More stories

  • in

    Water column structure influences long-distance latitudinal migration patterns and habitat use of bumphead sunfish Mola alexandrini in the Pacific Ocean

    1.Sims, D. W., Queiroz, N., Doyle, T. K., Houghton, J. D. R. & Hays, G. C. Satellite tracking of the world’s largest bony fish, the ocean sunfish (Mola mola L.) in the North East Atlantic. J. Exp. Mar. Biol. Ecol. 370, 127–133 (2009a)2.Sims, D. W., Queiroz, N., Humphries, N. E., Lima, F. P. & Hays, G. C. Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLoS ONE 4, e7351 (2009b).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Dewar, H. et al. Satellite tracking the world’s largest jelly predator, the ocean sunfish, Mola mola, in the Western Pacific. J. Exp. Mar. Biol. Ecol. 393, 32–42 (2010).Article 

    Google Scholar 
    4.Thys, T. M. et al. Ecology of the ocean sunfish, Mola mola, in the southern California current system. J. Exp. Mar. Biol. Ecol. 471, 64–76 (2015).Article 

    Google Scholar 
    5.Sousa, L. L., Queiroz, N., Mucientes, G., Humphries, N. E. & Sims, D. W. Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic. Anim. Biotelemetry 4, 7 (2016a).Article 

    Google Scholar 
    6.Sousa, L. L. et al. Integrated monitoring of Mola mola behaviour in space and time. PLoS ONE 11, e0160404 (2016b).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Chang, C. T. et al. Horizontal and vertical movement patterns of sunfish off eastern Taiwan. Deep-Sea Res. Part II Top. Stud. Oceanogr. 175, 104683 (2020).8.Sawai, E., Yamanoue, Y., Yoshita, Y., Sakai, Y. & Hashimoto, H. Seasonal occurrence patterns of Mola sunfishes (Mola spp. A and B; Molidae) in waters off the Sanriku region, eastern Japan. Japan. J. Ichthyol. 58, 181–187 (2011).
    Google Scholar 
    9.Thys, T. M., Ryan, J. P., Weng, K. C., Erdmann, M. & Tresnati, J. Tracking a marine ecotourism star: Movements of the short ocean sunfish Mola ramsayi in Nusa Penida, Bali, Indonesia. J. Mar. Biol. 2016, 8750193 (2016).Article 

    Google Scholar 
    10.Thys, T. M., Hearn, A. R., Weng, K. C., Ryan, J. P. & Peñaherrera-Palma, C. Satellite tracking and site fidelity of short ocean sunfish, Mola ramsayi, in the Galapagos Islands. J. Mar. Biol. 2017, 7097965 (2017).Article 

    Google Scholar 
    11.Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Nakamura, I., Goto, Y. & Sato, K. Ocean sunfish rewarm at the surface at the surface after deep excursion to forage for siphonophores. J. Anim. Ecol. 84, 590–603 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Tolotti, M. et al. Fine-scale vertical movements of oceanic whitetip sharks (Carcharhinus longimanus). Fish. Bull. 115, 380–395 (2017).Article 

    Google Scholar 
    15.Musyl, M. K. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    16.Furukawa, S. et al. Vertical movements of Pacific bluefin tuna (Thunnus orientalis) and dolphinfish (Coryphaena hippurus) relative to the thermocline in the northern East China Sea. Fish. Res. 149, 86–91 (2014).Article 

    Google Scholar 
    17.Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PloS ONE 12, e0172839 (2017).18.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. PNAS 116, 17187–17192 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sawai, E., Yamanoue, Y., Nyegaard, M. & Sakai, Y. Redescription of the bump-head sunfish Mola alexandrini (Ranzani 1839), senior synonym of Mola ramsayi (Giglioli 1883), with designation of a neotype for Mola mola (Linnaeus 1758) (Tetraodontiformes: Molidae). Ichthyol. Res. 65, 142–160 (2018).Article 

    Google Scholar 
    20.Sawai, E. & Yamada, M. Bump-head sunfish Mola alexandrini photographed in the north-west Pacific Ocean mesopelagic zone. J. Fish Biol. 96, 278–280 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyofuji, H. et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Progr. Oceanogr. 175, 55–67 (2019).ADS 
    Article 

    Google Scholar 
    22.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Progr. Oceanogr. 162, 52–65 (2018).23.Kobari, T. et al. Variability in taxonomic composition, standing stock, and productivity of the plankton community in the Kuroshio and its neighboring waters in Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K., Takahashi, M.) 223–243 (Hoboken, 2019).24.Queiroz, N., Humphries, N. E., Noble, L. R., Santos, A. M. & Sims, D. W. Short-term movements and diving behaviour of satellite-tracked blue sharks Prionace glauca in the northeastern Atlantic Ocean. Mar. Ecol. Progress Ser. 406, 265–279 (2010).ADS 
    Article 

    Google Scholar 
    25.McMahon, C. R. & Hays, G. C. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Glob. Change Biol. 12, 1330–1338 (2006).ADS 
    Article 

    Google Scholar 
    26.Nakatsubo, T., Kawachi, M., Mano, N. & Hirose, H. Spawning period of ocean sunfish Mola mola in waters of the eastern Kanto region, Japan. Aquacult. Sci. 55, 613–618 (2007).
    Google Scholar 
    27.Ashida, H., Suzuki, N., Tanabe, T., Suzuki, N. & Aonuma, Y. Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environ. Biol. Fish. 98, 1173–1183 (2015).Article 

    Google Scholar 
    28.Watai, M. et al. Comparative analysis of the early growth history of Pacific bluefin tuna Thunnus orientalis from different spawning grounds. Mar. Ecol. Progress Ser. 607, 207–220 (2018).ADS 
    Article 

    Google Scholar 
    29.Stevens, J. D., Bradford, R. W. & West, G. J. Satellite tagging of blue sharks (Prionace glauca) and other pelagic sharks off eastern Australia: Depth behaviour, temperature experience and movements. Mar. Biol. 157, 575–591 (2010).Article 

    Google Scholar 
    30.Musyl, M. K. et al. Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12, 152–169 (2003).Article 

    Google Scholar 
    31.Lin, S. J. et al. Vertical and horizontal movements of bigeye tuna (Thunnus obesus) in southeastern Taiwan. Mar. Freshw. Behav. Physiol. 54, 1–21 (2021).Article 

    Google Scholar 
    32.Yasuda, I. & Kitagawa, D. Locations of early fishing grounds of saury in the northwestern Pacific. Fish. Oceanogr. 5, 63–69 (1996).Article 

    Google Scholar 
    33.Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PloS ONE 7, e30161 (2012). 34.Polovina, J. J. et al. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr. 13, 36–51 (2004).Article 

    Google Scholar 
    35.Sbragaglia, V. et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci. Rep. 9, 1708 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Nakamura, I., Mastumoto, R. & Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 223, jeb210286 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Brill, R. W., Bigelow, K. A., Musyl, M. K., Fritsches, K. A. & Warrant, E. J. Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology. Col. Vol. Sci. Pap. ICCAT 57, 142–161 (2005).
    Google Scholar 
    38.Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Brill, R. W. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 3, 204–216 (1994).Article 

    Google Scholar 
    40.Lam, C. H., Kiefer, D. A. & Domeier, M. L. Habitat characterization for striped marlin in the Pacific Ocean. Fish. Res. 166, 80–91 (2015).Article 

    Google Scholar 
    41.Carlisle, A. B. et al. Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the Central Pacific. Fish. Oceanogr. 26, 34–48 (2017).Article 

    Google Scholar 
    42.Madigan D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).Article 

    Google Scholar 
    43.Schlitzer, R. Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J. Oceanogr. 60, 53–62 (2004).CAS 
    Article 

    Google Scholar 
    44.Thomsen, S. et al. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. 121, 476–501 (2016).ADS 
    Article 

    Google Scholar 
    45.Nakamura, I. & Sato, K. Ontogenetic shift in foraging habit of ocean sunfish Mola mola from dietary and behavioral studies. Mar. Biol. 161, 1263–1273 (2014).Article 

    Google Scholar 
    46.QGIS Development Team. Quantum GIS geographic information system. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2016).47.Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–332 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Fiedler, P. C. Comparison of objective descriptions of the thermocline. Limnol. Oceanogr. Methods 8, 313–325 (2010).Article 

    Google Scholar 
    49.Zar, J. H. Biostatistical Analysis 4th edn. (Prentice Hall, 1999).
    Google Scholar 
    50.Clarke, K. R., & Gorley, R. N. PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth.51.Wood, S. N. On p-values for smooth components of an extended generalized additive model. Biometrika 100, 221–228 (2013).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Pheromones that correlate with reproductive success in competitive conditions

    Reproductive successThe production of urinary pheromones correlated with male but not female reproductive success (RS; defined in “Materials and methods” section). The most important predictors of male RS were total urinary protein concentration (75%) and social status (69%; Table 1; based on conditional model average sum of weights). The relative importance of age, creatinine, and mass ranged from 23 to 39%; PC ratio (protein:creatinine concentration) was excluded from the model due to collinearity (VIF = 6.97). Total urinary protein concentration during the enclosure phase was positively correlated with RS for males (Spearman R = 0.52, p = 0.01; Fig. 1a), but not females (Fig. 1b). This correlation is explained by the low protein concentration in the urine of non-reproductive males, as it is no longer significant after removing these males from the analysis (R = 0.12, p = 0.62; Supplementary Fig. S2). The median total urinary protein concentration was 5512 µg mL−1 and 5028 µg mL−1 for reproductive and non-reproductive males, respectively (Wilcoxon rank sum test W = 5, p  More

  • in

    Description of five new species of the Madagascan flagship plant genus Ravenala (Strelitziaceae)

