonicus or P. cygnus with moderate similarity (83–89% homology). Therefore, all haplotypes of groups B to D (LC571565–LC571570, LC571572–LC571577, LC654683-LC654687) were determined to be NUMTs.Among the 30–35 positive 12S clones examined per individual, sequences (772–806 bp) of 25–27 clones per individual (77 clones in total) were successfully determined. After alignment, primer sequences were trimmed, yielding 731–765 bp sequences. Thirteen clones of PJK1 were identical one another, as well as 12 of PJK2 and three of PJK3, and these were identical to PJK1-12Sdirect, PJK2-12Sdirect and PJK3-12Sdirect, respectively. These dominant haplotypes ranging from 761 to 762 bp in size were determined to be genuine 12S haplotypes of the individual, and representative sequences of these three genuine haplotypes were deposited in INSDC (LC605708‒LC605710). Nucleotide sequences of the remaining 49 clones were all different one another, in which 12 haplotypes were observed in PJK1, 23 in PJK2, and 14 in PJK3 (LC605711‒LC605748, OK429126–OK429131, LC654678-LC654682).Since incorporation of all eight Panulirus species sequences made sequence alignment ambiguous because of multiple indels, reference sequences of P. japonicus and of closely related P. cygnus were used for constructing phylogenetic tree (Fig. 2). Haplotypes detected from P. japonicus were segregated into three groups (designated by A to C). Sequence size of haplotypes in group A ranged from 760 to 762 bp. Three distinct clades (s-I to s-III) were observed in group A, in which 12 haplotypes each from PJK1, PJK2 and PJK3 were cohesively clustered together with their corresponding genuine haplotypes (bold italic). The numbers of variable nucleotide sites between haplotypes within s-I, s-II and s-III were 24, 17 and 16, respectively. Of these variable sites, transversion was observed at five, one and three sites, and indel was observed at one, zero and one sites, respectively. The mean K2P distances between different haplotypes within these clades ranged from 0.345 ± 0.081 to 0.519 ± 0.101%. The mean K2P distances between three clades ranged from 0.936 ± 0.275 to 1.371 ± 0.359%. Haplotypes differed by less than two substitutions (including indel) from the genuine haplotypes are marked with dagger. Five haplotypes in s-I clade and two haplotypes in s-III clade differed by three to six nucleotides from their genuine haplotypes, which were determined to be heteroplasmic copies.Figure 2Neighbor-joining phylogenetic (NJ) tree showing relationships among 52 different haplotypes of clones of 12S rDNA (12S) or 12S-like sequences obtained from the Japanese spiny lobster (Panulirus japonicus), and 12S rDNA sequences of P. japonicus and P. cygnus derived from the GenBank database. Haplotypes detected from the same lobster individual share the same color. Genuine mtDNA haplotype is shown in bold italic and number of clones examined is shown in parenthesis. Haplotypes carrying dagger differ from corresponding genuine mtDNA haplotype by less than two nucleotides (including indel). The bootstrap values greater than 60% (out of 1000 replicates) are shown at the nodes.Full size imageSequence size of haplotypes in group B varied from 731 to 762 bp. K2P distance between groups A and B ranged from 1.336 to 7.445% with a mean of 3.449 ± 0.398%, and those between a reference sequence of P. japonicus and groups A and B were 0.864 ± 0.236% and 3.189 ± 0.410%, respectively. Sequence size of haplotypes in group C varied from 744 to 765 bp. K2P distance between groups A and C ranged from 3.104 to 22.434% with a mean of 12.049 ± 0.901%, and those between a reference sequence of P. japonicus and group C ranged from 3.951 to 21.287% with a mean of 11.764 ± 0.901%. BLAST homology search indicated that the closest species for haplotypes in groups B and C was P. japonicus or P. cygnus with moderate to high similarity (84–98% homology). Therefore, all 13 haplotypes (LC605741‒LC605748, LC654678-LC654682) in groups B and C were determined to be NUMTs.Among the 36–49 positive Dloop clones examined per individual, sequences (777–893 bp) of 26–38 clones per individual (92 clones in total) were successfully determined. After alignment, primer sequences were trimmed, yielding 736–853 bp sequences. Three clones (821 bp) of PJK1 were identical one another and determined to be genuine haplotype of this individual. Nine clones (813 bp) of PJK2 were identical to PJK2-Dloopdirect and determined to be genuine haplotype of this individual. Three clones (821 bp) of PJK3 were identical one another and determined to be genuine haplotype of this individual. Representative sequences of these three genuine haplotypes were deposited in INSDC (LC605750‒LC605752). Nucleotide sequences of the remaining 78 clones were all different one another, in which 25 haplotypes were observed in PJK1, 17 in PJK2, and 36 in PJK3 (LC605753‒LC605815, LC654419-LC654430, LC654675-LC654677).Incorporation of all eight Panulirus species sequences made sequence alignment considerably unreliable because of multiple indels, reference sequences of P. japonicus and of closely related P. cygnus were used for constructing phylogenetic tree (Fig. 3). Haplotypes detected from P. japonicus were segregated into four groups (designated by A to D). Sequence size of haplotypes in group A ranged from 812 to 822 bp. Three distinct clades (d-I to d-III) were observed in group A, in which 17 haplotypes from PJK1, 13 from PJK2 and 15 from PJK3 were cohesively clustered together with their corresponding genuine haplotypes (bold italic). The numbers of variable nucleotide sites between haplotypes within d-I, d-II and d-III were 27, 61 and 28, respectively, of which indels were observed at five, two and four sites and transversion was observed at 0, six and six sites. The mean K2P distance between different haplotypes within these clades ranged from 0.340 ± 0.067 to 1.097 ± 0.139%. The mean K2P distance between these three clades ranged from 7.577 ± 0.951 to 8.770 ± 0.984%. Haplotypes differed by less than two substitutions (including indel) from the genuine haplotypes are marked with dagger. Eight haplotypes in d-I clade, three in d-II clade, and four in d-III clade differed by three to five nucleotides from the genuine haplotype were determined to be heteroplasmic copies.Figure 3Neighbor-joining phylogenetic (NJ) tree showing relationships among 80 different haplotypes of control region (Dloop) or Dloop-like sequences obtained from the Japanese spiny lobster (Panulirus japonicus), and control region sequences of P. japonicus and P. cygnus derived from the GenBank database. Haplotypes detected from the same lobster individual share the same color. Genuine mtDNA haplotype is shown in bold italic and number of clones examined is shown in parenthesis. Haplotypes carrying dagger differ from corresponding genuine mtDNA haplotype by less than two nucleotides (including indel). The bootstrap values greater than 60% (out of 1000 replicates) are shown at the nodes.Full size imageSequence size of haplotypes in groups B to D largely varied from 736 to 853 bp. K2P distances between group A and others ranged from 14.748 ± 1.030% (A vs B) to 61.619 ± 3.045% (A vs D), whereas that between haplotypes of group A and a reference sequence of P. japonicus was much smaller (6.333 ± 0.663%). BLAST homology search revealed no identical sequence for haplotypes in groups B to D and indicated that the closest species for haplotypes in groups B and C was P. japonicus with low to moderate similarity (74–88% homology). On the other hand, no significantly similar sequence was found for haplotypes in group D. Therefore, all 31 haplotypes (LC605788‒LC605815, LC654675-LC654677) in groups B to D were determined to be NUMTs.Impact of heteroplasmy and NUMTs for direct nucleotide sequencingPartial electropherogram obtained by direct nucleotide sequencing for COI amplicon of PJK3 is shown in Fig. 4 (top). Peak signals of this electropherogram are readable, but there are a number of sites where two (asterisk) or three (dagger) signals overlap. Alignment of a genuin haplotype (PJK-C7) and nine NUMTs sequences, corresponding to this partial electropherogram, is shown in Fig. 4 (bottom). At the sites where plural peaks overlap, different NUMT haplotypes were observed to share the same nucleotide different from the PJK3-direct. Heteroplasmic copies in COI determined in this study may have little negative impact on direct nucleotide sequencing, since nucleotides different from the genuine haplotypes were all unique to each heteroplasmic haplotype. Thus, the plural peaks at a site were composed of signals from genuine plus NUMT haplotypes, and the intensity of each peak was positively related to the copy numbers of these haplotypes. Frequent failure to obtain readable electropherograms in 12S and Dloop regions by direct sequencing may be due to extensive indels observed in the NUMT haplotypes.Figure 4A part of electropherogram obtained by direct nucleotide sequencing for COI region of PJK3 (top), and corresponding sequences from genuine haplotype (PJK3-C7) and nine NUMT haplotypes (see Fig. 1) are aligned (bottom). Apparent double (asterisk) and triple (dagger) peaks are observed at seven and five sites, respectively, which are comprised of signals from genuine and NUMT haplotypes.Full size image More

