Molecular species delimitation refines the taxonomy of native and nonnative physinine snails in North America
1.Mayr, E. The species concept: Semantics versus semantics. Evolution 3, 371–372 (1949).Article
Google Scholar
2.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article
Google Scholar
3.Mace, G. M. The role of taxonomy in species conservation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 711–719 (2004).PubMed
PubMed Central
Article
Google Scholar
4.Gustafson, K. D., Kensinger, B. J., Bolek, M. G. & Luttbeg, B. Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions. Evol. Ecol. Res. 16, 77–89 (2014).
Google Scholar
5.Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 1–7 (2018).ADS
CAS
Article
Google Scholar
6.Liu, H. P. & Hershler, R. A new species and range extensions for three other species of pebblesnails (Lithoglyphidae, Fluminicola) from the upper Klamath basin, California-Oregon. ZooKeys 812, 47–67 (2019).Article
Google Scholar
7.Alda, P. et al. Systematics and geographical distribution of Galba species, a group of cryptic and worldwide freshwater snails. Mol. Phylogenet. Evol. 157, 107035 (2021).PubMed
Article
Google Scholar
8.Taylor, D. W. Introduction to Physidae (Gastropoda: Hygrophila); biogeography, classification, morphology. Rev. Biol. Trop. 51(Supplement 1), 1–287 (2003).CAS
PubMed
PubMed Central
Google Scholar
9.Wethington, A. R. & Lydeard, C. A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences. J. Molluscan Stud. 73, 241–257 (2007).Article
Google Scholar
10.Ng, T. H. et al. Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade. PLoS ONE 11, e0161130 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
11.Saito, T., Prozorova, L., Hirano, T., Fukuda, H. & Chiba, S. Endangered freshwater limpets in Japan are actually alien invasive species. Conserv. Genet. 19, 947–958 (2018).Article
Google Scholar
12.Lydeard, C., Campbell, D. & Golz, M. Physa acuta Draparnaud, 1805 should be treated as a native of North America, not Europe. Malacologia 59, 347–350 (2016).Article
Google Scholar
13.Albrecht, C., Kroll, O., Terrazas, E. M. & Wilke, T. Invasion of ancient Lake Titicaca by the globally invasive Physa acuta (Gastropoda: Pulmonata: Hygrophila). Biol. Invasions 11, 1821–1826 (2009).Article
Google Scholar
14.Ng, T. H., Tan, S. K. & Yeo, D. C. Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore. BioInvasions Rec. 4, 189–194 (2015).Article
Google Scholar
15.Collado, G. A. Unraveling cryptic invasion of a freshwater snail in Chile based on molecular and morphological data. Biodivers. Conserv. 26, 567–578 (2017).Article
Google Scholar
16.Johnson, P. D. et al. Conservation status of freshwater gastropods of Canada and the United States. Fisheries 38, 247–282 (2013).Article
Google Scholar
17.Strong, E. E. & Whelan, N. V. Assessing the diversity of western North American Juga (Semisulcospiridae, Gastropoda). Mol. Phylogenet. Evol. 136, 87–103 (2019).PubMed
Article
PubMed Central
Google Scholar
18.Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270(supplement 1), S96-99 (2003).CAS
Google Scholar
19.Stöger, I. & Schrödl, M. Mitogenomics does not resolve deep molluscan relationships (yet?). Mol. Phylogenet. Evol. 69, 376–392 (2013).PubMed
Article
PubMed Central
Google Scholar
20.Cunha, T. J. & Giribet, G. A congruent topology for deep gastropod relationships. Proc. R. Soc. B 286, 20182776 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Varney, R. M. et al. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. BMC Ecol. Evol. 21, 6 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Remigio, E. A. & Hebert, P. D. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol. Phylogenet. Evol. 29, 641–647 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Collins, R. A. & Cruickshank, R. H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 13, 969–975 (2013).CAS
PubMed
PubMed Central
Google Scholar
24.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
25.Whelan, N. V. & Strong, E. E. Morphology, molecules and taxonomy: Extreme incongruence in pleurocerids (Gastropoda, Cerithioidea, Pleuroceridae). Zoolog. Scr. 45, 62–87 (2016).Article
Google Scholar
26.Razkin, O., Gómez-Moliner, B. J., Vardinoyannis, K., Martínez-Ortí, A. & Madeira, M. J. Species delimitation for cryptic species complexes: Case study of Pyramidula (Gastropoda, Pulmonata). Zool. Scr. 46, 55–72 (2017).Article
Google Scholar
27.Liu, H. P., Hershler, R. & Hovingh, P. Molecular evidence enables further resolution of the western North American Pyrgulopsis kolobensis complex (Caenogastropoda: Hydrobiidae). J. Molluscan Stud. 84, 103–107 (2018).Article
Google Scholar
28.Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Saadi, A. J., Davison, A. & Wade, C. M. Molecular phylogeny of freshwater snails and limpets (Panpulmonata: Hygrophila). Zool. J. Linn. Soc. 190, 518–531 (2020).Article
Google Scholar
30.Frest, T. J. & Johannes, E. J. An annotated checklist of Idaho land and freshwater mollusks. J. Idaho Acad. Sci. 36(2), 1–51 (2000).