    Generic nameRavenala Adans.1 (1763: 67). (equiv) Urania Schreb.22 (1789: 212). –Ravenala Scop.23, nom. illeg. (1777: 96) as “Ravenalla Adans”.Type species Ravenala madagascariensis Sonn.24.Note: Dorr & Parkinson25 proposed to conserve the spelling Ravenala Scop. (and correct Scopoli’s original orthography “Ravenalla”) against Ravenala Adans. on the basis that Adanson’s generic names (using a uninominal nomenclature for species) were invalid. Brummitt26 rejected this proposal and considered that Adanson’s generic names were valid27 and thus that there was no need to use Scopoli’s Ravenala (Ravenalla). Moreover, the exact wording in Scopoli23 (1777: 96) is “Ravenalla Adans.”, citing Adanson explicitly, but with an incorrect spelling for the generic name (the double “l”).Typification and emended descriptionRavenala madagascariensis Sonn. (1782: 2[ed. qto.]: 223, tt. 124–126).(equiv) Ravenala madagascariensis J.F.Gmel.28 (1791: 567). (equiv) Urania madagascariensis (Sonn.) Schreb. ex Forsyth f.29 (1794: 212). (equiv) Heliconia ravenala Willemet30 (1796: 22). (equiv) Urania speciosa Willdenow31 (1799: 7). (equiv) Urania ravenalia (Willemet) A.Rich.32 (1831: 19). –Ravenala madagascariensis Adans.1 (1763: 597), nomen invalid., appearing on page 597, abbreviated in the final index of Adanson’s book as “Ravenala madag. 67”, which can also be construed as referring to Madagascar as a locality.Type Lectotype, here designated: The plate numbered 126, representing the typical lax mature infructescence, in Sonnerat24 (1782: plate 126). Epitype, here designated: MADAGASCAR (bullet) Fort-Dauphin, Forêt de Manantantely, [24°58′ 59.988″S, 46°55′0.012″E, calc. from label], 60–300 m elev., 15 September 1928, H. Humbert 5730 (Epitype: MNHN-P-P02234599!, Isoepitypes: MNHN-P-P02234602!, MNHN-P-P02234604!, MNHN-P-P02234605!).Additional specimen examined: MADAGASCAR (bullet) Toamasina: Foulpointe, Analalava Forest, plant growing close to the main forest station, 17°42.3′S, 49°27.38′E, 50 m elev., 20 March 2016, T.Haevermans, M. Vorontsova, S. Dransfield & J. Razanatsoa 821 (TAN!, P!, K !) (bullet) X. Aubriot et al. 45 (P00696168!, P00696167!, P00685124!, TAN!) (bullet) Along Route #5 from Fenerive to Maroantsetra, disturbed areas along road, 100 m elev., 28 February 1975, T. B. Croat 32540 (L-WAG.1111446!, L-WAG.1111447!, MO-358490!, MO-358491!, MO-358523!) (bullet) Toalagnaro, Ebakika, District de Fort-Dauphin, 12 July 1932, R. Decary 10107 (P02234596!) (bullet) Vondrozo (commune de Farafangana), 16 September 1926, R. Decary 5428 (P02234588!, P02234591!, P02234592!) (bullet) 2 km E of Ranomafana towards Brickaville, 18.965° S, 48.8564° E, 4 March 1992, J. Kress et al. 92-3412 (US00424302!, US00424299!, US00424300!, US00424301!, US00424303!) (bullet) 18 km E of Ranomafana, 25 km W of Brickaville, 18.9453° S, 48.9664° E, 4 March 1992, J. Kress et al. 92-3414 (US00424312!, US00424309!, US00424310!, US00424311!, US00424313!). MAURITIUS (bullet) Isle de France, s.dat., Commerson s.n. (P02234587!, P-JU!, P-LAM!).Identity of Ravenala madagascariensis Sonn. —Figs. 2d, 3d, 4d, 5d— In the absence of a specimen undoubtedly collected or seen by Sonnerat (Commerson’s specimens, collected in Mauritius and preserved in both Jussieu’s and Lamarck’s herbaria at the Paris herbarium (P-JU and P-LAM), might actually be part of original material), we decided to lectotypify from plates 124, 125 and 126 of the protologue in Sonnerat’s valid publication24 of the species. On page 225, Sonnerat24 mentions that the plant originated from Madagascar but was transported and established in Mauritius (known at the time as Isle de France) at the “Jardin des Pamplemousses”. We observed plants growing in this garden as well as naturalized plants occurring in the wild in Mauritius; all the plants we saw suckered and possessed the characteristic pointed conical fruits also observed in the Fort-Dauphin population. Sonnerat also specified that the original plant grew in marshy areas, which corresponds exactly to the coastal populations that can be found on the eastern coast of Madagascar (i.e. the “Horonorona” variant of Blanc et al.13). Plate 126 shows the typical mature infructescence of the species, with the space between bracts increasing before releasing the seeds (unlike other species of Ravenala). However, the “tree” pictured on plate 124 is a non-suckering plant, which in our opinion can be explained as artistic license on the part of the illustrator, as all the plants observed in Mauritius consistently sucker, like the plants growing in the south-eastern marshy areas. We also decided to designate an epitype with a documented locality in Madagascar (the material in P-JU and P-LAM does not bear a precise indication of locality) to fix the application of the name R. madagascariensis to the populations occurring in the marshy areas surrounding Fort-Dauphin, where only one morphotype is known.Figure 3Comparison of petiole bases. (a) R. agatheae. (b) R. blancii. (c) R. grandis. (d) R. madagascariensis. (e) R. menahirana. (f) R. hladikorum. Photographs Thomas Haevermans©.Full size imageFigure 4Comparison of inflorescences. (a) R. agatheae. (b) R. blancii. (c) R. grandis. (d) R. madagascariensis. (e) R. menahirana. (f) R. hladikorum. Photographs Thomas Haevermans©.Full size imageFigure 5Species of Ravenala in their natural habitat. (a) R. agatheae. (b) R. blancii. (c) R. grandis. (d) R. madagascariensis. (e) R. menahirana. (f) R. hladikorum. Photographs Thomas Haevermans©.Full size imageEmended description Plants suckering, 6–12 meters tall (adult), trunk circumference (d.b.h.) 20–30 cm, juvenile and adult laminae distributed in a perfect fan, 14–25 leaves simultaneously alive on the adult plant, 1–3 leaves between inflorescences. Leaves adult petiole 380–440 cm long, greenish-yellow, slightly waxy, sheath margin undeveloped to moderately developed (0–9 mm), entire, not drying, slightly splitting when aged (Fig. 3d), petiole/lamina ratio 1.9–(2.2)–2.3, adult lamina (200 times 100) cm, light green, juvenile lamina base non-decurrent. Inflorescences 4–6 live lateral inflorescences at a time, (100 times 100) cm (peduncle excluded), 8–16 bracts per inflorescence, bracts 200–(450 times 50)–100 mm, with some wax to very waxy, margin uniformly green (Fig. 4d), cincinnii of ca. 10 flowers per bract, flowering sequentially, bracteoles without a colored stripe. Flowers 240–280 mm long (ovary included), inferior ovary 40–50 mm long, perianth yellowish, sepals narrowly triangular 240–250 (times 10)–12 mm, sheathing (fused) petals narrowly triangular 220–230(times)ca. 10 mm, free petal acicular 180–190 (times 5) mm, slightly smaller than the remaining perianth with mean free petal/mean fused petal length ratio = 0.8, petal blotches absent, stamens (roughly) the same size as the perianth, 200–210 mm long, style 200–230 mm long, stigma 15–20 mm long, oblong ovoid with a basal constriction. Infructescences lax (bract bases not imbricate at maturity), stiff and coriaceous persisting bracts, old infructescences deciduous, 4–8 fruits per bract. Fruits 70–120 (times 30)–35 mm, trilocular septifragal capsule, apices conical (Fig. 2d), seeds 6–(8.5)–(11 times 5)–(6.4)–8 mm, shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.Ecology Ravenala madagascariensis is a low-altitude species restricted to swampy areas of the eastern coast of Madagascar. Populations outside of Madagascar on nearby islands are reputedly non-indigenous24.Preliminary IUCN assessments We propose a Least Concern status for R. madagascariensis, having an E.O.O ( > 20,000) km2 and an A.O.O. ( > 2,000) km2 (criterion B)33.Note This emended description for R. madagascariensis was drawn up from our own observations and collections, and was made comparable point by point to the descriptions of the five new species presented below, along with a dichotomous identification key to all six species.New species descriptions
    Ravenala agatheae Haev. & Razanats. sp. nov.—Figs. 2a, 3a, 4a, 5a, 6
    Type MADAGASCAR (bullet) Antsiranana: Ambanja District, along R.N.6 road to Ankaramibe, 13°45′54.8″S, 48°21′27.7″E, 30 m elev., on degraded lateritic slopes, 28 October 2018, T. Haevermans, A. Haevermans & J. Razanatsoa 830 (Holotype: TAN!, Isotypes: K!, MO!, P!).Figure 6Ravenala agatheae. (a) young infructescence. (b) adult plant habit showing the suckers at the base and the persistent petioles and old infructescences. (c) fruit with a conical apex. (d) infructescence with remains of dried flowers and dried bracts. (e) style apex. (f) inflorescence with open flowers. (g) open flower. Ink drawings on (75 , upmu) polyester tracing paper by Agathe Haevermans© from specimen Haevermans et al. 830, and observations in-situ.Full size imageParatypes MADAGASCAR (bullet) Antsiranana: 57–58 km N of Ambanja, 13°22′59.9″S, 48°48′E, 22 May 1974, A.H. Gentry 11878 (L-WAG.1111448!, L-WAG.1111449!, MO-358489!, TAN) (bullet) Ampasindava, forêts d’Ambilanivy et Rangoty, 13°48′36″S, 48°10′48″E, 29 November 2007, L. Nusbaumer 2658 (G334213/1!, MO!, TAN) (bullet) Mahajanga: Morafenobe, Beravy, 15 km from Beravy, near the road from Orombato to Beravy, 18°3′50″S, 44°31′46″E, 09 June 2016, F. Rakotonasolo et al. 2772 (K, P00782931!, TAN).Diagnosis Similar to Ravenala madagascariensis but differs in its dark green narrower laminae, tricolor petioles with very developed dryish petiole sheath margins, very waxy petioles, the persistence of older infructescences for several years, a purple stripe on the bract margin, longer bracts, a whitish perianth, brown blotches on its mature fused petals, the bracteole apex tinged with pink, an ovoid pointed stigma, dense infructescences, smaller inflorescences, the free petal much shorter than the fused petals, and an end of year flowering period.Distribution Plants restricted to Madagascar, growing in the north-western part of the island. We observed it growing from the southern part of the Diego Suarez area (on the hills along the road leading to Tsingy Rouge and the city of Sadjoavato) in the north to the western part of the Mahajanga province down to the Melaky region, with most observations around Ambanja34. We also observed that the species was cultivated on Nosy Be.Preliminary IUCN assessments We propose a Least Concern status for R. agatheae, having an E.O.O ( > 20,000) km2 and an A.O.O. ( > 2,000) km2 (criterion B)33.Ecology This species is adapted to seasonally dry and warm coastal habitats, growing on slopes at low elevations in north-western coastal areas of Madagascar, from Antsiranana (Diego-Suarez) down to the Melaky region in the Mahajanga province.Etymology This species is named after to the first author’s wife, Agathe Haevermans, a botanical illustrator at the Muséum National d’Histoire Naturelle, who helped discover this species in the field with the collecting team and who contributes greatly to botany by producing illustrations of new taxa from biodiversity hotspots such as Madagascar.Description Plants suckering, 6–10 meters tall (adult), trunk circumference (d.b.h.) 20–30 cm, juvenile and adult laminae distributed like a regular fan, 9–22 leaves simultaneously alive on the adult plant, 1–3 leaves between inflorescences. Leaves adult petiole 300–460 cm long, tricolor (dark green with a waxy white strip and red petiole sheath margin subsequently drying out, Fig. 3a), very waxy, sheath margin very developed (10 mm and more), entire, dryish-papyraceous and protruding at 90 degrees, petiole/lamina ratio 1.7–(1.95)–2.2, adult lamina 174–(210 times 72)–86 cm, dark green, juvenile lamina base non-decurrent. Inflorescences 4–6 live lateral inflorescences at a time, 70–(90 times 90)–100 cm (peduncle excluded), 10–14 bracts per inflorescence, bracts 450–500 (times 80)– 90 mm, with some waxiness (Fig. 4a), margin bearing a purple stripe, cincinnii of 8–10 flowers per bract, flowering sequentially, some pink tinge at the apex of bracteoles. Flowers 260–310 mm long (ovary included), inferior ovary 40–60 mm long, perianth whitish, sepals narrowly triangular 220–250(times)ca. 10 mm, sheathing (fused) petals narrowly triangular 200–(220times)ca. 10 mm, free petal acicular 130–(140 times 5) mm, much smaller than the remaining perianth with a mean free petal / mean fused petal length ratio = 0.6, petal blotches present, stamens (roughly) the same size as the perianth, 210–220 mm long, style 220 mm long, stigma 15 mm long, ovoid-pointed with basal constriction. Infructescences compact (bracts bases imbricate at all stages of maturity), stiff and coriaceous persisting bracts on mature infructescence, persistence of old infructescences, 4–10 fruits per bract. Fruits 90–110 (times) 30–45 mm, trilocular septifragal capsule, apices conical (Fig. 2a), seeds shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.
    Ravenala blancii Haev., V. Jeannoda & A. Hladik sp. nov. —Figs. 2b, 3b, 4b, 5b, 7