  • in

    Marine phytoplankton functional types exhibit diverse responses to thermal change

    1.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and cceanic components. Science 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    5.Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).Article 
    CAS 

    Google Scholar 
    8.Vallina, S. M., Cermeno, P., Dutkiewicz, S., Loreau, M. & Montoya, J. M. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol. Modell. 361, 184–196 (2017).Article 

    Google Scholar 
    9.Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Laufkotter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).ADS 
    Article 

    Google Scholar 
    11.Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, 1–14 (2005).Article 
    CAS 

    Google Scholar 
    12.Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Thomas, M. K. & Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369 (2016).Article 

    Google Scholar 
    15.Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).ADS 
    Article 

    Google Scholar 
    16.Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).ADS 
    Article 

    Google Scholar 
    17.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    18.Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).Article 

    Google Scholar 
    20.Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 4–11 (2015).
    Google Scholar 
    22.Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24, 1–19 (2010).Article 
    CAS 

    Google Scholar 
    23.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Boyd, P. W. & Hutchins, D. A. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 
    Article 

    Google Scholar 
    25.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 
    Article 

    Google Scholar 
    26.Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).Article 

    Google Scholar 
    27.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).28.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    29.Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).ADS 
    Article 

    Google Scholar 
    30.Prowe, A. E. F., Pahlow, M., Dutkiewicz, S. & Oschlies, A. How important is diversity for capturing environmental-change responses in ecosystem models? Biogeosciences 11, 3397–3407 (2014).ADS 
    Article 

    Google Scholar 
    31.Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Barton, S. & Yvon‐Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).ADS 
    Article 

    Google Scholar 
    33.Sherman, E., Moore, J. K., Primeau, F. & Tanouye, D. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30, 550–559 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Calvo, E., Pelejero, C., Pena, L. D., Cacho, I. & Logan, G. A. Eastern Equatorial Pacific productivity and related-CO2 changes since the last glacial period. Proc. Natl Acad. Sci. USA 108, 5537–5541 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10,366–10,376 (2016).Article 

    Google Scholar 
    38.Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 1–20 (2019).CAS 
    Article 

    Google Scholar 
    39.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    40.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).MathSciNet 
    Article 

    Google Scholar 
    41.Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).CAS 
    Article 

    Google Scholar 
    42.Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. The single, ancient origin of chromist plastids. Proc. Natl Acad. Sci. USA 99, 15507–15512 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Jönsson, B. F. & Watson, J. R. The timescales of global surface-ocean connectivity. Nat. Commun. 7, 1–6 (2016).Article 
    CAS 

    Google Scholar 
    46.Doblin, M. A. & van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Whittaker, K. & Rynearson, T. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc. Natl Acad. Sci. USA 114, 2651–2656 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ward, B. A., Cael, B. B., Collins, S. & Robert Young, C. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).
    Google Scholar 
    49.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    50.Collins, M. et al. in Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).51.Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Ward, B. A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS ONE 10, 1–15 (2015).
    Google Scholar 
    53.Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).CAS 
    Article 

    Google Scholar 
    54.Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences Discuss. 7, 979–1005 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Ocean. 120, 2813–2825 (2015).Article 

    Google Scholar 
    57.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).ADS 
    Article 

    Google Scholar 
    59.Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Baker, K. G. et al. Thermal niche evolution of functional traits in a tropical marine phototroph. J. Phycol. 54, 799–810 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.O’Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322, 85–97 (2006).ADS 
    Article 