Google Scholar
31.Pip, E. & Franck, J. P. Molecular phylogenetics of central Canadian Physidae (Pulmonata: Basommatophora). Can. J. Zool. 86, 10–16 (2008).CAS
Article
Google Scholar
32.Tariel, J., Plénet, S. & Luquet, É. Transgenerational plasticity of inducible defences: Combined effects of grand-parental, parental and current environments. Ecol. Evol. 10, 2367–2376 (2020).PubMed
PubMed Central
Article
Google Scholar
33.Perrin, N. The life history parameters of Physa acuta (Gastropoda, Mollusca) in experimental conditions. Revue Suisse Zoologique 93, 725–736 (1986).Article
Google Scholar
34.Taylor, D. W. New species of Physa (Gastropoda: Hygrophila) from the western United States. Malacol. Rev. 21, 43–79 (1988).
Google Scholar
35.U.S. Fish and Wildlife Service. Determination of endangered or threatened status for five aquatic snails in south central Idaho. Fed. Reg. 57, 59242–59257 (1992).
Google Scholar
36.Rogers, D. C. & Wethington, A. R. Physa natricina Taylor 1988, junior synonym of Physa acuta Draparnaud, 1805 (Pulmonata: Physidae). Zootaxa 1662, 45–51 (2007).
Google Scholar
37.Gates, K. K., Kerans, B. L., Keebaugh, J. L., Kalinowski, S. & Vu, N. Taxonomic identity of the endangered Snake River physa, Physa natricina (Pulmonata: Physidae) combining traditional and molecular techniques. Conserv. Genet. 14, 159–169 (2013).Article
Google Scholar
38.Moore, A. C., Burch, J. B. & Duda, T. F. Recognition of a highly restricted freshwater snail lineage (Physidae: Physella) in southeastern Oregon: Convergent evolution, historical context, and conservation considerations. Conserv. Genet. 16, 113–123 (2015).Article
Google Scholar
39.Dillon, R. T., Robinson, J. D. & Wethington, A. R. Empirical estimates of reproductive isolation among the freshwater pulmonate snails Physa acuta, P. pomilia, and P. hendersoni. Malacologia 49, 283–292 (2007).Article
Google Scholar
40.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).PubMed
Article
PubMed Central
Google Scholar
41.Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America. Geological Survey of Canada Open File 1574 (2003).42.Wethington, A. R., Wise, J. & Dillon, R. T. Jr. Genetic and morphological characterization of the Physidae of South Carolina (Gastropoda: Pulmonata: Basommatophora), with description of a new species. Nautilus 123, 282–292 (2009).