    Type MADAGASCAR (bullet) Andasibe; 18°56′00″S, 48°25′06″E; 940 m elev.; 01 December 2002; A. Hladik & C.-M. Hladik 6760 (Holotype: TAN!, Isotypes: K!, MO!, P!).Paratypes MADAGASCAR (bullet) Andasibe; 18°56′00″S, 48°25′06″E; 940 m elev., 23 Aug. 1998, A. Hladik & al. 6239 (P!, fruits) (bullet) June 2001, A. Hladik & al. 6650 (P!, leaves, fruits, bracts) (bullet) Andasibe-Mantadia area, Vakôna, Kalonora; 18°53′17.3″S, 48°25′51.3″E, 08 November 2018, 934 m elev., T. Haevermans & al. 832 (K!, MO!, P!, TAN!).Diagnosis Similar to Ravenala madagascariensis but differs in its non-suckering habit, decurrent juvenile lamina bases, toroidal distribution of juvenile laminae, smaller number of leaves simultaneously alive on the adult plant, dark green lamina and green non waxy petiole, smaller leaves, smaller number of live inflorescences, smaller number of bracts in an inflorescence, non-waxy bracts, sub-simultaneous flowering, smaller flowers, smaller inflorescences, non-persistence of entire bracts on dry infructescences, October/November flowering period.Distribution Andasibe-Mantadia, Ranomafana21. Restricted to Madagascar.Preliminary IUCN assessments We propose a Data Deficient status for R. blancii; further fieldwork is required to understand its precise distribution and the status of its populations33.Ecology High-elevation species found in eastern rainforests at elevations between 600 and 1,100 m. The species seems to favor cool tropical humid and shady conditions.Etymology This species is named after Dr. Patrick Blanc, world renowned botanist, plant ecologist and street artist, inventor of the planted vertical walls known as “Mur Végétal” and who first recognized the sheer originality of the juvenile phases of this peculiar taxon.Description Plants solitary (never suckering), 10–15 meters tall (adult), trunk circumference (d.b.h.) 20–30 cm, juvenile laminae distributed in a toroidal shape, adult laminae arranged in a regular fan, 9–16 leaves simultaneously alive on the adult plant, 2–4 leaves between inflorescences. Leaves adult petiole 240–310 cm long, green, not waxy, sheath margin undeveloped, entire, not drying, smooth with a worn-out irregular aspect (Fig. 3b), petiole/lamina ratio 1.8–(2.0)–2.2, adult lamina 120–160 (times) 90–104 cm, dark green, juvenile lamina base decurrent. Inflorescences 2–3 live lateral inflorescences at a time, (60 times 70) cm (peduncle excluded), 4–6 bracts per inflorescence, bracts 160–350 (times) 50–90 mm, no waxiness (Fig. 4b), margin color uniformly green, cincinnii of 5–14 flowers per bract, flowering sub-simultaneously, bracteoles sometimes pink colored. Flowers 165–280 mm long (ovary included), inferior ovary 40–50 mm long, perianth whitish-yellowish, sepals narrowly triangular 125–231 (times) 10–12 mm, sheathing (fused) petals narrowly triangular 105–190 (times 10) mm, free petal acicular 105–178 (times 3)–5 mm, free petal and fused petals of sub-equal size with a mean free petal / mean fused petal length ratio = 1.0, petal blotches absent or present, stamens (roughly) the same size as the perianth, 115–186 mm long, style 132–220 mm long, stigma 20-25 mm long, ovoid to ovoid-pointed with a basal constriction. Infructescences compact (bract bases imbricate at all stages of maturity), torn and degraded bracts on mature infructescence, old infructescences deciduous, 5–14 fruits per bract. Fruits 80–120 (times) 32–45 mm, trilocular septifragal capsule, apices conical (Fig. 2b), seeds 6–10 (times) 3.2–6 mm, shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.Note The strong leaf dimorphism between juvenile and adult forms is characteristic of this species13, a phenomenon which is not present in the other taxa. The base of the juvenile plant usually grows buried in the leaf litter due to the action of traction roots13, its decurrent leaves (Fig. 7) giving it the aspect of a bird’s nest fern.Figure 7Ravenala blancii. (a) juvenile plant habit with roots. (b) juvenile plant showing the arrangement of laminae. (c) adult plant habit. (d) mature infructescence segment. (e) juvenile leaf showing the attenuate base of the lamina. (f) inflorescence with sub-simultaneous opening of the flowers. (g) young infructescence with already degraded bracts. (h) seeds with arilla. (i) open flower. (j) details of the stigma. (k) style. Ink drawings on (75 , upmu) polyester tracing paper by Agathe Haevermans© from specimens Hladik 6790, 6239, 6650, Haevermans et al. 832, and observations in-situ.Full size image
    Ravenala grandis Haev., Razanats., A. Hladik & P. Blanc sp. nov.—Figs. 2c, 3c, 4c, 5cType. MADAGASCAR (bullet) Ampasimbe Commune, Maromaniry Fokontany, along Route Nationale, 18°57′41.8″S, 48°42′41.4″E, 258 m elev., 08 November 2018, T. Haevermans, A. Haevermans & J. Razanatsoa 831 (Holotype: TAN!, Isotypes: K!, MO!, P!).Paratypes MADAGASCAR (bullet) Varifoana, près d’Ambohimahasoa-sud, 15 May 1964, R. Capuron 26014SF (P02234597!) (bullet) Soanierana-Antasibe[Andasibe], 350 m elev., 10 December 1938, H.J. Lam & A.D.J. Meeuse 5867 (L-WAG.1111450!, L-WAG.1111451!, L-WAG.1111452!, L-WAG.1111453!, L-L.1477714!, L-L.1477715!).Diagnosis Similar to Ravenala madagascariensis but differs in its non-suckering habit, much larger dimensions, very thick leathery laminae, very waxy dark green-yellowish petioles, much larger bracts and overall dimensions, whitish/pure white perianth, strong reddish-pink stripes on its bracteoles, cylindrical stigma without basal constriction, stamens much shorter than perianth, and fruit with a truncated apex.Distribution Eastern rainforests at around 200–500 m elevation in Madagascar13,20.Preliminary IUCN assessments We propose a Data Deficient status for R. grandis; further fieldwork is required to understand its precise distribution and the status of its populations33.Ecology This species seems to favor growing in low discontinuous forests on inselbergs12 and thrives in secondary degraded vegetation on the slopes of eastern rain forests.Etymology The name of this species is in reference to its stature and habit, the most robust species of Ravenala known.Description Plants solitary (never suckering), 20–30 meters tall (adult), trunk circumference (d.b.h.) 30 cm, juvenile and adult laminae distributed in a perfect fan, 15–30 leaves simultaneously alive on the adult plant, usually 3 leaves between inflorescences. Leaves adult petiole 390–440 cm long, dark green/light green-yellowish, very waxy (Fig. 3c), sheath margin moderately developed to undeveloped (0–9 mm), entire on young leaves, splitting and dryish when old, petiole/lamina ratio 1.8–(2.2)–2.6, adult lamina 170–230 (times) 94–120 cm, light green, juvenile lamina base non-decurrent. Inflorescences 4–6 live lateral inflorescences at a time, 100–120 (times) 80–100 cm (peduncle excluded), 10–20 bracts per inflorescence, bracts 440–540 (times) 140–170 mm, some waxiness (Fig. 4c), margin color uniformly green, cincinnii of ca. 20 flowers per bract, flowering sequentially, bracteoles with a strong reddish-pink stripe. Flowers 300 mm long (ovary included), inferior ovary 50–70 mm long, perianth whitish/pure white, sepals narrowly triangular 220–240 (times) 10–15 mm, sheathing (fused) petals narrowly triangular 210–220 (times) 10–12 mm, free petal acicular 150–170 (times 3) mm, slightly smaller than the rest of the perianth with a mean free petal / mean fused petal length ratio = 0.8, petal blotches absent, stamens much shorter than the perianth, 180–200 mm long, style 180–210 mm long, stigma 14–16 mm long, oblong without basal constriction (almost indistinguishable from style). Infructescences lax (bract bases not imbricate at some stages of maturity), stiff and coriaceous persisting bracts on mature infructescence, old infructescences deciduous, 5–18 fruits per bract. Fruits 100–120 (times) 35–40 mm, trilocular septifragal capsule, apices truncate (Fig. 2c), seeds shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.Note The leaves of this species are the most robust and tough of all Ravenala species, with a thick leathery texture, making it the material of choice for building roofs35.
    Ravenala hladikorum Haev., Razanats., V. Jeannoda & P. Blanc sp. nov. — Figs. 2f, 3f, 4f, 5fType MADAGASCAR (bullet) Andasibe; 18°56′00″S, 48°25′06″E; 940 m elev.; 05 February 2004; A. Hladik & C.-M. Hladik 6842 (Holotype: TAN!, Isotype: P!). Paratypes. MADAGASCAR (bullet) Andasibe; 18°56′00″S, 48°25′06″E; 940 m elev.; 23 August 1998; A. Hladik & al. 6240 (fruit with seeds: P!). (bullet) Andasibe-Mantadia area, Vakôna, Kalonora; 18°53′17.3″S, 48°25′51.3″E; 934 m elev., 08 November 2018; T. Haevermans & al. 833 (TAN!, P!, K!, MO!).Diagnosis Similar to Ravenala madagascariensis but differs in its non-suckering habit, the alternate positioning of its adult laminae, its dark green leaves, non-waxy petioles with their very papyraceous petiole sheath margins, more than 1 cm long, smaller lamina dimensions, smaller number of simultaneously live inflorescences, purple stripe on bracts and on bracteoles, non-waxy inflorescences, smaller inflorescences, dense infructescences, truncated fruit apices, and short flowering period from November to December.Distribution Andasibe, Mantady, Ranomafana21. Restricted to Madagascar.Preliminary IUCN assessments We propose a Data Deficient status for R. hladikorum; further fieldwork is required to understand its precise distribution and the status of its populations33.Ecology High-elevation species found in eastern rainforests at elevations between 600 and 1100 m. The species seems to favor cool tropical humid and shady conditions.Etymology This species is named in honor of Annette and Claude-Marcel Hladik from the Muséum National d’Histoire Naturelle in Paris, who dedicated their lives to the study of Madagascan biodiversity and contributed greatly to the discovery of this species.Description Plants solitary (never suckering), 10–15 meters tall (adult), trunk circumference (d.b.h.) 20–30 cm, juvenile laminae distributed like a fan, adult laminae arranged in an irregular fan, 9–18 leaves simultaneously alive on the adult plant, 1–3 leaves between inflorescences. Leaves adult petiole 280–440 cm long, greenish-yellow, not waxy (Fig. 3f), sheath margin very developed (10 mm and more), split, very papyraceous with min. 1 cm brown dry expansions, petiole/lamina ratio 2.1–(2.42)–2.8, adult lamina 120–160 (times) 102–116 cm, dark green, juvenile lamina base non-decurrent. Inflorescences 2–3 live lateral inflorescences at a time, (60 times 90) cm (peduncle excluded), 4–7 bracts per inflorescence, bracts 150–510 (times) 64–100 mm, no waxiness (Fig. 4f), margin green with a purple stripe, cincinnii of 5–14 flowers per bract, sequentially flowering, bracteoles with a dark purple colored stripe. Flowers 240–320 mm long (ovary included), inferior ovary 40–60 mm long, perianth whitish, sepals narrowly triangular 210–265(times)ca. 10 mm, sheathing (fused) petals narrowly triangular 190–240(times)ca. 10 mm , free petal acicular 135–220 (times) 5 mm, almost the same size as the fused petals with a mean free petal / mean fused petal length ratio = 0.9, petal blotches unknown, stamens (roughly) the same size as the perianth, 170–230 mm long, style 187–250 mm long, stigma 20–25 mm long, ovoid with a basal constriction. Infructescences compact (bract bases imbricate at all stages of maturity), stiff and coriaceous persistent bracts on mature infructescences, old infructescences deciduous, 5–14 fruits per bract. Fruits 82–108 (times) 34–48 mm, trilocular septifragal capsule, apices truncate (Fig. 2f), seeds 4–9 (times) 3–6 mm, shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.
    Ravenala menahirana Haev. & Razanats. sp. nov.—Figs. 2e, 3e, 4e, 5eType MADAGASCAR (bullet) Foulpointe, Analalava Forest; 17°42.3′S, 49°27.38′E; 50 m elev.; 20 March 2016; T.Haevermans, M. Vorontsova, S. Dransfield & J. Razanatsoa 826 (Holotype: TAN!, Isotypes: P!, K !, MO!).Diagnosis Similar to Ravenala madagascariensis but differs in its non-suckering habit, the alternate dark green laminae tending not to form a perfect fan (Fig. 5e), dark red petioles with a zigzagging well developed dryish sheath margin, more strongly obovoid laminae, smaller number of simultaneously live inflorescences, smaller inflorescences tinged with red, pure white/whitish perianth, smaller flowers, dense infructescences, the fruit apices truncate with a mucro, and subequal free and fused petals.Distribution Appears to be restricted to the east coast in the area around Analalava-Foulpointe up to the Mananara-Avaratra area. Two human observations from Marojejy (North-East) and Tampolo (Masoala) seem also to be this species. Restricted to Madagascar.Preliminary IUCN assessments We propose a Data Deficient status for R. menahirana; further fieldwork is required to understand its precise distribution and the status of its populations33.Ecology This coastal forest-dwelling species favors low-elevation tropical humid conditions in the Analalava-Foulpointe area, extending north to Mananara-Avaratra area, and maybe up to Marojejy.Etymology The name of this species is in reference to one of its local names “menahirana”, given to the species in the Analalava-Foulpointe area and meaning “red ravenala”.Description Plants solitary (never suckering), 6–10 meters tall (adult), trunk circumference (d.b.h.) 20–30 cm, juvenile laminae distributed like a fan, adult laminae arranged in an irregular to regular fan, 12–18 leaves simultaneously alive on the adult plant, 3 leaves between inflorescences. Leaves adult petiole 200–230 cm long, dark red, slightly to very waxy, sheath margin very developed (10 mm and more), red, entire, forming a three dimensional zigzag pattern (Fig. 3e), then splitting and drying on old leaves, petiole/lamina ratio 1.4–(1.7)–1.9, adult lamina (350 times 120) cm, lamina color dark green, juvenile lamina base non-decurrent. Inflorescences 1–2 live lateral inflorescences at a time, (60 times 70) cm (peduncle excluded), 10–12 bracts per inflorescence, bracts 260–360 (times) 50–80 mm, very waxy (Fig. 4e), margin color uniformly reddish-green, cincinnii of 8–12 flowers per bract, flowering sequentially, no colored stripe on bracteoles (apices sometimes suffused with pink). Flowers 220–250 mm long (ovary included), inferior ovary 40–60 mm long, perianth pure white to whitish, sepals narrowly triangular 180–230 (times) 12–16 mm, sheathing (fused) petals narrowly triangular 160–180 (times) 5 mm, free petal acicular 160–170 (times) 5 mm, free petal the same size as the remaining perianth with a mean free petal / mean fused petal length ratio = 1.0, petal blotches absent, stamens the same size (roughly) as the perianth, stamen 150–160 mm long, style 150–200 mm long, stigma 10 mm long, oblong with a basal constriction. Infructescences compact (bract bases imbricate at all stages of maturity), stiff and coriaceous persisting bracts on mature infructescences, old infructescences deciduous, 8–12 fruits per bract. Fruits 80–100 (times) 30–35 mm, trilocular septifragal capsule, apices truncate with a mucro (Fig. 2e), seeds shiny, dark brown, mostly globose, varying in shape according to their distribution in the capsule, ultramarine blue aril.Note This species is similar to R. hladikorum but is easily distinguished by, in addition to its petioles and its ecology, its truncate mucronate fruit apices, the shape of the synflorescence bracts and the absence of a red stripe on the cyme bracteoles.Identification key to the species of genus Ravenala More