    Google Scholar 
    65.Arizona Software Inc. GraphClick 3.0.2. http://www.arizona-software.ch/graphclick/ (2010).66.Norberg, J. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol. Oceanogr. 49, 1269–1277 (2004).ADS 
    Article 

    Google Scholar 
    67.Bolker, B. & Team, R. D. C. bbmle: Tools for general maximum likelihood estimation. https://github.com/bbolker/bbmle (2017).68.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).69.Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Koenker, R. quantreg: Quantile regression. https://cran.r-project.org/package=quantreg (2019).71.Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62, 806–817 (2017).ADS 
    Article 

    Google Scholar 
    72.Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).ADS 
    Article 

    Google Scholar 
    73.Koenker, R. Quantile Regression, https://doi.org/10.1017/CBO9780511754098 (Cambridge University Press, 2005).74.Tomas, C. R. et al. Identifying Marine Phytoplankton. (Academic Press, 1997).75.He, X. & Hu, F. Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    76.Rynearson, T. A. Literature compilation of thermal growth rates from four phytoplankton functional types. Biological and Chemical Oceanography Data Management Office (BCO-DMO), (2021). https://doi.org/10.26008/1912/bco-dmo.839696.177.Rynearson, T. A. Estimated thermal capacities for phytoplankton strains. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839713.1 (2021).78.Rynearson, T. A. Estimated thermal traits for phytoplankton. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839689.1 (2021).79.Anderson, S. I. sianderson/PFT_thermal_response: Marine Phytoplankton Functional Types Exhibit Diverse Responses to Thermal Change. zenodo. https://doi.org/10.5281/zenodo.5507532 (2021).80.Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).ADS 
    Article 

    Google Scholar 
    81.Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).Article 

    Google Scholar  More

  • in

    Toxicity thresholds of nine herbicides to coral symbionts (Symbiodiniaceae)

    1.Castillo, L. E., de la Cruz, E. & Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. 16, 41–51. https://doi.org/10.1002/etc.5620160104 (1997).Article 
    CAS 

    Google Scholar 
    2.Moreno-González, R. & León, V. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ. Sci. Pollut. Res. 24, 8033–8048. https://doi.org/10.1007/s11356-017-8456-0 (2017).Article 
    CAS 

    Google Scholar 
    3.Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A. & Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 48, 1130–1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    4.Wurl, O. & Obbard, J. P. Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in Singapore’s coastal marine sediments. Chemosphere 58, 925–933. https://doi.org/10.1016/j.chemosphere.2004.09.054 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    5.Carvalho, F. P. et al. Organic contaminants in the marine environment of Manila Bay, Philippines. Arch. Environ. Contam. Toxicol. 57, 348–358. https://doi.org/10.1007/s00244-008-9271-x (2009).Article 
    PubMed 
    CAS 

    Google Scholar 
    6.Australian Government and Queensland Government. Reef 2050 Water Quality Improvement Plan, Monitoring Program. (Australian and Queensland Governments, 2018). https://www.reefplan.qld.gov.au/tracking-progress/paddock-to-reef/modelling-and-monitoring.7.O’Brien, D. et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area: Application of different monitoring techniques. J. Agric. Food Chem. 64, 3975–3989. https://doi.org/10.1021/acs.jafc.5b04710 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Warne, M. St. J., Smith, R. & Turner, R. Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia. Environ. Pollut. 265, 114088. https://doi.org/10.1016/j.envpol.2020.114088 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    9.Shaw, M. et al. Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull. 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    10.Kennedy, K. et al. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides. Mar. Pollut. Bull. 64, 1495–1507. https://doi.org/10.1016/j.marpolbul.2012.05.014 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    11.Mercurio, P. et al. Degradation of herbicides in the tropical marine environment: Influence of light and sediment. PLoS ONE 11, e0165890. https://doi.org/10.1371/journal.pone.0165890 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    12.Gallen, C. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2017–18. Report for the Great Barrier Reef Marine Park Authority. http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3489. (2019).13.Smith, R. et al. Large-scale pesticide monitoring across Great Barrier Reef catchments–paddock to reef integrated monitoring, modelling and reporting program. Mar. Pollut. Bull. 65, 117–127. https://doi.org/10.1016/j.marpolbul.2011.08.010 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    14.Oettmeier, W. Herbicide resistance and supersensitivity in photosystem II. Cell. Mol. Life Sci. 55, 1255–1277. https://doi.org/10.1007/s000180050370 (1999).Article 
    PubMed 
    CAS 

    Google Scholar 
    15.Davis, A., Lewis, S., Brodie, J. & Benson, A. The potential benefits of herbicide regulation: A cautionary note for the Great Barrier Reef catchment area. Sci. Total Environ. 490, 81–92. https://doi.org/10.1016/j.scitotenv.2014.04.005 (2014).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    16.King, J., Alexander, F. & Brodie, J. Regulation of pesticides in Australia: The Great Barrier Reef as a case study for evaluating effectiveness. Agr. Ecosyst. Environ. 180, 54–67. https://doi.org/10.1016/j.agee.2012.07.001 (2013).Article 

    Google Scholar 
    17.Devlin, M. et al. Advancing our Understanding of the Source, Management, Transport and Impacts of Pesticides on the Great Barrier Reef 2011–2015. Report for the Queensland Department of Environment and Heritage Protection. (Tropical Water & Aquatic Ecosytem Research (TropWATER) Publication, James Cook University, 2015). https://www.qld.gov.au/environment/assets/documents/agriculture/sustainable-farming/reef/rp104c-pesticide-report.pdf/.18.Flores, F., Collier, C. J., Mercurio, P. & Negri, A. P. Phytotoxicity of four photosystem II herbicides to tropical seagrasses. PLoS ONE 8, e75798. https://doi.org/10.1371/journal.pone.0075798 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    19.Haynes, D. et al. The occurrence and impact of herbicides in the Great Barrier Reef, Australia. Reef Res. 10, 3–5 (2000).
    Google Scholar 
    20.Negri, A. P., Flores, F., Röthig, T. & Uthicke, S. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol. Oceanogr. 56, 471–485. https://doi.org/10.4319/lo.2011.56.2.0471 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Marques, J. A., Flores, F., Bianchini, A., Uthicke, S. & Negri, A. P. Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios. Sci. Total Environ. 736, 140308. https://doi.org/10.1016/j.scitotenv.2020.140308 (2020).Article 
    CAS 

