1.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 617 (Cambridge University Press, 2002).Book
Google Scholar
2.Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101, 15261–15264 (2004).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Ahmadi, M. et al. Evolutionary applications of phylo-genetically-informed ecological niche modelling (ENM) to explore cryptic diversification over cryptic refugia. Mol. Phylogenet. Evol. 127, 712–722 (2018).PubMed
Article
Google Scholar
4.Ashrafzadeh, M. R. et al. Large-scale mitochondrial DNA analysis reveals new light on the phylogeography of Central and Eastern-European Brown hare (Lepus europaeus Pallas, 1778). PLoS ONE 13, e0204653 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
5.Tóth, B. et al. Genetic diversity and structure of common carp (Cyprinus carpio L.) in the Centre of Carpathian Basin: Implications for conservation. Genes 11, 1268 (2020).PubMed Central
Article
CAS
PubMed
Google Scholar
6.Broquet, T., Ray, N., Petit, E., Fryxell, J. M. & Burel, F. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc. Ecol. 21, 877–889 (2006).Article
Google Scholar
7.Cushman, S. A., McKelvey, K. S., Hayden, J. & Schwartz, M. K. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168, 486–499 (2006).PubMed
Article
Google Scholar
8.Khosravi, R. et al. Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conserv. Genet. 19, 323–336 (2018).Article
Google Scholar
9.Adavodi, R., Khosravi, R., Cushman, S. A. & Kaboli, M. Topographical features and forest cover influence landscape connectivity and gene flow of the Caucasian pit viper, Gloydius caucasicus (Nikolsky, 1916), Iran. Landsc. Ecol. 34, 2615–2630 (2019).Article
Google Scholar
10.Moussy, C. et al. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev. 43, 183–195 (2013).Article
Google Scholar
11.Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 1–11 (2020).MathSciNet
Article
CAS
Google Scholar
12.Barilani, M. et al. Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv. Genet. 8, 343–354 (2007).CAS
Article
Google Scholar
13.Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17, 285–293 (2008).PubMed
Article
Google Scholar
14.Kusza, S., Ashrafzadeh, M. R., Tóth, B. & Jávor, A. Maternal genetic variation in the northeastern Hungarian fallow deer (Dama dama) population. Mamm. Biol. 93, 21–28 (2018).Article
Google Scholar
15.Laikre, L., Schwartz, M. K., Waples, R. S., Ryman, N. & GeM Working Group. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).PubMed
Article
Google Scholar
16.Söderquist, P. et al. Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos). Eur. J. Wildl. Res. 63, 98 (2017).Article
Google Scholar
17.Robertson, P. A. et al. Pheasant release in Great Britain: Long-term and large-scale changes in the survival of a managed bird. Eur. J. Wildlife Res. 63, 100 (2017).Article
Google Scholar
18.Mank, J. E., Carlson, J. E. & Brittingham, M. C. A century of hybridization: Decreasing genetic distance between American black ducks and mallards. Conserv. Genet. 5, 395–403 (2004).CAS
Article
Google Scholar
19.Blanco-Aguiar, J. A. et al. Assessment of game restocking contributions to anthropogenic hybridization: The case of the Iberian red-legged partridge. Anim. Conserv. 11, 535–545 (2008).Article
Google Scholar
20.Sanchez-Donoso, I. et al. Are farm-reared quails for game restocking really common quails (Coturnix coturnix)? a genetic approach. PLoS ONE 7, e39031 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Liu, Y. et al. Genome assembly of the common pheasant Phasianus colchicus: A model for speciation and ecological genomics. Genome Biol. Evol. 11, 3326–3331 (2019).CAS
PubMed
PubMed Central
Google Scholar
22.Braasch, T., Pes, T., Michel, S. & Jacken, H. The subspecies of the common pheasant Phasianus colchicus in the wild and captivity. Int. J. Galliformes Conserv. 2, 6–13 (2011).
Google Scholar
23.Robertson, D. H. P. & Hill, D. A. The Pheasant: Ecology, Management and Conservation 281 (Blackwell Scientific Publication, 1988).
Google Scholar
24.Hill, D. A. & Robertson, P. Hand reared pheasants: how do they compare with wild birds. Game Conserv. Ann. Rep. 17, 76–84 (1986).
Google Scholar
25.Pfarr, J. True Pheasants: A Noble Quarry 248 (Hancock House Publishers Ltd, 2012).
Google Scholar
26.BirdLife International. Phasianus colchicus. The IUCN Red List of Threatened Species 2016: e.T45100023A85926819. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T45100023A85926819.en27.Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 372–380 (2018).Article
Google Scholar
28.Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World: New World Vultures to Guineafowl Vol. 2, 638 (Lynx Edicions, 1994).