  • in

    Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography

    1.Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514–517 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Sprunger, C. D. & Philip Robertson, G. Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318, 42–51 (2018).CAS 
    Article 

    Google Scholar 
    3.DuPont, S. T. et al. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat. Plant Soil 381, 405–420 (2014).CAS 
    Article 

    Google Scholar 
    4.Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 356, 6375. https://doi.org/10.1126/science.aal2324 (2017).CAS 
    Article 

    Google Scholar 
    5.Kravchenko, A. N. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. https://doi.org/10.1038/s41467-019-11057-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).Article 

    Google Scholar 
    7.Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    8.Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: A review. Geoderma 314, 122–137 (2018).Article 

    Google Scholar 
    10.Pohl, M., Alig, D., Körner, C. & Rixen, C. Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324, 91–102 (2009).CAS 
    Article 

    Google Scholar 
    11.Bodner, G., Leitner, D. & Kaul, H. P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 380, 133–151 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bacq-Labreuil, A., Crawford, J., Mooney, S. J., Neal, A. L. & Ritz, K. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    13.Kravchenko, A. N. et al. X-ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission in contrasting bioenergy cropping systems. GCB Bioenergy 10, 894–909 (2018).CAS 
    Article 

    Google Scholar 
    14.Cambardella, C. A. & Elliott, E. T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777–783 (1992).Article 

    Google Scholar 
    15.Gregorich, E. G., Beare, M. H., McKim, U. F. & Skjemstad, J. O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci. Soc. Am. J. 70, 975–985 (2006).CAS 
    Article 

    Google Scholar 
    16.Besnard, E., Chenu, C., Balesdent, J., Puget, P. & Arrouays, D. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 47, 495–503 (1996).CAS 
    Article 

    Google Scholar 
    17.Haddix, M. L. et al. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 363, 114160 (2020).CAS 
    Article 

    Google Scholar 
    18.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    19.Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    20.Shi, P. et al. The effects of ecological construction and topography on soil organic carbon and total nitrogen in the Loess Plateau of China. Environ. Earth Sci. 78, 1–8 (2019).Article 

    Google Scholar 
    21.Cnudde, V. & Boone, M. N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Rev. 123, 1–17 (2013).Article 

    Google Scholar 
    22.Wang, W., Kravchenko, A. N., Smucker, A. J. M., Liang, W. & Rivers, M. L. Intra-aggregate pore characteristics: X-ray computed microtomography analysis. Soil Sci. Soc. Am. J. 76, 1159–1171 (2012).CAS 
    Article 

    Google Scholar 
    23.Diel, J., Vogel, H. J. & Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 345, 63–71 (2019).CAS 
    Article 

    Google Scholar 
    24.Pires, L. F., Auler, A. C., Roque, W. L. & Mooney, S. J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 362, 114103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Negassa, W. C. et al. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS ONE 10, 1–22 (2015).Article 

    Google Scholar 
    26.Quigley, M. Y., Negassa, W. C., Guber, A. K., Rivers, M. L. & Kravchenko, A. N. Influence of pore characteristics on the fate and distribution of newly added carbon. Front. Environ. Sci. 6, 1–13 (2018).Article 

    Google Scholar 
    27.Juyal, A., Otten, W., Baveye, P. C. & Eickhorst, T. Influence of soil structure on the spread of Pseudomonas fluorescens in soil at microscale. Eur. J. Soil Sci. 72, 141–153 (2021).CAS 
    Article 