    Google Scholar 
    22.van Dam, J. W., Negri, A. P., Mueller, J. F. & Uthicke, S. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65, 373–383. https://doi.org/10.1016/j.marpolbul.2011.08.008 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    23.Thomas, M. C., Flores, F., Kaserzon, S., Fisher, R. & Negri, A. P. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 10, 1–16. https://doi.org/10.1038/s41598-020-64116-y (2020).Article 
    CAS 

    Google Scholar 
    24.Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull. 56, 1545–1552. https://doi.org/10.1016/j.marpolbul.2008.05.023 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 1–29 (1990).
    Google Scholar 
    26.Oettmeier, W. Herbicides of photosystems II. In Structure, Function and Molecular Biology (ed. Barber, J.) 349–408 (Elsevier, 1992).
    Google Scholar 
    27.Jones, R. J., Muller, J., Haynes, D. & Schreiber, U. Effects of herbicides diuron and atrazine on corals of the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 251, 153–167. https://doi.org/10.3354/meps251153 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    28.Jones, R. J. & Kerswell, A. P. Phytotoxicity of Photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159. https://doi.org/10.3354/meps261149 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    29.Cantin, N. E., Negri, A. P. & Willis, B. L. Photoinhibition from chronic herbicide exposure reduces reproductive output of reef-building corals. Mar. Ecol. Prog. Ser. 344, 81–93. https://doi.org/10.3354/meps07059 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    30.Negri, A. et al. Effects of the herbicide diuron on the early life history stages of coral. Mar. Pollut. Bull. 51, 370–383. https://doi.org/10.1016/j.marpolbul.2004.10.053 (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    31.Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633. https://doi.org/10.1016/j.cub.2018.09.024 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    32.Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766. https://doi.org/10.1038/35081151 (2001).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    33.Muller-Parker, G., D’elia, C. F. & Cook, C. B. Coral Reefs in the Anthropocene 99–116 (Springer, 2015). https://pdfs.semanticscholar.org/191e119/119ba111eab744a4054c4068f4057a4003bb4058bd4001b9628.pdf.34.Chakravarti, L. J., Negri, A. P. & Oppen, M. J. Thermal and herbicide tolerances of chromerid algae and their ability to form a symbiosis with corals. Front. Microbiol. 10, 173. https://doi.org/10.3389/fmicb.2019.00173 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.van Dam, J., Uthicke, S., Beltran, V., Mueller, J. & Negri, A. Combined thermal and herbicide stress in functionally diverse coral symbionts. Environ. Pollut. 204, 271–279. https://doi.org/10.1016/j.envpol.2015.05.013 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    36.Mercurio, P. et al. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-23153-4 (2018).Article 
    CAS 

    Google Scholar 
    37.Magnusson, M., Heimann, K., Ridd, M. & Negri, A. P. Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae. Water Res. 47, 5211–5221. https://doi.org/10.1016/j.watres.2013.06.003 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    38.Thomas, M. C., Flores, F., Kaserzon, S., Reeks, T. & Negri, A. P. Toxicity of the herbicides diuron, propazine, tebuthiuron, and haloxyfop to the diatom Chaetoceros muelleri. Sci. Rep. 10, 19592. https://doi.org/10.1038/s41598-020-76363-0 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    39.Warne, M. St. J., King, O. & Smith, R. Ecotoxicity thresholds for ametryn, diuron, hexazinone and simazine in fresh and marine waters. Environ. Sci. Pollut. Res. 25, 3151–3169. https://doi.org/10.1007/s11356-017-1097-5 (2018).Article 
    CAS 

    Google Scholar 
    40.Traas, T. P. et al. In Species Sensitivity Distributions in Ecotoxicology (eds Posthuma, L. et al.) 315–344 (CRC Press, 2002).
    Google Scholar 
    41.ANZG. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. 1–103 (Australian and New Zealand Governments and Australian State and Territory Governments, 2018). http://waterquality.gov.au/anz-guidelines.42.King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed Aquatic Ecosystem Protection Guideline Values for Pesticides Commonly Used in the Great Barrier Reef catchment Area: Part 2— Bromacil, Chlorothalonil, Fipronil, Fluometuron, Fluroxypyr, Haloxyfop, MCPA, Pendimethalin, Prometryn, Propazine, Propiconazole, Terbutryn, Triclopyr and Terbuthylazine. (Department of Environment and Science, 2017). https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment.43.King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed Aquatic Ecosystem Protection Guideline Values for Pesticides Commonly Used in the Great Barrier Reef Catchment Area: Part 1–2, 4-D, Ametryn, Diuron, Glyphosate, Hexazinone, Imazapic, Imidacloprid, Isoxaflutole, Metolachlor, Metribuzin, Metsulfuron-methyl, Simazine and Tebuthiuron 296 (Department of Environment and Science, 2017). https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment.44.Marie, D., Rigaut-Jalabert, F. & Vaulot, D. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytom. Part A 85, 962–968. https://doi.org/10.1002/cyto.a.22517 (2014).Article 
    CAS 