Google Scholar
29.Boev, Z. N. Late Pleistocene and Holocene avifauna from three caves in the vicinity of Tran (Pernik District-W Bulgaria). In Proceedings of the First National Conference on Environment and Cultural Heritage in Karst, Sofia, Bulgaria, 10–12 November 2000 (eds Delchev, P. et al.) (Earth and Man National Museum, Association of Environment and Cultural Heritage in Karst, 2001).
Google Scholar
30.Qu, H. et al. Subspecies boundaries and recent evolution history of the common pheasant (Phasianus colchicus) across China. Biochem. Syst. Ecol. 71, 155–162 (2017).CAS
Article
Google Scholar
31.Kayvanfar, N., Aliabadian, M., Niu, X., Zhang, Z. & Liu, Y. Phylogeography of the common pheasant Phasianus colchicus. Ibis 159, 430–442 (2017).Article
Google Scholar
32.Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Santilli, F. & Bagliacca, M. Factors influencing pheasant Phasianus colchicus harvesting in Tuscany, Italy. Wildl. Biol. 14, 281–287 (2008).Article
Google Scholar
34.Lavadinović, V., Beuković, D. & Popović, Z. Common Pheasant (Phasianus colchicus L.1758) management in Serbia. Contemp. Agric. 68, 71–79 (2019).Article
Google Scholar
35.Fenberg, P. B. & Roy, K. Ecological and evolutionary consequences of size-selective harvesting: How much do we know?. Mol. Ecol. 17, 209–220 (2008).PubMed
Article
Google Scholar
36.Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. PNAS 106, 9987–9994 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. PNAS 106, 952–954 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
38.Madden, J. R. & Whiteside, M. A. Selection on behavioural traits during ‘unselective’harvesting means that shy pheasants better survive a hunting season. Anim. Behav. 87, 129–135 (2014).Article
Google Scholar
39.Csányi, S. The effect of hand-reared pheasants on the wild population in Hungary: A modelling approach. Hung. Small Game B. 5, 71–82 (2000).
Google Scholar
40.Queirós, J., Gortázar, C. & Alves, P. C. Deciphering anthropogenic effects on the genetic background of the Red deer in the Iberian Peninsula. Front. Ecol. Evol. 8, 147 (2020).Article
Google Scholar
41.Giesel, J. T., Brazeau, D., Koppelman, R. & Shiver, D. Ring-necked pheasant population genetic structure. J. Wildl. Manag. 61, 1332–1338 (1997).Article
Google Scholar
42.Qu, J., Liu, N., Bao, X. & Wang, X. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol. Phylogenet. Evol. 52, 125–132 (2009).CAS
PubMed
Article
Google Scholar
43.Liu, Y., Zhan, X., Wang, N., Chang, J. & Zhang, Z. Effect of geological vicariance on mitochondrial DNA differentiation in Common Pheasant populations of the Loess Plateau and eastern China. Mol. Phylogenet. Evol. 55, 409–417 (2010).PubMed
Article
Google Scholar
44.Zhang, L., An, B., Backström, N. & Liu, N. Phylogeography-based delimitation of subspecies boundaries in the Common Pheasant (Phasianus colchicus). Biochem. Genet. 52, 38–51 (2014).PubMed
Article
CAS
Google Scholar
45.Liu, S. et al. Regional drivers of diversification in the late Quaternary in a widely distributed generalist species, the common pheasant Phasianus colchicus. J. Biogeogr. 47, 2714–2727 (2020).Article
Google Scholar
46.Avise, J. C. Phylogeography: The History and Formation of Species 464 (Harvard University Press, 2000).Book
Google Scholar
47.Corin, S. E., Lester, P. J., Abbott, K. L. & Ritchie, P. A. Inferring historical introduction pathways with mitochondrial DNA: the case of introduced Argentine ants (Linepithema humile) into New Zealand. Divers. Distrib. 13, 510–518 (2007).Article
Google Scholar
48.Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B. 279, 967–974 (2012).PubMed
Article
Google Scholar
49.Garrett, L. J. et al. Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population. Sci. Rep. 10, 1–12 (2020).Article
CAS
Google Scholar
50.Brito, P. H. Contrasting patterns of mitochondrial and microsatellite genetic structure among Western European populations of tawny owls (Strix aluco). Mol. Ecol. 16, 3423–3437 (2007).CAS
PubMed
Article
Google Scholar
51.Suárez, N. M. et al. Phylogeography and genetic struc-ture of the Canarian common chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol. Phylogenet. Evol. 53, 556–564 (2009).PubMed
Article
CAS
Google Scholar
52.Piry, S., Luikart, G. & Cornuet, J. M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503 (1999).Article
Google Scholar
53.Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS
PubMed
Google Scholar
54.Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Wang, B. et al. Development and characterization of novel microsatellite markers for the Common Pheasant (Phasianus colchicus) using RAD-seq. Avian Res. 8, 4 (2017).Article
Google Scholar
56.Grant, W. A. S. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).Article
Google Scholar