    Google Scholar 
    28.Kravchenko, A. N., Negassa, W., Guber, A. K. & Schmidt, S. New approach to measure soil particulate organic matter in intact samples using X-ray computed microtomography. Soil Sci. Soc. Am. J. 78, 1177–1185 (2014).Article 

    Google Scholar 
    29.Peth, S. et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biol. Biochem. 78, 189–194 (2014).CAS 
    Article 

    Google Scholar 
    30.Gee, G. W. & Or, D. 2.4 Particle-Size Analysis (Soil Science Society of America, 2018).
    Google Scholar 
    31.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Münch, B. & Holzer, L. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91, 4059–4067 (2008).Article 

    Google Scholar 
    33.Houston, A. N., Otten, W., Baveye, P. C. & Hapca, S. Adaptive-window indicator kriging: A thresholding method for computed tomography images of porous media. Comput. Geosci. 54, 239–248 (2013).Article 

    Google Scholar 
    34.Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Houston, A. N. et al. Effect of scanning and image reconstruction settings in X-ray computed microtomography on quality and segmentation of 3D soil images. Geoderma 207–208, 154–165 (2013).Article 

    Google Scholar 
    36.Milliken, G. A. & Johnson, D. E. Analysis of Messy Data, Volume II: Nonreplicated experiments. Analysis of Messy Data, Volume II: Nonreplicated Experiments (Chaoman/CRC Press, 2017).Book 

    Google Scholar 
    37.Ladoni, M., Basir, A., Robertson, P. G. & Kravchenko, A. N. Scaling-up: Cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric. Ecosyst. Environ. 225, 93–103 (2016).Article 

    Google Scholar 
    38.Ontl, T. A., Hofmockel, K. S., Cambardella, C. A., Schulte, L. A. & Kolka, R. K. Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytol. 199, 727–737 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Zhu, M. et al. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. J. Soils Sediments 19, 1640–1650 (2019).CAS 
    Article 

    Google Scholar 
    40.Shi, P. et al. Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi, China. Arch. Agron. Soil Sci. 66, 638–650 (2020).CAS 
    Article 

    Google Scholar 
    41.Ontl, T. A., Cambardella, C. A., Schulte, L. A. & Kolka, R. K. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255–256, 1–11 (2015).Article 

    Google Scholar 
    42.Kravchenko, A. N. et al. Spatial patterns of extracellular enzymes: Combining X-ray computed micro-tomography and 2D zymography. Soil Biol. Biochem. 135, 411–419 (2019).CAS 
    Article 

    Google Scholar 
    43.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Glob. Change Biol. 19, 988–995 (2013).Article 

    Google Scholar 
    44.Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).Article 

    Google Scholar 
    45.Kravchenko, A. N. & Guber, A. K. Soil pores and their contributions to soil carbon processes. Geoderma 287, 31–39 (2017).CAS 
    Article 

    Google Scholar 
    46.Wickings, K., Grandy, A. S. & Kravchenko, A. N. Going with the flow: Landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern U.S. Agric. Ecosyst. Environ. 218, 1–10 (2016).Article 

    Google Scholar 
    47.da Jesus, E. C. et al. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. GCB Bioenergy 8, 481–494 (2016).CAS 
    Article 

    Google Scholar 
    48.Poirier, V., Roumet, C. & Munson, A. D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 120, 246–259 (2018).CAS 
    Article 

    Google Scholar 
    49.Toosi, E. R., Kravchenko, A. N., Guber, A. K. & Rivers, M. L. Pore characteristics regulate priming and fate of carbon from plant residue. Soil Biol. Biochem. 113, 219–230 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Turn taking is not restricted by task specialisation but does not facilitate equality in offspring provisioning

    1.Trivers, R. L. Parental investment and sexual selection. in Sexual Selection and the Descent of Man 1871–1971 136–207 (Aldine, 1972). doi:https://doi.org/10.1002/ajpa.13304002262.Stearns, S. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).Article 

    Google Scholar 
    3.McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Houston, A. I. & Davies, N. B. The evolution of cooperation and life-history in the dunnock. Behav. Ecol. 1, 471–487 (1985).
    Google Scholar 
    5.McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).Article 

    Google Scholar 
    6.Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).CAS 
    Article 

    Google Scholar 
    7.Harrison, F., Barta, Z. & Székely, T. How is sexual conflict over parental care resolved? A meta-analysis.. J. Evol. Biol. 22, 1800–1812 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).Article 

    Google Scholar 
    9.Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).Article 

    Google Scholar 
    10.Gächter, S. Conditional cooperation: behavioral regularities from the lab and the field and their policy implications. In Psychology and economics: a promising new cross-disciplinary field (eds Frey, B. S. & Stutzer, A.) 19–50 (MIT Press, 2007).
    Google Scholar 
    11.Hinde, C. A. Negotiation over offspring care? – A positive response to partner-provisioning rate in great tits. Behav. Ecol. 17, 6–12 (2006).Article 

    Google Scholar 
    12.Meade, J., Nam, K.-B., Lee, J.-W. & Hatchwell, B. J. An experimental test of the information model for negotiation of biparental care. PLoS ONE 6, e19684 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring provisioning: by-product of individual provisioning behaviour or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Santema, P., Schlicht, E. & Kempenaers, B. Testing the conditional cooperation model: What can we learn from parents taking turns when feeding offspring?. Front. Ecol. Evol. 7, 1–6 (2019).Article 

    Google Scholar 
    15.Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146 (2019).Article 

    Google Scholar 
    16.Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-Taking Between Provisioning Parents: Partitioning Alternation. Front. Ecol. Evol. 7, 1 (2019).Article 

    Google Scholar 
    17.Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Müller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 6565 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lessells, C. M. Sexual selection. in The evolution of parental care (eds. Royle, N. J., Smiseth, P. T. & Kolliker, M.) 150–170 (Oxford university press, 2012).19.Barta, Z., Székely, T., Liker, A. & Harrison, F. Social role specialization promotes cooperation between parents. Am. Nat. 183, 747–761 (2014).PubMed 
    Article 

    Google Scholar 
    20.Andreasson, F., Nord, A. & Nilsson, J. -Å. Brood size constrains the development of endothermy in blue tits. J. Exp. Biol. 219, 2212–2219 (2016).PubMed 
    Article 

    Google Scholar 
    21.Perrins, C. M. British tits. (Collins, 1979).22.Banbura, J. et al. Sex differences in parental care in a Corsican Blue Tit Parus caeruleus population. Ardea 89, 517–526 (2001).
    Google Scholar 
    23.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Plumage yellowness predicts foraging ability in the blue tit Cyanistes caeruleus. Biol. J. Linn. Soc. 106, 418–429 (2012).Article 

    Google Scholar 
    24.Mainwaring, M. C. et al. Latitudinal variation in blue tit and great tit nest characteristics indicates environmental adjustment. J. Biogeogr. 39, 1669–1677 (2012).Article 

    Google Scholar 
    25.Pagani-Núñez, E. & Senar, J. C. One hour of sampling is enough: Great tit Parus major parents feed their nestlings consistently across time. Acta Ornithol. 48, 194–200 (2013).Article 

    Google Scholar 
    26.Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. 7, 142 (2019).Article 

    Google Scholar 
    28.Schlicht, E., Santema, P., Schlicht, R. & Kempenaers, B. Evidence for cooperation in biparental care systems? A comment on Johnstone et al.. Behav. Ecol. 27, 1 (2016).Article 

    Google Scholar 
    29.Griffioen, M., Iserbyt, A. & Müller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).Article 

    Google Scholar 
    30.Andreasson, F., Nord, A. & Nilsson, J.-Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. Biol. e01620, (2018).31.Iserbyt, A., Griffioen, M., Eens, M. & Müller, W. Enduring rules of care within pairs – how blue tit parents resume provisioning behaviour after experimental disturbance. Sci. Rep. 9, 2776 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Lucass, C., Fresneau, N., Eens, M. & Müller, W. Sex roles in nest keeping – how information asymmetry contributes to parent-offspring co-adaptation. Ecol. Evol. 6, 1825–1833 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yoon, J., Sofaer, H. R., Sillett, T. S., Morrison, S. A. & Ghalambor, C. K. The relationship between female brooding and male nestling provisioning: Does climate underlie geographic variation in sex roles ?. J. Avian Biol. 47, 1–9 (2016).Article 

    Google Scholar 
    34.Amininasab, S. M., Kingma, S. A., Birker, M., Hildenbrandt, H. & Komdeur, J. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-016-2167-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Bryan, S. M. & Bryant, D. M. Heating nest-boxes reveals an energetic constraint on incubation behaviour in great tits, Parus major. Proc. R. Soc. B 266, 157 (1999).PubMed Central 
    Article 

    Google Scholar 
    36.Sanz, J. J. & Moreno, J. Mass loss in brooding female pied flycatchers ficedula hypoleuca: No evidence for reproductive stress. J. Avian Biol. 26, 313 (1995).Article 

    Google Scholar 
    37.Chastel, O. & Kersten, M. Brood size and body condition in the House Sparrow Passer domesticus: The influence of brooding behaviour. Ibis (Lond. 1859). 144, 284–292 (2002).38.Stearns, S. The evolution of life histories. (Oxford University Press (OUP), 1992). https://doi.org/10.5962/bhl.title.166231.39.Ardia, D. R., Perez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B – Biol. Sci. 277, 1881–1888 (2010).40.Perez, J. H., Ardia, D. R., Chad, E. K. & Clotfelter, E. D. Experimental heating reveals nest temperature affects nestling condition in tree swallows ( Tachycineta bicolor ). Biol. Lett. 4, 468–471 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Nour, N., Currie, D., Matthysen, E., Van Damme, R. & Dhondt, A. A. Effects of habitat fragmentation on provisioning rates, diet and breeding success in two species of tit (great tit and blue tit). Oecologia 114, 522–530 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grieco, F. Time constraint on food choice in provisioning blue tits, Parus caeruleus: The relationship between feeding rate and prey size. Anim. Behav. 64, 517–526 (2002).Article 

    Google Scholar 
    43.Jenkins, J. B., Mueller, A. J., Thompson, C. F., Sakaluk, S. K. & Bowers, E. K. Female birds monitor the activity of their mates while brooding nest-bound young. Anim. Cogn. https://doi.org/10.1007/s10071-020-01453-5 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. 7, 1 (2019).Article 

    Google Scholar 
    45.Santema, P., Schlicht, E., Schlicht, L. & Kempenaers, B. Blue tits do not return faster to the nest in response to either short- or long-term begging playbacks. Anim. Behav. 123, 117–127 (2017).Article 