    Google Scholar 
    45.Warne, M. St. J. et al. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants: Update of 2015 Version. Prepared for the Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 48 (Australian and New Zealand Governments and Australian State and Territory Governments, 2018). https://www.waterquality.gov.au/sites/default/files/documents/warne-wqg-derivation2018.pdf.46.Vinyard, D. J., Ananyev, G. M. & Charles Dismukes, G. Photosystem II: The reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606. https://doi.org/10.1146/annurev-biochem-070511-100425 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Haworth, P. & Steinback, K. E. Interaction of herbicides and quinone with the qb-protein of the diuron-resistant Chlamydomonas reinhardtii mutant Dr2. Plant Physiol. 83, 1027–1031. https://doi.org/10.1104/pp.83.4.1027 (1987).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    48.USEPA. ECOTOX User Guide: ECOTOXicology Database System. Version 5.0. (United States Environmental Protection Agency, 2019) http://cfpub.epa.gov/ecotox/.49.Magnusson, M. Effects of Priority Herbicides and Their Breakdown Products on Tropical, ESTUARINE Microalgae of the Great Barrier Reef Lagoon. PhD thesis, James Cook University (2009).50.MacBean, C. The Pesticide Manual: A World Compendium (British Crop Protection Council, 2012).
    Google Scholar 
    51.Haq, S., Bachvaroff, T. R. & Place, A. R. Characterization of acetyl-CoA carboxylases in the basal dinoflagellate Amphidinium carterae. Mar. Drugs 15, 149. https://doi.org/10.3390/md15060149 (2017).Article 
    PubMed Central 
    CAS 

    Google Scholar 
    52.Tang, C. Y., Huang, Z. & Allen, H. C. Interfacial water structure and effects of Mg2+ and Ca2+ binding to the COOH headgroup of a palmitic acid monolayer studied by sum frequency spectroscopy. J. Phys. Chem. B 115, 34–40. https://doi.org/10.1021/jp1062447 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    53.Brzozowska, A., Duits, M. H. & Mugele, F. Stability of stearic acid monolayers on artificial sea water. Colloid Surf. A 407, 38–48 (2012).Article 
    CAS 

    Google Scholar 
    54.McCourt, J. & Duggleby, R. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31, 173–210. https://doi.org/10.1007/s00726-005-0297-3 (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    55.Genty, B., Briantais, J.-M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA 990, 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9 (1989).Article 
    CAS 

    Google Scholar 
    56.Jeong, H. J. et al. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U.S.A. 109, 12604–12609. https://doi.org/10.1073/pnas.1204302109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Ralph, P., Smith, R., Macinnis-Ng, C. & Seery, C. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems. Toxicol. Environ. Chem. 89, 589–607. https://doi.org/10.1080/02772240701561593 (2007).Article 
    CAS 

    Google Scholar 
    58.OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2 (OECD Publishing, 2011).
    Google Scholar 
    59.Kamei, M., Takayama, K., Ishibashi, H. & Takeuchi, I. Effects of ecologically relevant concentrations of Irgarol 1051 in tropical to subtropical coastal seawater on hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. Mar. Poll. Bull. 150, 110734. https://doi.org/10.1016/j.marpolbul.2019.110734 (2020).Article 
    CAS 

    Google Scholar 
    60.McKenzie, M. R., Templeman, M. A. & Kingsford, M. J. Detecting effects of herbicide runoff: The use of Cassiopea maremetens as a biomonitor to hexazinone. Aquat. Toxicol. 221, 105442. https://doi.org/10.1016/j.aquatox.2020.105442 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Howe, P. L., Reichelt-Brushett, A. J., Clark, M. W. & Seery, C. R. Toxicity estimates for diuron and atrazine for the tropical marine cnidarian Exaiptasia pallida and in-hospite Symbiodinium spp. using PAM chlorophyll-a fluorometry. J. Photochem. Photobiol. B 171, 125–132. https://doi.org/10.1016/j.jphotobiol.2017.05.006 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    62.Takahashi, S., Whitney, S. M. & Badger, M. R. Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc. Natl. Acad. Sci. U.S.A. 106, 3237–3242. https://doi.org/10.1073/pnas.0808363106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506. https://doi.org/10.1016/j.marpolbul.2005.06.027 (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    64.Rowen, D. J., Templeman, M. A. & Kingsford, M. J. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens. Chemosphere 182, 143–148. https://doi.org/10.1016/j.chemosphere.2017.05.001 (2017).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    65.Cantin, N. E., van Oppen, M. J., Willis, B. L., Mieog, J. C. & Negri, A. P. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28, 405. https://doi.org/10.1007/s00338-009-0478-8 (2009).ADS 
    Article 

    Google Scholar 
    66.Fitt, W. & Trench, R. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadria ticum Freudenthal in culture. New Phytol. 94, 421–432 (1983).Article 

    Google Scholar 
    67.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232. https://doi.org/10.3354/meps13206 (2020).ADS 
    Article 

    Google Scholar 
    68.Baird, A. H., Bhagooli, R., Ralph, P. J. & Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 24, 16–20. https://doi.org/10.1016/j.tree.2008.09.005 (2009).Article 
    PubMed 

    Google Scholar 
    69.Flores, F., Kaserzon, S., Elisei, G., Ricardo, G. & Negri, A. P. Toxicity thresholds of three insecticides and two fungicides to larvae of the coral Acropora tenuis. PeerJ 8, e9615. https://doi.org/10.7717/peerj.9615 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    71.Trenfield, M. A. et al. Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana. Environ. Toxicol. Chem. 34, 1833–1840. https://doi.org/10.1002/etc.2996 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    72.Hennige, S., Suggett, D., Warner, M., McDougall, K. & Smith, D. Photobiology of Symbiodinium revisited: Bio-physical and bio-optical signatures. Coral Reefs 28, 179–195. https://doi.org/10.1007/s00338-008-0444-x (2009).ADS 
    Article 

    Google Scholar 
    73.Klueter, A., Trapani, J., Archer, F. I., McIlroy, S. E. & Coffroth, M. A. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12, e0187707. https://doi.org/10.1371/journal.pone.0187707 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    74.Rogers, J. E. & Davis, R. H. Application of a new micro-culturing technique to assess the effects of temperature and salinity on specific growth rates of six Symbiodinium isolates. Bull. Mar. Sci. 79, 113–126 (2006).
    Google Scholar 
    75.Sakami, T. Effects of temperature, irradiance, salinity and inorganic nitrogen concentration on coral zooxanthellae in culture. Fish. Res. 66, 1006–1013. https://doi.org/10.1046/j.1444-2906.2000.00162.x (2000).Article 
    CAS 