Google Scholar
43.Ebbs, E. T., Loker, E. S. & Brant, S. V. Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evol. Biol. 18, 1–7 (2018).Article
Google Scholar
44.Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).Article
Google Scholar
45.Van Leeuwen, C. H. et al. How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshw. Biol. 58, 88–99 (2013).Article
Google Scholar
46.Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).Article
Google Scholar
47.Bony, Y. K. et al. Ecological conditions for spread of the invasive snail Physa marmorata (Pulmonata: Physidae) in the Ivory Coast. Afr. Zool. 43, 53–60 (2008).Article
Google Scholar
48.Pierce, K. L. & Morgan, L. A. Is the track of the Yellowstone hotspot driven by a deep mantle plume?—Review of volcanism, faulting, and uplift in light of new data. J. Volcanol. Geotherm. Res. 188, 1–25 (2009).ADS
CAS
Article
Google Scholar
49.Smith, G. R. et al. Biogeography and timing of evolutionary events among Great Basin fishes. In Great Basin Aquatic Systems History. Smithsonian Contributions to the Earth Sciences Vol. 33 (eds Hershler, R. et al.) 175–234 (Smithsonian Institution Press, 2002).
Google Scholar
50.Oviatt, C. G. Chronology of Lake Bonneville, 30,000 to 10,000 yr BP. Quatern. Sci. Rev. 110, 166–171 (2015).Article
Google Scholar
51.Safran, E. B. et al. Plugs or flood-makers? The unstable landslide dams of eastern Oregon. Geomorphology 248, 237–251 (2015).ADS
Article
Google Scholar
52.Ely, L. L. et al. Owyhee River intracanyon lava flows: Does the river give a dam?. GSA Bull. 124, 1667–1687 (2012).Article
Google Scholar
53.Matthews, J. et al. Rapid range expansion of the invasive quagga mussel in relation to zebra mussel presence in the Netherlands and western Europe. Biol. Invasions 16, 23–42 (2014).Article
Google Scholar
54.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechol. 3, 294–299 (1994).CAS
Google Scholar
55.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Uit de Weerd, D. R. & Gittenberger, E. Phylogeny of the land snail family Clausiliidae (Gastropoda: Pulmonata). Mol. Phylogenet. Evol. 67, 201–216 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Nixon, K. C. & Wheeler, Q. D. An amplification of the phylogenetic species concept. Cladistics 6, 211–223 (1990).Article
Google Scholar
59.Galtier, N. Delineating species in the speciation continuum: A proposal. Evol. Appl. 12, 657–663 (2019).PubMed
PubMed Central
Article
Google Scholar
60.DeSalle, R., Egan, M. G. & Siddall, M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. B Biol. Sci. 360, 1905–1916 (2005).CAS
Article
Google Scholar
61.Bouchet, P. et al. Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61, 1–526 (2017).Article
Google Scholar
62.Wethington, A. R. & Guralnick, R. Are populations of physids from different hot springs distinctive lineages?. Am. Malacol. Bull. 19, 135–144 (2004).
Google Scholar
63.Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
Article
Google Scholar
65.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).PubMed
Article
PubMed Central
Google Scholar
66.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Delicado, D., Arconada, B., Aguado, A. & Ramos, M. A. Multilocus phylogeny, species delimitation and biogeography of Iberian valvatiform springsnails (Caenogastropoda: Hydrobiidae), with the description of a new genus. Zool. J. Linn. Soc. 186, 892–914 (2019).Article
Google Scholar
68.Kapli, T. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2016).
Google Scholar
69.Clement, M., Posada, D. C. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Hart, M. W. & Sunday, J. Things fall apart: Biological species form unconnected parsimony networks. Biol. Lett. 3, 509–512 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Meier, R., Zhang, G. & Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813 (2008).PubMed
Article
PubMed Central
Google Scholar
74.Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).PubMed
Article
PubMed Central
Google Scholar
75.Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).Book
Google Scholar
76.Dinapoli, A., Tamer, C., Franssen, S., Naduvilezhath, L. & Klussmann-Kolb, A. Utility of H3-gene sequences for phylogenetic reconstruction—a case study of heterobranch Gastropoda. Bonner Zoologische Beiträge 55(3/4), 191–202 (2006).
Google Scholar
77.Ayyagari, V. S. & Sreerama, K. Molecular phylogenetic analysis of Pulmonata (Mollusca: Gastropoda) on the basis of histone-3 gene. Beni-Suef Univ. J. Basic Appl. Sci. 8, 1–8 (2019).Article
Google Scholar More