    Google Scholar 
    46.Székely, T. Sexual Conflict Between Parents: Offspring Desertion and Asymmetrical Parental Care. Cold Spring Harb. Perspect. Biol. 6, 1–20 (2014).Article 

    Google Scholar 
    47.Griffith, S. C. Cooperation and Coordination in Socially Monogamous Birds: Moving Away From a Focus on Sexual Conflict. Front. Ecol. Evol. 7, 1–15 (2019).Article 

    Google Scholar 
    48.Patrick, S. C., Corbeau, A., Réale, D. & Weimerskirch, H. Coordination in parental effort decreases with age in a long-lived seabird. Oikos 129, 1763–1772 (2020).Article 

    Google Scholar 
    49.Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. 7, 1–15 (2019).Article 

    Google Scholar 
    50.Baldan, D. & Ouyang, J. Q. Urban resources limit pair coordination over offspring provisioning. Sci. Rep. 1, 1–11. https://doi.org/10.1038/s41598-020-72951-2 (2020).CAS 
    Article 

    Google Scholar 
    51.Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).Article 

    Google Scholar 
    52.Koenig, W. D. & Walters, E. L. Provisioning patterns in the cooperatively breeding acorn woodpecker: does feeding behaviour serve as a signal?. Anim. Behav. 119, 125–134 (2016).Article 

    Google Scholar 
    53.Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Tyson, C. et al. Coordinated provisioning in a dual foraging pelagic seabird. Anim. Behav. 132, 73–79 (2017).Article 

    Google Scholar 
    55.Wojczulanis-Jakubas, K., Araya-Salas, M. & Jakubas, D. Seabird parents provision their chick in a coordinated manner. PLoS ONE 13, 1–13 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard

    1.Perini, L., Gostinčar, C. & Gunde-Cimerman, N. Fungal and bacterial diversity of Svalbard subglacial ice. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. Sci. Rep. 27, 20230. https://doi.org/10.1038/s41598-019-56290-5 (2019).CAS 
    Article 

    Google Scholar 
    2.Margesin, R., Schinner, F. Cold-adapted organisms. In Ecology, Physiology, Enzymology and Molecular Biology (eds. Margesin, R. & Schinner, F) (Springer, 1999).3.Mueller, D. R. & Pollard, W. H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 27, 66–74 (2004).Article 

    Google Scholar 
    4.Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).Article 

    Google Scholar 
    5.Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282. https://doi.org/10.1111/jpy.12952 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Kol, E. & Eurola, S. Red snow algae from Spitsbergen. Astarte. J. Arct. Biol. 7, 61–66 (1974).
    Google Scholar 
    7.Stibal, M., Elster, J., Sabacká, M. & Kastovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).CAS 
    Article 

    Google Scholar 
    8.Kviderová, J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2, 8–19 (2012).Article 

    Google Scholar 
    9.Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments, and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).CAS 
    Article 

    Google Scholar 
    10.Takeuchi, N. et al. Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00004 (2019).Article 

    Google Scholar 
    11.Leya, T., Müller, T., Ling, H. U., Fuhr, G. Snow algae from north-western Spitsbergen (Svalbard). In The Coastal Ecosystem of Kongsfjorden, Svalbard. Synopsis of Biological Research Performed at the Koldewey Station in the Years 1991–2003. Ber. (ed. Wiencke, C.) 46–54 (Polarforsch. Meeresforsch, 2004).12.Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskioeldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high Arctic). Polar Biol. 35, 899–908 (2011).Article 

    Google Scholar 
    13.Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 4, 71–80 (2010).ADS 
    Article 

    Google Scholar 
    14.Takeuchi, N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459 (2001).ADS 
    Article 

    Google Scholar 
    15.Takeuchi, N. & Kohshima, S. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99 (2004).Article 

    Google Scholar 
    16.Yoshimura, Y., Kohshima, S. & Ohtani, S. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arct. Antarct. Alp. Res. 29, 126–137 (1997).Article 

    Google Scholar 
    17.Komárek, O. & Komárek, J. Contribution to the taxonomy and ecology of cryosestic algae in the summer season 1995–96 at King George Island, S. Shetland Islands. Nova Hedwig. Beih. 123, 121–140 (2001).
    Google Scholar 
    18.Kagami, M., de Bruin, A., Ibelings, B. W. & Van Donk, E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129 (2007).Article 

    Google Scholar 
    19.Gromov, B. V., Pljusch, A. V. & Mamkaeva, K. A. Morphology and possible host range of Rhyizophydium algavorum sp. nov. (Chytridiales) – An obligate parasite of algae. Protistology 1, 62–65 (1999).
    Google Scholar 
    20.Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).CAS 
    Article 

    Google Scholar 
    21.Hassett, B. T. et al. Arctic marine fungi: Biomass, functional genes, and putative ecological roles. ISME J. 13, 1484–1496 (2019).CAS 
    Article 

    Google Scholar 
    22.Rämä, T. et al. Fungi sailing the Arctic Ocean: Speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb. Ecol. 72, 295–304 (2016).Article 

    Google Scholar 
    23.Rämä, T., Hassett, B. T. & Bubnova, E. Arctic marine fungi: From filaments and flagella to operational taxonomic units and beyond. Bot. Mar. 60, 433–452 (2017).Article 

    Google Scholar 
    24.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5, 14524. https://doi.org/10.1038/srep14524 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Zhang, T., Wang, N. F., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity, and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic): aquatic fungi in the Arctic. Microb. Ecol. 71, 543–554 (2016).Article 

    Google Scholar 
    26.Remy, W., Taylor, T. N. & Hass, H. Early Devonian fungi: A Blastocladalean fungus with sexual reproduction. Am. J. Bot. 81, 690–702 (1994).Article 

    Google Scholar 
    27.Senanayake, I. C. et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754 (2020).Article 

    Google Scholar 
    28.Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep. 10, 19167. https://doi.org/10.1038/s41598-020-76215-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med. 108, 616–618 (1984).CAS 
    PubMed 

    Google Scholar 
    30.Semedo, M. C., Karmali, A. & Fonseca, L. A high throughput colorimetric assay of β-1,3-d-glucans by Congo red dye. J. Microbiol. Methods. 10, 140–148 (2015).Article 

    Google Scholar 
    31.Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio Protoc. 6, 1969. https://doi.org/10.21769/BioProtoc.1969 (2016).Article 

    Google Scholar 
    32.Müller, U. & Sengbusch, P. Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch. Hydrobiol. 97, 471–485 (1983).
    Google Scholar 
    33.Yang, Y., Xiang, Y. & Xu, M. From red to green: The propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable. Sci. Rep. 5, 18583. https://doi.org/10.1038/srep18583 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Luo, Z. et al. Preparation and properties of enzyme-modified cassava starch−zinc complexes. Agric. Food Chem. 61, 4631–4638 (2013).CAS 
    Article 

    Google Scholar 
    35.Beamson, G., Briggs, D. High Resolution XPS of Organic Polymers—The Scienta ESCA300 Database (Wiley Interscience, 1992).36.Miller, D. J., Biesinger, M. C. & McIntyre, N. S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination?. Surf. Interface Anal. 33, 299–305 (2002).CAS 
    Article 

    Google Scholar 
    37.Payne, B. P., Biesinger, M. C. & McIntyre, N. S. The study of polycrystalline nickel metal oxidation by water vapour. J. Electron Spectros. Relat. Phenom. 184, 29–37 (2011).CAS 
    Article 

    Google Scholar 
    38.Oh, Y. J. et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrachem. Acta. 116, 118–128 (2014).CAS 
    Article 

    Google Scholar 
    39.Procházková, L., Leya, T., Křížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz064 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms. https://doi.org/10.3390/microorganisms9051103 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Müller, T., Bleiss, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).Article 

    Google Scholar 
    42.Domozych, D. et al. The cell walls of green algae: A journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).Article 

    Google Scholar 
    44.Rad-Menéndez, C. et al. Rediscovering Zygorhizidium affluenscanter: molecular taxonomy, infectious cycle, and cryopreservation of a chytrid infecting the bloom-forming diatom Asterionella formosa. Appl. Environ. Microbiol. 84, e01826-e1918. https://doi.org/10.1128/AEM.01826-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Canter-Lund, H., Lund, J.G. Freshwater Algae: Their Microscopic World Explored. (ed. Canter-Lund, H.). 21–93. (Biopress, 1995).46.Kol, E. Kryobiologie. Biologie und Limnologie des Schneesund Eises. I. Kryovegetation. Die Binnengewa¨sser, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1968).47.Stein, J. R. & Amundsen, C. C. Studies on snow algae and fungi from the front range of Colorado. Can. J. Bot. 45, 2033–2045 (1967).Article 

    Google Scholar 
    48.Hoham, R. W., Laursen, A. E., Clive, S. O., Duval, B. Snow algae and other microbes in several alpine areas in New England. in Proceedings of the 61st Annual Western Snow Conference, Quebec City, Canada. 165–173 (1993).49.Brown, P. S., Olson, B. J. S. C. & Jumpponen, A. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?. Arct. Antarct. Alp. Res. 47, 729–749 (2015).Article 

    Google Scholar 
    50.Jumpponen, A., Egerton-Warburton, L. Mycorrhizal fungi in successional environments—A community assembly model incorporating host plant, environmental and biotic filters. In Dighton (ed. White, J. & Oudemans, P.) 139–180 (CRC Press, 2005).51.Freeman, K. R. et al. Evidence that chytrids dominate fungal communities in high elevation soils. PNAS 106, 18315–18320 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Sime-Ngando, T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front. Microbiol. https://doi.org/10.3389/fmicb.2012.00361 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Powell, M. J. Looking at mycology with a Janus face. A glimpse at Chytridiomycetes active in the environment. Mycologia 85, 1–20 (1993).Article 

    Google Scholar 
    54.Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453 (2004).Article 

    Google Scholar 
    55.Scholz, B., Küpper, F. C., Vyverman, W., Ólafsson, H. G. & Karsten, U. Chytridiomycosis of marine diatoms—The role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar. Drugs. 15, 26. https://doi.org/10.3390/md15020026 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    56.Müehlstein, L. K., Amon, J. P. & Leffler, D. L. Chemotaxis in the marine fungus Rhizophydium littoreum. Appl. Environ. Microbiol. 54, 1668–1672 (1988).ADS 
    Article 

    Google Scholar 
    57.Moss, A. S., Reddy, N. S., Dortaj, I. M. & San Francisco, M. J. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100, 1–5 (2008).CAS 
    Article 

    Google Scholar 
    58.Powell, M. J. Production, and modifications of extracellular structures during development of Chytridiomycetes. Protoplasma 181, 123–141 (1994).Article 