    Google Scholar 
    76.Schreiber, U., Müller, J. F., Haugg, A. & Gademann, R. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74, 317–330. https://doi.org/10.1023/A:1021276003145 (2002).Article 
    PubMed 
    CAS 

    Google Scholar 
    77.Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381. https://doi.org/10.3390/jmse3020368 (2015).Article 

    Google Scholar 
    78.Mercurio, P., Mueller, J. F., Eaglesham, G., Flores, F. & Negri, A. P. Herbicide persistence in seawater simulation experiments. PLoS ONE 10, e0136391. https://doi.org/10.1371/journal.pone.0136391 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    79.Mercurio, P. Herbicide Persistence and Toxicity in the Tropical Marine Environment. PhD thesis, The University of Queensland (2016).80.Fisher, R., Ricardo, G. & Fox, D. jags NEC: A Bayesian No Effect Concentration (NEC) Package. https://github.com/AIMS/NEC-estimation. (2019).81.Fox, D. R. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol. Environ. Saf. 73, 123–131. https://doi.org/10.1016/j.ecoenv.2009.09.012 (2010).Article 
    PubMed 
    CAS 

    Google Scholar  More

  • in

    The hump-shaped effect of plant functional diversity on the biological control of a multi-species pest community

    Design of species assemblages with contrasting species and functional diversitiesWe designed eight assemblages of native and perennial plants differing in terms of species richness (three levels), functional diversity of the traits involved in plant–arthropod interactions (two levels) and species identity (two sets of species). We combined these first two factors to define four categories of plant assemblages for further study:

    Low functional diversity and medium species richness (14 species), LFMS;

    High functional diversity and low species richness (9 species), HFLS;

    High functional diversity and medium species richness (14 species), HFMS;

    High functional diversity and high species richness (29 species), HFHS.

    For each of these four categories, we designed two assemblages with different species identities, as described in the Supplementary information, resulting in eight plant assemblages in total. Functional characterization was based on a rough classification of plant species into functional groups (Supplementary Table S1), according to the mains traits involved in plant–species interactions easily accessible from databases: (1) flower resources, i.e. floral and extrafloral nectar or pollen, (2) accessibility of the resource, depending on flower shape, (3) availability of the resource, i.e. the flowering period and (4) flowering height.We generated the seed mixtures from commercial seeds, using ecotypes of local origin wherever possible (northern part of the Parisian basin, France). All applicable international, national, and institutional guidelines relevant for the use of plants were followed.Experimental designThe experiment was conducted between 2013 and 2017 in a 6.5-ha field at Grignon, France (N 48.837, E 1.956), on a deep loamy clay soil, in which soil depth decreased along a gradient from north to south. The field was divided in three blocks running from north to south to take this soil heterogeneity into account.Each assemblage was sown on a 6 × 44 m2 strip, with three replicates (Supplementary Fig. S2), with each assemblage represented once per block. A control treatment, sown with the same crop species as the rest of the field, was also included in the experimental design, resulting in nine experimental treatments in total. From the autumn of 2013 to the 2017 harvest, a winter barley–maize–faba bean–oilseed rape rotation was grown in the field. Crops were managed without insecticide treatment, but with a mean of 0.75 fungicide and 1.25 herbicide treatments per year. The observations were made in faba bean in 2016 and in oilseed rape in 2017.Botanical assessments and functional characterization of the plant communitiesBotanical assessments were conducted in April and June, in 2016 and 2017. In each treatment, the vegetation was assessed in 3 × 15 m2 plots at a position representative of the whole strip, generally in the center of the strip, to prevent edge effects. The percentage of the ground covered by each sown or spontaneously growing plant species was estimated by eye, by the same observer in each case. We noted the phenological development stage of each species in each treatment on an 11-point scale, to ensure an accurate assessment of flowering phenology. In the control plots (sown with the crop species only), we took into account the resources provided by weed species.The functional characterization of plant communities was based on the plant traits assumed to be involved in plant–parasitoid interactions6 (Supplementary Table S3). These traits were related to (1) the provision of trophic resources (presence of floral and extrafloral nectar, qualitative estimation of floral nectar), (2) the temporal availability of the resource (date of flowering onset and duration of flowering), (3) flower attractiveness (flower or inflorescence diameter, color, UV reflectance pattern), (4) nectar accessibility (flower opening diameter, corolla height, nectar depth and nectar tube diameter) and (5) the provision of physical habitats (leaf distribution, vegetative and flowering height). We measured most of these traits, particularly all those relating to flower morphology, phenology and nectar provision (see more detailed methods in the Supplementary information). Only a few were retrieved from previous publications and online databases: flower color and UV reflectance pattern, leaf distribution, vegetative and flower height.These traits were used (1) to determine the accessibility of nectar to each parasitoid (see below) and (2) to calculate the functional diversity of the plant assemblages. We calculated functional dispersion as the abundance-weighted mean distance of individual species from the centroid of all species in the trait space50 and Rao quadratic entropy51. Since these two parameters were highly correlated (Supplementary information), we considered only functional dispersion a measurement of functional diversity. The traits associated with the provision, availability and accessibility of nectar resources were measured for all the dicotyledonous species sown and for all spontaneous species occurring in the plant communities and flowering during parasitoid activity. Overall, considering the traits we measured and those retrieved from databases, the trait matrix was complete for more than 95% of the species, accounting for 99.6% of total plant cover.Assessment of the levels of parasitism on five herbivorous pests of faba bean and oilseed rapeIn the adjacent crop, 5 and 20 m from the wildflower strip, we measured the level of parasitism in one herbivorous pest of faba bean (2016) and four herbivorous pests of oilseed rape (2017). We chose a distance close to the strip (5 m) to prevent confounding effects with the other adjacent strips, knowing that their effect is the strongest in the first few meters from the strip52. A further distance was also chosen (20 m) to determine whether the strips promoted biological control at field level, while taking into account the spatial constraint of the distance between strips (50 m between opposing strips).All the protocols are detailed in the Supplementary information. Parasitism was assessed in Bruchus rufimanus larvae after the visual examination of faba bean seeds after harvest. For oilseed rape, we collected and reared Ceutorhynchus pallidactylus and Psylliodes chrysocephala larvae until the adult stage or parasitoid emergence. In Brassicogethes aeneus larvae, parasitism was assessed by observing the eggs of Tersilochus heterocerus in the host larvae in oilseed rape flowers. Finally, after oilseed rape harvest, we retrieved cocoons of Dasineura brassicae from the soil, which we dissected, recording the number of cocoons occupied by parasitoids.Measurement of parasitoid traitsWe carried out morphological measurements on parasitoids (Supplementary Table S4), to determine their degree of access to the nectar provided by plants, as a function of the size of their mouthparts and head, which limit corolla penetration, using an approach analogous to that of van Rijn and Wäckers16. Parasitoid individuals, preserved in 70% ethanol, were obtained (1) from our rearing experiments (for Bruchus rufimanus, Psylliodes chrysocephala and Ceutorhynchus pallidactylus), (2) from the dissection of cocoons for Dasineura brassicae or (3) by field sampling in the flower strips with a sweep net in April 2017 to collect Tersilochus heterocerus, parasitoids of Brassicogethes aeneus identified with53. For each parasitoid species or morphospecies, we measured, on at least 10 individuals, proboscis length, proboscis width (at mid-length)54 and the maximum dorsal head width, including the eyes. Observations were carried out under a binocular microscope (Leica M80, 60 ×) linked to a video camera (Moticam 10, Motic), and measurements were made with ImageJ v1.50i digital image analysis software (National Institute of Health, Bethesda, http://imagej.nih.gov/ij).Nectar resources for parasitoidsWe estimated the amount of nectar provided by the plants by summing, for each flower strip corresponding to a treatment, the percent cover of plants providing available and accessible nectar, as assessed in vegetation surveys. Separate estimates were obtained for each parasitoid species or morphospecies.Plant species producing floral or extrafloral nectar were first selected on the basis of the observations detailed in the botanical assessment section. Nectar was considered to be available when it was produced during the period of parasitoid activity (Supplementary Table S4), by selecting species at the flowering stage or producing extrafloral nectar based on the phenological observations carried out during the botanical assessments. Nectar accessibility depended on morphological matching between plants and insects. Extrafloral nectar, which is not enclosed in a perianth, but produced on bracts or stipules, was considered to be accessible. We determined the accessibility of floral nectar with a mechanistic trait-based approach (Supplementary Information), by adapting the geometric model proposed by van Rijn and Wäckers16. A decision tree was built (Fig. 2) to take into account the three constraints limiting nectar accessibility: (1) ability of the insect to penetrate the flower, which is dependent on head size and flower opening, (2) ability to reach the nectar, which depends on proboscis length, nectar depth and corolla height, and (3) proboscis width and nectar tube diameter in the presence of nectar.Statistical analysesWe investigated the effects of the different plant assemblages on the rates of parasitism for the five herbivorous species, at 5 and 20 m from the flower strip, considered separately as individual response variables. We first tested the effect of each assemblage (nine treatments as factors) on parasitism rates. We used generalized linear mixed models in the lme package55, with a binomial error distribution. The models included plot (n = 9 flower strips × 3 replicates = 27), strip (1–3) or block (1–3) as a random effect. All models were run three times with each random effect variable, and the model giving the lowest AIC was retained. Strips consistently yielded the lowest AIC. This factor was therefore introduced as a random effect variable for all statistical analyses. The significance of the fixed effects was evaluated by type II analyses of deviance with Wald chi-squared tests from the Anova function from the car package56. If a significant effect (p value  More