57.Barrowclough, G. F., Johnson, N. K. & Zink, R. M. In Current Ornithology Vol. 2 (ed. Johnston, R. F.) 135–154 (Springer, 1985).Chapter
Google Scholar
58.Zink, R. M. Phylogeographic studies of North American birds. In Avian Molecular Evolution and Systematics (ed. Mindell, D. P.) 301–324 (Academic Press, 1997).Chapter
Google Scholar
59.Payne, R. B. Natal dispersal and population structure in a migratory songbird, the Indigo Bunting. Evolution 45, 49–62 (1991).PubMed
Article
Google Scholar
60.Stenzel, L. E. et al. Long-distance breeding dispersal of snowy plovers in western North America. J. Anim. Ecol. 63, 887–902 (1994).Article
Google Scholar
61.Zhu, C. et al. Genetic structure and population dynamics of the silver pheasant (Lophura nycthemera) in southern China. Turk. J. Zool. 44, 31–43 (2020).Article
Google Scholar
62.Faragó, S. Élőhelyfejlesztés az Apróvad-Gazdálkodásban: A Fenntartható Apróvad-Gazdálkodás Környezeti Alapjai 341 (Mezőgazda Kiadó, 1997).
Google Scholar
63.Faragó, S. & Náhlik, A. A Vadállomány Szabályozása: A Fenntartható Vadgazdálkodás Populációökológiai Alapjai 347 (Mezőgazda kiadó, 2011).
Google Scholar
64.Randi, E. & Lucchini, V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alector-is. J. Mol. Evol. 47, 449–462 (1998).ADS
CAS
PubMed
Article
Google Scholar
65.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS
PubMed
Article
Google Scholar
68.Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).CAS
PubMed
Article
Google Scholar
69.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Article
Google Scholar
70.Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).ADS
CAS
PubMed
Article
Google Scholar
71.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
72.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS
PubMed
Article
Google Scholar
73.Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic struc-tures of populations. BMC Bioinform. 9, 1–14 (2008).Article
CAS
Google Scholar
74.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
Article
Google Scholar
75.Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
76.Team, R.C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Google Scholar
77.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Article
Google Scholar
80.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet
MATH
Google Scholar
81.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed
PubMed Central
Article
Google Scholar
83.Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article
Google Scholar
84.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
Google Scholar
85.Langguth, T. et al. Genetic structure and phylogeogra-phy of a European flagship species, the white-tailed sea eagle Haliaeetus albicilla. J. Avian Biol. 44, 263–271 (2013).Article
Google Scholar
86.Väli, Ü., Dombrovski, V., Dzmitranok, M., Maciorowski, G. & Meyburg, B. U. High genetic diversity and low differentia-tion retained in the European fragmented and declining Greater Spotted Eagle (Clanga clanga) population. Sci. Rep. 9, 1–11 (2019).Article
CAS
Google Scholar
87.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS
PubMed
Article
Google Scholar
88.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes. 4, 137–138 (2004).Article
Google Scholar
89.Corander, J., Sirén, J. & Arjas, E. Bayesian spatial modeling of genetic population structure. Comput. Stat. 23, 111–129 (2008).MathSciNet
Article
Google Scholar
90.Galpern, P., Peres-Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol. Evol. 5, 1116–1120 (2014).Article
Google Scholar
91.Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Aus-tralian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).PubMed
Article
Google Scholar
92.Mullins, J. et al. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol. 59, 367–376 (2014).Article
Google Scholar
93.Oksanen, J. Vegan: R Functions for Vegetation Ecologists. http://cc.oulu.fi/_jarioksa/softhelp/vegan.html. (2005).94.Wright, S. Isolation by distance. Genetics 28, 114 (1943).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and re-search: An update. Bioinformatics 28, 2537–2539 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Goudet, J. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).97.Yeh, F. C. et al. POPGENE version 1.32. Computer Program and Documentation Distributed by the Author. http://www.ualberta.ca/~fyeh/popgene.html (accessed on 23 January 2013).98.Belkhir, K., Borsa, P., Chikhi, L. & Bonhomme, F. Genetix 4.05: WindowsTM Software for Population Genetics (Laboratoire Genome de Populations University of Montpelier II, 1996).
Google Scholar
99.Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974 (1998).CAS
PubMed
Article
Google Scholar
100.Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).CAS
PubMed
Article
Google Scholar More