    Google Scholar 
    59.Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977. https://doi.org/10.1038/s41598-020-60274-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bruning, K. Effects of temperature and light on the population-dynamics of the Asterionella-Rhizophydium association. J. Plankton Res. 13, 707–719 (1991).Article 

    Google Scholar  More

  • in

    Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum

    1.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    2.Hewitt, G. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).Article 
    CAS 

    Google Scholar 
    3.Ehlers, J. & Gibbard, P. Quaternary Glaciations-Extent and Chronology: Part I: Europe Vol. 2 (Elsevier, New York, 2004).
    Google Scholar 
    4.Call, A. et al. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): Integrative evidence from phylogeography, population demographic history, and species distribution modeling. J. Syst. Evol. 54, 136–151. https://doi.org/10.1111/jse.12171 (2016).Article 

    Google Scholar 
    5.Jackson, S. et al. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quatern. Sci. Rev. 19, 489–508. https://doi.org/10.1016/S0277-3791(99)00093-1 (2000).ADS 
    Article 

    Google Scholar 
    6.Nadeau, S. et al. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: A comparison between eastern and western North American postglacial colonization histories. Am. J. Bot. 102, 1342–1355. https://doi.org/10.3732/ajb.1500160 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    7.Beaulieu, J. & Simon, J. Genetic structure and variability in Pinus strobus in Quebec. Can. J. For. Res. 24, 1726–1733. https://doi.org/10.1139/x94-223 (1994).Article 

    Google Scholar 
    8.Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).Article 
    PubMed 

    Google Scholar 
    9.Soltis, D., Morris, A., McLachlan, J., Manos, P. & Soltis, P. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x (2006).Article 
    PubMed 

    Google Scholar 
    10.Mee, J. & Moore, J. The ecological and evolutionary implications of microrefugia. J. Biogeogr. 41, 837–841. https://doi.org/10.1111/jbi.12254 (2014).Article 

    Google Scholar 
    11.Hoban, S. et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19, 4876–4891. https://doi.org/10.1111/j.1365-294X.2010.04834.x (2010).Article 
    PubMed 

    Google Scholar 
    12.Hampe, A. & Petit, R. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    13.Excoffier, L., Foll, M. & Petit, R. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 (2009).Article 

    Google Scholar 
    14.McLachlan, J., Clark, J. & Manos, P. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098. https://doi.org/10.1890/04-1036 (2005).Article 

    Google Scholar 
    15.Bemmels, J. & Dick, C. Genomic evidence of a widespread southern distribution during the Last Glacial Maximum for two eastern North American hickory species. J. Biogeogr. 45, 1739–1750. https://doi.org/10.1111/jbi.13358 (2018).Article 

    Google Scholar 
    16.Jaramillo-Correa, J., Beaulieu, J., Khasa, D. & Bousquet, J. Inferring the past from the present phylogeographic structure of North American forest trees: Seeing the forest for the genes. Can. J. For. Res. 39, 286–307. https://doi.org/10.1139/X08-181 (2009).Article 

    Google Scholar 
    17.Eckert, C., Samis, K. & Lougheed, S. Genetic variation across species’ geographical ranges: The central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    18.Foll, M. & Gaggiotti, O. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875–891. https://doi.org/10.1534/genetics.106.059451 (2006).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    19.Loveless, M. & Hamrick, J. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65–95. https://doi.org/10.1146/annurev.es.15.110184.000433 (1984).Article 

    Google Scholar 
    20.Roberts, D., Werner, D., Wadl, P. & Trigiano, R. Inheritance and allelism of morphological traits in eastern redbud (Cercis canadensis L.). Hortic. Res. 2, 1–11 (2015).Article 

    Google Scholar 
    21.Couvillon, G. Cercis canadensis L. seed size influences germination rate, seedling dry matter, and seedling leaf area. HortScience 37, 206–207 (2002).Article 

    Google Scholar 
    22.Li, S. et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds. Seed Sci. Technol. 41, 27–35 (2013).Article 

    Google Scholar 
    23.Cheong, E. & Pooler, M. Micropropagation of Chinese redbud (Cercis yunnanensis) through axillary bud breaking and induction of adventitious shoots from leaf pieces. In Vitro Cell. Dev. Biol. Plant 39, 455–458 (2003).Article 

    Google Scholar 
    24.Pooler, M., Jacobs, K. & Kramer, M. Differential resistance to Botryosphaeria ribis among Cercis taxa. Plant Dis. 86, 880–882. https://doi.org/10.1094/PDIS.2002.86.8.880 (2002).Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Trigiano, R., Beaty, R. & Graham, E. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7, 148–150. https://doi.org/10.1007/BF00270127 (1988).Article 
    PubMed 
    CAS 

    Google Scholar 
    26.Wadl, P., Trigiano, R., Werner, D., Pooler, M. & Rinehart, T. Simple sequence repeat markers from Cercis canadensis show wide cross-species transfer and use in genetic studies. J. Am. Soc. Hortic. Sci. 137, 189–201. https://doi.org/10.21273/JASHS.137.3.189 (2012).Article 

    Google Scholar 
    27.Ony, M. et al. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol. Evol. 10, 3655–3670. https://doi.org/10.1002/ece3.6141 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Resour. 7, 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2007).Article 
    CAS 

    Google Scholar 
    29.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).30.Kamvar, Z., Tabima, J. & Grünwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Kamvar, Z., Brooks, J. & Grünwald, N. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Tsui, C. et al. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol. Ecol. 21, 71–86. https://doi.org/10.1111/j.1365-294X.2011.05366.x (2012).Article 
    PubMed 

    Google Scholar 
    33.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).Article 
    CAS 

    Google Scholar 
    34.Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27, 379–423 (1948).MathSciNet 
    Article 

    Google Scholar 
    35.Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    36.Hurlbert, S. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586. https://doi.org/10.2307/1934145 (1971).Article 

    Google Scholar 
    37.El Mousadik, A. & Petit, R. High level of genetic differentiation for allelic richness among populations of the Argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839. https://doi.org/10.1007/BF00221895 (1996).Article 
    PubMed 

    Google Scholar 
    38.Bird, C., Karl, S., Smouse, P. & Toonen, R. In Phylogeography and Population Genetics in Crustacea Vol. 19 (eds Held Christoph, Koenemann Stefan, & Schubart Christoph) pp. 31–55 (Boca Raton, FL: CRC Press, 2011).39.Meirmans, P. & Hedrick, P. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).Article 
    PubMed 

    Google Scholar 
    40.Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    41.Earl, D. & Bridgett, V. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    42.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 

    Google Scholar 
    43.Francis, R. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    44.Becker, R. & Wilks, A. MAPS: An R Package to Drae Geographical Maps (Version package 3.3.0, 2018).45.Lemon, J. Plotrix: An R Package for Various Plotting Functions (Version R package 3.8–1, 2006).46.Bruvo, R., Michiels, N., D’souza, T. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106. https://doi.org/10.1111/j.1365-294X.2004.02209.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Grünwald, N., Everhart, S., Knaus, B. & Kamvar, Z. Best practices for population genetic analyses. Phytopathology 107, 1000–1010. https://doi.org/10.1094/PHYTO-12-16-0425-RVW (2017).Article 
    PubMed 

    Google Scholar 
    48.Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3072. https://doi.org/10.1093/bioinformatics/btr521 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    49.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 9. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 

    Google Scholar 
    50.Cullingham, C., Cooke, J. & Coltman, D. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: Lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana). Genome 56, 577–585. https://doi.org/10.1139/gen-2013-0071 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    51.Diniz-Filho, J. et al. Mantel test in population genetics. Genet. Mol. Biol. 36, 475–485. https://doi.org/10.1590/S1415-47572013000400002 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).CAS 

    Google Scholar 
    53.Vegan: Community ecology package v. R package version 2.5–3 (R package version 2.5–3). (2018).54.Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 

    Google Scholar 
    55.Cornuet, J., Ravigné, V. & Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform. 11, 401–411. https://doi.org/10.1186/1471-2105-11-401 (2010).Article 
    CAS 

    Google Scholar 
    56.Cornuet, J. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    57.Dickson, J. In Silvics of North America Vol. 2 (eds Burns, R. & Honkala, B.) 266–269 (United States Department of Agriculture-Forest Service, 1990).58.Thomson, A., Dick, C. & Dayanandan, S. A similar phylogeographical structure among sympatric North American birches (Betula) is better explained by introgression than by shared biogeographical history. J. Biogeogr. 42, 339–350. https://doi.org/10.1111/jbi.12394 (2015).Article 

    Google Scholar 
    59.Petit, R. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).ADS 
    Article 
    CAS 

    Google Scholar 
    60.David, R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B Biol. Sci. 282, 20142903. https://doi.org/10.1098/rspb.2014.2903 (2015).Article 

    Google Scholar 
    61.Lumibao, C., Hoban, S. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468. https://doi.org/10.1111/ele.12853 (2017).Article 
    PubMed 

    Google Scholar 
    62.Bialozyt, R., Ziegenhagen, B. & Petit, R. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20. https://doi.org/10.1111/j.1420-9101.2005.00995.x (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Petit, R. Early insights into the genetic consequences of range expansions. Heredity 106, 203–204. https://doi.org/10.1038/hdy.2010.60 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    64.Dubreuil, M. et al. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 97, 303–310. https://doi.org/10.3732/ajb.0900148 (2010).Article 
    PubMed 

    Google Scholar 
    65.Hamrick, J., Godt, M. & Sherman-Broyles, S. In Population Genetics of Forest Trees Vol. 42 (eds Adams, W., Strauss, S., Copes, D. & Griffin, A) 95–124 (Springer, Dordrecht, 1992).66.Hamrick, J. & Godt, M. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1291–1298 (1996).ADS 
    Article 

    Google Scholar 
    67.Spaulding, H. & Rieske, L. The aftermath of an invasion: Structure and composition of central appalachian hemlock forests following establishment of the hemlock woolly adelgid, Aelges tsugae. Biol. Invasions 12, 3135–3143. https://doi.org/10.1007/s10530-010-9704-0 (2010).Article 

    Google Scholar 
    68.Hadziabdic, D. et al. Analysis of genetic diversity in flowering dogwood natural stands using microsatellites: The effects of dogwood anthracnose. Genetica 138, 1047–1057. https://doi.org/10.1007/s10709-010-9490-8 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Marquardt, P., Echt, C., Epperson, B. & Pubanz, D. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 37, 2652–2662 (2007).Article 
    CAS 

    Google Scholar 
    70.Potter, K. et al. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv. Genet. 13, 475–498. https://doi.org/10.1007/s10592-011-0301-2 (2012).Article 