  • in

    Inferring predator–prey interaction in the subterranean environment: a case study from Dinaric caves

    1.Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).Article 

    Google Scholar 
    2.Werner, E. E. & Peacor, S. D. A review of trait-mediated indirect interactions in ecological communities. Ecology 84, 1083–1100 (2003).Article 

    Google Scholar 
    3.Abrams, P. A. The evolution of predator–prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31, 79–105 (2000).Article 

    Google Scholar 
    4.Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Peacor, S. D. & Werner, E. E. Nonconsumptive effects of predators and trait-mediated indirect effects. Encycl. Life Sci. https://doi.org/10.1002/9780470015902.a0021216 (2008).Article 

    Google Scholar 
    6.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    7.Mittelbach, G. G. Fish foraging and habitat choice: a theoretical perspective. In Handbook of Fish Biology and Fisheries, Volume 1 Fish Biology (eds Hart, P. J. B. & Reynolds, J. D.) 251–266 (Blackwell, 2002).Chapter 

    Google Scholar 
    8.Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, 2019) https://doi.org/10.1017/CBO9781107415324.004.Book 

    Google Scholar 
    9.Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48, 25–34 (1998).Article 

    Google Scholar 
    10.Jeschke, J. M., Laforsch, C. & Tollrian, R. Animal prey defenses. In Encyclopedia of Ecology 189–194 (2008).11.Harvell, C. D. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65, 323–340 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Peckarsky, B. L. et al. Revisiting the classics: Considering nonconsumptive effects in textbook examples of predator prey interactions. Ecology 89, 2416–2425 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Goricki, Š et al. Environmental DNA in subterranean biology: Range extension and taxonomic implications for Proteus. Sci. Rep. 7, 91–93 (2017).Article 
    CAS 

    Google Scholar 
    14.Sket, B. Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J. Biogeogr. 24, 263–280 (1997).Article 

    Google Scholar 
    15.Jugovic, J., Prevorčnik, S., Aljančič, G. & Sketa, B. The atyid shrimp (Crustacea: Decapoda: Atyidae) rostrum: Phylogeny versus adaptation, taxonomy versus trophic ecology. J. Nat. Hist. 44, 2509–2533 (2010).Article 