    Google Scholar 
    71.Thammina, C., Kidwell-Slak, D., Lura, S. & Pooler, M. SSR markers reveal the genetic diversity of asian Cercis taxa at the US National Arboretum. HortScience 52, 498–502. https://doi.org/10.21273/hortsci11441-16 (2017).Article 

    Google Scholar 
    72.Chang, C., Bongarten, B. & Hamrick, J. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. J. Plant Res. 111, 17–24. https://doi.org/10.1007/BF02507146.pdf (1998).Article 

    Google Scholar 
    73.Marquardt, P. & Epperson, B. Spatial and population genetic structure of microsatellites in white pine. Mol. Ecol. 13, 3305–3315. https://doi.org/10.1111/j.1365-294X.2004.02341.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    74.Victory, E., Glaubitz, J., Rhodes-Jr, O. & Woeste, K. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 93, 118–126. https://doi.org/10.3732/ajb.93.1.118 (2006).Article 
    CAS 

    Google Scholar 
    75.Hadziabdic, D. et al. Genetic diversity of flowering dogwood in the Great Smoky Mountains National Park. Tree Genet. Genomes 8, 855–871. https://doi.org/10.1007/s11295-012-0471-1 (2012).Article 

    Google Scholar 
    76.Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    77.Donselman, H. Variation in native populations of eastern redbud (Cercis canadensis L.) as influenced by geographic location [USA]. In Proceedings, of the Florida State Horticulture Society Vol. 89. 370–373 (1976).78.Dirr, M. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses (Stipes Publishing Co, Champaign, 1990).
    Google Scholar 
    79.Fritsch, P., Schiller, A. & Larson, K. Taxonomic implications of morphological variation in Cercis canadensis (Fabaceae) from Mexico and adjacent parts of Texas. Syst. Bot. 34, 510–520. https://doi.org/10.1600/036364409789271254 (2009).Article 

    Google Scholar 
    80.Nevo, E. et al. Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at evolution canyon, Israel. Israel J. Plant Sci. 48, 33–46 (2000).
    Google Scholar 
    81.Fritsch, P. et al. Leaf adaptations and species boundaries in North American Cercis: Implications for the evolution of dry floras. Am. J. Bot. 105, 1577–1594. https://doi.org/10.1002/ajb2.1155 (2018).Article 
    PubMed 

    Google Scholar 
    82.Raulston, J. Redbud. Am. Nurseryman 171, 39–51 (1990).
    Google Scholar 
    83.Robertson, K. Cercis: The redbuds. Arnoldia 36, 37–49 (1976).
    Google Scholar 
    84.Davis, C., Fritsch, P., Li, J. & Donoghue, M. Phylogeny and biogeography of Cercis (Fabaceae): Evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst. Bot. 27, 289–302. https://doi.org/10.1043/0363-6445-27.2.289 (2002).Article 

    Google Scholar 
    85.Hopkins, M. In Rhodora Vol. 44 (eds M Fernald, C Eatherby, L Griscom, & S Marris) 193–211 (New England Botanical Club, Inc., 1942).86.Griffin, J., Ranney, T. & Pharr, D. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Am. Soc. Hortic. Sci. 129, 497–502. https://doi.org/10.21273/JASHS.129.4.0497 (2004).Article 
    CAS 

    Google Scholar 
    87.Fritsch, P. & Cruz, B. Phylogeny of Cercis based on DNA sequences of nuclear ITS and four plastid regions: Implications for transatlantic historical biogeography. Mol. Phylogenet. Evol. 62, 816–825. https://doi.org/10.1016/j.ympev.2011.11.016 (2012).Article 
    PubMed 

    Google Scholar 
    88.Chung, M., Chung, M., Oh, G. & Epperson, B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85, 490–497. https://doi.org/10.1046/j.1365-2540.2000.00781.x (2000).Article 
    PubMed 

    Google Scholar 
    89.Dean, D. et al. Analysis of genetic diversity and population structure for the native tree Viburnum rufidulum occurring in Kentucky and Tennessee. J. Am. Soc. Hortic. Sci. 140, 523–531. https://doi.org/10.21273/JASHS.140.6.523 (2015).Article 
    CAS 

    Google Scholar 
    90.Hagler, J., Mueller, S., Teuber, L., Machtley, S. & Van-Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144. https://doi.org/10.1673/031.011.14401 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Pasquet, R. et al. Long-distance pollesn flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. 105, 13456–13461 (2008).ADS 
    Article 

    Google Scholar 
    92.Hayden, W. Redbud seedpods hold surprises. Bull. Virginia Native Plant Soc. 32, 1–6 (2013).
    Google Scholar 
    93.Schnabel, A., Laushman, R. & Hamrick, J. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67, 357–364. https://doi.org/10.1038/hdy.1991.99 (1991).Article 

    Google Scholar 
    94.Nakanishi, A., Tomaru, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. Effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Heredity 102, 182–189. https://doi.org/10.1038/hdy.2008.101 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    95.Vekemans, X. & Hardy, O. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    96.Gonzales, E., Hamrick, J., Smouse, P., Trapnell, D. & Peakall, R. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J. Hered. 101, 133–143. https://doi.org/10.1093/jhered/esp101 (2009).Article 
    PubMed 
    CAS 

    Google Scholar 
    97.Post, D. Change in nutrient content of foods stored by eastern woodrats (Neotoma floridana). J. Mammal. 73, 835–839 (1992).Article 

    Google Scholar 
    98.Surrency, D. & Owsley, C. (ed. Natural Resources Conservation Service United States Department of Agriculture) 146 (United States Department of Agriculture, Natural Resources Conservation Service, 2001).99.Wakeland, B. & Swihart, R. Ratings of white-tailed deer preferences for woody browse in Indiana. Proceedings of the Indiana Academy of Science 118, 96–101 (2009).
    Google Scholar 
    100.Wright, V., Fleming, E. & Post, D. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae) on fruits and seeds collected from woodrat nests in Kansas. J. Kansas Entomol. Soc. 63, 344–347 (1990).
    Google Scholar 
    101.Sullivan, J. (ed. Forest Service U.S. Department of Agriculture, Rocky Mountain Research Station) (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fire Sciences Laboratory, 1994).102.Weir, B. & Ott, J. Genetic data analysis II. Trends Genet. 13, 379 (1997).Article 

    Google Scholar 
    103.Magni, C., Ducousso, A., Caron, H., Petit, R. & Kremer, A. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14, 513–524. https://doi.org/10.1111/j.1365-294X.2005.02400.x (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    104.Peterson, B. & Graves, W. Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the Last Glacial Maximum in eastern North America. Journal of Biogeography 43, 314–327, doi:https://doi.org/10.1111/jbi.12621 (2016).105.Shaw, J. & Small, R. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92, 2011–2030. https://doi.org/10.3732/ajb.92.12.2011 (2005).Article 
    PubMed 
    CAS 

    Google Scholar 
    106.Rowe, K., Heske, E., Brown, P. & Paige, K. Surviving the ice: Northern refugia and postglacial colonization. Proc. Natl. Acad. Sci. 101, 10355–10359 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    107.Graignic, N., Tremblay, F. & Bergeron, Y. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall). Ecol. Evol. 8, 2766–2780. https://doi.org/10.1002/ece3.3906 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Bemmels, J., Knowles, L. & Dick, C. Genomic evidence of survival near ice sheet margins for some, but not all, North American trees. Proc. Natl. Acad. Sci. 116, 8431–8436. https://doi.org/10.7302/Z2JS9NNG (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    109.Jia, H. & Steven, R. Fossil leaves and fruits of Cercis L. (Leguminosae) from the Eocene of western North America. International Journal of Plant Sciences 175, 601–612, doi:https://doi.org/10.1086/675693 (2014).110.Kraemer, M. & Favi, F. Emergence phenology of Osmia lignaria subsp lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis. Environ. Entomol. 39, 351–358. https://doi.org/10.1603/en09242 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    111.USDA. Census of horticultural specialties. Volume 3 AC-12-SS-3, Washington, DC (2014). More

  • in

    ‘I have to use a torch and watch my step’: netting seabirds at night

    Download PDF

    Netting seabirds is great fun. And it’s crucial for science and conservation.In this photo, taken in July, I’m heading out to capture birds on Inishtrahull, Ireland’s northernmost island. Lying about 10 kilometres northeast of the mainland, the island is home to thousands of seabirds during the summer nesting season, including storm petrels (Hydrobates pelagicus), Manx shearwaters (Puffinus puffinus) and fulmars (Fulmarus glacialis). The fulmars are experiencing a population crash, which I’m investigating.Migratory birds are protected here, but we need to know where they go when they leave their nests. I attach an identification band and a light-level geolocator — a sensor that helps to estimate location from day length — to every bird I catch. A few birds get GPS monitors, but we dole those out carefully, because each costs about £1,000 (US$1,368).The birds tend to nest on cliffs, and on a bad day I’ll catch just three. Some days I get as many as 12. Shearwaters are a challenge, because they nest only at night: I have to use a torch and watch my step.The birds don’t enjoy getting caught, but the stress is only temporary. The data they provide help us to understand their migration patterns. Fulmars spend almost their entire lives at sea. I’m interested in finding out how often they share waters with long-line fishers, which would be a potentially fatal scenario for the birds. That’s not the only threat: a study has found that more than half of beached North Sea fulmars have large amounts of plastic in their stomachs (see go.nature.com/3cosy8j).The lighthouse behind me is now home to the Inishtrahull Bird Observatory, a base for birdwatchers. I’m the founding chairman, but the observatory, part of a network of monitoring spots stretching 1,200 kilometres from Scotland to southern Ireland, will outlive me. It will be a centre for science and education for years to come.

    Nature 599, 340 (2021)
    doi: https://doi.org/10.1038/d41586-021-03055-8

    Related Articles

    Tracking Chernobyl’s effects on wildlife

    Preserving pieces of history in eggshells and birds’ nests

    Subjects

    Careers

    Ecology

    Ocean sciences

    Latest on:

    Careers

    Tips for managing an industry move without your academic supervisor’s support
    Career Feature 02 NOV 21

    When you recommend someone for an opportunity, follow through
    Career Column 29 OCT 21

    Cassyni aims to make online seminars more findable and citable
    Career News 28 OCT 21

    Ecology

    Whales’ gigantic appetites, climate fears — the week in infographics
    News 05 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    Ocean sciences

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    Pliocene decoupling of equatorial Pacific temperature and pH gradients
    Article 20 OCT 21

    Mercury stable isotopes constrain atmospheric sources to the ocean
    Article 29 SEP 21

    Jobs

    Staff Scientist – RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Associate-RNA Biology

    Baylor College of Medicine (BCM)
    Houston, TX, United States More