    Google Scholar 
    16.Aljančič, M. Prehrana močerila. Proteus 23, 224–225 (1961).
    Google Scholar 
    17.Parzefall, J., Durand, J. P. & Sket, B. Prouteus anguinus Laurenti, 1768—Grottenolm. In Handbuch der Reptilien und Amphibien Europas (ed. Böhme, W.) 59–76 (Aula-Verlag, 1999).
    Google Scholar 
    18.Trontelj, P., Blejec, A. & Fišer, C. Ecomorphological convergence of cave communities. Evolution 66, 3852–3865 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Karaman, S. Podrod Orniphargus u Jugoslaviji I. & II. in O nekim amfipodima—izopodima Balkana i o njihovoj sistematici 119–159 (Srpska akademija nauka-Posebna izdanja CLXIII, 1950).20.Fišer, C., Trontelj, P. & Sket, B. Phylogenetic analysis of the Niphargus orcinus species-aggregate (Crustacea: Amphipoda: Niphargidae) with description of new taxa. J. Nat. Hist. 40, 2265–2315 (2006).Article 

    Google Scholar 
    21.Bollache, L. Ï., Kaldonski, N., Troussard, J. P., Lagrue, C. & Rigaud, T. Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Anim. Behav. 72, 627–633 (2006).Article 

    Google Scholar 
    22.Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55 (2020).Article 

    Google Scholar 
    23.Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).Article 

    Google Scholar 
    24.Borko, Š, Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    25.SubBioDB. Subterranean Fauna Database. Research group for speleobiology, Biotechnical faculty, University of Ljubljana. https://db.subbio.net/ (2021).26.Culver, D. C., Fong, D. W. & Jernigan, R. W. Species interactions in cave stream communities: Experimental results and microdistribution effects. Am. Midl. Nat. 126, 364 (1991).Article 

    Google Scholar 
    27.Lavoie, K. H., Helf, K. L. & Poulson, T. L. The biology and ecology of North American cave crickets. J. Cave Karst Stud. 69, 114–134 (2007).
    Google Scholar 
    28.Ercoli, F. et al. Differing trophic niches of three French stygobionts and their implications for conservation of endemic stygofauna. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 2193–2203 (2019).Article 

    Google Scholar 
    29.Pacioglu, O. et al. Ecophysiological and life-history adaptations of Gammarus balcanicus (Schäferna, 1922) in a sinking-cave stream from Western Carpathians (Romania). Zoology 139, 125754 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Parimuchová, A., Dušátková, L. P., Kováč, Ľ & Macháčková, T. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. https://doi.org/10.1038/s41598-021-84521-1 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Premate, E. et al. Cave amphipods reveal co-variation between morphology and trophic niche in a low-productivity environment. Freshw. Biol. 66, 1876–1888 (2021).Article 

    Google Scholar 
    32.Sacco, M. et al. Elucidating stygofaunal trophic web interactions via isotopic ecology. PLoS ONE 14, 1–25 (2019).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    33.Pohlman, J. W., Iliffe, T. M. & Cifuentes, L. A. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar. Ecol. Prog. Ser. 155, 17–27 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Graening, G. O. & Brown, A. V. Ecosystem dynamics and pollution effects in an Ozark cave stream. J. Am. Water Resour. Assoc. 39, 1497–1507 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 1–13 (2020).Article 

    Google Scholar 
    36.Uiblein, F. & Juberthie, C. Predation in caves: the effects of prey immobility and darkness on the foraging behaviour of two salamanders, Euproctus asper and Proteus anguinus. Behav. Process. 28, 33–40 (1992).CAS 
    Article 

    Google Scholar 
    37.Prevorčnik, S., Verovnik, R., Zagmajster, M. & Sket, B. Biogeography and phylogenetic relations within the Dinaric subgenus Monolistra (Microlistra) (Crustacea: Isopoda: Sphaeromatidae), with a description of two new species. Zool. J. Linn. Soc. 159, 1–21 (2010).Article 

    Google Scholar 
    38.Mammola, S. Finding answers in the dark: Caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).Article 

    Google Scholar 
    39.Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press, 2009).
    Google Scholar 
    40.Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9, e111436 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Mackenzie, D. I., Bailey, L. L. & Nichols, J. D. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 73, 546–555 (2004).Article 

    Google Scholar 
    42.Vörös, J., Márton, O., Schmidt, B. R., Tünde Gál, J. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Niemiller, M. L. et al. Evaluation of eDNA for groundwater invertebrate detection and monitoring: A case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conserv. Genet. Resour. 10, 247–257 (2018).Article 

    Google Scholar 
    44.Yonezawa, S., Nakano, T., Nakahama, N., Tomikawa, K. & Isagi, Y. Environmental DNA reveals cryptic diversity within the subterranean amphipod genus Pseudocrangonyx Akatsuka & Komai, 1922 (Amphipoda: Crangonyctoidea: Pseudocrangonyctidae) from Central Japan. J. Crustac. Biol. 40, 479–483 (2020).Article 

    Google Scholar 
    45.Arntzen, J. W. et al. Proteus anguinus. IUCN Red List Threat. Species (2009).46.Communities, T. C. of E. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official J. Eur. Communities 35, 8–51 (1992).
    Google Scholar 
    47.Vörös, J., Ursenbacher, S. & Jelić, D. Population genetic analyses using 10 new polymorphic microsatellite loci confirms genetic subdivision within the olm, Proteus anguinus. J. Hered. 110, 211–218 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Gorički, Š & Trontelj, P. Structure and evolution of the mitochondrial control region and flanking sequences in the European cave salamander Proteus anguinus. Gene 378, 31–41 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    49.Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150268 (2016).Article 

    Google Scholar 
    50.Schmitz, O. Predator and prey functional traits: Understanding the adaptive machinery driving predator-prey interactions. F1000Research 6, 1767 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.R Development Core Team. A language and environment for statistical computing. (2020).52.R Studio Team. RStudio: Integrated Development for R. (2020).53.Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. (2019).54.Dragulescu, A. A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.1. (2018).55.Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. (2019).56.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).57.Kong, D. Ipaper: Collection of personal practical R functions. (2021).58.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    59.Hijmas, R. J. raster: Geographic Data Analysis and Modeling. (2020).60.Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, 2015).MATH 
    Book 

    Google Scholar 
    61.Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.5.0. (2020).62.Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).Article 

    Google Scholar 
    63.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    64.Meade, A. & Pagel, M. Bayes Traits V3. (2017).65.Griffin, R. H. btw: Run BayesTraitsV3 from R. (2018). More